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Abstract
Pregnancy is a challenging physiological process that involves maternal adaptations to the increasing energetics demands 
imposed by the growing conceptus. Failure to adapt to these requirements may result in serious health complications for the 
mother and the baby. The mitochondria are biosynthetic and energy-producing organelles supporting the augmented energetic 
demands of pregnancy. Evidence suggests that placental mitochondria display a dynamic phenotype through gestation. At 
early stages of pregnancy placental mitochondria are mainly responsible for the generation of metabolic intermediates and 
reactive oxygen species (ROS), while at later stages of gestation, the placental mitochondria exhibit high rates of oxygen 
consumption. This review describes the metabolic fingerprint of the placental mitochondria at different stages of pregnancy 
and summarises key signs of mitochondrial dysfunction in pathological pregnancy conditions, including preeclampsia, 
gestational diabetes and intrauterine growth restriction (IUGR). So far, the effects of placental-driven metabolic changes 
governing the metabolic adaptations occurring in different maternal tissues in both, healthy and pathological pregnancies, 
remain to be uncovered. Understanding the function and molecular aspects of the adaptations occurring in placental and 
maternal tissue’s mitochondria will unveil potential targets for further therapeutic exploration that could address pregnancy-
related disorders. Targeting mitochondrial metabolism is an emerging approach for regulating mitochondrial bioenergetics. 
This review will also describe the potential therapeutic use of compounds with a recognised effect on mitochondria, for the 
management of preeclampsia.
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Introduction

Mitochondria are cellular organelles involved in the pro-
duction of energy to support cell growth and proliferation. 
Recently, mitochondria are not only recognised as biosyn-
thetic organelles but as important mediators in cell signal-
ling pathways [1]. In the context of physiological processes 
such as pregnancy, the progress of placentation and foe-
tal development require large amounts of energy and the 
mitochondria are key to sustain these increased metabolic 
demands. Besides, the maternal tissues are expected to adapt 
to these highly energetic events and to promote effective 
energy supply to the maternal-foetal interface.

Pregnancy encompasses physiological changes mainly 
driven by the placenta. However, the way the maternal tis-
sues’ response to these demands is argued to be involved 
in the progression of a successful pregnancy. At early 
stages, usually during the first two trimesters, pregnancy 
allows the deposition of lipids in maternal tissues. This 
period is noticed as an “anabolic phase” [2] characterised 
by an increase in maternal fat storage [3, 4] and progressive 
decrease in fasting glucose levels while pregnancy advances 
linked to a 10% reduction in insulin sensitivity as compared 
with pregravid estimates [5]. Interestingly, although fast-
ing glucose levels are reduced, hepatic glucose production 
(through gluconeogenesis and glycogenolysis) is increased, 
leading to an increase in fasting insulin. Consequently, the 
decrease in maternal hepatic insulin sensitivity results in 
enhanced hepatic glucose production [5]. Towards late ges-
tation, the maternal metabolic status is characterised by 
a “catabolic phase” in where the peripheral insulin sensi-
tivity is further reduced and peritoneal and subcutaneous 
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fat storage is broken-down serving as a calorie source 
for mother and foetus [2, 5]. These events are so far well 
described and demonstrate the existence of active variations 
in the energetic requirements throughout pregnancy.

The maternal endothelium can respond to cellular sig-
nals from the mother and the foetus and these adaptations 
may involve a fine-tuned regulation of the by-products of 
metabolic pathways. Research suggests that both, placenta 
and maternal endothelium are highly energetic tissues using 
oxygen to produce energy through oxidative phosphoryla-
tion (OXPHOS) via mitochondria. This process also sup-
ports reactive oxygen species (ROS) formation that regulates 
intracellular signalling and tissue adaptations [6, 7]. ROS 
are increasingly recognised as signalling molecules regu-
lating a myriad of physiological processes [7, 8]. Neverthe-
less, an imbalance in the cellular production and antioxidant 
defences [9], known as oxidative stress, triggers various cel-
lular events that disturb signalling pathways leading to the 
onset of oxidative stress-related conditions [10].

So far, oxidative stress has been implicated as a media-
tor in the pathophysiology of a variety of pregnancy-related 
disorders, such as preeclampsia, intrauterine growth restric-
tion (IUGR) and gestational diabetes [11–14]. Therefore, 
understanding the molecular mechanisms involved in the 
redox homeostasis during pregnancy is key to identify ther-
apeutic targets that could potentially address these gesta-
tional disorders. This review aims to describe the role of 
mitochondria to sustain and to adapt to the high metabolic 
demands imposed by pregnancy, focusing on identifying the 
metabolic fingerprint of placental mitochondria at differ-
ent stages of pregnancy and recognising the mitochondrial 
perturbations associated with pathogenic outcomes in mater-
nal tissues. Emerging evidence suggests that targeting mito-
chondrial metabolism in pregnancy might be of therapeutic 
interest. Therefore, this review also summarises current 
mitochondrial-targeted drugs and their observed effect on 
the progression of gestation and outcomes associated with 
preeclampsia.

Mitochondria: bioenergetics and signalling 
organelles

Mitochondria play a key role in the production of energy in 
eukaryotic cells. These double membrane-bound organelles 
support most of the cellular energetic demands by generating 
adenosine triphosphate (ATP) [15]. Also, mitochondria gen-
erate ROS, regulate cytosolic calcium levels and modulate 
apoptosis [16].

From the bioenergetics perspective, mitochondria 
are responsible for two major processes, the production 
of ATP and the generation of metabolic intermediates 
[17]. The mitochondrial production of ATP relies on the 

oxidation of metabolic substrates by the tricarboxylic acid 
cycle (TCA) and the electron transport chain (ETC) in the 
presence of oxygen. The TCA cycle generates metabolic 
intermediates and reducing equivalents that would feed 
the ETC and serve as building blocks for macromolecule 
biosynthesis [17]. Both, the TCA cycle and the ETC are 
tightly coordinated as the oxidation of reducing equiva-
lents, NADH and FADH2, are required for the TCA [17, 
18] (Fig. 1).

The mitochondrial oxidation of substrates requires 
oxygen as the last acceptor of electrons in the ETC [19]. 
Therefore, the mitochondria are one of the most impor-
tant sites for ROS formation resulting from the reduction 
of molecular oxygen to produce superoxide. The produc-
tion of mitochondrial reactive oxygen species (mtROS) is 
strongly regulated by antioxidant enzymes such as super-
oxide dismutase (SOD) that convert superoxide to hydro-
gen peroxide (H2O2). Several enzymes including peroxire-
doxins, glutathione peroxidases and catalase remove H2O2 
and hence, regulate intracellular ROS levels [7]. In biolog-
ical systems, mtROS are known to play a crucial role in the 
adaptation to different stimuli including hypoxia, cytokine 
stimulation and calcium influx [7]. Although the redox 
biology of pregnancy and associated complications remain 
largely unexplored, evidence suggests that dysregulation 
of mtROS homeostasis causes mitochondrial dysfunction 
and oxidative stress and these events are associated with 
the onset of adverse gynaecological outcomes [20].

The mitochondria during pre‑implantation 
and early development

The mitochondria are the most abundant cytoplasmic 
organelles in oocytes. These organelles experience sub-
stantial changes during preimplantation development to 
provide for the energetic requirements of the embryo and 
participate in key signalling cellular pathways [21, 22]. 
The mature oocyte contains large amounts of mitochondria 
accounting for approximately 23% of its volume [23]. It 
is the mature oocyte that provides with the mitochondrial 
cargo for the embryo and although the spermatozoa do not 
provide with mitochondria, these organelles are important 
for sperm motility and male fertility [24]. After implanta-
tion, the blastocyst experience a significant metabolic shift 
with enhanced reliance on glycolysis for ATP production 
[25]. Still, it has been reported that OXPHOS contributes 
to the generation of ROS production during embryo devel-
opment [26]. These observations indicate that mitochon-
dria are crucial organelles of major importance for the 
production of mitochondrial-derived ROS participating in 
cell signalling events during embryogenesis.
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Placental mitochondria at early pregnancy

The development of the placenta initiates at embryo implan-
tation, followed by the migration of trophoblast cells into 
the maternal decidua and the invasion and remodelling of 
maternal spiral arteries [27]. Several cell types compose the 
human placenta. In particular, the villous trophoblast cell 
linage, predominantly cytotrophoblasts (CT) and the syn-
cytiotrophoblast (ST) are involved in key placental func-
tions [28]. The invasion and remodelling of spiral arter-
ies occur in an environment of low oxygen tension, yet, 
the recurrent invasion provides increased blood perfusion 
and oxygen to the placenta. This theory has been proven 
by polarographic electrode measurements in vivo, where it 
has been shown that the foetal-placental oxygen tension at 
8–10 weeks of gestation is approximately 17.9 ± 6.9 mm Hg 
while at 12–13  weeks the oxygen tension increases to 
60.7 ± 8.5 mm Hg [29]. These observations also suggest 
that variations in oxygen bioavailability are a normal fea-
ture of healthy pregnancies. Besides, it is inferred that the 
increased availability of oxygen may promote OXPHOS and 
the formation of physiological levels of ROS. Supporting 
this evidence, the role of hypoxia in the differentiation of 
CT has been well documented. Low oxygen (2% oxygen) 
promotes the differentiation of isolated first trimester CT 
into extravillous trophoblasts (EVT) and inhibits the dif-
ferentiation into ST [30].

Variations in oxygen levels in the placenta disturb 
the function, dynamics and integrity of the placental 

mitochondria. At 9 weeks of gestation, exposure of ST to 
21% oxygen significantly deteriorates the mitochondrial 
integrity resulting in swollen mitochondria displaying irreg-
ular shapes and degeneration of their cristae. Conversely, 
when maintained at low oxygen tension, the ST mitochon-
dria preserve their regular shape and condensed state with 
clearly defined cristae [31]. Although ST contains abundant 
mitochondria [31], the expression of antioxidant enzymes 
copper- and zinc-containing superoxide dismutase (Cu/
ZnSOD) [32] and catalase [33] are scarcely detected by 
immunohistochemistry. In contrast, CT show high expres-
sion of these antioxidant enzymes [32, 33]. These striking 
differences in oxygen sensitivity suggest that ST might be 
physiologically protected for low oxygen tensions in vivo. 
However, a sudden burst of oxygen bioavailability would 
lead to increased vulnerability to oxidative stress. From the 
bioenergetics perspective, an increased vulnerability to oxy-
gen availability in an environment of low oxygen may dimin-
ish the reliance of ST on mitochondria to sustain metabolic 
processes driven by mitochondria.

As pregnancy progresses, there is a continuous differen-
tiation of CT to multinuclear ST which allows the forma-
tion of the outer layer of the placental villi. This process 
of differentiation relies on changes in mitochondrial energy 
production and signalling interactions [34, 35]. A significant 
shift in energy metabolism precedes trophoblast fusion in 
CT differentiation to ST, including increased lactate pro-
duction with enhanced anaerobic pathways [36] and lower 
antioxidant capacity [37] (Fig. 2).

Fig. 1   Schematic overview of mitochondrial bioenergetics of the electron transport chain and the tricarboxylic acid cycle. H+, hydrogen; sqr, 
sulfide quinone oxidoreductase; Q, coenzyme Q; Cyt c, cytochrome c; e−, electron
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So far, several studies have put in evidence that CT and 
ST display strong differences in the structure and function 
of their mitochondria. However, our understanding of the 
role of mitochondria to sustain the energetic demands of 
EVT is limited. In the attempt to better understand the 
importance of mitochondria in EVT metabolism, a study 
has shown that the well-established immortalised EVT cell 
line (named HTR-8/SVneo) are resistant to apoptosis when 
exposed to low oxygen environment [38]. Interestingly, 
when cultured in normal oxygen tension, the EVT show an 
increased reliance on glycolytic pathways and suppressed 
mitochondrial reserve capacity. The EVT displays a highly 
glycolytic metabolism and therefore, are less sensitive to 
mitochondrial impairments associated with anti-angio-
genic factor signalling [39].

Nevertheless, because of the variations in oxygen bio-
availability, ROS are produced. However, these molecules 
have demonstrated to play important physiological sig-
nalling roles in early stages of gestation. For example, 
ROS triggers vascular endothelial growth factor signal-
ling cascade and activates glucose transporters promoting 
the process of angiogenesis [40]. Although several studies 
suggest that ST and EVT are less reliant on mitochon-
drial function for energetic purposes, their mitochondrial 
machinery is fully capable of the generation of mtROS. 
Consequently, the role of mitochondria in the early stages 
of pregnancy might be mainly focused on mtROS produc-
tion to promote cell signalling pathways and angiogenesis, 
allowing foetal growth and development.

These observations suggest that early in pregnancy, 
instead of exhibiting a crucial role in the generation of 
energy, mitochondria might be responsible for signalling 
interactions that could result in successful placental adap-
tations to stress (i.e. low oxygen, nutritional deprivation).

Late pregnancy: role of placental mitochondria

Several studies have identified the response of term placen-
tal trophoblasts to physiological and pathological stimuli. 
Nevertheless, the morphological structure and functionality 
of isolated term trophoblasts do not resemble the nature of 
trophoblasts at the early stages of pregnancy. Currently, the 
vast majority of trophoblast physiology research, although 
elegantly executed, employ term trophoblasts [41–43]. Con-
sidering that the placenta is discarded after birth as waste, 
probably the easiest approach to study placental function is 
utilizing term placental cell isolation and ex vivo studies.

During the last trimester of gestation, the layer of CT pro-
gressively disappears [44], the population of EVT is partially 
replaced by fibrinoid structures and at term, only a thin layer 
of ST covers the chorionic villi [45, 46]. Several reports sug-
gest that ST are mainly responsible for the metabolic activity 
of the maternal-foetal unit, as they are in intimate contact 
with the maternal blood. However, throughout gestation, CT 
are responsible for re-generating the layer of ST, which sug-
gests that these trophoblasts might possess higher metabolic 
requirements. Likewise, CT highly expresses genes involved 
in the regulation of lipid uptake and metabolism [46] and 
displays higher glycolytic and mitochondrial activity in com-
parison to the differentiated term ST [41].

Studies evaluating the mitochondrial dynamics associated 
with the differentiation of term CT to ST have evidenced 
fragmentation of the mitochondrial network resulting in 
clear differences in the mitochondrial structure of term 
trophoblasts populations [41]. Term CT mitochondria are 
relatively larger with lamellar cristae whereas ST mito-
chondria are smaller, dense and with vesicular cristae [28, 
47, 48]. This structural dissimilarity has been related to 
defective dimerization of mitochondrial complex V (ATP 

Fig. 2   Proposed mechanisms 
of cellular bioenergetics in 
cytotrophoblasts at early and 
late stages of pregnancy. Cat, 
catalase; MnSOD, manganese 
superoxide dismutase
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synthase) in ST [35]. Consistent with these structural dif-
ferences, proteomic analysis in isolated term placental mito-
chondria demonstrated a differential regulation of 651 pro-
teins with 29 of those being statistically different between 
ST and CT. Twenty-four of these proteins, including ATP 
synthase subunits α and β, superoxide dismutase and phos-
phoenolpyruvate carboxykinase were downregulated in ST 
whereas only five proteins were upregulated [49]. These 
variations imply that term trophoblast subpopulations; e.g. 
CT and ST may possess a distinguishable and unique meta-
bolic phenotype. Supporting this assumption, studies using 
real-time bioenergetic assays have shown that CT display 
significantly higher levels of basal, ATP coupling and non-
mitochondrial oxygen consumption rates when compared to 
ST, with no significant change in maximal respiration and 
reserve respiratory capacity [42]. Besides, it has been shown 
that the generation of ATP is increased in CT in comparison 
to subpopulations of ST [43]. Together, these observations 
suggest that term CT exhibit higher mitochondrial activity 
than ST. From the metabolic point of view, term CT displays 
different features than ST that may allow us to distinguish 
both trophoblasts subpopulations.

The role of placental mtROS in modulating cell signal-
ling processes has been also addressed in trophoblast-like 
cells. Studies by Walker et al. using BeWo trophoblasts have 
identified that exposure to rotenone (mitochondrial complex 
I inhibitor) resulted in the generation of mtROS, reduced 
cellular fission and increased mitochondrial fragmentation, 
determined by decreased expression of mitochondrial fusion 
regulating proteins: mitofusin 2 (MFN2) and optic atrophy 
protein 1 (OPA1) and increased the expression of fission 
regulating protein dynamin-related protein 1 (DPR1) in dif-
ferentiated and undifferentiated BeWo cells. Rescue experi-
ments using pre-treatment with antioxidant N-acetyl cysteine 
showed normalisation of MFN2 and OPA1 and partial res-
toration of DPR1 mRNA expression. These observations 
highlight the importance of mitochondrially-derived ROS 
in sustaining the mitochondrial structure and function of 
placental cells [50].

Apoptosis in pregnancy

Apoptotic cell death is a dynamic process by which dys-
functional cells are removed to maintain normal tissue func-
tion. It can be initiated through the mitochondria via the 
intrinsic pathway, in response to cellular stressors such as 
DNA damage [51]. The process is activated by the tumour 
suppressor protein, p53 which leads to transactivation of 
the proapoptotic Bcl-2 family [52]. Cytochrome c binds to 
apoptosis protease activation factor-1 resulting in oligom-
erisation and apoptosome formation [53]. The apoptosome 
facilitates caspase activation, specifically the recruitment of 

caspase 9 which activates caspase 3 and caspase 7, leading 
to immunosilent cleavage of unwanted cells.

Programmed cell death is important in normal pregnancy 
for processes including implantation and healthy develop-
ment of the placenta. A study by Galan et al. showed that 
in the preattachment phase of implantation, the developing 
blastocyst averts apoptosis from human endometrial epithe-
lial cells in order to adhere to the endometrium. This was 
indicated by a reduction in human endometrial epithelial 
cells apoptotic cells (35.2%) compared to 48.8% for human 
endometrial epithelial cells cultured without the blasto-
cyst. However, this study showed a considerable increase 
in paracrine apoptosis after adhesion which suggested that 
the regulation of apoptosis is a key process at early stages 
of pregnancy [54]. The role of apoptosis in pregnancy has 
shown that the development of normal pregnancies is asso-
ciated to an increased rate of maternal peripheral blood 
apoptosis [55]. However, in terms of pregnancy, it has been 
shown that pregnancy itself is linked to a reduced rate of 
neutrophil apoptosis, in comparison to non-pregnant women, 
suggesting an explanation for the neutrophilia evidenced in 
normal pregnancies [56]. In terms of placental apoptosis, 
studies show that apoptosis increases through gestation and 
significantly accelerates at term [57]. Interestingly, increased 
levels of placental apoptosis have been identified in several 
pregnancy pathologies [56], including preeclampsia [58, 59] 
and IUGR [60, 61]. However, the molecular mechanisms 
associating exaggerated apoptosis with pregnancy complica-
tion remains unclear.

Mitochondrial adaptations 
through pregnancy

Cardiovascular system

Mitochondria consist of about 30% of the volume of car-
diomyocytes and accounts for the bioenergetic homeostasis 
of the heart [62]. Some of the most important pregnancy-
related maternal adaptations occur in the cardiovascular 
system. Those maternal hemodynamic changes of preg-
nancy allow increased blood flow to various organs to meet 
energetics demands [63, 64], leading to vasodilation of 
the systemic vasculature, increased cardiac mass (∼ 50%), 
increased cardiac output (∼ 20–50%) resulting in increased 
energetic demands [65] and by the end of the first trimes-
ter of pregnancy a 50% increase of the glomerular filtration 
rates in kidneys [66, 67].

Although pregnancy requires a remarkable adaptation of 
the cardiovascular system to provide blood and metabolites 
to maternal organs and the foetal-placental unit, only a few 
studies in humans describe the metabolic adaptations of 
the heart during a normal pregnancy. Interestingly, during 
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pregnancy, cardiac mitochondria can adapt to energetic chal-
lenges by increasing the rates of mitochondrial substrates 
utilisation. In this regard, studies in rats have shown that 
the rates of glucose utilisation decrease 7-fold as the preg-
nancy progresses while rates of fatty acid and ketone bodies 
utilisation increase by approximately 2.5-fold and 6-fold, 
respectively [68]. These differences in substrate preference 
may imply that cardiac mitochondrial metabolic adapta-
tions are an important hallmark in the progression of normal 
pregnancies. This evidence suggests that early pregnancy-
cardiac metabolism is mainly glucose-driven while towards 
later stages of gestation, mitochondria appear to play a key 
role in supporting the bioenergetic homeostasis in the heart.

Maternal metabolic impairments in gestational diabetes 
and obesity, increase the risk of the offspring to develop 
heart disease later in life [69]. Studies in neonatal rat cardio-
myocytes showed that offspring from normal diet-exposed 
dams have highly dynamic mitochondria while diabetes or 
high-fat diet-exposed rats resulted in offspring’s neonatal 
cardiomyocytes with shorter and wider structures along with 
defective gene expression of mitochondrial fusion regulating 
proteins: mitofusin 1 (MFN1), MFN2, OPA1 and pro-fission 
DRP1, mitochondrial fission regulating proteins: mitochon-
drial fission factor (MFF) and mitochondrial fission process 
1 (MTFP1). Interestingly, these differences are influenced 
by foetal sex [70]. These observations infer that those car-
diac mitochondrial perturbations arising in metabolically 
impaired pregnancies, may be involved in the onset of cardi-
ovascular disease in the offspring at later stages of their life.

Renal system

Several pregnancy pathological complications and co-mor-
bidities are associated with kidney-related impairments [71]. 
Studies by Popkov et al. showed that pregnancy enhances the 
mitochondrial membrane potential in renal isolated mito-
chondria in a model of renal ischaemia/reperfusion injury 
in rats [72]. In vivo models of preeclampsia have shown an 
association with excessive mtROS production and patho-
logical outcomes. The reduced uteroplacental perfusion 
(RUPP) model established in rats showed that ischaemia 
insults impair the renal mitochondrial function by reduc-
ing the expression of mitochondrial complexes I and II, 
suppression of mitochondrial respiratory parameters [73] 
exacerbated production of mtROS [74]. Also, a model of 
hypertension in pregnancy in rats exposed to autoantibodies 
to the angiotensin II type 1 receptor, evidenced increased 
production of H2O2 as an indicator of oxidative stress [75]. 
In general, these studies are supportive of the existence of 
oxidative stress in renal tissue from complicated pregnan-
cies and suggest that modulation of the oxidative damage in 
the kidney may be of therapeutic interest when managing 
these disorders.

Skeletal muscle

The skeletal muscle accounts for approximately 50% of the 
body mass and its energetic requirements rely on glucose 
and fatty acid utilisation [76]. Although there are numer-
ous studies addressing the role of mitochondria in human 
skeletal muscle during excersice, our understanding of 
the role of mitochondria to sustain skeletal muscle func-
tion in phases of human reproduction is not yet clear. The 
effects of low maternal energy diets have been studied in 
pigs, showing that nutritional deprivation reduces the mito-
chondrial DNA (mtDNA) copy number, citrate synthase and 
NAD+-to-NADH ratio in their offspring’s skeletal muscle 
compared to standard energy diet offspring. This restrictive 
energetic diet caused a reduction in the transcription of mito-
chondrial biogenesis genes, PPARG Coactivator 1 Alpha 
(PPARGC1-α) and Sirtuin 1 and impaired the antioxidant 
defences expressed by reduced SOD and catalase mRNA and 
protein expression in foetal skeletal tissue [77]. The effects 
of maternal nutritional restriction have been associated with 
the onset of several pregnancy-related disorders [78] and 
the programming of foetal developmental alterations [79]. 
Therefore, restrained maternal nutrition might seriously 
alter the skeletal muscle homeostasis in the offspring and 
these events are likely to be influenced by defective mito-
chondrial biogenesis signals reprogrammed in the offspring. 
Nevertheless, most studies attempting to reveal the role of 
mitochondrial dysfunction in skeletal muscle during preg-
nancy, have been performed using animal models, requir-
ing a more attentive interpretation of those implications for 
human pregnancy.

Mitochondrial dysfunction 
in pregnancy‑related disorders

The study of the dysregulation in mtROS production in 
pregnancy-associated complications such as; preeclampsia, 
IUGR, gestational diabetes and pre-term birth is a hot topic 
of research in the field of reproductive biology. There is 
accumulative evidence demonstrating the effectiveness of 
mitochondrially targeted therapeutics to modulate the redox 
balance in a variety of these disorders. Hence, this section 
summarises key mitochondrial disturbances observed in 
pathological pregnancy outcomes including studies in pla-
cental, vascular and cardiovascular tissues and highlights the 
potential benefit of drugs with recognised effects on mito-
chondria to potentially manage preeclampsia.

Preeclampsia

Preeclampsia is a disorder of pregnancy arising from the 20th 
week of gestation, clinically characterised by newly-onset 
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hypertension and proteinuria [80]. From the molecular point 
of view, preeclampsia is associated with the upregulation 
of circulating levels of anti-angiogenic factors soluble Flt-1 
(sFlt-1) and soluble endoglin [81] that might account for 
maternal vascular dysfunction and oxidative stress described 
in preeclampsia [78].

The role of the placental mitochondria in preeclampsia 
has been well studied. However, there are inconsistencies in 
results showing dramatic variations in terms of mitochon-
drial structure, content and function. Human studies have 
shown that gene expression of mitochondrial dynamics pro-
teins, OPA1, fission 1 (FIS1), MFN1 and MFN2 are impaired 
in preeclamptic term placentas [82, 83]. Conversely, others 
have shown elevated expression in markers of mitochondrial 
fission; MFN1 and MFN2 in preeclampsia [84]. The pla-
cental mitochondrial content and mitochondrial biogenesis 
signals, important for the preservation of tissue function and 
metabolic activity, have also shown some inconsistencies 
[85]. In this regard, while some have reported decreased 
OXPHOS activity [86] and reduced expression of mito-
chondrial ETC complexes in preeclampsia [87–89], a recent 
report demonstrate otherwise [82]. One potential explana-
tion for these diaparities can be attributed to the gestational 
age of preeclampsia onset. For example, studies by Holland 
et al. showed that pre-term preeclamptic placental display a 
reduction in mitochodnrial antioxidant activity (SOD activ-
ity in mitochondrial content) when compared to normoten-
sive pre-term, term normotensive and term preeclamptic 
counterparts [82]. Another potential explanation can be 
attributed to the severity of preeclampsia included in those 
studies. In this regard, studies by Zhou et al. focused on 
term preeclamptic placentas, including severe preeclapmsia 
patients [84]. As these variables on preeclampsia develop-
ment (gestational age and severity) can be crucial for diag-
nose and management [90, 91], a vigilous interpretation of 
results is suggested in order to better understand the role of 
mitochondria in the onset of this complication.

Others have reported evidence of dysregulation in the 
mitochondrial integrity and function in models display-
ing preeclampsia-like signs. Several mice models mimick-
ing the preeclampsia condition induced by treatment with 
Nw-nitro-L-arginine-methyl ester (L-NAME, nitric oxide 
synthase inhibitor), lipopolysaccharide, β2 glycoprotein I 
[92], sFlt-1-injected mice [93] and STOX1 transgenic mouse 
[94], have shown similar impairments in the structure of 
trophoblast mitochondria exhibiting increased swelling and 
cristae disappearance. Similarly, the expression of mtROS 
detoxifying enzymes, including the mitochondrial uncou-
pling protein 1 (UCP-1) and superoxide dismutase 2 (SOD2) 
are reduced in models of preeclampsia [74, 94].

As preeclampsia originates from the second trimester 
of pregnancy, studying term placental tissue might not be 
a reliable approach to either study molecular mechanisms 

of the disorder or to evaluate effective therapeutics to pre-
vent it. Given that preeclampsia is a maternal complication, 
mostly affecting the vasculature of the mothers, in vitro stud-
ies using endothelial cells have provided new insights into 
the contribution of dysfunctional mitochondria in vascular 
dysfunction. Exposure of endothelial cells to plasma from 
preeclamptic women have shown to significantly increase 
the production of mtROS [39, 73, 95] and to suppress the 
basal and maximal respiratory capacity [39, 95]. The expres-
sion of mitochondrial respiratory complexes, citrate synthase 
and fatty acid oxidation is reduced in human umbilical vein 
endothelial cells (HUVEC) isolated from preeclamptic preg-
nancies [96]. Studies in rats emulating the preeclampsia-
like disorder have also supported the role of mitochondria 
in the production of mtROS and suppression of OXPHOS in 
renal tissue [73, 74, 97]. Likewise, analysis of blood samples 
from preeclamptic and uncomplicated pregnancies showed 
increased superoxide generation that negatively correlates 
with microvascular endothelial function in preeclampsia 
[12].

Intrauterine growth restriction (IUGR)

IUGR is a pregnancy-specific disorder characterised by a 
reduced foetal growth rate in comparison to the expected 
growth at a specific stage of gestational development [98]. 
The molecular features of IUGR share a common placental 
phenotype with other hypertensive disorders of pregnancy, 
characterised by “placental insufficiency” at the early stages 
of pregnancy [99]. The role of mitochondrial dysfunction 
in IUGR pathogenesis is not yet clear. However, there is 
evidence suggesting that mitochondrial impairments are 
associated with this complication [100].

Studies in placental tissue from IUGR patients showed 
an increased mitochondrial content (measured as mtDNA) 
in this group in comparison to normal pregnancies [99, 
101]. Interestingly, the content of mitochondria in iso-
lated placental CT is lower in the IUGR group [99]. Simi-
larly, mRNA levels of mitochondrial biogenesis regula-
tor, nuclear respiratory factor 1 (NRF1) is increased in 
placentas from IUGR but reduced in isolated CT. The 
expression and activity of mitochondrial complexes 
subunits are also reduced in IUGR [99, 102]. Neverthe-
less, controversial results have been reported showing 
increased OXPHOS efficiency in comparison to control 
[99] while others have described the mitochondrial activ-
ity to be reduced [102]. A potential explanation for these 
contrasting results may be associated to the complexity of 
the placental structure and multiple cell types composing 
the placenta. For example, cells composing the maternal 
section include trophoblasts, stromal and fibroblast-like 
cells and macrophages. In contrast, the foetal section is 
composed by a layer of ephitelial cells resting over a layer 
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of connective tissue associated with foetal blood vessels 
[103]. Therefore, results found in whole placental tissue 
could be related to cell types other than CT.

To explain these variations in mitochondrial content 
and activity, Jones et al. suggested that these might result 
as a metabolic compensatory mechanism. In this regard, 
placentas from IUGR pregnancies have shown to express 
increased mRNA levels of glycolysis-regulatory gene 
PDK1 (Pyruvate Dehydrogenase Kinase 1) [104]. These 
exciting results suggest that other cell types, including 
ST, mesenchymal cells and fibroblasts might contain a 
significant number of mitochondria and may account for 
the increased content observed in whole placental tis-
sue from IUGR. Knowing that in normal pregnancies the 
mitochondrial content and structure of ST tend to reduce 
while pregnancy progresses, these observations suggest 
that IUGR may accompany a dysregulation in placental 
mitochondrial adaptations along with modulation of less 
efficient pathways such as glycolysis, possibly to sustain 
the enhanced energetic requirements exert by the foetus.

Plasma mediators in IUGR pregnancies have been 
shown to reduce endothelial cell viability and to pro-
mote intracellular ROS production in  vitro. Electron 
microscopy studies have revealed that HUVEC isolated 
from IUGR pregnancies evidence cellular abnormalities 
including mitochondrial swelling, enlarged intermem-
brane spaces and disrupted cristae [105]. These observa-
tions reveal a similar pattern with preeclampsia-induced 
mitochondrial dysfunction in endothelial cells, suggesting 
a common pathway in the pathophysiology of these disor-
ders. In a rat model of IUGR, it was evidenced a reduction 
in pyruvate, succinate and α-ketoglutarate oxidation rates 
along with increased manganese superoxide dismutase 
(MnSOD) protein levels [106]. IUGR is also associated 
with skeletal muscle perturbations linked to defective glu-
cose homeostasis and reduced muscle respiration [100].

Other evidence suggests that mitochondrial dysfunc-
tion is a mechanism of foetal metabolic programming in 
offspring from IUGR. In a model of IUGR established in 
pigs, it was shown that IUGR offspring fed with a high-
fat diet exhibit reduced activity of lactate dehydrogenase 
(LDH) and glucose-6-phosphate dehydrogenase (G6PD) 
accompanied by suppressed succinate and glutamate-
induced OXPHOS activity, reduced mitochondrial con-
tents and downregulation of mRNA expression of genes 
involved in mitochondrial biogenesis in skeletal muscle 
[107]. Similarly, a model of IUGR in mice established by 
maternal undernutrition, affected the cardiac bioenerget-
ics by suppressing fatty acid oxidation [108], suggesting a 
greater susceptibility of IUGR offspring to dysregulation 
in cardiac energetic balance.

Gestational diabetes (GDM)

The first detection of hyperglycaemia during pregnancy is 
classified as “diabetes mellitus in pregnancy” or “gestational 
diabetes (GDM) mellitus” by the World Health Organiza-
tion (WHO) [109]. In some circumstances, maternal tissues 
fail to sustain the metabolic adaptations required for preg-
nancy resulting in complications such as GDM [110, 111]. 
Although the molecular events leading to GDM are still not 
well understood, the dysregulation of mitochondrial sub-
strate oxidation has been proposed to play a role in GDM.

Studies in term trophoblasts from women with GDM 
showed downregulation of mitochondrial biogenesis modu-
lator, PGC1-α (peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha) and suppressed parameters of 
mitochondrial function along with a two-fold increase in glu-
cose transporter GLUT-1 expression [112]. Mitochondrial 
dynamics are also impaired in GDM showing pro-fusion 
features with elevated OPA1 and DRP1 expression [113]. 
GDM is also linked to increased placental lipid peroxida-
tion and oxidised proteins (carbonyls) [114]. In the maternal 
skeletal muscle, GDM has also shown to impair the expres-
sion of mitochondrial complex I [115]. These observations 
propose that the metabolic perturbations exerted by GDM 
in the placental tissue may result in the inability of maternal 
tissues to adapt to the metabolic demands.

When a healthy diet along with exercise is not enough to 
regulate maternal glucose levels, drugs such as insulin and 
metformin are indicated to manage GDM [116]. However, 
metformin is known to suppress the activity of mitochon-
drial complex I and to prevent complex I-induced mtROS 
generation [117]. As the American College of Obstetricians 
and Gynaecologists (ACOG) and the National Institute for 
Health and Care Excellence (NICE) guidelines recommend, 
metformin represents the first line of choice for the manage-
ment of GDM [118, 119]. Therefore, our interpretation of 
studies evaluating the function of mitochondria using tissues 
or cells derived from GDM patients treated with metformin 
should be cautious.

Targeting mitochondrial metabolism 
in the management of preeclampsia

Antioxidant therapies have largely demonstrated to fail in 
the management of preeclampsia. One possible explication 
relies on the potential inability of these drugs to reach and 
accumulate in relevant cellular compartments, such as the 
mitochondria. In the past decades, compounds targeting the 
mitochondria have gained great interest in their abilities to 
moderate mtROS generation and cellular bioenergetics in a 
myriad of pathological disorders [120].
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Some unique features on the mitochondrial inner mem-
brane composition and function, such as its high transmem-
brane potential and particular phospholipid composition 
allowed the targeting of mitochondria [121]. Approaches 
for directing drugs for delivery and accumulation within the 
mitochondria include links to a lipophilic cation moieties 
such as triphenylphosphonium (TPP+), cardiolipin and het-
erocyclic aromatic cations [120].

Emerging research describes mitochondrial dysfunction 
and oxidative stress as molecular hallmarks of preeclamp-
sia. Therefore, recent efforts to elucidate effective therapies 
to manage this disorder have focused on the mitochondria. 
Different drugs with effects on mitochondria (either spe-
cifically targeted or not) have been evaluated in models of 
preeclampsia. A list of compounds with recognised effects 
on mitochondrial function targeting the restoration of mito-
chondrial function in vitro, in vivo and clinical trials for the 
management of preeclampsia are described in Table 1.

Metformin

Metformin, although not a mitochondrial-targeted drug, has 
proven abilities to cause unspecific inhibition of the mito-
chondrial complex I [117]. For that reason, the use of met-
formin for treating and or preventing preeclampsia has been 
included in this section.

Studies using villous CT, preterm preeclamptic villous 
explants and primary endothelial cells, have shown that 
metformin alone or in combination with other drugs, sig-
nificantly abrogates sFlt-1 and soluble endoglin production 
[122–124]. As previously described in section “preeclamp-
sia”, sFlt-1 and soluble endoglin are anti-angiogenic factors 
implicated in the pathogenesis of preeclampsia. In a model 
of preeclampsia in mice fed with a high-fat diet, the use of 
metformin has also shown to improve maternal blood pres-
sure and foetal outcomes [125].

A phase II trial study (currently undergoing) protocol was 
recently published. This study aims to evaluate the efficacy 
of metformin to treat preterm preeclampsia (trial number 
PACTR201608001752102) [126]. Nonetheless, previous 
studies, although not focused on a cohort of preeclampsia 
patients, have provided insights into the potential effects 
of metformin to prevent this disorder. Nevertheless, the 
approach of metformin for managing preeclampsia should be 
cautions as two clinical trials performed in the UK focused 
on obese and diabetic cohorts showed contradictive results 
regarding the effectiveness of metformin on the risk of 
preeclampsia [127].

AP39

The novel hydrogen sulfide (H2S) donor, AP39 consists 
of an H2S-donating moiety (dithiolethione) coupled to 

a TPP+ motif by an aliphatic linker targeting the release 
of H2S to the mitochondria (Fig. 3). The effectiveness of 
AP39 to promote the mitochondrial function has been 
tested in endothelial cells. This study showed that AP39 
exerts cytoprotective effects and maintains the mtDNA 
integrity while improving the mitochondrial bioenergetics 
in endothelial cells exposed to high glucose levels [128]. 
Regarding the potential protective effect of AP39 on the 
placenta, Covarrubias et al. reported that AP39 signifi-
cantly prevents sFlt-1 release, abrogates the generation of 
mtROS and enhances cytochrome c activity in isolated 
human primary trophoblasts exposed to hypoxia [129].

Mito‑Tempo and MitoQ

Mito-Tempo is a mitochondrial-targeted antioxidant com-
pound consisting of the antioxidant piperidine nitrox-
ide, superoxide dismutase mimetic (Tempo), linked 
to TPP+ [130]. MitoQ consists of an antioxidant com-
pound (quinone) linked to TPP+ [131, 132] (Fig. 3). In 
a study in vitro, McCarthy et al. assessed the ability of 
mito-Tempo to protect against preeclampsia plasma 
mediators-induced mtROS generation in HUVEC. In this 
study, mito-Tempo also showed protective effects against 
H2O2-induced cell death [95].

In another study, both mitochondrial-targeted antioxidants 
suppressed the production of mtROS in HUVEC exposed to 
serum collected from RUPP animals. In this same report, 
the authors showed in an in vivo RUPP model that treat-
ment with mito-Tempo and mitoQ reduce the mean blood 
pressure and improve pup and placental weight. However, 
mito-Tempo but not mitoQ improved litter size [73]. Similar 
reports have been provided by Yang et al. showing the effec-
tiveness of mitoQ in alleviating preeclampsia-like signs in 
a RUPP model established in mice [133]. Studies in vitro, 
have shown that mitoQ partially prevents the production 
of ROS from placental explants exposed to monoclonal 
antiphospholipid antibodies [134].

Coenzyme Q10

Coenzyme Q10 or ubiquinone is a lipid-soluble antioxidant 
that participates in the electron transfer from complexes I 
and II to complex III in the mitochondria [135]. The effec-
tiveness of coenzyme Q10 to prevent the risk of preeclamp-
sia was investigated in a double-blind randomised study. The 
study showed a significant reduction (p = 0.035) in the rate 
of preeclampsia in the coenzyme Q10 group in comparison 
to the placebo group [136]. Alongside, recent reports by Xu 
et al. have shown that coenzyme Q10 prevents preeclampsia-
like signs in L-NAME treated rats [137].
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Conclusion

The role of mitochondria in pregnancy and its related com-
plications have mainly focused on understanding the struc-
tural adaptations occurring in the mitochondria of subpopu-
lations of placental trophoblasts at term. However, little is 
known about the behaviour of these organelles at the early 
stages of gestation. Through pregnancy, trophoblasts display 
structural and functional adaptations in their mitochondria, 
resulting in distinguished differences between subpopula-
tions of trophoblast at term. These metabolic fingerprints 
might be accountable for the distinct function of tropho-
blasts to support and sustain the pregnancy. As subpopula-
tions of term trophoblasts’ mitochondria behave differently, 
appropriate methods to study and compare the function of 
trophoblasts are required.

The onset of a myriad of pathological pregnancy out-
comes is associated with oxidative stress arising at the early 
stages of pregnancy. Still, functional studies are mainly per-
formed in isolated term trophoblasts and this approach is not 
representative of the developmental structures and character-
istics of early trophoblasts. These limitations have hindered 
our understanding of the bioenergetics adaptations and redox 
systems at early stages and therefore have delayed the explo-
ration of appropriate targets for effective treatments.

Many pregnancy disorders have been linked to placental 
insufficiency. However, it is equally important to explore 
the responses of the maternal endothelium and to recog-
nise the capabilities of maternal tissues to sustain energetic 
requirements during pregnancy. In other scenarios, early 
metabolic perturbations are implicated in the onset of dis-
ease. In pregnancy, failure to adapt to increased energetics 
demands might lead to dysfunction in key maternal tissues, 
leading to adverse outcomes. Mitochondria are crucial orga-
nelles supporting energy production not only in the placenta 
but in the endothelium. Therefore, targeting mitochondria 
is an attractive approach to tackle a variety of oxidative 
stress-related disorders. Although its exploration is still 
novel, mitochondrial-targeted antioxidants have provided 
new insights for the effective management of preeclampsia 
in proof of concept studies. Recently, drugs such as met-
formin and coenzyme Q10 that although are not targeted to 
the mitochondria, are capable to exert mitochondrial effects 
and have been proposed to treat preeclampsia in clinical tri-
als. It is still not clear whether mitochondrial-targeted drugs 
can prevent preeclampsia and more results are needed to 
clarify if the selective delivery of antioxidants and meta-
bolic modulators to the mitochondria, are effective to pre-
vent preeclampsia-like symptoms.
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