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Our paper focuses on a robustness analysis of efficiency scores in the context of Data Envelopment Anal- 

ysis (DEA) assuming interval scale data, as defined in A. Dehnokhalaji, P. J. Korhonen, M. Köksalan, N. 

Nasrabadi and J. Wallenius, “Efficiency Analysis to incorporate interval scale data”, European Journal of 

Operational Research 207 (2), 2010, pp. 1116–1121. We first show that the definition of the efficiency 

score used in our paper is a well-defined measure according to Aparicio and Pastor (J. Aparicio and J. T. 

Pastor, “A well-defined efficiency measure for dealing with closest targets in DEA”, Applied Mathematics 

and Computation 219 (17), 2013, pp. 9142–9154.). Next, we characterize how robust the efficiency scores 

are with respect to improvements and deteriorations of inputs and outputs. We illustrate our analysis 

with two examples: a simple numerical example and a more complex example using real-world data. 

© 2021 The Authors. Published by Elsevier B.V. 
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. Introduction 

The concept of robustness (stability) or sensitivity has been 

idely studied in Data Envelopment Analysis literature. It consid- 

rs a variety of changes in the data set, such as adding or omit- 

ing a Decision Making Unit (DMU), adding or withdrawing some 

nput/output measures, or changing input/output values. It investi- 

ates whether the efficiency scores obtained from DEA models are 

ensitive or robust (stable) against such changes in data. 

Charnes, Cooper, Lewin, Moray, & Rousseau (1984) did some 

arly work on sensitivity analysis in DEA. They assumed occur- 

ence of perturbations for a single output for an arbitrary unit and 

ound ranges of variation to preserve the efficiency status of that 

nit. 

Charnes, Haag, Jaska, & Semple (1992) ; Charnes, Rousseau, & 

emple (1996) developed some metrics, such as ”distance” or 

length” of a vector in order to measure ”radii of stability” which 

re the thresholds within which data modifications will not change 

he efficiency/inefficiency status of units. Their work was con- 

inued by Seiford and Zhu ( Seiford & Zhu, 1998, 1999a, 1999b) . 
∗ Corresponding author. 

E-mail address: Jyrki.Wallenius@aalto.fi (J. Wallenius). 
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with interval scale data, European Journal of Operational Research, http
hompson, Dharmapala, & Thrall (1994) considered the case where 

hanges happen in data of all DMUs simultaneously and they de- 

eloped sensitivity analysis for efficiency measures. They applied 

heir idea to Kansas farming and Illinois coal mining. 

Furthermore, the sensitivity analysis framework is not only re- 

tricted to deterministic methodological approaches. Several stud- 

es have been conducted to treat data changes by statistical meth- 

ds. For instance, the DEA estimators of the best practice pro- 

uction functions have been proposed for the case of multiple 

nputs-one output, when the one-sided deviations from that kind 

f production function are considered as stochastic variations in 

echnical inefficiency. On the other hand, bootstrap methods were 

roposed to deal with multiple inputs-multiple outputs, where 

he sensitivity of the efficiency score can be tested by repeatedly 

ampling from the original samples. See Banker (1993) , Banker & 

atarasan (2004) , Korostolev, Simar, & Tsybakov (1995a,b) , Simar 

1996) and Simar & Wilson (1998, 2004) for more details. 

Zhu (1996) proposed a method for sensitivity analysis in DEA by 

olving linear programming problems whose optimal values yield 

articular regions of stability. They provided necessary and suffi- 

ient conditions for upward variations of inputs and for downward 

ariations of outputs of an (extremely) efficient DMU, which keeps 

ts efficiency score unchanged. 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Dehnokhalaji, Korhonen, Koksalan, Nasrabadi, & Wallenius 

2010) proposed an efficiency analysis for interval scale data. In- 

erval scales are numeric scales, in which not only the order of 

alues, but also the differences between the values are known. 

ommon examples are the Celsius-scale and time measured in 

ours and seconds. We formulated a mixed integer programming 

odel based on the idea of finding a hyperplane which separates 

etter units from non-better ones. We defined the efficiency score 

s the ratio with the numerator equal to the number of non-better 

nits and denominator equal to the number of all units. Two ques- 

ions arise. Is the defined efficiency measure a well-defined effi- 

iency measure? Moreover, how stable is this efficiency measure 

o data alteration? 

In our current study we prove that the defined interval scale 

fficiency measure is a well-defined efficiency measure based on 

he criteria provided by Aparicio & Pastor (2013) . Moreover, we de- 

elop a stability analysis approach to investigate how robust the 

btained efficiency scores are regarding data changes. We formu- 

ate two multi-objective mixed integer programming models sep- 

rately to measure the robustness of improvements and deteriora- 

ions and then provide an interval for each input and output value, 

esulting in an unchanged efficiency score for all efficient and inef- 

cient DMUs. We show that the modelling can be done via linear 

rogramming formulations in case that changes occur just for one 

nput or output, and the stability region reduces to an interval for 

ach individual input and output. 

This paper unfolds as follows. Section 2 provides some prelimi- 

ary DEA considerations followed by our DEA-based model for in- 

orporating interval scale data. In Section 3 we conduct a stabil- 

ty analysis for the interval scale data setting. Section 4 gives a 

imple numerical example, which illustrates the proposed stabil- 

ty analysis model. A real application is provided in Section 5 and 

ection 6 concludes the paper. 

. Preliminary considerations 

.1. Basic concepts of DEA 

Consider a production technology with n Decision Making Units 

onsuming m inputs to produce p outputs. Let x ∈ R 

m + and y ∈ R 

p 
+ 

enote the input and output vectors for a unit, respectively, where 

 

k + is the non-negative orthant in R 

k -space. The empirical Produc- 

ion Possibility Set (PPS) is defined as 

 = { (y , x ) | y can be produced from x } ⊆ R 

m + p 
+ , (1)

hich consists of all feasible inputs and outputs. We assume less 

s better for inputs and more for outputs, as usual. The concept of 

fficiency is defined as follows. 

efinition 1. A point ( y ∗, x ∗) ∈ P is said to be efficient in set P iff

if and only if) there does not exist (y , x ) ∈ P such that y ≥ y ∗ and

 ≤ x ∗ and (y , x ) � = ( y ∗, x ∗) . 

The concept of efficiency can also be defined equivalently in 

he context of vector optimization. To do so, consider the following 

ector maximization problem defined on set P as: 

“ max ” ( α, β) 
s.t. ( y ∗ + β, x 

∗ − α) ∈ P 
( α, β) ≥ (0 , 0 ) . 

(2) 

Clearly the point ( y ∗, x ∗) ∈ P is efficient in set P if and only if

 α∗, β∗
) = (0 , 0) is the only Pareto optimal solution of problem (2) .

Suppose that X is an m × n matrix and Y is a p × n matrix with

nput and output vectors as their columns, respectively. Also, let 

 j = (x 1 j , x 2 j , . . . , x m j ) and y j = (y 1 j , y 2 j , . . . , y pj ) denote the input

nd output vectors of DMU j , respectively, for j = 1 , 2 , . . . , n . 
2 
In DEA, the production possibility set is constructed as ( Cooper, 

eiford, & Tone (20 0 0) ): 

 = { ( y , x ) | x ≥ X λ, y ≤ Y λ, λ ∈ �} , (3) 

here the definition of � depends on the technology assumptions. 

pecifically, for a variable returns to scale technology, we have � = 

 λ ∈ R 

n + | 1 λ = 1 } , and the corresponding set P is denoted by P V RS .

imilarly, for a constant returns to scale technology we have � = 

 

n + and the set P is denoted by P CRS , correspondingly. 

To simplify our notation, we denote u j = 

(
y j 

−x j 

)
and call it an 

nput-output vector. Also, let U = 

(
Y 

−X 

)
. We call the set of all pos- 

ible input-output vectors T , i.e. we have: 

 = { u | u = 

(
y 

−x 

)
, (y , x ) ∈ P } = { u | u ≤ U λλ ∈ �} . (4)

specially, the corresponding set T for variable and constant re- 

urns to scale technologies is denoted by T V RS and T CRS , respec- 

ively. 

We denote u o = 

(
y o 

−x o 

)
as the unit under consideration. Here- 

fter, we use the notations u o and DMU o interchangeably. The ba- 

ic additive model for evaluating u o within P V RS , i.e. under the as- 

umption of variable returns to scale, is formulated in both envel- 

pment and multiplier forms as below: 

Envelopment Form (a ) Multiplier Form (b) 

max 1 

T s 
s.t. U λ − s = u o 

1 λ = 1 , 

λ ≥ 0 , 

s ≥ 0 . 

min −ρT u o + η
s.t. −ρT U + η1 ≥ 0 , 

ρ ≥ 1 , 

η free . 
(5) 

t is well-known that u o is efficient if and only if the optimal value 

f the basic additive model (5) is equal to zero. While the basic 

dditive model with variable returns to scale (5) is translation in- 

ariant w.r.t both inputs and outputs, its main drawback is that it 

oes not provide a measure of (in-)efficiency. 

Now, consider an arbitrary input-output vector ū ∈ R 

m + s . If ū 

oes not belong to T V RS , then there exists a hyperplane in R 

p+ m -

pace that separates ū and the convex set T V RS . In other words, 

here exists ρ ∈ R 

p+ m 

+ and scalar η ∈ R such that −ρT U + η1 ≥ 0 

nd −ρT ū + η < 0 . This explains the idea of the following lemma 

hich provides a necessary and sufficient condition for an input- 

utput vector to belong to T V RS . 

emma 1. Assume that ū ∈ R 

p+ m 

+ . Then ū ∈ T V RS iff there does not 

xist any vector ρ ∈ R 

p+ m 

+ and scalar η ∈ R such that −ρT U + η1 ≥
 and −ρT ū + η < 0 . 

roof. By the definition of T V RS , we know that ū ∈ T V RS iff the fol-

owing system has a solution: 
 

ū ≤ U λ, 

1 λ = 1 , 

λ ≥ 0 . 

(6) 

ow, by Farkas’s lemma, the above system has a solution iff the 

ollowing system has no solution: 
 −ρT U + η1 ≥ 0 , 

−ρT ū + η < 0 , 

ρ ≥ 0 , η free , 
(7) 

nd the proof is complete. �



N. Nasrabadi, A. Dehnokhalaji, P. Korhonen et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; July 21, 2021;14:23 ] 

 

u

0{
T

a  

s  

u  

o

P  

2

D

D

t

i

u

f

a

O

p

b

m

w

t

t

e

u

u

s

v

p

u

p

γ

w

T

u

{  

u

J

O

H  

i

m

l

e

i  

−  

i  

t  ∑
n

m  

s

a  

s  

N  

t

i

o

e  

i

(

t

C

e

f

γ

w

b

n

B

(

t

a

fi

s

t  

fi

2

d

D

a

e

m

T

f

P

1 Since the data are measured on an interval scale, the default assumption about 

the returns to scale is VRS. 
Assume that J = { 1 , . . . , n } and B ⊆ J is a subset of all observed

nits with the property that there exists (ρ, η) ∈ R 

p+ m +1 with ρ ≥
 , such that 

−ρT u j + η ≥ 0 j ∈ B 

−ρT u j + η < 0 j / ∈ B. 
(8) 

hen the production possibility set corresponding to set B and the 

ssociated input-output set T are denoted by P (B ) and T (B ) , re-

pectively. It is clear that for each j ∈ J such that j / ∈ B , we have

 j / ∈ T (B ) , or equivalently ( y j , x j ) / ∈ P (B ) . With this notation, the

riginal production possibility set P defined in (3) is denoted by 

 (J) and the corresponding set T defined in (4) is denoted by T (J) .

.2. A DEA-Based model for interval scale data 

As mentioned before, one of the main assumptions of the basic 

EA model is that all the variables are measured on a ratio scale. 

ehnokhalaji et al. (2010) proposed an efficiency analysis approach 

hat would work both for interval scale and ratio scale data. The 

dea of their model is to find a hyperplane passing through a unit 

nder evaluation, u o , to classify the observed units into two dif- 

erent categories: non-better and better units than the unit under 

ssessment. They adopted the idea from Koksalan, Buyukbasaran, 

zpeynirci, & Wallenius (2010) , where they assigned weights to in- 

ut and output entries to maximize the number of units each DMU 

eing evaluated could outrank. In other words, they formulated a 

odel which finds the maximal subset of the observed units in 

hich u o is efficient. 

The main difference between the traditional DEA models and 

he ones in Dehnokhalaji et al. (2010) approach is that in the lat- 

er paper the authors did not measure the distance of u o from the 

fficient frontier. Instead, they obtained the minimum number of 

nits to omit from the entire set of DMUs to make u o efficient. If 

 o is not efficient, some of the inequalities ρT U + η1 ≥ 0 , are not 

atisfied. They used the big M method to minimize the number of 

iolated inequalities where violating an inequality constraint im- 

lies the corresponding unit is not required to be omitted to make 

 o efficient. To this end, they solved the following mixed integer 

rogramming model: 

o = min 

∑ n 
j =1 , j � = o z j 

s.t. −ρT u o + η = 0 

−ρT u j + η + Mz j ≥ 0 , j = 1 , . . . , n, j � = o 

ρT u o = 1 

ρ ≥ ε1 ( where ε > 0 is Non-Archimedean ) , 

η free , 

z j ∈ { 0 , 1 } , j = 1 , . . . , n, j � = o, 

(9) 

here M is assumed to be a sufficiently large positive number. 

he aim of the model (9) is to find the minimum number of 

nits that should be omitted from the set of observations J = 

 1 , . . . , n } in order to make u o efficient. To illustrate, note that if

 o is efficient then none of the units need to be omitted from 

and therefore the optimal value of model (9) is equal to zero. 

n the other hand, if u o is inefficient then for each hyperplane 

 = { u | − ρT u + η = 0 , ρ ≥ 0 } , passing thorough u o , some of the

nequalities −ρT u j + η ≥ 0 , j ∈ J are not satisfied. Therefore, the 

odel uses the big- M method to minimize the number of vio- 

ated inequalities. Actually, by adding an additional term Mz j , to 

ach inequality −ρT u j + η ≥ 0 , where M is a sufficiently large pos- 

tive number and z j ∈ { 0 , 1 } , one can be sure that all constraints

ρT u j + η + Mz j ≥ 0 are satisfied for suitable values of z j . In fact,

f u j needs to be omitted, we have z j = 1 , and if u j is not required

o be omitted we have z j = 0 . In this regard, the objective function
 n 
j =1 , j � = o z j suitably reflects our aim which is to find the minimum 

umber of units that should be omitted. 
3 
Generally, assuming that (ρ∗, η∗, z ∗) is an optimal solution for 

odel (9) the set R o = { j ∈ J | z ∗
j 
= 1 } determines the minimal sub-

et of units which are to be omitted in order to make u o efficient 

nd therefore J o = { j ∈ J | z ∗
j 
= 0 } gives the maximal subset of units

uch that u o is efficient within J o ∪ { o} ( Dehnokhalaji et al., 2010) .

ote that | J o | = n − γo − 1 . In other words, R o can be interpreted as

he units which are better than u o and γo = 

∑ n 
j=1 z 

∗
j 

gives the min- 

mum number of units which have to be omitted from the set of 

bservations J in order to make u o efficient. 

Based on model (9) the efficiency score of u o is defined as 

 o = 1 − γo 
n = 

| J o | +1 
n , where | J o | denotes cardinality of J o . Moreover,

t has been proved that this efficiency score is translation invariant 

 Dehnokhalaji et al., 2010 ). 

Note that model (9) can be considered as a modification of 

he original multiplier BCC model in DEA ( Banker, Charnes, & 

ooper, 1984 ) 1 We may present the basic idea of Dehnokhalaji 

t al. (2010) based on the basic additive model (5) . Therefore, we 

ormulate the following model for evaluating u o : 

o = min 

∑ n 
j =1 , j � = o z j 

s.t. −ρT u o + η = 0 

−ρT u j + η + Mz j ≥ 0 , j = 1 , . . . , n, j � = o 

ρ ≥ 1 , η free 

z j ∈ { 0 , 1 } , j = 1 , . . . , n, j � = o. 

(10) 

here M is assumed to be a sufficiently large positive number, as 

efore. The main difference between models (9) and (10) is in their 

ormalizing constraint. Model (9) is formulated based on the basic 

CC model, which is intrinsically radial-oriented, whereas model 

10) can be considered as a modification of the non-radial addi- 

ive model (5) . Both models provide the same efficiency score for 

 unit under assessment. Hereafter, we apply model (10) for ef- 

ciency analysis and robustness. This model is more helpful and 

traightforward when investigating the concept of robustness in 

his paper. The sets J o and R o and the efficiency score e o are de-

ned in model (10) similar to the ones we have in model (9) . 

.3. Main properties of the efficiency score 

Aparicio & Pastor (2013) listed four main properties that a well- 

efined efficiency measure should meet. 

efinition 2. Assume that a performance evaluation model defines 

n efficiency score eff o for DMU o . The score eff o is a well-defined 

fficiency measure iff it satisfies the following properties: 

1. (P1) 0 < eff o ≤ 1 for each o ∈ { 1 , . . . , n } , 
2. (P2) eff o = 1 iff DMU o is efficient, 

3. (P3) eff o is unit and translation invariant, 

4. (P4) eff o is strongly monotonic. 

The following theorem verifies the validity of the efficiency 

easure obtained from model (10) . 

heorem 1. Assume that e o is the efficiency score of DMU o obtained 

rom model (10) . Then: 

1. 0 < e o ≤ 1 . 

2. e o = 1 iff DMU o is efficient in set P . 

3. e o is unit and translation invariant. 

4. If DMU q dominates DMU o , then e q > e o . 

roof. See Appendix. �
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Table 1 

Data set for Example 1 . 

DMU A B C D E F G H I J 

Output 1 1 2 2 3 5 5.5 7 6.5 8 5 

Output 2 3 1 4 6 3.5 2 5.5 1 2.5 5.75 

Input 1 1 1 1 1 1 1 1 1 1 

Efficiency score 0.5 0.2 0.7 1 0.7 0.7 1 0.8 1 1 

Fig. 1. Decision Making Units in the output space. 
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3

As it can be observed, parts 1, 2 and 3 in Theorem 1 clarify

he fact that e o satisfies properties (P1), (P2) and (P3) of a well- 

efined efficiency measure. Moreover, part 4 means that the ef- 

ciency measure e o is strictly increasing w.r.t. the partial order 

domination” in the set J = { 1 , . . . , n } , i.e. (P4) holds for each two

istinct observed units. However, it is worthwhile to note that the 

fficiency score of u o may still remain unchanged even if its inputs 

nd outputs are improved/deteriorated. The main reason is that e o 
oes not depend on the distance of u o from the efficiency fron- 

ier and a hyperplane passing through u o which classifies the set 

into two subsets J o and R o , in such a way that the cardinality of

 o is minimal, determines its efficiency score. In this regard, the 

fficiency score of u o may not be affected by small perturbations 

n its input/output vector. To investigate this issue, we consider the 

ollowing example. 

xample 1. Consider a set of 10 units, each producing two outputs 

 1 and y 2 using the same amount of a single input x = 1 . The data

et is given in Table 1 and the production possibility set in out- 

ut space is described in Fig. 1 . Solving model (10) for each unit,

he corresponding efficiency scores are presented in the last row 

f Table 1 . 

Model (10) is coded in C++ and solved using the callable library 

f IBM ILOG CPLEX 12.6. The second constraint set in model (10) is 

ormulated using indicator constraints feature of CPLEX 

2 . 

This formulation provides more numerically robust and accu- 

ate solutions than big-M type constraints: 

 j = 0 ⇒ −ρT u j + η ≥ 0 (11) 
2 https://www.ibm.com/support/knowledgecenter/SSSA5P _ 12.9.0/ilog.odms.cplex. 

elp/CPLEX/UsrMan/topics/discr _ optim/indicator _ constr/02 _ indicators _ defn.html . 

t

c

o

p

4 
he indicator constraint states that if z j is equal to 0, then −ρT u j + 

must be greater than or equal to 0. 

Notice that the interval scale efficiency scores classify units into 

fficient and inefficient units and the concept of weak efficiency 

oes not apply in our context. 

Now, to examine the stability of the obtained efficiency scores, 

e solve model (10) when we have some perturbations in the data 

et. For example, let E be the unit under evaluation and assume 

hat its first output increases by 0.5. It can be seen that with this 

ew data set, the efficiency score of E is still equal to 0.7, i.e. it 

emains unchanged after this perturbation. A similar story exists 

or a decrease of 0.2 in the second output. This fact is illustrated in 

ig. 2 . The main reason is that both of the hyperplanes H E ′ and H E ′′ 
assing through E ′ and E ′′ , respectively, exclude the same number 

f units as H E , passing through E, does. 

In the above example measure e o obtained from model (10) is 

elatively stable w.r.t. small perturbations in u o . In what follows, 

e find the stability region for maintaining the efficiency score of 

 o . It is worthwhile to note that the efficiency score of u o may 

lso be affected by small perturbations in the input-output vector 

f (some of) the other units. However, this issue is not going to 

e investigated here. Actually, we just investigate stability of the 

fficiency score of u o when perturbations occur in its own input- 

utput vector u o . 

. Robustness of efficiency scores with interval scale data 

The aim of this section is to find maximal admissible perturba- 

ions in input-output vector u o for DMU o in order to keep the effi- 

iency score e o unchanged. The perturbations may occur in inputs, 

utputs, or both. Moreover, from this point of view, two types of 

erturbations will be considered for u o : improvement and deteri- 

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/discr_optim/indicator_constr/02_indicators_defn.html
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Fig. 2. Some perturbations in unit E in the output space. 
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ration. In this regard, if u o is under evaluation, the improved and 

he deteriorated virtual units are denoted by u o + � and u o − �

espectively, where � = 

(
�y 

�x 

)
is a non-negative (m + s ) - vector 

tanding for perturbations. To ensure feasibility, we assume that 
x ≤ x o , �

x � = x o and �y ≤ y o , �
y � = y o . 

With the above notations, we can formulate the following pro- 

ram to find maximal admissible perturbations: 

“ max ” �
s.t. e ( u o ± �) = e ( u o ) 

� ≥ 0 , 

(12) 

here u o ± � stands for the (improved/deteriorated) perturbed 

nit and e ( u o ) = e o . As mentioned before, in this study we assume

hat u o is replaced with a virtual perturbed unit u o ± �. By do- 

ng so, the number of all units is still equal to n , and therefore we

an perform our sensitivity analysis on the optimal value of model 

10) , i.e. on γo , since we know that e o = 1 − γo 
n . Therefore, problem

12) finds the maximum admissible changes in some parameters of 

odel (10) such that its optimal value remains unchanged. In the 

ollowing, we solve model (12) based on the structure and the in- 

erpretation of the corresponding model (10) . Also, we investigate 

mprovements and deteriorations, separately. 3 

.1. Stability region for improvements 

In this section, we obtain the maximal admissible improve- 

ents in input-output vector u o such that its efficiency score re- 

ains unchanged. We know that J o is a maximal subset of J − { o}
ith the property that u o is efficient within J o ∪ { o} . This means

hat for each J ′ ⊆ J − { o} such that | J ′ | > | J o | , u o is not efficient in

 (J ′ ) . Moreover, as soon as u o + � reaches the frontier of T (J ′ ) ,
or some J ′ ⊆ J − { o} with | J ′ | = | J o | + 1 , its efficiency score is in-

reased by 1 
n (Recall that the efficiency score of u o is defined 

s e o = 1 − γo 
n = 

| J o | +1 
n , where | J o | denotes cardinality of J o . When
3 It should be mentioned that the terms max and “ max ” are different and max 

s used to maximize a real-valued function while “ max ” is used for a vector-valued 

unction. 

a

5 
he numerator increases by 1, the efficiency score increases by 1 
n ). 

herefore, a sufficient condition for γ ( u o + �) = γo is that u o + �

oes not exceed the frontier of some T (J ′ ) for J ′ ⊆ J − { o} and

 J ′ | = | J o | + 1 = n − γo . In other words, so long as u o + � falls into

he intersection of all sets T (J ′ ) with the above property one can 

onclude that its efficiency score remains stable. Accordingly, we 

an formulate the following vector optimization problem to cal- 

ulate the maximal admissible improvements which keep the effi- 

iency score of u o unchanged: 

“ max ” �
s.t. ( u o + �) ∈ 

⋂ 

| J ′ | = | J o | +1 ,J ′ ⊆J−{ o} T (J ′ ) , (13) 

here γo is the optimal value of model (10) . 

To illustrate the constraints of model (13) , consider unit E in 

xample 1 , with | J E | = 6 . It can be easily verified that there ex-

st three sets J ′ with the property that J ′ ⊆ { A, B, . . . , J} − { E} , | J ′ | =
 J E | + 1 = 7 and T (J ′ ) ∩ (J − J ′ ) = ∅ where there exists a hyperplane

trongly separating T (J ′ ) and the remaining units J − J ′ . 

 

′ 
1 = { A, B, C, F , G, H, I} , 

 

′ 
2 = { A, B, C, D, F , H, I} , 

 

′ 
3 = { A, B, C, D, F , H, J} , 
he corresponding production possibility sets T (J ′ 

1 
) , T (J ′ 

2 
) and T (J ′ 

3 
)

re depicted in Figure ( 3 ). Moreover, the intersection of these sets, 

.e. the dashed region gives the feasible region of model (13) . Ac- 

ordingly, the black region is the stability region for improvements 

or unit E. 

The following theorem clarifies the validity of model (13) in de- 

ermining the maximal admissible improvements for u o . 

heorem 2. Suppose that � is a weakly Pareto optimal solution for 

odel (13) and γ (u o + �) is the optimal value of model (10) evalu-

ting u o + �. Then, 

(i). for each �′ ≥ 0 such that �′ ≤ � and �′ � = �, we have 

γ ( u o + �′ ) = γo ; 
(ii). if � is a Pareto optimal solution, we have γ ( u o + �) = γo − 1 . 
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Fig. 3. Stability region for improvements for the data set of Example 1 . 
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roof. See Appendix. �

Part (i) of Theorem 2 provides a region in which u o + � can 

e located and still has the same efficiency score as u o . As it was

xplained before, the efficiency score increases by 1 /n as soon as 

 o + � reaches the frontier of T (J ′ ) , for some J ′ ⊆ J − { o} with | J ′ | =
 J o | + 1 which is proved in part (ii) of Theorem 2 . 

Assume that changes are only admissible for the t-th output. 

hen we have � = δ e t , where e t is the t-th unit vector in R 

m + s .
herefore, Model (13) can be written as: 

max δ
s.t. ( u o + δ e t ) ∈ 

⋂ 

| J ′ | = | J o | +1 ,J ′ ⊆J−{ o} T (J ′ ) , (14) 

r equivalently, as: 

min δ
s.t. ( u o + δ e t ) / ∈ 

⋂ 

| J ′ | = | J o | +1 ,J ′ ⊆J−{ o} T (J ′ ) , (15) 

nd this is equivalent to the model below: 

min δ
s.t. ( u o + δ e t ) ∈ cl( 

⋃ 

| J ′ | = | J o | +1 ,J ′ ⊆J−{ o} (T (J ′ )) c ) , (16) 

here cl(A ) denotes the closure of A and A 

c is the complement of

 . According to previous section, one can establish the following 

quivalent form consequently: 

min δ

s.t. z j = 0 ⇒ −ρT u j + η ≥ 0 , j = 1 , . . . , n, j � = o ∑ n 
j =1 , j � = o z j = γo − 1 , 

−ρT ( u o + δ e t ) + η ≤ 0 , 

ρ ≥ 0 , η free , || ρ|| = 1 

z j ∈ { 0 , 1 } , j = 1 , . . . , n, j � = o. 

(17) 

Model (17) is not a mixed-integer linear one because of the 

onstraint −ρT ( u o + δ e t ) + η ≤ 0 , which includes multiplication of 

wo variables. But it is easy to prove that this constraint is bind- 

ng at optimality. Also, the normalization constraint || ρ|| = 1 can 
6 
e written as ρt = 1 . Hence model (17) can be written as the fol-

owing mixed-integer linear program: 

min −ρT u o + η

s.t. z j = 0 ⇒ −ρT u j + η ≥ 0 , j = 1 , . . . , n, j � = o ∑ n 
j =1 , j � = o z j = γo − 1 , 

ρt = 1 , 

ρ ≥ 0 η free , z j ∈ { 0 , 1 } , j = 1 , . . . , n, j � = o. 

(18) 

.2. Stability region for deteriorations 

In order to find the maximal deteriorations for u o which keep 

ts efficiency score unchanged, we adopt our previous idea for im- 

rovements. We know that J o is a maximal subset of J − { o} such 

hat u o is efficient w.r.t. J o ∪ { o} . Then, so long as u o − � does not

elong to T (J ′′ ) , for some J ′′ ⊆ J − { o} with | J ′′ | < | J o | , one can con-

lude that e ( u o − �) = e ( u o ) . Based on this, to find the maximal

dmissible deteriorations we formulate the following vector opti- 

ization problem: 

“ min ” �
s.t. ( u o − �) ∈ 

⋂ 

J ′′ ⊆J −{ o} , | J ′′ | = | J o | T (J ′′ ) (19) 

To illustrate the above model, again consider unit E in 

xample 1 with | J E | = 6 . It can be easily seen that there exist

ust two sets J ′′ with the property that J ′′ ⊆ J = { A, B, . . . , J} − { E} ,
 J ′′ | = 6 , and T (J ′′ ) ∩ (J − J ′′ ) = ∅ which are 

 

′′ 
1 = { A, B, C, F , H, I} , 

 

′′ 
2 = { A, B, C, D, F , H} . 
he corresponding production possibility sets T (J ′′ 

1 
) and T (J ′′ 

2 
) are 

epicted in Fig. 4 . As discussed, the intersection of the above sets, 

.e. the dashed region, is the feasible region of model (19) and the 

lack region is the stability region for deteriorations. 
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Fig. 4. Stability region for deteriorations for the data set of Example 1 . 
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The following theorem clarifies the validity of problem (19) . 

heorem 3. Suppose that ˜ � ≥ 0 is a weakly Pareto optimal solution 

or model (19) . Then, 

(i). For each �′′ such that �′′ ≤ ˜ � , we have γ ( u o − �′′ ) = 

γ ( u o ) , and 

(ii). If ˜ � ≥ 0 is Pareto optimal, then for each �′′ such that �′′ ≥ ˜ �

and �′′ � = 

˜ �, we have γ ( u o − �′′ ) > γ ( u o ) . 

roof. See Appendix �

Again, let � = δ e t , where e t is the t-th unit vector in R 

m + s . 
herefore, Model (19) can be written as: 

min δ
s.t. ( u o − δ e t ) ∈ 

⋂ 

| J ′ | = | J o | +1 ,J ′ ⊆J−{ o} T (J ′ ) , (20) 

r equivalently, as: 

max δ
s.t. ( u o − δ e t ) / ∈ 

⋂ 

| J ′ | = | J o | +1 ,J ′ ⊆J−{ o} T (J ′ ) , (21) 

nd this is equivalent to the model below: 

max δ
s.t. ( u o − δ e t ) ∈ cl( 

⋃ 

| J ′ | = | J o | +1 ,J ′ ⊆J−{ o} (T (J ′ )) c ) , (22) 

here cl(A ) denotes the closure of A and A 

c is the complement of

 . According to previous section, one can establish the following 

quivalent form: 

max δ

s.t. z j = 0 ⇒ −ρT u j + η ≥ 0 , j = 1 , . . . , n, j � = o ∑ n 
j =1 , j � = o z j = γo , 

−ρT ( u o − δ e t ) + η ≤ 0 , 

ρ ≥ 0 , η free , || ρ|| = 1 

z j ∈ { 0 , 1 } , j = 1 , . . . , n, j � = o. 

(23) 

Model (23) is not a mixed-integer linear one because of the 

onstraint −ρT ( u o − δ e t ) + η ≤ 0 which includes multiplication of 

wo variables. This constraint is binding at optimality. Also, the 

ormalization constraint || ρ|| = 1 can be written as ρt = 1 . Hence
7 
odel (17) can be written as the following mixed-integer linear 

rogram: 

max ρT u o − η

s.t. z j = 0 ⇒ −ρT u j + η ≥ 0 , j = 1 , . . . , n, j � = o ∑ n 
j =1 , j � = o z j = γo , 

ρt = 1 , 

ρ ≥ 0 η free , z j ∈ { 0 , 1 } , j = 1 , . . . , n, j � = o. 

(24) 

In what follows we provide a numerical example and inves- 

igate the robustness of efficiency scores by obtaining the stabil- 

ty interval of each individual input/output, by solving the mixed- 

nteger linear programming optimization problems (18) and (24) , 

eparately. 

. Numerical example 

Consider the data set presented in Table 1 for Example 1 . We 

nd the maximum admissible perturbation for each individual out- 

ut for each unit under evaluation, which keeps the efficiency 

core unchanged. Based on the theory provided above, we consider 

mprovements and deteriorations separately. 

Let E be the unit under evaluation with y 1 = 5 , y 2 = 3 . 5 , x 1 = 1

nd γE = 3 . In order to find the maximal admissible improvements 

or output t ( t = 1 , 2 ), we write model (18) for this unit as follows:

min −5 μ1 − 3 . 5 μ2 + 1 ν + η

s.t. z j = 0 ⇒ −μ1 y 1 j − μ2 y 2 j + νx j + η ≥ 0 , j � = E ∑ 

j � = E z j = 2 

μt = 1 , 

μ1 , μ2 , ν ≥ 0 , η free , 

z j ∈ { 0 , 1 } , λ j ≥ 0 , j � = E. 

(25) 
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Table 2 

Stability intervals for individual outputs . 

DMUs δ1 y 1 δ̄1 SI 1 δ2 y 2 δ̄2 SI 2 

A 1 1 4 [0,5) 0.5 3 0.5 [2.5,3.5) 

B 1 2 0 [1,2) 1 1 1 [0,2) 

C 2 2 3.553 [0,5.553) 0.5 4 1.5 [3.5,5.5) 

D 3 3 ∞ [0, ∞ ) 0.25 6 ∞ [5.75, ∞ ) 

E 1 5 0.711 [4,5.711) 0.357 3.5 1.1 [3.143,4.6) 

F 0.5 5.5 0.684 [5,6.184) 2 2 2.167 [0,4.167) 

G 1.769 7 ∞ [5.231, ∞ ) 1.917 5.5 ∞ [3.583, ∞ ) 

H 1 6.5 0.5 [5.5,7) 1 1 3.125 [0,4.125) 

I 1 8 ∞ [7, ∞ ) 2.5 2.5 ∞ [0, ∞ ) 

J 0 5 ∞ [5, ∞ ) 0 5.75 ∞ [5.75, ∞ ) 

a
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Similarly, model (24) is written for unit E to find the maximal 

dmissible deteriorations for output t ( t = 1 , 2 ), as follows: 

max 5 μ1 + 3 . 5 μ2 − 1 ν − η

s.t. z j = 0 ⇒ −μ1 y 1 j − μ2 y 2 j + νx j + η ≥ 0 , j � = E ∑ 

j � = E z j = 3 

μt = 1 , 

μ1 , μ2 , ν ≥ 0 , η free , 

z j ∈ { 0 , 1 } , λ j ≥ 0 , j � = E. 

(26) 

Both models (25) and (26) are solved for t = 1 and t = 2 to find

he maximum admissible improvement and deterioration for the 

rst output and the second output of unit E, respectively. 

The optimal solutions of models (25) and (26) for t = 1 are 

espectively obtained as δ1 = 0 . 711 and δ1 = 1 . Therefore, SI 1 =
5 − 1 , 5 + 0 . 711) = [4 , 5 . 711) is the stability interval for output 1

f unit E. Similarly, we solve models (25) and (26) for t = 2 and we

btain δ2 = 1 . 1 and δ2 = 0 . 357 for the second output and hence

I 2 = [3 . 5 − 0 . 357 , 3 . 5 + 1 . 1) = [3 . 143 , 4 . 6) is the stability interval

or the second output of unit E. 

Finally, the admissible perturbations for all units are presented 

s intervals in Table ( 2 ). The terms δi , δi denote the values of

dmissible improvements and deteriorations for output i , respec- 
Table 3 

Research assessment exercise data set at the Universit

Department O1 O

1 Geography 5 6

2 History 5 6

3 Sociology 5 6

4 Social Policy 4 5

5 The Karelian Institute 6 6

6 Economics and Business 3.5 4

7 Law 5 6

8 Biosciences 5 6

9 Chemistry 7 7

10 Computer Sciences and Statistics 6 5

11 Mathematics 5 6

12 Physics 7 7

13 Humanities 5 6

14 Translation Studies 5 6

15 Finnish Language 5 6

16 Cultural Research 5 6

17 Theology 4 6

18 Orthodox Theology 4 4

19 Special Education 4 4

20 Adult Education 4 5

21 Applied Education 4 4

22 Teacher Education 4 3

23 Psychology 4 6

24 Forest Engineering 5 5

25 Forest Planning 5 6

26 Management of Forests 6 7

8 
ively, i = 1 , 2 . Also, SI i stands for the stability interval of output

 . 

As can be seen from Table 2 , for efficient units D, G, I and

, the admissible improvements corresponding to outputs are un- 

ounded, i.e. δ̄1 = δ̄2 = ∞ . The reason is that all these units are

fficient and therefore any increment in each output keeps them 

fficient provided that that they are feasible. 

. Application 

Consider the problem of evaluating the quality of research 

n different departments of University of Eastern Finland (former 

niversity of Joensuu), Finland, which has been investigated in 

ehnokhalaji et al. (2010) . The data set consists of 26 departments 

ssessed on seven criteria by using a scale where 1 represents 

Poor” and 7 represents “Excellent”. These criteria were used as 

utputs in our approach. Identical inputs of 1 were assumed for 

ll units. The original data set and interval scale efficiency scores 

btained by model (10) are reported in Table ( 3 ). 

Running models (18) and (24) for each individual output, we 

an obtain the maximum admissible improvements and deteriora- 

ions for each output, separately. The results are presented in Ta- 

le ( 4 ). Here we provide the stability interval for each individual 

utput for all units. Note that for each unit these values are ob- 

ained under the assumption that the data for all other units re- 

ains unchanged. The terms δi , δi denote the values of admissible 

mprovements and deteriorations for output i , respectively. To il- 
y of Eastern Finland and the efficiency scores . 

2 O3 O4 O5 O6 O7 e o 

 5 4 6 5 6 0.769 

 4 4 5 5 4 0.538 

 6 0 4 3 3 0.846 

 3 0 3 4 3 0.308 

 5 4 5 6 6 0.885 

.5 3 2 3 4 3 0.308 

 5 5.5 5 6 5 0.885 

 5 5 6 6 7 0.962 

 6 7 6 7 6 0.962 

 5 4 4 3 4 0.846 

 6 5 6 5 6 0.885 

 6.5 7 6 7 6 1.000 

 5 5 5 5 4 0.731 

 5 6 5 5 4 0.923 

 5 5 4 6 4 0.808 

 5 4 6 6 5 0.808 

 5 5 6 6 6 0.846 

 4 3 4 4 3 0.385 

 2 3 3 5 3 0.385 

 1 2 1 3 1 0.308 

 1 2 2 4 3 0.269 

 1 4 2 3 2 0.308 

 5 4 2 5 2 0.462 

 5 4 5 5 4 0.538 

 5 4 6 6 6 0.846 

 7 5 7 7 7 1.000 
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Table 4 

Robustness of efficiency scores for each output perturbation . 

Units δ1 O1 δ1 δ2 O2 δ2 δ3 O3 δ3 δ4 O4 δ4 δ5 O5 δ5 δ6 O6 δ6 δ7 O7 δ7 

1 1 5 0 6 6 0 5 5 0 4 4 0 0.5 6 0 5 5 0 1 6 0 

2 0.5 5 0 1 6 0 4 4 1 4 4 0 1 5 0 5 5 0 4 4 0 

3 5 5 0 6 6 0 1 6 0 0 0 5 4 4 2 3 3 2 3 3 3 

4 4 4 0 1 5 0 3 3 1 0 0 1.5 3 3 0.333 4 4 0 3 3 0 

5 1 6 0 6 6 1 5 5 1 4 4 1 5 5 1 6 6 1 6 6 0 

6 3.5 3.5 0.5 0.167 4.5 0.167 3 3 1 0.5 2 0.25 3 3 0.5 4 4 0 3 3 0 

7 5 5 0.5 6 6 0.5 5 5 1 0.5 5.5 0 5 5 1 6 6 0 5 5 0.5 

8 5 5 1 6 6 1 5 5 2 5 5 0 6 6 1 6 6 1 1 7 0 

9 7 7 0 7 7 0 6 6 0.5 7 7 0 6 6 0 7 7 0 6 6 0 

10 1 6 0 5 5 1 5 5 0 4 4 0 4 4 1 3 3 3 4 4 2 

11 5 5 1 6 6 1 1 6 0 5 5 0.333 6 6 0 5 5 2 6 6 0 

12 7 7 ∞ 7 7 ∞ 0.5 6.5 ∞ 7 7 ∞ 6 6 ∞ 7 7 ∞ 6 6 ∞ 

13 0.5 5 0 6 6 0 5 5 0 0.333 5 0 1 5 0.333 5 5 0.5 4 4 1.333 

14 5 5 2 6 6 1 5 5 1.5 0.5 6 1 5 5 1 5 5 2 4 4 2.5 

15 1 5 0 6 6 0 5 5 0 0.5 5 0 4 4 1.333 0.333 6 0 4 4 1.5 

16 1 5 0 6 6 0 5 5 0 4 4 0 0.5 6 0 1 6 0 5 5 1 

17 4 4 1 6 6 0 5 5 0 1 5 0 6 6 0 1 6 0 6 6 0 

18 4 4 1 4 4 1.5 4 4 0.917 3 3 1 0.615 4 0 1 4 1 3 3 1 

19 4 4 0.667 4 4 1.5 2 2 2.5 3 3 1 3 3 1 1 5 0 3 3 1 

20 4 4 0 0.333 5 0 1 1 4 0.5 2 2 1 1 2.75 3 3 0.8 1 1 1.875 

21 0.5 4 0 4 4 0.333 1 1 2.333 2 2 1 2 2 1 4 4 0 3 3 0 

22 4 4 0 3 3 2 1 1 3 1 4 0 2 2 0 3 3 0 2 2 0 

23 4 4 0.333 1 6 0 1 5 0 4 4 0 2 2 2.167 5 5 0 2 2 2 

24 0.167 5 0 5 5 1 1 5 0 4 4 0 0.333 5 0 0.5 5 0 4 4 0 

25 1 5 0 6 6 0 5 5 0 4 4 1 0.5 6 0 1 6 0 1 6 0 

26 6 6 ∞ 7 7 ∞ 7 7 ∞ 5 5 ∞ 7 7 ∞ 7 7 ∞ 7 7 ∞ 
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ustrate the results, consider unit 4. As the table shows, if output 

, output 2, output 3, output 5, output 6 or output 7 of unit 4 is

ecreased by 4, 1, 3, 3, 4, and 3 units, respectively, the efficiency 

core of this unit remains unchanged. However, any deterioration 

n output 4 will change the efficiency score of unit 4. By a similar

rgument, we observe that any improvement in output 1, output 

, output 6, or output 7 of unit 4 will change the efficiency of this

nit and if output 3, output 4, or output 5 of unit 4 is increased by

, 1.5, and 0.333 respectively, the efficiency score of unit 4 remains 

nchanged. Units 12 and 26 are efficient and as expected, the ad- 

issible improvements corresponding to all outputs for both units 

re unbounded. 

The optimal objective function obtained by models (10), (18) , 

nd (24) are sensitive to the selection of M for some DMUs with 

he lowest efficiency scores, and so we solved the three models 

sing the indicator constraints in CPLEX callable library instead of 

sing the Big-M constraints in order to obtain more accurate re- 

ults. For instance, for DMU 21, the efficiency scores obtained by 

odel (9) in Dehnokhalaji et al. (2010) was reported to be equal 

o 0.231, while the indicator constraints resulted in the efficiency 

core of 0.269 as you can see from Table (3) . 

Also, as can be seen from Table 4 , the interval scale efficiency 

cores are more sensitive to improvements than to deterioration of 

utput variables for most units. However we cannot conclude that 

his happens for all data sets, since our defined efficiency score is 

ependent on the location of the units in the production possibility 

et. 

. Conclusion 

In this paper we performed a robustness analysis on the in- 

erval scale efficiency measure proposed by Dehnokhalaji et al. 

2010) . We first showed that our interval scale efficiency mea- 

ure is well-defined. Then we investigated the robustness of this 

fficiency measure and formulated a multi-objective mixed inte- 

er program, which finds the admissible region for perturbations. 

n the simple case, where perturbations are considered for an 
9 
ndividual input/output, we solve two single-objective programs, 

hich result in an allowable interval for the corresponding in- 

ut/output. We ran the model on a simple numerical example and 

lso on a real-world data set consisting of 26 Decision Making 

nits. 

Recall that our proposed efficiency measure depends on the 

umber of units being evaluated. As the number of units in- 

reases, the obtained scores for all units are more diverse and 

an better differentiate among Decision Making Units. In gen- 

ral, the stability intervals get shorter when the number of units 

ncreases. 
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ppendix A. 

Proof of Theorem 1 . 

Part 1 is straightforward based on the definition of e o = 1 − γo 
n , 

ince 0 ≤ γo ≤ n − 1 . For part 2, note that e o = 1 iff γo = 0 . This

eans that any optimal solution of model (10) is feasible for the 

dditive model (5) evaluating u o with the optimal value of zero, 

r equivalently u o is efficient within the set P . For part 3, see 

heorem 2 in Dehnokhalaji et al. (2010) . Finally, for part 4, if we 

ssume that (ρ∗, η∗) is an optimal solution of (10) evaluating u o , 

hen it can be shown that (ρ∗, η∗ + δ) is feasible for (10) evaluat-

ng u q , where δ = ρ∗u q − η∗ > 0 . This implies that γq < γo , which 

ompletes the proof. 

Proof of Theorem 2 . 

(i). First, we claim that u o ∈ T (J ′ ) , for all J ′ ⊆ J − { o} when | J ′ | =
n − γo . Because if u o / ∈ T (J ′ ) for some J ′ , it is concluded that

u o is efficient w.r.t. J ′ ∪ { o} and this contradicts the fact that 

J o is a maximal subset of J − { o} such that u o is efficient in

T (J o ∪ { o} ) , because | J ′ | > | J o | . Hence � = 0 is a feasible so-

lution for model (13) . Now to evaluate the improved unit 
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u 

′ 
o := u o + �′ , we solve the following mixed integer pro- 

gramming problem: 

γ ′ 
o = min 

∑ n 
j =1 , j � = o z j 

s.t. ρT ( u o + �′ ) + η = 0 

ρT u j + η + Mz j ≥ 0 , j = 1 , . . . , n, j � = o 

ρ ≥ 1 , η free 

z j ∈ { 0 , 1 } , j = 1 , . . . , n, j � = o. 

(27) 

Let (ρ∗, η∗, z ∗) be an optimal solution for model (10) and 

J o = { j | z ∗
j 
= 0 } . It can be easily verified that (ρ∗, η∗ +

ρ∗�′ , z ∗) is feasible for model (27) implying that γ ′ 
o ≤ γo . 

We claim that γ ′ 
o = γo . 

Assume by contradiction that γ ′ 
o < γo . Therefore, there ex- 

ists an optimal solution (ρ′ , η′ , z ′ ) for model (27) such that 

J o ⊂ J ′ o , where J ′ o = { j | z ′ 
j 
= 0 } . Hence, there exists some k ∈ J ′ o

such that k / ∈ J o . This means that J o ⊂ J o ∪ { k } ⊆ J ′ o . By setting

J 1 = J o ∪ { k } , we have 

| J 1 | = | J o | + 1 = (n − γo − 1) + 1 = n − γo , J 1 ⊆ J − { o} . 
Now, u 

′ 
o is efficient w.r.t. J ′ o ∪ { o ′ } , where o ′ is the index cor-

responding to u 

′ 
o . Therefore u 

′ 
o / ∈ T (J ′ o ) . On the other hand, by 

feasibility of � for (13) , we have ( u o + �) ∈ T (J 1 ) . In other

words 

u o + � = u o + �′ + ( � − �′ ) = u 

′ 
o + ( � − �′ ) ∈ T (J 1 ) , 

where � − �′ ≥ 0 and � − �′ � = 0 . This means that u 

′ 
o ∈ 

T (J 1 ) . But this is a contradiction, since J 1 ⊆ J ′ o . Thus the proof

is complete. 

(ii). To prove that γ ( u o + �) = γ ( u o ) − 1 , it suffices to show

that there exists an optimal solution ( ρ, η, z ) for (27) evalu- 

ating u o + � such that | J o | = n − γo , where J o = { j | z j = 0 } ,
and u o + � is efficient w.r.t. J o ∪ { o } , where o is the index 

corresponding to u o = u o + �. 

Assume by contradiction that for each J ′ , with J ′ ⊆ J − { o} 
and | J ′ | = n − γo , the virtual unit u o is not efficient w.r.t. 

J ′ ∪ { o } . Hence, u o is not efficient w.r.t. J ′ , either. Therefore,

if we consider the following problem: 

“ max ” �

s.t. ( u o + �) ∈ 

⋂ 

| J ′ | = n −γo ,J ′ ⊆J−{ o} T (J ′ ) , 
(28) 

and assume that �o is a Pareto-optimal solution of (28) , 

we have �o ≥ 0 , �o � = 0 . Now, feasibility of �0 for (28) im-

plies that � + �0 is feasible for (13) and this is a contra- 

diction since � + �0 ≥ � and � + �0 � = �, whereas � is 

a Pareto-optimal solution for model (13) . Thus the proof is 

complete. 

Proof of Theorem 3 . 

(i). We solve the following mixed integer programming problem 

to evaluate u 

′′ 
o := u o − �′′ : 

γ ′′ 
o = min 

∑ n 
j =1 , j � = o z j 

s.t. ρT ( u o + �′′ ) + η = 0 

ρT u j + η + Mz j ≥ 0 , j = 1 , . . . , n, j � = o 

ρ ≥ 1 , η free 

z j ∈ { 0 , 1 } , j = 1 , . . . , n, j � = o. 
10 
(29) 

Assuming that (ρ′′ , η′′ , z ′′ ) is an optimal solution for model 

(29) , it can be shown that (ρ′′ , η′′ + ρ′′ �′′ , z ′′ ) is feasible 

for (10) . This implies that γ ′′ 
o ≥ γo . To prove that γ ′′ 

o = γo , 

it suffices to show that there exists some J ′′ ⊆ J − { o} with 

| J ′′ | = n − γo − 1 such that u 

′′ 
o is efficient in T (J ′′ ∪ { o ′′ } ) . 

Assume on the contrary that for each J ′′ ⊆ J − { o} where 

| J ′′ | = n − γo − 1 , u 

′′ 
o is not efficient in T (J ′′ ∪ { o ′′ } ) . This

means that u 

′′ 
o is not efficient in T (J ′′ ) either. Hence, if we 

consider the following vector optimization problem: 

“ max ′′ �

s.t. ( u 

′′ 
o + �) ∈ T (J ′′ ) , 

(30) 

then for each Pareto optimal solution �J ′′ of (30) , we have 

�J ′′ ≥ 0 and �J ′′ � = 0 . Then, by setting 

�1 = min { �J ′′ | �J ′′ is a Pareto-optimal solution of (30) } , 
it is clear that �1 ≥ 0 and �1 � = 0 . Now, u 

′′ 
o + �1 is feasible

for (19) . Meanwhile, we have u 

′′ 
o + �1 = ( u o − �′′ ) + �1 = 

u o − (�′′ − �1 ) , and �′′ − �1 ≤ �′′ ≤ ˜ �, �′′ − �1 � = 

˜ �. This 

contradicts the assumption of Pareto optimality of ˜ � for 

model (19) , and the proof is complete. 

(ii). By feasibility of ˜ � for (19) , it is clear that for each J ′′ such

that J ′′ ⊆ J − { o} and | J ′′ | = n − γo − 1 , we have ( u o − ˜ �) ∈
T (J ′′ ) . On the other hand, u o − �′′ is dominated by u o − ˜ �. 

Hence, for each J ′′ ⊆ J − { o} such that | J ′′ | = n − γo − 1 , u o −
�′′ is not efficient w.r.t. J ′′ ∪ { o ′′ } . This proves that γ ′′ 

o > γo . 
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