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A B S T R A C T   

Agenesis of the corpus callosum (AgCC) is a congenital brain malformation characterized by the complete or 
partial failure to develop the corpus callosum. Despite missing the largest white matter bundle connecting the left 
and right hemispheres of the brain, studies have shown preserved inter-hemispheric communication in in-
dividuals with AgCC. It is likely that plasticity provides mechanisms for the brain to adjust in the context of 
AgCC, as the malformation disrupts programmed developmental brain processes very early on. A proposed 
candidate for neuroplastic response in individuals with AgCC is strengthening of intra-hemispheric structural 
connections. In the present study, we explore this hypothesis using a graph-based approach of the structural 
connectome, which enables intra- and inter-hemispheric analyses at multiple resolutions and quantification of 
structural characteristics through graph metrics. Structural graph metrics of 19 children with AgCC (13 with 
complete, 6 with partial AgCC) were compared to those of 29 typically developing controls (TDC). Associations 
between structural graph metrics and a wide range of neurobehavioral outcomes were examined using a 
multivariate data-driven approach (Partial Least Squares Correlation, PLSC). Our results provide new evidence 
suggesting structural strengthening of intra-hemispheric pathways as a neuroplastic response in the acallosal 
brain, and highlight regional variability in structural connectivity in children with AgCC compared to TDC. There 
was little evidence that structural graph properties in children with AgCC were associated with neurobehavioral 
outcomes. To our knowledge, this is the first report leveraging graph theory tools to explicitly characterize 
whole-brain intra- and inter-hemispheric structural connectivity in AgCC, opening avenues for future research on 
neuroplastic responses in AgCC.   
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1. Introduction 

Agenesis of the corpus callosum (AgCC) is a congenital brain mal-
formation in which the corpus callosum – the largest white matter tract 
bridging the left and right hemispheres of the brain– fails to develop 
either completely (i.e., complete AgCC) or partially (i.e., partial AgCC). 
The corpus callosum plays an essential role in the transmission of sen-
sory, motor, and higher level cognitive information between homotopic 
regions of the two cerebral hemispheres. Individuals with AgCC have 
heterogeneous clinical and neurobehavioral outcomes, ranging from 
asymptomatic to cognitive impairment of various severity (Paul et al., 
2007; Siffredi et al., 2018). This heterogeneity is thought to be partly 
explained by individual differences in structural neuroplasticity (Siffredi 
et al., 2021a). 

Neuroplasticity refers to the central nervous system’s capacity to 
dynamically modify its neural circuitry in response to the environment 
and experience (Anderson et al., 2011; Dennis et al., 2013). Develop-
mental neural plasticity plays an important role in AgCC. This is evi-
denced by individuals born with a developmental absence of the corpus 
callosum showing few symptoms of inter-hemispheric disconnection 
syndrome, in contrast to split-brain patients who have undergone cal-
losotomy later in life (Paul, 2011; Mancuso et al., 2019). One way of 
exploring neuroplasticity in these atypically developing brains is by 
analyzing structural connectivity. 

In individuals with AgCC, structural connectivity has been explored 
using fiber tractography (FT) and diffusion tensor imaging (DTI). While 
Bénézit and colleagues (2015) showed preserved overall organization of 
the main white matter bundles in children with AgCC, local atypical 
structural organization was also observed (Bénézit et al., 2015). Studies 
have also reported local changes in white matter connectivity of the 
anterior and posterior commissures in individuals with AgCC. These 
changes have been hypothesized as alternative pathways for inter- 
hemispheric transfer of information to circumvent the absence of cal-
losal fibers (Tovar-Moll et al., 2014; Siffredi et al., 2019). The use of 
connectomics approaches has also advanced our understanding of the 
structural organization in individuals with AgCC. Using graph theoretic 
metrics on the whole-brain structural connectome, Owen and colleagues 
(2013), and Meoded and colleagues (2015) reported reduced whole- 
brain global connectivity but increased local connectivity in small 
samples of individuals with complete AgCC compared with healthy 
controls (Owen et al., 2013; Meoded et al., 2015). Recently, however, 
analyzing structural connectivity data within and across hemispheres, 
Siffredi and colleagues (2021) reported a pattern of decreased inter- 
hemispheric but increased intra-hemispheric structural connectivity in 
a cohort of children with AgCC compared with typically developing 
controls (Siffredi et al., 2021a). Consistent with these results, Yuan and 
colleagues (2020) showed an increase in intra-hemispheric structural 
connectivity in children with AgCC associated with better verbal 
learning and long-term memory, verbal working memory, as well as 
executive and attentional functioning (Yuan et al., 2020). Notably, these 
findings are all in line with the previously proposed hypothesis of 
structural strengthening of intra-hemispheric pathways as a neuroplastic 
response in the acallosal brain (Chiarello, 1980; Dennis, 1976). 

Given these previous findings, it is of interest to explore intra- and 
inter-hemispheric structural connectivity in AgCC using graph metrics. 
This approach can provide a clearer understanding of structural orga-
nization occurring at different scales, as well as mechanisms associated 
with strengthening of intra-hemispheric pathways in AgCC. Using graph 
theoretic metrics of the structural connectome, our study aimed to 
explore intra- and inter-hemispheric structural organization in children 
with AgCC. As an initial step, we aimed to replicate the findings of Owen 
and colleagues (2013) in a larger developmental cohort using the same 
methodology and extracting similar graph metrics and modularity 
measures. Secondly, we analyzed graph metrics at the network, lobe and 
node levels to explore intra-hemispheric and inter-hemispheric struc-
tural organization in AgCC compared to typically developing children. 

Lastly, we explored the association of intra- and inter-hemispheric graph 
metrics properties with neurobehavioral outcomes in this clinical pop-
ulation in comparison to typically developing controls. Comparing with 
existing studies that employ graph theoretical tools for structural con-
nectome analyses in individuals with AgCC, our study sets itself apart by 
not only looking at whole-brain data, but also analyzing the intra- and 
inter-hemispheric data on three different scales (network, lobe, and 
node levels), as well as exploring the associations between graph metrics 
derived from structural connectivity and neurobehavioral measures. 

2. Methods 

2.1. Sample 

This study used data from the “Paediatric Agenesis of the Corpus 
Callosum Project” conducted at the Murdoch Children’s Research 
Institute (Siffredi et al., 2018), which examined neurobehavioral, 
neurological, and neuroimaging outcomes in a cohort of children with 
AgCC compared with typically developing children. A cohort of 28 
children with AgCC, including both complete and partial AgCC, was 
recruited from clinics and radiology records at The Royal Children’s 
Hospital (RCH), Melbourne. Inclusion criteria were: 1) aged 8 years 0 
months to 16 years and 11 months; 2) evidence of AgCC on MRI con-
ducted as part of a routine clinical work-up; 3) English speaking; and 4) 
functional ability to engage in the assessment procedure. MRI findings 
were qualitatively reviewed by a pediatric neurologist with expertise in 
brain malformations (RJL), who confirmed the diagnosis of AgCC, 
including complete or partial AgCC, and identified isolated or complex 
(i.e., associated brain malformations) AgCC. A typically developing 
control (TDC) group of 30 children comparable in age and sex to the 
AgCC group was recruited from the community. 

Children were included in the study if they had completed the 
required MRI sequences (T1 and diffusion-weighted imaging), resulting 
in the exclusion of five participants from the AgCC group and one 
participant from the TDC group. After quality checking the diffusion MR 
images, two AgCC participants were excluded. Additionally, one child 
with AgCC was excluded due to difficulties characterizing corpus cal-
losum malformation and one AgCC participant was excluded due to 
mediocre parcellation that could potentially bias the results at the node 
level. Seven children were assessed on two separate occasions, and for 
these children the most complete of the two neurobehavioral assess-
ments was used, as well as the MRI scan completed at the time of the 
most complete neurobehavioral assessment. The final sample size for the 
graph metrics analysis was 19 children with AgCC and 29 TDC. 

2.2. Procedure 

This project was approved by the RCH Human Research Ethics 
Committee. Caregivers provided written informed consent prior to 
participation. Consenting families were seen at a research clinic at the 
Murdoch Children’s Research Institute. 

2.3. Material 

2.3.1. Neuroimaging measures 
Magnetic Resonance Imaging acquisition. Images were acquired on a 3 

T MAGNETOM Trio scanner (Siemens, Erlangen, Germany) at the RCH. 
A 32-channel head coil was used for transmission and reception of radio- 
frequency and signals. A high-resolution 3D anatomical images was 
acquired using a T1-weighted MP-RAGE sequence (TR = 1900 ms, TE =
2.71 ms, TI = 900 ms, FA = 9◦, FoV = 256 mm, voxel size = 0.7 × 0.7 ×
0.7 mm). Echo planar diffusion-weighted imaging (DWI) data were ac-
quired at two different b-values, including two scans without diffusion 
weighting (b-factor = 0): a) b-value = 1000 s/mm2, 30 gradient di-
rections where 64 slices with isotropic voxels of 2 mm3 were obtained 
(TR = 8600 ms; TE = 90 ms; FoV = 256 mm) in an anterior to posterior 
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direction; and b) b-value = 3000 s/mm2, 50 gradient directions where 
54 slices with isotropic voxels of 2.3 mm3 were obtained (TR = 8200 ms; 
TE = 112 ms; FoV = 240 mm) in an anterior to posterior direction. 

Structural MRI data preprocessing. Diffusion weighted imaging (DWI) 
scans were converted from the native DICOM to NIFTI format using the 
dcm2nii tool developed at the McCauseland Centre for Neuroimaging 
(http://www.mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.htm 
l). Each image was visually checked gradient by gradient and slice by 
slice. DWI data sets were pre-processed for tractography using MRtrix 
(Tournier et al., 2019). DWI data denoising, eddy current-induced 
distortion correction, motion correction and bias field correction were 
performed on the two different shells independently (b = 1000 and b =
3000). In order to remove non-brain tissue components and background 
noise, b0 images for the two shells were extracted using Brain Extraction 
Tool (BET2) compiled in FSL (Smith, 2002). Images from the two shells 
were then coregistered using FreeSurfer taking the b = 1000 shell as a 
reference and merged using FSL. An in-house global normalization 
procedure of the two DWI shell data was performed by using a 
normalized factor as a ratio k (k = meanb0 b = 1000 / meanb0 b =
3000) (Obertino et al., 2018). Tractography and connectome recon-
struction were done using MRtrix. The Tax algorithm was used for 
response function estimation (Tax et al., 2014). The second order inte-
gration over fiber orientation distributions (iFOD2) algorithm was 
estimated using constrained spherical deconvolution with default pa-
rameters (Tournier et al., 2008). Probabilistic tractograms of one million 
streamlines were generated over the entire brain, with subsequent 
filtering to 100 thousand streamlines using Spherical Deconvolution 
Informed Filtering of Tractograms (SIFT) to improve the accuracy of the 
reconstructed whole-brain connectome (Smith et al., 2013). For each 
participant, the structural connectome matrix was generated from the 
resulting tractography using the registered Brainnetome Atlas (Fan 
et al., 2016). 246 × 246 connectivity matrices were obtained for each 
participant using the number of streamlines connecting each region of 
the atlas. 

Study replication analyses and graph metrics extraction. In order to have 
a comparable sample to Owen et al. (2013), which comprised in-
dividuals with complete AgCC, we only used the structural connectome 
data from children with complete AgCC (n = 13) and from TDC (n = 29) 
in the initial replication analyses. 

An unweighted consensus structural connectome was first generated 
for each group. The method in Grayson et al. (2014) was adopted 
because its structural connectivity dataset has a parcellation resolution 
close to that of the current dataset. For the consensus, structural con-
nectome, only connections that existed in at least 50% of the subjects in 
a group were retained and the resulting connectivity matrix was 
binarized. The following graph metrics were then calculated: mean de-
gree, cost, characteristic path length, mean normalized betweenness, 
global efficiency, local efficiency, and mean clustering coefficient. The 
same graph metrics were also calculated for individual structural con-
nectivity matrices in the two groups. 

Graph metrics used in the present study are defined below (Bullmore 
and Bassett, 2011; Owen et al., 2013): 

• Degree: number of connections of a node. Networks with higher 
mean degree have denser connections. 

• Normalized betweenness: number of shortest paths that pass 
through a node, after normalizing the result to one in the case of all 
shortest paths between all pairs of nodes in the network passing through 
the node of interest. Networks with higher mean normalized between-
ness have more centralized shortest paths. 

• Characteristic path length: Average length of the shortest paths 
between all pairs of nodes in a network. Networks with a lower char-
acteristic path length can transmit information more quickly. 

• Global efficiency: Mean inverse path length between all pairs of 
nodes. This metric is similar to the characteristic path length but less 
affected by extreme path lengths. Higher global efficiency is related to 
quicker information transfer across networks. 

• Local efficiency: Mean inverse of the shortest path length between 
all nodes passing through the connected neighbors of a node. This metric 
represents the efficiency of information transfer in the local environ-
ment of a node. 

• Cost: Ratio between number of suprathreshold edges and total 
number of possible edges in a network. Networks with higher cost have 
higher fiber density. 

• Clustering coefficient: Ratio of closed triangles between triplets 
of nodes and number of connected triplets. Networks with a higher 
clustering coefficient have more nodes with inter-connected neighbors, 
thus enabling more efficient local integration of information. 

Both degree and normalized betweenness were calculated on a node- 
by-node basis, while mean degree and mean normalized betweenness 
were obtained by averaging across all nodes either in the consensus 
structural connectome or in every individual connectome. 

Metrics of modularity analyses, performed on both consensus and 
individual connectomes of complete AgCC and TDC groups, are defined 
below (Owen et al., 2013; Rubinov and Sporns, 2010): 

• Modularity: The difference between the fraction of the edges that 
fall within the given groups in the network and the expected fraction if 
edges were randomly distributed. Modularity is used as a measure of the 
module assignment’s ability to maximize intra-modular connections 
while minimizing inter-modular connections. 

• Participation coefficient: One minus the across-module sum of 
the squared ratio between the number of within-module connections a 
node makes and the total degree of the node. Participation coefficient is 
a measure of how diverse a node’s inter-modular connections are, with 
one being the most diverse and zero being the least. 

• Hubert rand index: The cophenetic correlation coefficient as 
defined in (Hubert and Baker, 1977). This index is a measure of the 
stability of modular assignments. 

Following methods of prior work (Owen et al., 2013), with code in 
the open-source Brain Connectivity Toolbox (http://sites.google.com/si 
te/bctnet), modular assignments of 10,000 random initial conditions 
were calculated for every connectivity matrix. The most frequently 
appearing modular assignments were chosen for the complete AgCC and 
TDC connectomes. For individual connectivity matrices, the mean and 
standard deviation of modularity values and participation coefficients 
were calculated. The mean Hubert rand index was calculated between 1) 
modular assignments for each individual connectome and the consensus 
connectome and 2) every pair of modular assignments for all individual 
connectomes. 

2.4. Intra- and inter-hemispheric graph metrics: Analyses at the network, 
lobe, and node levels 

Children with complete AgCC (n = 13), partial AgCC (n = 6), and 
TDC (n = 29) were included in these analyses. Three different levels 
(network, lobe, and node) of comparisons were made on intra- and inter- 
hemispheric connections among groups. Intra- and inter-hemispheric 
connectivity matrices were extracted from the whole-brain connectiv-
ity matrix by filtering out irrelevant connections. At the network level, 
mean degree, cost, characteristic path length, mean normalized 
betweenness, and global efficiency were calculated for each connectivity 
matrix. Because local efficiency is zero for inter-hemispheric connec-
tivity matrices by definition, it was only calculated for intra-hemispheric 
connectivity matrices. Lobe-level metrics were obtained by pooling 
graph metrics of the individual nodes that belong to the same lobe ac-
cording to the Brainnetome atlas, i.e., frontal, temporal, parietal, oc-
cipital, insular, limbic, or subcortical nuclei. Degree and normalized 
betweenness were used for node-level analyses because they are defined 
for individual nodes and can be averaged across subjects at every node. 
Graph metric differences between the TDC group and the two AgCC 
groups respectively were calculated at node level. 
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2.4.1. Microstructural property measures of the anterior and posterior 
commissures 

Based on tractography data, the streamlines crossing the midline 
through the anterior and posterior commissures were tracked using a 
multiple ROI approach consisting of placing a bilateral ROI in para-
sagittal slices in the topography of the anterior or posterior commissures 
(Tovar-Moll et al., 2014). ROIs were manually defined by overlaying 
each participant’s FA map with the co-registered T1-weighted image 
(Siffredi et al., 2019). The resulting tracts were exported to TrackVis 
format for visualization and selection of the streamlines of interest, i.e., 
fibers crossing the midline through the anterior and the posterior com-
missures (Catani and De Schotten, 2008; Siffredi et al., 2021b). The 
number of streamlines and mean FA measures along these bundles were 
extracted. 

2.4.2. Neurobehavioral measures 
Associations between graph metrics of intra- and inter-hemispheric 

structural connectivity and neurobehavioral outcomes were examined 
in the AgCC and TDC groups. Five domains of neurobehavioral func-
tioning were examined using clinical tests and parent-reported ques-
tionnaires; general cognitive functioning, short-term and working 
memory, executive and attentional functioning, learning and memory, 
and social functioning (measures listed in Supplementary Table S1). A 
total of 33 age-standardized scores were included in the Partial Least 
Squares Correlation analysis. 

2.5. Statistical analyses 

2.5.1. Study replication analyses: Individual structural connectome 
To assess the difference between the individual structural con-

nectomes of complete AgCC and TDC groups, as in the work by Owen 
and colleagues (2013), a non-parametric test of 5000 random permu-
tations was applied to every graph metric. P-values were calculated from 
the distribution of t-values from the permutations and significance was 
determined with a threshold of p < 0.05 after Bonferroni correction to 
account for multiple comparisons. 

2.5.2. Intra- and inter-hemispheric graph metrics: Analyses at the network, 
lobe, and node levels 

Student’s t-tests were applied to compare network and lobe-level 
individual structural connectome metrics of complete AgCC, partial 
AgCC, and TDC groups. Significance was determined with a threshold of 
p < 0.05 after Bonferroni correction. For node-level comparisons of 
intra- and inter-hemispheric mean degree and mean normalized 
betweenness, nodes with AgCC-TDC group differences that fell outside 
of the 95% confidence interval obtained with bootstrapping analysis 
(500 bootstrap samples with replacement) were identified as outliers. 

2.5.3. Association of inter-hemispheric graph metrics and microstructural 
property measures of the anterior and posterior commissures 

To explore the potential role of the anterior and posterior commis-
sures in inter-hemispheric graph metrics, Pearson’s correlations be-
tween inter-hemispheric graph metrics and microstructural property 
measures of the anterior and posterior commissures (i.e., number of 
streamlines and mean FA) were completed. These correlations were 
done separately in the TDC, the complete AgCC and the partial AgCC 
groups. 

2.5.4. Associations of intra- and inter-hemispheric graph metrics with 
neurobehavioral measures 

Partial Least Squares Correlation (PLSC) analyses were performed to 
evaluate associations between lobe-level structural connectivity graph 
metrics and neurobehavioral measures in the complete AgCC, partial 
AgCC and TDC groups. PLSC is a data-driven multivariate technique that 
maximizes the covariance between two matrices by identifying latent 
components (LCs), which are linear combinations of the two matrices 

(McIntosh and Lobaugh, 2004). A publicly available Matlab toolbox was 
used: https://github.com/danizoeller/myPLS (Zöller et al., 2019; Kebets 
et al., 2019). The graph metrics data were stored in a 48 × 28 matrix 
denoted X. Each row of X represents one subject and the matrix’s 28 
columns are made up of the four graph metrics (mean degree and mean 
normalized betweenness of intra- and inter-hemispheric connectivity 
respectively), with each metric calculated from the seven brain lobes of 
the Brainnetome atlas. The neurobehavioral data were gathered in a 48 
× 33 matrix denoted Y, with each row matching one subject and each 
column one neurobehavioral score. A cross-covariance matrix R was 
calculated by R = YT X for each group, concatenated, and then decom-
posed by singular value decomposition (SVD) as R = U Δ VT . Neuro-
behavioral saliences U and structural graph metrics saliences V were 
thus obtained, while Δ matrix contains singular values. Each column of 
U and V contains the neurobehavioral and brain patterns called “sa-
liences” that characterize each LC. Each group had a separate set of 
neurobehavioral saliences, while structural graph metrics saliences were 
common for the three groups. The significance of LCs was determined by 
permutation testing (1000 permutations) with p < 0.01. Multiple com-
parisons were not controlled for this exploratory analysis. The stability 
of neurobehavioral and structural graph metrics saliences was assessed 
with bootstrapping (500 bootstrap samples with replacement). 
Following the PLSC interpretation in Krishnan et al. (2011), an absolute- 
valued bootstrapping Z-score larger than 1.96, which corresponds to a 
95% confidence interval not crossing zero, is considered a stable 
contribution from each neurobehavioral and structural graph metrics 
salience. 

3. Results 

3.1. Sample characteristics 

The characteristics of included participants in the AgCC and the TDC 
groups are presented in Table 1. 19 children with AgCC, including 13 
with complete AgCC (isolated n = 4, complex n = 9) and 6 with partial 
AgCC (isolated n = 2, complex n = 4), as well as 29 TDC, were included 
in the present study, see Supplementary Table S2 for further clinical 
characteristics of the AgCC group. 

3.2. Replication analyses 

Compared with TDC, the consensus structural connectome of 

Table 1 
Characteristics of the participants from the AgCC and TDC groups.   

AgCC TDC Group comparison 

n 19 29 – 
Age in years, mean 

(SD) 
11.9 (2.56) 11.75 (2.32) t(46) = 0.208, p =

0.836 
Age in years 

[range] 
[8.67–17.08] [8.00–16.42] – 

Sex, n 7 females, 12 
males 

13 females, 16 
males 

X2(1; 48) = 0.301; p 
= 0.583 

Handedness, n 11 R, 7 L, 1 M 26 R, 3 L – 
Full-Scale IQ, 

median 
80.47 113.00 W = 949, p < 0.001 

Full-Scale IQ 
[range] 

[66–126] [88–136] – 

Note: Full-scale IQ was measured using the Wechsler Abbreviated Intelligence 
Scale (WASI) or the Wechsler Intelligence Scale for Children, 4th edition (WISC- 
IV; n = 3) where the mean standardized score is M = 100 and SD = 15; Hand-
edness was estimated using the Edinburgh Handedness Inventory where right- 
handed (R) = +40 to +100, left-handed (L) = − 40 to − 100, and mixed 
handed (M) = − 40 to +40; Group comparisons were done using chi-square (X2) 
for categorical variables, and independent sample t-test (t) or Wilcoxon signed- 
rank test (W, when assumptions for parametric tests were not respected) for 
continuous variables. 
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children with complete AgCC showed decreased mean degree, cost, and 
global efficiency, along with increased characteristic path length, mean 
normalized betweenness, and local efficiency (Supplementary Table S3). 
To assess the robustness of the results with respect to different thresh-
olds, we re-analyzed the data in a range of threshold values from 25% to 
65% with a step size of 5%. We were able to show that the original 
analysis results at 50% are robust and comparable with results obtained 
from averaging the graph metrics of consensus connectomes in the 
sizable range of threshold values. Individual structural connectome 
analyses showed the same trends with significant group differences in all 
graph metrics except for mean degree and cost (Supplementary 
Table S4). Our findings are thus comparable to those reported by Owen 
and colleagues (2013). 

Modularity analyses were generally concordant with Owen and 
colleagues’ (2013) findings. We also found significantly increased mean 
modularity, along with decreased mean participation coefficient and 
Hubert rand indices calculated from consensus connectomes and indi-
vidual connectomes in children with complete AgCC compared with 
TDC (Supplementary Table S5). Further details on nodes and brain re-
gions involved in different modules are provided in Supplementary 
Table S6. 

3.3. Intra- and inter-hemispheric graph metrics 

3.3.1. Network-level analyses 
For intra-hemispheric metrics at the network level, complete and 

partial AgCC groups showed significant increases compared to TDC in 
mean degree, cost, and global efficiency, along with significant de-
creases in characteristic path length and mean normalized betweenness. 
Significant increase in local efficiency was observed in partial AgCC 
group (Fig. 1 and Supplementary Table S7). In contrast, the two AgCC 
groups showed significant reductions in all inter-hemispheric graph 
metrics compared with TDC, except in global efficiency. These differ-
ences remained statistically significant after Bonferroni correction. 
Notably, there were no significant differences between the complete and 
partial AgCC groups. 

3.3.2. Lobe- and node-level analyses 
For intra-hemispheric structural connectivity, the two AgCC groups 

showed significantly increased mean degree in the frontal, temporal, 
and insular lobes compared with TDC, and in the parietal lobe in chil-
dren with complete AgCC compared with TDC (Fig. 2a, Supplementary 
Table S8). The increase in mean degree in the frontal lobe was more 
pronounced in children with partial than complete AgCC. In contrast, 
reduced intra-hemispheric mean degree was observed in the limbic and 
occipital lobes, and in subcortical regions. Differences in intra- 
hemispheric mean degree were also evident at the node level 

Fig. 1. Network-level intra-hemispheric (a) and inter-hemispheric (b) mean degree, cost, characteristic path length, mean normalized betweenness (BC), and global 
efficiency of complete AgCC, partial AgCC, and TDC groups. Plot is in log scale. * indicates statistical significance after Bonferroni correction at p < 0.05. 
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(Fig. 4a), with most nodes in frontal, parietal, insular, limbic, and oc-
cipital lobes showing higher mean degree in AgCC groups. Moreover, 
compared with other brain regions, insular and limbic lobes had nodes 
with mean degree differences that were less variable. For lobe-level 
intra-hemispheric mean normalized betweenness, no differences were 
found between complete AgCC, partial AgCC and TDC groups (Fig. 3a 
and Supplementary Table S9). At the node level, there were no clear 
differences in frontal, temporal, and parietal lobes between AgCC and 
TDC groups (Fig. 4a). Insular nodes had higher mean normalized 
betweenness in the AgCC group, while an opposite pattern was observed 
in limbic, occipital, and subcortical nodes. Regional variations were 
again observed, in particular most frontal, temporal, and parietal nodes 
had mean normalized betweenness differences centering around zero, 
with the last group of nodes showing more variations. All insular nodes 
in AgCC groups had higher mean normalized betweenness than the TDC 
group, while an opposite pattern was observed for nodes in occipital and 
subcortical lobes. For both graph metrics, the same outlier nodes were 
found in subcortical and parietal lobes in complete AgCC. In partial 
AgCC, outlier nodes for mean normalized betweenness also came from 
these brain regions, but those for mean degree came from occipital and 
insular lobes. 

For inter-hemispheric structural connectivity, mean degree in both 
AgCC groups was generally reduced in all lobes with results reaching 
statistical significance in frontal, parietal, limbic, and occipital lobes 

(Fig. 2b). An additional reduction was seen in subcortical lobe for 
complete AgCC. Compared with partial AgCC, the reductions observed 
in the complete AgCC group were greater in frontal, parietal, and limbic 
lobes. These patterns were also reflected at the node level (Fig. 4b). For 
inter-hemispheric mean normalized betweenness at the lobe level, in the 
AgCC groups significant reductions were observed in frontal, parietal, 
limbic, occipital, and subcortical lobes (Fig. 3b). A reduction in frontal 
and parietal lobes was also observed in the complete AgCC compared 
with the partial AgCC group. At the node level, lower mean degree and 
mean normalized betweenness were observed in most of the nodes for 
the two AgCC groups. The exception was for nodes in temporal and 
insular lobes, where most nodes had similar mean normalized 
betweenness in the AgCC and TDC groups, with one outlier in the 
temporal node in each AgCC group. Additionally, both AgCC groups had 
outlier nodes from subcortical and limbic lobes for the two graph metrics 
respectively. For more details on node-level analysis, see Supplementary 
Tables S10–S12. 

3.4. Comparisons between isolated and complex AgCC 

For network level intra- and inter-hemispheric graph metrics, chil-
dren with AgCC were grouped based on isolated AgCC (n = 6) or com-
plex AgCC (n = 13), where AgCC is associated with other brain 
malformations. Network-level analyses show that none of the graph 

Fig. 2. Lobe-level intra-hemispheric (a) and inter-hemispheric (b) mean degree for complete AgCC, partial AgCC, and TDC groups. Plot is in log scale. * indicates 
statistical significance after Bonferroni correction at p < 0.05. 
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metrics differ significantly between the isolated and the complex AgCC 
groups, see Supplementary Table S13. 

3.5. Associations between inter-hemispheric graph metrics and 
microstructural property measures of the anterior and posterior 
commissures 

Pearson’s correlation results are summarized in Supplementary 
Table S14. Notably, in complete AgCC it is observed that the mean FA of 
the anterior commissure, which is the mean FA along all the tracts 
crossing the midline via the anterior commissure, strongly and posi-
tively correlates with network-level inter-hemispheric mean degree, 
cost, and mean normalized betweenness (r greater than 0.7). 

3.6. Associations between graph metrics and neurobehavioral measures 

For neurobehavioral scores and group comparisons, see Supple-
mentary Table S15. The PLSC analyses on lobe-level graph metrics and 
neurobehavioral measures in the complete AgCC, partial AgCC, and TDC 
groups identified two statistically significant LCs: LC1 (p = 0.002) and 
LC2 (p = 0.002), which explained 22.1% and 16.8% of the covariance 
between structural connectivity and neurobehavioral measures, 
respectively. 

There were no clear patterns of association between the five 

neurobehavioral domains and the intra- and inter-hemispheric struc-
tural graph metrics in the AgCC nor TDC groups, see Fig. 5, Supple-
mentary Figs. S2 and S3 and Tables S16 and S17. For LC1, robust 
saliences were found in verbal memory (i.e., scores of verbal delayed 
recall) and executive and attentional measures, including mostly pro-
cessing speed, associated with both intra- and inter-hemispheric graph 
metrics in the TDC group only. Similarly, LC2 showed robust associa-
tions between intra- and inter-hemispheric graph measures and verbal 
scores in general, including learning and memory as well as switching in 
the TDC group mostly; and with the verbal immediate recall measure 
only in the complete AgCC group. 

4. Discussion 

The findings of this study shed light on the neuroplastic responses 
linked to intra- and inter- hemispheric structural organization in AgCC. 
First, following the same methodology as Owen and colleagues (Owen 
et al., 2013), we replicated their findings in a larger developmental 
cohort through extraction of comparable whole-brain graph metrics and 
modularity measures. In addition, we analyzed graph metrics within and 
across hemispheres to explore the hypothesis of structural strengthening 
of intra-hemispheric pathways in children with AgCC at different scales. 
Our network-level findings were consistent with this hypothesis as evi-
denced by the observed increases in fiber density as well as in network 

Fig. 3. Lobe-level intra-hemispheric (a) and inter-hemispheric (b) mean betweenness (BC) for complete AgCC, partial AgCC, and TDC groups. Plot is in log scale. * 
indicates statistical significance after Bonferroni correction at p < 0.05. 
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Fig. 4. Node-level mean degree and mean 
normalized betweenness (BC) differences 
between complete AgCC and TDC groups 
(left column) and between partial AgCC and 
TDC groups (right column) for (a) intra- 
hemispheric and (b) inter-hemispheric con-
nections. In each plot solid lines indicate zero 
difference so that data points above 0 indi-
cate higher metrics for the AgCC compared 
with TDC group and data points below 
0 indicate higher metrics for the TDC group. 
Dashed lines show the 95% confidence in-
terval from the bootstrapping analysis.   

Fig. 5. Robust saliences of intra- and inter-hemispheric structural graph metrics (i.e., lobe level mean degree (Deg) and mean normalized betweenness (BC)) and 
neurobehavioral measures of (a) LC1 and (b) LC2 from PLSC analyses for complete AgCC (cAgCC), partial AgCC (pAgCC) and TDC. Note that only saliences with an 
absolute valued bootstrapping Z-score larger than 1.96, which corresponds to a 95% confidence interval not crossing zero, are considered stable contributions and are 
reported in this Figure. 
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local and global efficiency, along with a general decrease in inter- 
hemispheric graph metrics. Exploration of intra- and inter-hemispheric 
connections at the lobe and node levels allowed for characterizations 
of regional differences in structural connectivity in children with AgCC 
compared with TDC. Of further interest, we did not find evidence for 
associations between intra- and inter-hemispheric graph properties and 
neurobehavioral outcomes across a wide range of domains in this clin-
ical population or in typically developing children. 

Using similar graph theoretical analysis, we replicated the results of 
Owen and colleagues’ (2013). Indeed, we found increased local con-
nectivity graph metrics (i.e., local efficiency, clustering coefficient) in 
children with complete AgCC, and decreased global connectivity graph 
metrics (i.e., degree, cost, characteristic path length, normalized 
betweenness, and global efficiency). Modularity analyses revealed the 
same pattern, despite some differences in modular organization. Spe-
cifically, both Owen and colleagues (2013) and our current study have 
found increased mean modularity and decreased mean participation 
coefficient in children with complete AgCC. Additionally, the two 
studies showed a few differences in module assignment across the 
complete AgCC group, with more consistent modules in anterior parts of 
the brain, and more inconsistency in posterior areas (parietal, limbic, 
and occipital lobes). These small discrepancies in modularity analyses 
between the two studies are likely due to differences in parcellation. 
Together, our replication serves to validate and provide confidence in 
the representativeness of our data and clinical cohort. 

Overall, our network-level findings were consistent with the hy-
pothesis of structural strengthening of intra-hemispheric pathways in 
children with AgCC. For intra-hemispheric connections, both the com-
plete and partial AgCC groups showed not only increased fiber density (i. 
e., mean degree, cost), but also strengthened overall structural connec-
tivity (i.e., network global efficiencies) compared with TDC. Signifi-
cantly stronger short-range structural connectivity (i.e., network local 
efficiencies) was also observed in partial AgCC. Conversely, all graph 
metrics were reduced for inter-hemispheric connections in children with 
complete and partial AgCC compared with TDC. Notably, there was an 
exception for inter-hemispheric global efficiency, which showed a sig-
nificant increase in the AgCC groups compared with TDC. It is possible 
that these results reflect compensatory mechanisms, with the remaining 
inter-hemispheric structural connections being organized in a highly 
efficient way in children with AgCC. Consistent with these findings, 
other commissural structures, in particular the anterior commissure, 
have been proposed as alternative pathways for inter-hemispheric 
communication in the case of callosal alteration in humans (Siffredi 
et al., 2021b, 2019; Hung et al., 2019; Tovar-Moll et al., 2014) and in 
rhesus monkeys (O’Reilly et al., 2013). The strong positive correlations 
observed in our results between the mean FA of the anterior commissure 
and the network-level inter-hemispheric mean degree, cost, and mean 
normalized betweenness in complete AgCC are in line with this 
hypothesis. 

When exploring intra- and inter-hemispheric connections at the lobe 
and node levels, structural connectivity changes in AgCC were found to 
vary spatially. Compared with TDC, children with complete and partial 
AgCC showed increased intra-hemispheric fiber density (i.e., mean de-
gree) in frontal, temporal, parietal, and insular lobes, but not in the 
occipital lobe. It is possible that the increase observed in the parietal 
areas is composed of fibers from the Probst bundles. The Probst bundles 
are cortical fibers that fail to cross the midline and constitute in each 
cerebral hemisphere an aberrant longitudinal tract running in a rostro- 
caudal direction (Probst, 1901; Bénézit et al., 2015). The exception 
observed in occipital areas may also be attributed to the presence of 
colpocephaly, which is commonly observed in children with AgCC. 
Colpocephaly refers to enlarged occipital horns of the lateral ventricles, 
resulting in an atypical enlargement of the posterior or rear portion of 
the lateral ventricles, in the absence of the corpus callosum. Of partic-
ular interest, colpocephaly is known to affect structural connectivity in 
occipital regions (Aydin et al., 2016; Bartolome et al., 2016). Notably, 

no differences were observed for intra- hemispheric mean normalized 
betweenness suggesting typical structural connection centrality in 
complete and partial AgCC. 

For inter-hemispheric lobe and node level graph metrics, decreased 
fiber density and centrality (i.e., mean degree and mean normalized 
betweenness) were found in the AgCC groups compared with TDC in 
several cortical structures that are normally connected inter- 
hemispherically by the corpus callosum, including frontal, parietal 
and occipital lobes. Findings at the node level revealed notable varia-
tions within these regions with node-level metrics differences spanning 
across large ranges. Temporal lobes showed comparable inter- 
hemispheric graph metrics between the AgCC and the TDC groups. 
The anterior commissure, mostly containing white matter fibers con-
necting bilateral temporal areas, probably plays a role in maintaining 
inter-hemispheric communication in these regions (Catani and De 
Schotten, 2008; Tovar-Moll et al., 2014; Siffredi et al., 2019, 2021b). 
Surprisingly, there was an overall reduction of fiber density and cen-
trality measures for inter-hemispheric structural connectivity of 
subcortical and limbic areas in the AgCC groups compared with TDC. 
These findings are in contrast to the hypothesis that subcortical struc-
tures provide alternative pathways for interhemispheric communica-
tion, at least at the structural level (Mancuso et al., 2019). It is 
nevertheless possible that the observed decrease in subcortical fiber 
density and centrality measures is mostly attributed to the absent corpus 
callosum, whose effects overshadowed any countering effects in the 
remaining subcortical structures. 

Finally, we observed several differences in connectivity for children 
with complete and partial AgCC. Children with partial AgCC had 
increased inter-hemispheric fiber density (i.e., mean degree) and 
betweenness centrality, as well as increased intra-hemispheric fiber 
density in the frontal lobe compared with children with complete AgCC. 
In partial AgCC, the remaining parts of the corpus callosum are mostly 
located anteriorly, including homotopic frontal structural connections 
(Siffredi et al., 2018). It is possible that by allowing callosal fibers to 
cross the midline in these restricted areas, the frontal lobes become a 
“hub” for the transfer of information across the brain in partial AgCC. 
Moreover, children with complete AgCC showed greater reductions in 
inter- hemispheric mean degree in parietal and limbic lobes compared 
with children with partial AgCC. Additionally, mean normalized 
betweenness in parietal lobes was further reduced in complete AgCC. 
This is again not surprising, as the remaining parts of the corpus cal-
losum in partial AgCC also include homotopic parietal connections 
(Siffredi et al., 2018). Regarding limbic areas, it is possible that these 
structures are developing in a more typical way and are less affected by 
the absence of the corpus callosum in partial AgCC compared to com-
plete AgCC. 

Our investigation of associations between intra- and inter- hemi-
spheric graph metrics at the lobe level and neurobehavioral outcomes 
across a wide range of domains did not identify any clear patterns of 
correlation in children with AgCC. Association between intra- and inter- 
hemispheric graph metrics and a few scores of verbal memory as well as 
executive and attentional measures were found in the TDC groups, but 
again without any clear pattern. These findings do not corroborate 
previous work showing an association between strengthening of struc-
tural intra-hemispheric connectivity and neurobehavioral outcomes in 
children with AgCC (Siffredi et al., 2021a). These discrepancies could be 
largely explained by the different measures of structural connectivity 
used in the two studies. Graph metrics in our study are primarily defined 
for binary systems and thus rely on the binarization of structural con-
nectivity matrices, which are generated from the number of streamline 
measures and allow us to investigate the structural organization of the 
brain. Our choice of performing binary analysis is justified because most 
of the graph metrics calculations do not confer consistent or meaningful 
physical interpretation when extended to weighted structural con-
nectome. Specifically, with the number of streamlines data as edge 
weights, connection strength is encoded rather than distance. Any 
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weighted graph metrics that deal with distance between nodes thus do 
not have proper meanings. These metrics include characteristic path 
length, normalized betweenness, global efficiency, and local efficiency 
(Yeh et al., 2020). Out of the remaining metrics, cost and clustering 
coefficient can only be binary because they are based on presence or 
absence of connections, leaving only degree that can be analyzed 
properly on weighted structural connectome. While weighted approach 
may yield more granular metrics, for our dataset binary analysis is more 
appropriate as it enables inclusion of a variety of graph metrics. 
Conversely, in this previous study (Siffredi et al., 2021a), the authors 
used edge-weighted measures including both the number of streamlines 
as well as fractional anisotropy (FA) measures, which quantify connec-
tivity strength (Huang and Ding, 2016). It is possible that metrics 
derived from weighted graphical models with a proper physical inter-
pretation or other structural graph metrics, such as small-worldness, 
assortativity or hierarchy, might be more strongly associated to neuro-
developmental outcomes (Cao et al., 2013; Ray et al., 2014). These 
important clinical questions need to be further investigated in order to 
better understand neurobehavioral variability and how it is associated 
with brain measures in this population. 

This study provides new insights into brain structural organization in 
children with AgCC and despite some limitations, these findings could 
inform future research. First, our cohort is heterogeneous in terms of 
corpus callosum agenesis (including children with complete or partial 
AgCC) and associated brain malformations (including children with 
isolated or complex AgCC) which enabled us to examine connectivity in 
the range of children who present with AgCC. A larger sample size, 
however, would allow further explorations of each phenotypic group, as 
well as factors that contribute to neurobehavioral outcomes. Secondly, 
the two DWI shells acquired in the context of this study and used for 
multi-shell analyses are different in terms of TR and TE. It is more 
appropriate to acquire the same parameters of the different shells when 
combining them in multi-shell DWI analyses. Nevertheless, as a sanity 
check, analyses completed on the single b3000 shell show highly com-
parable findings, confirming the reliability of our results. Thirdly, as a 
future direction, the combination and extension of our findings in ani-
mal models could significantly improve our understanding of the 
mechanisms involved in neuroplastic responses. Finally, the use of high 
quality data, for example, MRI acquisition using ultra-high field 7 Tesla 
would allow a higher parcellation resolution and could reveal fine 
structural reorganization in subcortical regions that were not captured 
in the present study and might be of clinical significance. 

4.1. Conclusion 

To our knowledge, this study is the first to employ graph metrics at 
the whole-brain level, with a multi-scale investigation of intra- and 
inter-hemispheric structural connectivity in children with AgCC. Our 
approach allowed the exploration of neuroplastic responses, specifically 
the hypothesis of structural strengthening of intra-hemispheric path-
ways in children with absence of corpus callosum. The major finding of 
our study is in support of this hypothesis, showing increased fiber den-
sity, as well as increased local and global network efficiency for intra- 
hemipheric connections in children with AgCC compared with typi-
cally developing children. Regional differences in fiber density and 
centrality metrics were also highlighted at the lobe and node levels. 
These structural alterations, however, did not appear to be associated 
with a wide range of neurobehavioral outcomes in children with AgCC. 

Our results not only highlight the importance of graph-based ana-
lyses for quantifying structural connectivity changes in clinical pop-
ulations at multiple resolutions, but also open avenues for future 
research looking into neuroplastic responses through reorganization of 
white matter tracts in various brain regions. To further investigate 
neuroplasticity in individuals with AgCC, a similar graph-based 
approach can be applied to analyze functional connectivity and struc-
ture–function couplings. 
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