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The search for biomarkers to diagnose psychiatric disor-
ders such as schizophrenia has been underway for de-
cades. Many molecular profiling studies in this field have
focused on identifying individual marker signals that show
significant differences in expression between patients
and the normal population. However, signals for multiple
analyte combinations that exhibit patterned behaviors
have been less exploited. Here, we present a novel ap-
proach for identifying biomarkers of schizophrenia using
expression of serum analytes from first onset, drug-naïve
patients and normal controls. The strength of patterned
signals was amplified by analyzing data in reproducing
kernel spaces. This resulted in the identification of small
sets of analytes referred to as targeted clusters that have
discriminative power specifically for schizophrenia in both
human and rat models. These clusters were associated
with specific molecular signaling pathways and less
strongly related to other neuropsychiatric disorders such
as major depressive disorder and bipolar disorder. These
results shed new light concerning how complex neuro-
psychiatric diseases behave at the pathway level and
demonstrate the power of this approach in identification
of disease-specific biomarkers and potential novel thera-
peutic strategies. Molecular & Cellular Proteomics 9:
510–522, 2010.

Schizophrenia is a debilitating neuropsychiatric disorder
that affects more than 1% of the world population and costs
hundreds of billions of United States dollars in healthcare
provision and lost earnings (1). The diagnosis of this disease
has not changed substantially over several decades and cur-
rently relies on subjective psychopathological ratings such as
the Diagnostic and Statistical Manual of Mental Disorders
(DSM)1-IV. Thus, diagnosis can be complicated by the pres-

ence of overlapping symptoms frequently occurring in other
psychiatric illnesses such as bipolar disorder (BD) and major
depressive disorder (MDD) and by the presence of confound-
ing factors such as drug abuse and co-morbidities. This often
results in diagnosis being delayed for several months to years.
A delay in establishing an accurate diagnosis can have seri-
ous deleterious implications because a late or imprecise di-
agnosis can contribute to unsatisfactory outcomes to cur-
rently used drug therapies and to higher rates of relapse (2).
Most importantly, more than half of schizophrenia subjects
develop a progressive course of the disease associated with
deficit symptoms (3).

In contrast, early therapeutic intervention holds promise in
preventing or diminishing such effects (4–6). An empirical
assay for early and accurate diagnosis of schizophrenia would
deliver improved patient outcomes and reduce the costs of
the disease for healthcare services and society (7–9). Such an
assay could also provide a means of stratifying patients and
monitoring drug responses and may also lead to the devel-
opment of translational medicine tools that are critical for
discovery of novel therapeutic strategies. Molecular profiling
methods that afford the simultaneous measurement of multi-
ple analytes in clinical and preclinical samples have consid-
erable promise in this endeavor. These methods have been
aimed predominantly at identifying individual molecules that
show differences in expression between the disease and con-
trol conditions. However, such studies have often been
fraught with small fold-changes in analyte levels, a common
obstacle when investigating complex neuropsychiatric disor-
ders (10–12). Thus, standard statistical techniques such as t
tests will not be able to explore patterned behaviors involving
proteins that have subtle expression changes but still contrib-
ute to the development of schizophrenia.

The main objective of this study was to determine whether
unique patterns of biomarkers can be identified for subjects
with first onset antipsychotic-naïve schizophrenia. Analyte ex-
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pression lists were generated using the Multi-Analyte Profiling
(MAP�) fluorescent bead-based technology for profiling se-
rum samples from 77 male schizophrenia patients and 66
matched male controls. For comparison with other psychiatric
disorders, we also analyzed the serum samples of 13 male BD
and 17 male MDD patients. In parallel, serum samples from
four relevant animal models were also profiled for comparison
with the human disease state. Analysis of the respective ex-
pression lists was carried out using non-linear statistical anal-
ysis, which identifies small sets of analytes called targeted
analyte clusters (TACs) that have the power to discriminate
the patients from normal controls. We present here the per-
formance of these clusters for diagnosis of schizophrenia. In
addition, we show how this method can also contribute to
increasing our understanding of the etiology of the disorder by
determining its ability to classify various preclinical models of
psychiatric disorders. The biological pathways associated
with these clusters are discussed with their relevance to
schizophrenia.

MATERIALS AND METHODS

Study Participants—Subjects were recruited with first onset schiz-
ophrenia (SZ; center 1: male, n � 42; female, n � 29; center 2: male,
n � 35; female, n � 11), BD (male, n � 12; female, n � 19), and MDD
(male, n � 10; female, n � 19) along with matching controls (SZ center
1: male, n � 31; SZ center 1: female, n � 28; SZ center 2: male, n �
35; SZ center 2: female, n � 11; BD male, n � 31; BD female, n � 28;
MDD male, n � 44; MDD female, n � 44) (Table I). Only male subjects
were chosen for the testing set to facilitate comparisons with animal
model studies. Schizophrenia subjects were obtained from two clin-
ical centers, namely the Department of Psychiatry and Psychother-
apy, University of Cologne, Cologne, Germany (center 1) and the
Department of Psychiatry, University Medical Faculty, Münster, Ger-
many (center 2). The TAC was identified by the expression data of
male subjects in center 1, whereas the rest of the data were used as
test sets. In this way, we can evaluate the performance of the iden-
tified TAC in terms of identifying schizophrenia patients across gen-
der and different centers. Also, the performance of the TAC in human
models can be compared directly with animal models that include
only male rats (see details under “Preclinical Models”). Schizophrenia
was diagnosed using the Structured Clinical Interview for DSM-IV,
and all subjects were identified as the paranoid subtype (classification
295.30). Type I and type II male euthymic BD patients (classifications
296.4 and 296.89, respectively) and male acute MDD subjects were
diagnosed using DSM-IV criteria. Euthymic BD patients were selected
as they can experience subjective cognitive deficit symptoms similar
to those in schizophrenia (13, 14). These subjects had an average
duration of illness of 9.9 � 8.6 years, had an average of 10 episodes,
and had received one or a combination of mood stabilizers and/or
antidepressants. MDD patients were selected because of the con-
ceptual overlap between depression and the negative symptoms of
schizophrenia (15, 16). The MDD subjects had an average duration of
illness of 14.0 � 12.0 years.

Clinical tests were performed by psychiatrists under good clinical
practice compliance, and the studies were approved by the appro-
priate ethics committees. Written informed consent was given by all
participants, and clinical investigations were conducted according to
the Declaration of Helsinki. Any patients whose clinical diagnosis
required later revision were not used in the studies. Control subjects
were matched to the respective patient populations based on social

demographics. Those with a family history of mental disease or other
medical conditions such as type II diabetes, hypertension, or cardio-
vascular or autoimmune diseases were not used. Along with matching
for base-line characteristics of age, gender, BMI, smoking, cannabis
consumption, and date of sample collection, patients and controls
were matched for social status, lifestyle, and education level and
recruited from the same geographic area surrounding the clinic. In
addition, none of the subjects were taking any additional substances.
Genetic stratification is not likely to be an important factor as the
complexity of schizophrenia suggests that multiple genes contribute
to the onset and manifestation of the disease.

Serum Samples—Blood was collected from all subjects between
8:00 and 12:00 (non-fasting) immediately after clinical diagnosis into
S-Monovette 7.5-ml serum tubes (Sarstedt, Numbrecht, Germany).
These were left at room temperature for 2 h to allow for blood
coagulation and then centrifuged at 4000 � g for 5 min. The resulting
supernatants were stored at �80 °C in Low Binding microcentrifuge
tubes (Eppendorf, Hamburg, Germany).

Preclinical Models—Only male rats were used for these studies to
avoid potential confounding factors due to hormonal fluctuations
associated with females. Rats were maintained on a 12-h light/dark
cycle (lights on from 06:00 to 18:00) under constant temperature
(21 � 1 °C) and humidity (50–58%). Food (Harlan Tekland 2014,
Harlan UK Ltd., Bicester, UK) and water was available ad libitum.

For the phencyclidine (PCP) administration studies, rats were ac-
climated 7 days prior to experiments. PCP hydrochloride (Sigma-
Aldrich) was dissolved in saline and administered subcutaneously into
the flank. Control animals received saline by the same method. The
hyperlocomotory effect of PCP administration was confirmed by
measuring the number of infrared beam breaks performed by each rat
using a Double IR Actimeter Harvard system (such as described in
Ref. 17; Harvard Apparatus, Kent, UK). Two PCP models were inves-
tigated (below).

An acute PCP administration model was tested using 14-week-old
Sprague-Dawley rats (Charles River). Eight rats were treated with PCP
hydrochloride (5.0 mg/kg, intraperitoneal), eight were treated with
vehicle, and these were killed via decapitation after 2 h.

We also analyzed a chronic PCP administration model using 12-
week-old Sprague-Dawley rats. Eight rats were treated with PCP
hydrochloride, and eight were treated with vehicle as above once a
day for 15 days. Two hours after the last injection, rats were killed via
decapitation.

A social isolation model was also analyzed using 16-week-old
Lister Hooded rats (Charles River). Rats were fostered at birth, eight
rats were housed singly, and eight were housed in groups of five
(other littermates also included) on postnatal day 28. The efficacy of
the model was confirmed as the isolated animals showed a significant
reduction (p � 0.01) in prepulse inhibition of acoustic startle com-
pared with their group-housed littermates as reported previously (18).
Isolated and grouped animals were housed in the same holding room
for 12 weeks (44). After this time, the rats were killed via decapitation.

We also tested a model using offspring rats from dams fed a low
protein diet during pregnancy and lactation (19). Virgin Wistar rat
dams were fed an isocalorific diet containing 8% protein throughout
pregnancy and lactation. The offspring were delivered spontaneously,
weaned onto a 20% protein diet on postnatal day 21, and killed at
week 14 via decapitation. The behavioral effects on this model show-
ing a reduced prepulse inhibition of acoustic startle have been re-
ported previously (20). We demonstrated efficacy of the maternal
protein restriction protocol by confirming significantly lower body and
liver weights and an increased brain to body weight ratio in the low
protein offspring rats compared with the control rats (data not shown).
Eight low protein and eight control rats (dams fed standard 20%
protein) were used.
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For all four rat models, trunk blood was collected into BD Bio-
sciences serum tubes, and serum was prepared as above for the
clinical studies. All studies were conducted in compliance with the
Home Office Guidance on the operation of the UK Animals (Scientific
Procedures) Act 1986 and were approved by the GlaxoSmithKline
Animal Procedures Review Panel.

Multianalyte Profiling—Analytes were measured in 25–50-�l serum
samples using multiplexed immunoassays in a Clinical Laboratory
Improved Amendments-certified laboratory at Rules-Based Medicine
(Austin, TX) (21). Assays were calibrated using standards, and raw
intensity measurements were converted to protein concentrations
using proprietary software. Analyses were conducted under blinded
conditions with respect to sample identities, and samples were ana-
lyzed randomly to avoid any sequential biases. The Human Metabolic
MAP comprised adiponectin, ACTH, angiotensin-converting enzyme,
angiotensinogen, C3 des-Arg, cortisol, follicle-stimulating hormone,
galanin, glucagon, glucagon-like peptide-1 (GLP-1), growth hormone,
insulin, IGF-1, leptin, luteinizing hormone (LH), pancreatic polypep-
tide, peptide YY, progesterone, prolactin, resistin, secretin, and tes-
tosterone. The Rat Metabolic MAP was comprised of adiponectin,
ACTH, angiotensin-converting enzyme, angiotensinogen, C3a des-
Arg, cortisol, galanin, glucagon, growth hormone, insulin, IGF-1, lep-
tin, LH, peptide YY, plasminogen activator inhibitor 1, progesterone,
prolactin, resistin, secretin, and testosterone. The multiplexed immu-
noassays are described in Ref. 21. Analytes were quantified by ref-
erence to eight-point calibration curves, and machine performance
was verified using three quality control (QC) samples for each analyte.
QC samples were distributed across the dynamic range of the assay
at low, medium, and high levels and had coefficients of variance
below 15%. Calibration standards and QC samples were in a com-
plex serum-based matrix to match the sample background and were
analyzed in duplicate. Assays were calibrated using standards, and
raw intensity measurements were converted to protein concentra-
tions using proprietary software. Analyses were conducted under
blinded conditions with respect to sample identities, and samples
were analyzed randomly to avoid any sequential biases. The Rules-
Based Medicine metabolic assay panel was chosen as many of the
constituent analytes have been associated previously with schizo-
phrenia. The Human Metabolic MAP comprised adiponectin, ACTH,
angiotensin-converting enzyme, angiotensinogen, C3 des-Arg, corti-
sol, follicle-stimulating hormone, galanin, glucagon, GLP-1, growth
hormone, insulin, IGF-1, leptin, LH, pancreatic polypeptide, peptide
YY, progesterone, prolactin, resistin, secretin, and testosterone. The
Rat Metabolic MAP comprised adiponectin, ACTH, angiotensin-con-
verting enzyme, angiotensinogen, C3a des-Arg, cortisol, galanin, glu-
cagon, growth hormone, insulin, IGF-1, leptin, LH, peptide YY, plasmin-
ogen activator inhibitor 1, progesterone, prolactin, resistin, secretin, and
testosterone. To carry out systematic comparisons between human and
experimental models (rat), we chose to focus on the 17 analytes (Table
II) that are common between the human and rat panels.

Factor Analysis and Feature Selection—Because of the potentially
large number of analyte combinations involved in the analysis, we first
sought to reduce the possibilities by looking for those that give
maximal explanation power. For this purpose, we used factor analy-
sis, which takes covariance and noise into account as a means of
reducing the multidimensional data to fewer factors. Factor analysis
(FA) is a statistical technique to reduce multidimensional data down
to a few factors by considering their variances and noise. Formally,
FA models the original data X as its mean behavior plus a linear
combination (captured by matrix L) of a number of factors (matrix F)
and noise, i.e. X � � � LF � � where Cov(F) � I, Cov(�) � diag(�1,
�2, . . . ), and F and � are independent. Similar to principal com-
ponent analysis (more details are given in the next section), FA
seeks to decompose the data into factors that are linear combina-

tions of the data attributes. However, FA takes into account the fact
that noises incurred in different factors may have difference vari-
ances. Therefore, we used it to dissect the importance of proteins
in terms of representing the overall variance of the diseased and
control data.

Of the common 17 analytes measured in both the human and rat
serum samples, FA indicated eight proteins exhibiting dominating
explanatory power to the data. The next stage was to perform feature
selection by considering all combinations of these eight proteins to
identify a subset that gives the best classification results across the
data sets.

Data Transformation—Principal component analysis (PCA) is a
standard multivariate statistical technique for characterizing data vari-
ances. PCA recasts multidimensional data onto a new coordinate
system such that the first eigenvector gives a projection of the original
data displaying maximum variance, the second gives the second
maximum, and so on. However, as standard PCA is linear in nature,
these projections do not always yield meaningful results for classifi-
cation purposes. For example, the data can form a quadratic line that
is not adaptable to linear classifiers.

One possible solution is to introduce new dimensions, e.g. some
non-linear combinations of the original features, to the data so that
the data set may become linearly separable again. However, gener-
ating these new dimensions can add to the computational workload,
and increasing dimensionality makes the calculation of eigenvalue
decompositions computationally expensive. Kernel methods are
one of the prominent approaches to tackle these problems. In
theory, these methods analyze the data in an extended (potentially
very high dimensional) feature space F that exhibits non-linear
properties. F is sometimes referred to as augmented feature space
in pattern recognition. For example, a straight line in F often be-
comes a curve or ellipsoid when projected down to two- or three-
dimensional spaces. An interesting point is that there are a large
number of families of F that are computationally tractable. This is
made possible by exploiting the so-called “kernel functions.” In
geometric terms, kernel functions in effect yield a new measure for
the pairwise data point distances.

More formally, the kernel PCA technique essentially is a variant of
linear PCA done in the kernel space. First, we introduce some nota-
tions concerning the kernel functions and spaces. Let �:Rd 3 F be
the feature function mapping X to F. The kernel method, rooted in
functional analysis, computes a kernel function K(xi, xj) � ��(xi), �(xj)	
that, as the equation implies, amounts to the inner product of xi, xj in
an extended feature space F. This allows one to obtain the inner
products without explicitly computing the high dimensional feature
space provided that a kernel function exists. Although kernel func-
tions may not exist for every possible feature space, popular kernel
functions such as (�xi, xj	 � 1)d (polynomial kernel), exp(��xi � xj�2/�2)
(Gaussian kernel), and tanh(xi�xj � b) (neural kernels) do provide
strong classification power.

It has been shown that to obtain the principal components in a
chosen F equipped with a suitable K(�) it suffices to compute eigen-
value decomposition over K(x) � [K(xi, xj)], specifically K(x)Y
 � n�Y

(22). Given a point x � Rd and column vectors Y
 � {y
i}, the projection
of x onto the ith principal component in the extended feature space yi

can be computed through just the data space and the kernel function,
namely ��(x), yi	 � �yi
/√�i	�(K(x1, xj), K(x2, xj), . . . , K(xn, xj)). All the
PCA projections shown in this work were produced by a Gaussian
kernel with a variance set to 4.

Classification of Samples Using Kernel Projections—We used Fish-
er’s discrimination analysis (FDA) for classification because it gives
Bayes optimal statistical classifiers for two classes. The input data to
FDA are the first two projected dimensions due to kernel PCA. Sam-
ples were classified finally by considering discriminant analysis under
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Mahalanobis distance (23), which is a widely useful metric in statisti-
cal applications that assigns data to a specific group according to the
normalized distance between the test sample and the center of mass
of the data set.

We have considered using other methods such as kernel discrimi-
nant analysis, which would lead to the generation of prediction
boundaries in four-dimensional space. However, this would result in a
more complex signal that would be less intuitive in terms of an
underlying biological signal than that produced by kernel PCA and
FDA in a two-dimensional space. Furthermore, higher dimensional
prediction boundaries may be more complicated for optimizing sen-
sitivity or precision because this would increase the difficulty of as-
sessing how much a change in the data will influence shifts in the
decision boundaries. Recent studies have addressed this concern
about maximal margin approaches as well as sample bias (24). For
our purpose, reduction of the sampling space to as small as two
dimensions is essential because the samples can be as small as n �
8 for diseased and control models (rat models). Although it is likely
that some potential analyte clusters would be missed if the last N �
2 principal components are omitted, this should be a minor concern
compared with the small sample size problem that affects the reli-
ability of the prediction power across different data sets. In most
cases, the first two principal components of PCA are accountable for
most of the variance in the data; thus, the chance for missing analyte
clusters in the remaining two principal components should not be
high.

In Silico Pathway Analysis—To investigate further potential biomar-
kers and drug targets, we identified the interaction networks of the
targeted analytes using the Ingenuity Pathways Knowledge Base
(IPKB) (25). The IPKB uses computational algorithms to identify local
networks that are particularly enriched in the data sets. Such local
networks contain the most highly connected focus proteins that, in
turn, have specific interactions with other proteins in computer-gen-
erated networks. The UniProt accession numbers and/or PubChem
identifiers of the analytes were submitted to the IPKB for analysis.
Significant networks show the input analytes and their associations
with other markers in the IPKB database.

RESULTS

Biomarker Profiling—The first stage of this study was aimed
at identifying a cluster of analytes capable of distinguishing

schizophrenia serum samples from control subjects at a sin-
gle clinical center. Center 1 was chosen for this as all re-
corded base-line characteristics (age, gender, BMI, smoking,
cannabis consumption, and date of sample collection) were
comparable between schizophrenia and control subjects. The
levels of biomarkers in serum from male first onset antipsy-
chotic-naïve schizophrenia (n � 42) and demographically
matched control (n � 31) subjects (Table I) were measured
using the Human Metabolic MAP platform. Expression data
were obtained for 17 analytes (Table II), which could also be
measured using the Rat Metabolic MAP (see below). Analysis
of the data using standard statistical methods resulted in
identification of six analytes that showed significant differ-
ences in expression (p � 0.05; a suitable two-tailed t test was
chosen for checking each analyte according to the normality
and homogeneity of the data) between the schizophrenia and
control subjects. These were cortisol, growth hormone, leptin,
luteinizing hormone, progesterone, and resistin. Three of
these analytes (cortisol, progesterone, and resistin) also
showed significant differences in clinical center 2 along with
changes in glucagon-like peptide-1, plasminogen activator
inhibitor 1, and testosterone.

Identification of TACs—The schema used to identify TACs
is shown in Fig. 1. As described above for identification of
statistically significant analytes, this first required comparison
of the expression levels of 17 serum molecules in schizophre-
nia patients and matched healthy controls. The next step
involved dissecting the ability of each analyte to explain the
data variance of the combined schizophrenia and control
samples using factor analysis (see “Materials and Methods”).
This identified a subgroup of eight analytes that had the
strongest influence on data structure: GLP-1, LH, peptide YY,
testosterone, cortisol, growth hormone (GH), leptin, and insu-
lin (Fig. 2).

TABLE I
Demographic details for clinical study

Center 1

Schizophrenia Bipolar disorder

Healthy controls Patients Healthy controls Patients

Male Female Male Female Male Female Male Female

Number 31 28 42 29 31 28 12 19
Age (years)a 30.2 � 7.8 29.9 � 6.8 30.9 � 10.1 33.3 � 10.9 30.3 � 8.8 29.9 � 6.8 33.7 � 12.7 33.7 � 9.2
BMI (kg/m2)a 23.2 � 3.6 22.1 � 3.5 23.7 � 4.9 23.0 � 4.4 24.3 � 3.4 22.1 � 3.5 25.1 � 2.9 24.3 � 4.3

Center 2

Schizophrenia Major depressive disorderb

Healthy controls Patients Healthy controls Patients

Male Female Male Female Male Female Male Female

Number 35 11 35 11 44 44 10 19
Age (years)a 27.3 � 9.3 23.6 � 7.3 27.3 � 9.4 23.6 � 6.9 34.1 � 14.7 39.7 � 11.6 41.2 � 12.4 42.8 � 14.9

a Values are shown as mean � S.D. Smoking, cannabis consumption, and date of sample collection are not shown. BMI data were absent
for center 2.

b The patients were unmedicated and were not treated with electroconvulsive therapy.
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We then performed feature selection using these analyte
readings in all combinations by brute force enumeration. This
led to the identification of a specific cluster that included
insulin, cortisol, leptin, and growth hormone, which gave the
maximum discrimination power. Regarding the expression of
these four proteins, six samples in clinic 1 gave low readings
for growth hormone, and three samples gave low readings for

insulin. Three samples in clinic 2 gave low readings for growth
hormone, and three samples gave low readings for insulin.
These samples were not included in the analysis. For all
animal models, all of the analyte readings were within the
linear range. Based on the discrimination analysis and taking
into account variable correlations, this cluster yielded a pre-
cision of 73.9% using male samples in clinical center 1 (Fig.
3). The precision was calculated as the number of patients
(red dots) in the prediction region (in red) divided by the total
number of cases in the prediction region (or can be formulated
as TP/(TP � FP) where TP and FP are the numbers of true
positives and false positives, respectively). The sensitivity,
calculated as TP/(TP � FN) where FN is the number of false
negative cases, however, is as low as 40.5%. This shows that,
although the specific TAC has a reasonably high accuracy in
terms of identifying schizophrenia patients, it did miss some
of the patients. The trade-off between precision and sensitiv-
ity is a problem encountered frequently in developing predic-
tion algorithms. Future studies will be aimed at constructing
statistical classifiers optimizing both precision and sensitivity
for more clinical applications.

The practical performance of the identified cluster was as-
sessed by transforming the data of insulin, cortisol, leptin, and
growth hormone from clinical center 2 into an independent
kernel space and projecting these onto the first two principal
components trained from center 1. The prediction power was
then evaluated according to the prediction boundary trained
by using the samples from center 1. The results showed a
high precision of 74.1% (Fig. 3), and the sensitivity increased
to 57.1%. This suggests that the TAC is able to maintain its
predictive power across different data sets, whereas the cov-
erage of the patients may not be consistent.

To see whether the predictive power of this TAC generalizes
across gender, we used the same kernel space for prediction
of samples from female subjects. This resulted in lower but
still acceptable precision values for female samples from cen-
ters 1 and 2 with values of 55 and 60%, respectively (Fig. 3),
and with sensitivities of 37.9 and 54.6%, respectively. The
same analysis was repeated for combined male and female
samples from centers 1 and 2, and this yielded good results
with precisions of 65 and 67%, respectively (Fig. 3), and with
sensitivities 39.4 and 52.2%, respectively. These findings
suggest that the precision of this particular cluster can gen-
eralize beyond gender and samples acquired from different
clinical centers, whereas further development of other com-
plementary methods with low false positive rates would be
required to maintain a higher sensitivity across different da-
tabases without sacrificing the precisions.

We also determined the robustness of the TAC by using
center 2 male samples as a training set to define the kernel
PCA projection and prediction boundary that were subse-
quently used to predict the samples from different centers
and of different gender. The results (supplemental Table S1)
show that the combination of cortisol, leptin, GH, and insulin

TABLE II
Analytes showing statistically significant differences in expression be-

tween male schizophrenia and control subjects

The expression changes were checked by t test where p � 0.05 is
significant. Statistically significant values are shown in bold font. FC,
-fold change.

Analyte
Center 1 Center 2

p value FC p value FC

Adiponectin 0.41 1.08 0.27 1.10
Angiotensin-converting

enzyme
0.33 0.91 0.95 1.00

Angiotensinogen 0.20 0.80 0.79 1.22
Cortisol <0.01 1.19 <0.01 1.55
Glucagon-like peptide-1a 0.44 0.77 <0.01 0.32
Growth hormone 0.01 1.76 0.83 0.46
Insulin 0.17 0.81 0.43 1.15
Insulin like growth factor-1 0.15 0.79 0.07 0.71
Leptin 0.03 0.62 0.40 0.81
Luteinizing hormone 0.01 0.86 0.16 0.89
Peptide YYa 0.24 0.52 0.43 0.55
Plasminogen activator

inhibitor 1
0.98 1.00 <0.01 1.04

Progesterone 0.03 0.87 0.03 1.27
Prolactin 0.96 1.09 0.16 0.79
Resistin 0.03 0.84 0.04 0.88
Secretina 0.45 �10 0.94 1.04
Testosterone 0.95 0.99 0.01 1.22

a Proteins with many expression data equal to zero.

FIG. 1. Scheme of identifying and validating TAC.
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was still identified as a useful TAC with high precision.
Although other analyte clusters showed better precision on
the training set, they had lower prediction results across the
two clinical centers and gender (see an example of cluster
angiotensin-converting enzyme, cortisol, IGF-1, and PAI-1
in supplemental Table S1). Thus, the TAC presented here is
likely to be a stable signal for analyzing and diagnosing the
disease.

Comparison of TAC Method with Standard Statistical Ap-
proach—The cluster comprised of insulin, cortisol, leptin, and
growth hormone gave good precision and predictive power
for diagnosing schizophrenia subjects compared with con-
trols. This performance was not explained by the individual
proteins as only one of these analytes (cortisol) showed sta-
tistically significant differences in both centers (Table II).
Therefore, the strong statistical signal of the TAC is due to the
collective features of the four analytes in reproducing Gaus-
sian kernel space. Moreover, the precision and prediction
results for the six proteins that were identified as statistically
significant in clinic center 1 (see Table II; cortisol, growth
hormone, leptin, luteinizing hormone, progesterone, and re-
sistin) were lower than those achieved by the cluster (Table
III). This was despite the fact that a new prediction boundary
was produced and optimized for these analytes.

Specificity of TAC for Schizophrenia—Schizophrenia ap-
pears to have etiology, pathophysiology, and symptomology
similar to those aspects of BD and MDD (10–13). To deter-

mine whether the prediction power of the cluster is specific for
schizophrenia, we generated Gaussian kernel PCA projec-
tions for BD and MDD patients compared with controls using
the same settings. The precision for predicting the BD pa-
tients was consistently lower than those of the schizophrenia
cases regardless of gender with values for male, female, and
both sexes of 47, 33, and 40%, respectively (Fig. 4). Similarly,
there was no clear separation between the MDD and control
groups with values for male, female, and both sexes of 29, 46,
and 48%, respectively (Fig. 4). This demonstrated that the
insulin, cortisol, leptin, and growth hormone cluster gives
good posterior conditions for detecting schizophrenia.

Specificity of TAC for Preclinical Models of Schizophrenia—
Animal models are essential for studying human diseases and
for the discovery and development of novel pharmaceuticals.
Therefore, we tested the insulin, cortisol, leptin, and growth
hormone cluster to determine whether the discriminatory
power can be applied to animal models. For this, the expres-
sion levels of the same 17 serum proteins were determined in
four different rat models using the Rodent MAP technology.
We then generated Gaussian kernel projections for the data
using the same settings as for the human studies. This
showed that the acute and chronic PCP rat models, which are
used routinely in studies of schizophrenia (26), gave high
predictive results with precisions of greater than 80% (Fig. 5).
However, the isolation rat model, which is considered to be
relevant as a model of depression (27), gave a lower precision

FIG. 2. Factor analysis for identifying analytes that account for data variance. The expression levels of the 17 serum analytes in
schizophrenia patients and controls were measured as described under “Materials and Methods.” The ability of each analyte to account for
the data variance of the combined schizophrenia and control samples was then determined using factor analysis to reduce the multidimen-
sional data to fewer factors that are linear combinations of data attributes. This led to classification of analytes according to their importance
in representing the overall variance of the data. The most important analytes according to these criteria were GLP-1, LH, peptide YY (PYY),
testosterone, cortisol, GH, leptin, and insulin (red enclosures). ACE, angiotensin-converting enzyme.
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value of only 40% (Fig. 5). Interestingly, we found that an-
other rat model based on the maternal effects of a low
protein diet (19) gave prediction values that were similar to
the standard schizophrenia models (Fig. 5). This is consist-
ent with reports of epidemiological studies showing a higher

incidence of schizophrenia, antisocial behaviors, and other
disorders in the offspring of mothers who suffered from
nutrient deprivation in times of famine (28, 29). The results
require confirmation on whether other interventions produce
a similar TAC signature.

FIG. 3. Gaussian kernel PCA projection of schizophrenia and control data using TAC. Data points (subjects) projected within the red
region are considered schizophrenia, and those projected into the blue region are considered controls. Precision is the percentage of points
in the red region that are real schizophrenia. Male, female, and combined male/female samples were tested from clinical centers 1 and 2. Red
dots indicate schizophrenia patients, and blue dots are controls. Female subjects included 29 schizophrenia and 28 controls from clinical
center 1 and 11 schizophrenia and 11 controls from clinical center 2. All of these were matched to male subjects for age and BMI.
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In Silico Pathway Analysis—Pathway functional analysis
was carried out on the four components of the TAC using the
IPKB tool as described under “Materials and Methods.” This
software allows data to be analyzed in a systematic way using
published molecular interaction data to determine the most
significant biological functions and pathways (25). One major
network was identified after uploading the analyte identifiers.
This contained the four analytes and displayed their associa-
tions with other molecules input by the IPKB software (Fig. 6).
This showed that all four analytes were associated with insulin
receptor substrate 1 (IRS1), whereas three of the analytes
(insulin, leptin, and growth hormone) were also associated
with ERK and protein kinase B (AKT) signaling. On the path-
way level, the insulin signaling pathway seems to be the best
match with a p value of 7.06 � 10�3 calculated by the IPKB
software, considering the proteins in the identified network
(see supplemental Fig. S1). This is consistent with our recent
study showing that at least some schizophrenia subjects
show signs of alterations in insulin signaling (30).

DISCUSSION

Traditional biomarker studies have focused on identifying
molecules that show significantly different expression levels
between the test cases and controls. Although this ap-
proach is intuitively straightforward, it may miss those mol-
ecules that form consistent group patterns. To this end, the
approach of using multianalyte fingerprints to distinguish
patients from controls has increased in usage. A promising
example is the recent application of a profile consisting of
18 biomarkers for predicting patients with Alzheimer dis-
ease (31). The multiplex profile-based approach has been
applied broadly to other complex diseases such as breast
cancer and autoimmune disorders, but most have focused
on gene expression data rather than protein or metabolite
levels (32–34).

A major obstacle of applying the profiles on disease clas-
sification and prediction is the poor generalizability of the
resulting profiles across different data sets. Usually the vali-
dated molecular profiles consist of tens to hundreds of fea-
tures, and therefore these can collapse when a different data
set is introduced for testing. One reason for this could be due

to the difficulty of collecting enough data for comparative stud-
ies. Given a random data set, the expression data of all the
molecules in the profile must be available; otherwise, the pre-
dictive value may not be reliable. The TAC approach described
in this study is less likely to suffer from this problem because
these clusters contain only small numbers of molecules.

Another important issue is the low precision in terms of
analyzing disease etiology. By definition, large profiles incor-
porate more analytes, which clearly make these studies ex-
pensive to carry out. Furthermore, a TAC provides reliable
precision that originates from the fact that redundancy is
minimized because of reduced noise that can confuse the
classifier. We confirmed this by showing that the predictive
results are lower with a cluster constructed from all 17 ana-
lytes that were measured in the study (supplemental Fig. S2).
More analytes also make statistical modeling more difficult as
the required data set size can grow exponentially with the size
of the profile. This phenomenon is known as “the curse of
dimensionality” (35). In contrast, application of small clusters
reduces the complexity of analyzing disease pathways and
therefore minimizes the chances of following up false posi-
tives. In this way, networks arising from cluster analysis are
likely to serve as a better reference for designing follow-up
experiments.

That the TAC approach can still perform well while including
analytes that show inconsistent behavior across the different
centers is due to the nature of Gaussian kernel space used in
our kernel PCA model. In Gaussian kernel space, the vari-
ances between every pair of individuals (no matter whether
they are patients or controls) are considered through Gauss-
ian kernel function: K(xi, xj) � exp(�((�xi � xj�

2)/�2)) where xi

and xj are expression data of a specific analyte in individuals
i and j and � is the regularization parameter for the kernel
space. This should not be linked directly to the overall fold-
change and thus t test. Fold-change is the ratio of average
values between the patients and controls and thus is too
crude to describe the detailed variances between individual
samples. t test, which compares the distribution and variance
on each sample group, is not sensitive enough to capture
patterned behavior considering individual samples. The kernel
function is better in terms of identifying analytes that have
collective behaviors across different clinical centers due to the
�xi � xj� term, which essentially puts vectors (protein readings)
of the same direction closer. For example, given two analytes
A and B, if they have a certain patterned behavior (say A is
up-regulated when B is down-regulated), then they may tend
to be identified by the cluster approach no matter whether
they are both significantly different between the patients and
controls or not.

Another important benefit of the cluster approach was the
accuracy across gender and species. Although large panel
profiles often suffer from numerical instabilities and require
significant data to be statistically reliable, the cluster ap-
proach avoids this by extracting the maximum information out

TABLE III
Comparison of TAC and standard statistical method with respect to

precision and predictive power for diagnosis of schizophrenia

Values for the TAC were extracted from Fig. 3 for male schizophre-
nia subjects in clinical centers 1 and 2. Individually significant analytes
were identified using a two-tailed non-parametric t test and then
tested as for the TAC for male schizophrenia subjects in clinical
centers 1 and 2.

Method Precision Prediction

% %

TAC 73.9 74.1
6 significant analytes 66.7 62.5
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of a small panel. This highlights the point that inclusion of
additional analytes into a cluster leads to the necessity of
increasing the size of the training sets exponentially to obtain
unbiased and reliable results. It also indicates that classifiers
based on sparse points with many input features make gen-
eralization more difficult.

The TAC that we present here was constructed through an-
alyzing the data in reproducing Gaussian kernel space. This
approach is known for its robustness in pattern recognition and
its ability to produce better classification of data that cannot be
achieved by linear algorithms. Linear PCA is widely used for
analyses of high dimensional data as it provides a low dimen-

FIG. 4. Gaussian kernel PCA projection of BD, MDD, and control data using TAC. Data points (subjects) projected within the red region
are considered disease (BD or MDD), and those projected into the blue region are considered controls. Precision is the percentage of points
in the red region that are actual disease. Male, female, and combined male/female samples were tested. Red dots indicate schizophrenia
patients, and blue dots are controls.
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sional approximation and thus makes classification simple. The
adopted kernel PCA in this study combines the advantages of
both methods by using linear PCA in the extended reproducing
Gaussian kernel space. As a reference, we also carried out a
projection of schizophrenia and control data using the cluster
with linear PCA. In the case of the linear PCA, the prediction
results were in general worse than those of the Gaussian kernel
PCA (Fig. 7 and supplemental Fig. S3). Also, there is less con-
sistency across clinical centers 1 and 2, especially for the male
samples. This indicates that it is harder to evaluate the predic-
tion results on a test set based on the performance of a training
set in the linear model. Therefore, although both linear and
kernel PCAs are useful for reducing high dimensional data to a
low dimensional approximation, kernel PCA is more powerful for
recognizing non-linear patterns and may provide more consist-
ent results across different data sources.

The finding of a discriminatory signal in analytes relating to
insulin, cortisol, leptin, and growth hormone signaling lends

support to our previous findings of insulin resistance (30) and
perturbations in metabolism and glucose handling in schizo-
phrenia (36, 37). All four molecules are known to interact with
each other and are involved in regulation of metabolic signal-
ing pathways (38). The biological characteristics of this cluster
also conform to the fact that homeostatic regulation of me-
tabolism requires interaction of multiple hormonal pathways.
In this study, the collective signal was manifested in a non-
linear fashion and would therefore be missed by standard
statistical methods.

The specificity of the TAC for schizophrenia compared with
BD and MDD was of particular interest not only from a diag-
nostic point of view but also from a mechanistic one. Previous
studies have identified systemic metabolic dysfunction in first
onset antipsychotic-naïve schizophrenia subjects, including
increased prevalence of metabolic syndrome (30, 39, 40),
although similar disturbances have been reported widely for
other mental illnesses including BD and MDD (41). The current

FIG. 5. Gaussian kernel PCA projection of preclinical animal models using TAC. Data points (animals) projected within the red region are
considered model animals, and those projected into the blue region are considered controls. Precision is the percentage of points in the red
region that are actual model animals. Male acute PCP, chronic PCP, isolation, and low protein rats were tested (see “Materials and Methods”).
Red dots indicate model animals, and blue dots are controls.
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results suggest that these pathways may differ between
schizophrenia and the other neuropsychiatric disorders.

In addition, the TAC was able to distinguish the pharma-
ceutical industry standard PCP rat models of schizophrenia
from the social isolation model, which has traditionally been
used as a model of depression and anxiety. This suggests that
this approach may be useful in identifying additional models
of schizophrenia. It was of interest in this case that the cluster
rated the low protein rat model with high precision. The sim-
ilarity between a known metabolic model and a model of
schizophrenia is intriguing.

By definition, a TAC is a non-redundant molecular profile
associated with a specific disease due to its ability to distin-
guish disease from controls. Therefore, an interaction network

containing the components of these clusters could provide
insights into the core pathological mechanisms. We used the
IPKB network analysis tool to visualize a molecular interaction
network incorporating the four analytes. The highly associ-
ated protein IRS1 together with other proteins such as AKT,
ERK, and phosphatidylinositol 3-kinase shows that the TAC
may be associated with insulin signaling pathways that play
an important role in regulating processes such as glucose and
lipid homeostasis, apoptosis, protein synthesis, cell prolifer-
ation, and differentiation (42, 43). Thus, investigation of other
molecules that impinge upon these functions may be worth
further investigation as potential biomarkers and could lead to
the identification of potential novel therapeutic strategies for
treatment of schizophrenia.

FIG. 6. In silico pathway mapping of TAC analytes. LEP, leptin; HGD, homogentisate 1,2-dioxygenase; TTPA, alpha-tocopherol transfer
protein; GABP, GA-binding protein; the UniProt accession numbers (insulin, leptin, and growth hormone) and PubChem identifiers (cortisol) of
the analytes were submitted to the IPKB for analysis as described under “Materials and Methods.” The interaction network suggests that IRS1
is highly associated with the TAC proteins. MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol 3-kinase; Jnk, c-Jun N-terminal
kinase.
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In summary, we have shown that the TAC approach affords
a promising new direction in characterization and potential
diagnosis of complex psychiatric disorders such as schizo-
phrenia. Our results show that the conventional biomarker
approach, which emphasizes individual proteins that have
significant differences in expression between disease and
controls, has low generalizability across multiple investiga-
tions. On the other hand, the TAC identified here was gener-
alizable in multiple studies across gender, species, and dis-
ease boundaries. Therefore, this approach merits further
investigation as a tool for gaining additional insights into dis-
ease mechanisms and for identifying potential disease bi-
omarkers or therapeutic intervention strategies.
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