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Abstract 

Response control or inhibition is one of the cornerstones of modern cognitive psychology, 

featuring prominently in theories of executive functioning and impulsive behaviour. 

However, repeated failures to observe correlations between commonly applied tasks have led 

some theorists to question whether common response conflict processes even exist. A 

challenge to answering this question is that behaviour is multifaceted, with both conflict and 

non-conflict processes (e.g. strategy, processing speed) contributing to individual differences. 

Here, we use a cognitive model to dissociate these processes; the diffusion model for conflict 

tasks (Ulrich et al., 2015). In a meta-analysis of fits to 7 empirical datasets containing 

combinations of the flanker, Simon, colour-word Stroop and spatial Stroop tasks, we 

observed weak (rho<.05) zero-order correlations between tasks in parameters reflecting 

conflict processing, seemingly challenging a general control construct. However, our meta-

analysis showed consistent positive correlations in parameters representing processing speed 

and strategy. We then use model simulations to evaluate whether correlations in behavioural 

costs are diagnostic of the presence or absence of common mechanisms of conflict 

processing. We use the model to impose known correlations for conflict mechanisms across 

tasks, and we compare the simulated behaviour to simulations when there is no conflict 

correlation across tasks. We find that correlations in strategy and processing speed can 

produce behavioural correlations equal to, or larger than, those produced by correlated 

conflict mechanisms. We conclude that correlations between conflict tasks are only weakly 

informative about common conflict mechanisms if researchers do not control for strategy and 

processing speed. 

 

Keywords: Response control; Inhibition; Individual differences; Diffusion model for conflict 

tasks; Attention control 
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Strategy and processing speed eclipse individual differences in control ability in conflict 

tasks 

 

Controlling our responses in the presence of conflicting information is a core facet of 

executive function (Miyake et al., 2000). Response control (sometimes called response 

inhibition or attentional control) is typically measured in commonly used paradigms such as 

the Stroop (Stroop, 1935), the Eriksen flanker (Eriksen & Eriksen, 1974), Simon (Simon & 

Rudell, 1967), and the antisaccade (Hallett, 1978) and stop-signal (Logan, 1994) tasks. 

Individual differences in response control have been linked to several neuropsychological 

disorders, including substance abuse, attention deficit hyperactivity disorder (ADHD), 

schizophrenia, and Parkinson’s disease (Chambers et al., 2009; Gauggel et al., 2004; 

Lansbergen et al., 2007; Moeller et al., 2002; Verdejo-Garcia et al., 2007). Therefore, 

understanding the source(s) of variation in response control is key to understanding cognition 

in both healthy and clinical populations.  

In both theoretical and applied work, it is common to assume either a common 

underlying response control trait, or some degree of overlap in response control mechanisms 

underlying different tasks (for reviews, see Bari & Robbins, 2013; von Bastian et al., 2020). 

However, the assumption of common mechanisms has received inconsistent support from 

correlational studies, with performance in different control tasks showing inconsistent or 

absent correlations with each other (Aichert et al., 2012; Friedman & Miyake, 2004; 

Hamilton et al., 2015; Hedge, Powell, & Sumner, 2018b; Ivanov et al., 2011; Stahl et al., 

2014; Wager et al., 2005). This has led some theorists to question the value of inhibition as a 

psychometric construct (Rey-Mermet et al., 2018), which has serious implications for both 

theoretical work and for the applications of the construct to clinical domains. 
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Evaluating whether a common and useful ‘inhibition’ construct exists is obstructed by 

a key challenge: the way performance is typically measured may be suboptimal for 

examining individual differences even if the trait does exist (Draheim et al., 2016; Hedge, 

Powell, & Sumner, 2018b; Rouder & Haaf, 2019). There is a habit in psychology to use 

performance in key tasks as proxies for underlying mechanisms, such as memory, attention or 

control (c.f. Verbruggen, McLaren, & Chambers, 2014). But the ingredients to performance 

are multifaceted, and individual variation does not necessarily come from the same source as 

the well-studied within-subject effects (Boy & Sumner, 2014). For example, although the 

main cause of the Stroop effect is conflict, individual differences in the size of the Stroop 

effect could come from differences in strategy, language processing or even visual acuity 

(e.g. not wearing your glasses), rather than ability to control conflict. 

Strategy and general processing speed contaminate measures of inhibitory ability 

We recently conducted a meta-analysis that illustrated the problem of measuring 

individual differences in inhibitory ability, which are normally captured through congruency 

effects, since it is generally assumed that subtracting conditions to produce a ‘cost’ removes 

speed-accuracy strategy effects. However, some tasks use RT costs and some use error costs 

and across a wide range of tasks, RT costs and error costs taken from the same task show 

little correlation (r = .17; Hedge, Powell, Bompas, Vivian-Griffiths, & Sumner, 2018). In 

other words, if we were to rank individuals from best to worse in inhibitory ability based on 

their Stroop cost in RTs, we would come to a very different ordering than if we used the 

Stroop cost in errors.  

To some extent, low correlations between RT costs and error costs are to be expected 

because subtractions lower reliability, which attenuates correlations (Enkavi et al., 2019; 

Hedge, Powell, & Sumner, 2018b; Miller & Ulrich, 2013; Paap & Sawi, 2016). However, this 
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does not fully account for the low and inconsistent pattern, with significant negative 

correlations sometimes observed between the two purported measures of the same ability. We 

explain this in the framework of evidence accumulation models (e.g. (Brown & Heathcote, 

2008; Ratcliff, 1978). We assume that individuals differ in at least two dimensions. The first 

is their ability to select the correct response based on the information. Individuals who are 

‘better’ at inhibiting conflicting information should show both smaller RT costs and error 

costs, leading to a positive correlation. The second is their strategy, reflecting how much 

information they wait for before they make a decision. Individuals who are more cautious 

produce larger RT costs and smaller error costs, leading to negative correlations. Critically, 

the traditional approach of subtracting conditions does not remove strategy effects, which can 

mask individual differences in inhibitory ability (Hedge, Powell, Bompas, et al., 2018). 

In addition to strategy differences, general processing speed can also confound the 

measurement of response control (Miller & Ulrich, 2013). Using a psychometric model of 

mean RTs, Miller & Ulrich show that correlation between behaviourally measured RT costs 

taken from two tasks can be weak despite there being strong underlying correlation in the 

ability of interest (e.g. inhibition). This is because factors such as general speed can be 

expected to contaminate measured RT costs. Re-analysis of several factor analytic studies 

observed that individual differences in conflict tasks can be accounted for by a general 

processing speed factor, without need for a separate inhibition factor (Jewsbury, Bowden, & 

Strauss, 2016; see also Friedman & Miyake, 2017; Karr et al., 2018; Rey-Mermet, Gade, 

Souza, et al., 2019). In an evidence accumulation framework, greater efficiency in general 

information processing produces smaller RT costs and errors costs, thus manifesting in the 

same way as greater inhibitory ability (Hedge, Powell, & Sumner, 2018a).  

Taken together, the literature paints a challenging picture for assessing whether 

common mechanisms of inhibition or conflict processing exist. The size of an individual’s 
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RT and/or error cost in a given task reflects some unknown combination of their ability to 

overcome conflict, their strategy, and other processing abilities. The relative contribution of 

these processes to behaviour will differ between tasks, or between different implementations 

of a given task (Hedge, Powell, Bompas, et al., 2018; Unsworth et al., 2004). To reframe the 

question, if common mechanisms of inhibition or conflict processing did exist, would we 

know?  

To address this question, we take a cognitive modelling approach to separate out and 

quantify conflict, strategy and general speed parameters, examine where (if at all) they 

correlate between tasks when we fit empirical data, and evaluate how each parameter 

manifests in observable behaviour by using simulations. 

Overview of the paper 

Our main aim in the first part of this paper is to apply a cognitive model (the diffusion 

model for conflict tasks, DMC; Ulrich et al., 2015) to multiple empirical datasets in order to 

decompose behaviour into constituent processes. This allows us to examine correlations in 

parameters that represent conflict mechanisms separately from parameters that do not directly 

represent conflict mechanisms. We focus on datasets containing the flanker, Simon, Stroop, 

and spatial Stroop tasks, and adopt a meta-analytic approach to maximise power and integrate 

across datasets. To pre-empt the main findings, we observe no correlation in the model 

parameters representing conflict processes. We do observe consistent correlations in model 

parameters representing non-conflict processes (e.g. strategy, general processing speed), 

providing converging evidence for previous claims (e.g. Jewsbury et al., 2016).  

In the final part of the paper, we use the model to simulate data from known 

theoretical positions in order to ask whether observable performance would diagnose the 

difference between the presence or absence of common conflict processing. Here, we use the 
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DMC to generate data for two hypothetical tasks with a known correlation in parameters of 

conflict processing. We find that any emergent correlation in performance measures is 

heavily attenuated by variance in non-conflict processes such as strategy. Further, we observe 

correlations in performance of a similar magnitude when we impose correlations in non-

conflict processes as we do when conflict processes are correlated. The implication of this is 

that the degree of behavioural performance correlation is not diagnostic of shared conflict 

processing between tasks: shared mechanisms could be masked, while behavioural 

correlations could be driven by other common processes (e.g. a shared strategic approach).  

The diffusion model for conflict tasks. 

 The DMC (Ulrich et al., 2015) is a mathematical model of choice RT behaviour in 

conflict tasks, and an extension of the drift diffusion model (DDM) (Ratcliff, 1978), a general 

model of choice RT behaviour. The standard DDM assumes that individuals sample noisy 

evidence from their environment over time until a criterion level of evidence is reached for 

one of the two response options. The three main parameters describe the average rate of 

evidence accumulation (drift rate), the amount of evidence required (boundary separation), 

and the duration of motor and perceptual processes (non-decision time). Differences in 

difficulty between conditions are normally captured by differences in drift rate, with lower 

drift rates for stimuli that are less discernible.  

The standard DDM assumes that the average rate of evidence accumulation within a 

trial is constant, albeit subject to random noise. This makes it unable to capture data patterns 

characteristic of conflict tasks, which have automatic response activation that conflicts with 

the desired response. First, errors in conflict tasks are typically fast in the incongruent 

condition (Gratton et al., 1988; Ridderinkhof, 2002), interpreted to reflect the automatic 

activation of the prepotent response. Second, while mean RTs in incongruent trials are 
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typically slower than mean RTs on congruent trials in conflict tasks, the magnitude of this 

effect can vary, decrease, and even reverse when comparing the slower quantiles of the 

correct and incorrect RT distributions (especially in the Simon task; De Jong et al., 1994). 

This behaviour is interpreted to reflect increasing influence of inhibition over time (or decay; 

Hommel, 1994), which acts to diminish and sometimes reverse the early influence of the 

automatic activation.  

The DMC (Figure 1A-C) accounts for conflict effects by assuming that the task-

irrelevant feature (e.g. the flankers in a flanker task) is processed via a fast and automatic 

route that initially receives a strong activation which is reduced over time. Concurrently, the 

task-relevant feature (the central arrow in a flanker task) is processed via a slower, deliberate 

decision route. The controlled route is captured by a drift rate parameter that is held constant 

over congruency conditions in the DMC. This reflects the assumption that the processing of 

the task relevant property of the stimulus is equivalent across all conditions. The drift rate 

parameter in the DMC can therefore be interpreted as general processing efficiency. The 

automatic route is implemented as a rescaled gamma function, which captures the assumption 

that pre-potent stimulus features influence the early phase of the decision processes more 

than the later phase (Figure 1D). 

The DMC takes inspiration from the Activation-Suppression hypothesis (De Jong et 

al., 1994; Kornblum, 1994; Ridderinkhof, 2002), which posits that the automatic activation is 

removed through active suppression. However, the DMC is agnostic about what drives the 

reduction in the influence of automatic activation and has no explicit parameter to represent 

inhibitory ability. Instead, the ability to overcome conflict is implicit in the degree of 

susceptibility to pre-potent response activation (the amplitude it reaches), and the speed at 

which automatic activation peaks and is removed/decays. The maximum value of the 

automatic activation is defined by an amplitude parameter, and the time that the maximum 
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value is reached is defined by a scale parameter – we hereafter refer to the scale parameter as 

the time-to-peak (following Ulrich et al., 2015)1. The gamma function also has a shape 

parameter, but following Ulrich et al. (2015; see also White, Servant, & Logan, 2017), we 

fixed this to a constant value for all individuals. Therefore, individuals with more efficient 

inhibition would be expected to have either a lower amplitude and/or a shorter time to peak as 

these are the parameters that should capture individual differences in conflict processing 

(Figure 1E and 1F). 

 

*insert Figure 1 here* 

 

We note that our approach here is one of model application, rather than model 

validation or comparison (Crüwell et al., 2019). We adopt an evidence accumulation 

framework on the basis of previous demonstrations that they can inform our understanding of 

individual differences in cognitive abilities in the context of the confounds we have 

mentioned (Hedge, Powell, Bompas, et al., 2018; Ratcliff et al., 2015). Our criteria for 

selecting an appropriate model were that it has parameters that represent conflict processing, 

and that it can provide a common framework for all our tasks. The DMC meets these criteria, 

and has previously been applied to both the flanker and Simon tasks (Servant et al., 2016; 

Ulrich et al., 2015). Since we began this work it has also been applied to the colour-word 

Stroop task (Ambrosi et al., 2019; Hedge et al., 2019). The model could theoretically also be 

applied to other tasks that show the data patterns that are characteristic of conflict tasks, 

including the Navon task (fast errors; Hübner, 2014), as well as in the antisaccade task (fast 

 
1 Note that the time at which the peak amplitude is reached is only equal to the scale parameter when the 
shape parameter is fixed to 2 (Ulrich et al., 2015), which was our case. It is defined by: 𝑡𝑚𝑎𝑥 = 𝑡𝑎𝑢 ∗
(𝑠ℎ𝑎𝑝𝑒 − 1) 
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errors and negative delta functions; von Bastian et al., 2020; Wiecki et al., 2016). 

Alternatives we considered are not capable of producing negative delta functions (Hübner et 

al., 2010; White et al., 2011), and have parameters that represent task specific processes 

rather than general conflict processing (e.g. spatial attention; White et al., 2011). An 

alternative model might provide a better theoretical account or empirical fit to certain tasks, 

though a full comparison is beyond the scope of this paper. For our goal of examining 

whether parameters that capture conflict correlate across tasks, we assume that they can be 

meaningfully captured within the common framework of the DMC. 

Part 1. Are measures of conflict correlated across tasks? 

Rationale 

The first question is whether model parameters can reveal correlations between 

conflict tasks – evidence for common mechanisms – that traditional measures are less able to 

detect. We answer this question by performing a meta-analysis of 12 task pairs taken from 7 

datasets including new and previously published data (Hedge et al., 2019; Hedge, Powell, & 

Sumner, 2018b; Hedge, Powell, Bompas, et al., 2018; Whitehead et al., 2019). We fit the 

DMC to each task and participant separately to extract model parameters. 

Datasets 

 We selected datasets by updating the available datasets in our recent systematic 

review (Hedge, Powell, Bompas, et al., 2018) and applying the following criteria: i) They 

include some combination of the flanker, Simon, colour Stroop or spatial Stroop tasks, which 

have analogous conflict effects suited to modelling in the DMC framework (c.f. Ulrich et al., 

2015); ii) They have trial level data with at least 200 trials per condition to ensure adequate 

parameter estimation, based on a parameter recovery simulation using the DMC (White et al., 

2017). 
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Table 1 summarises the key information of each dataset, and a schematic is shown in 

Figure 2. For full methodological details, see Supplementary Material A and the original 

papers. We draw particular attention to Dataset 3 (Hedge, Powell, Bompas, et al., 2018), 

which consists of two variants of the Simon task. In one variant, congruent and incongruent 

trials were randomly intermixed (as is standard for the Simon task), while in the other 

congruent and incongruent trials were presented in separate blocks (a common format for the 

antisaccade task). Thus surface features are matched, and any processing differences would 

be introduced by the blocking arrangement. We also note that the tasks in Dataset 4 (Hedge et 

al., 2019) consisted of separate blocks that instructed participants to emphasise speed, 

accuracy, or both speed and accuracy. 

We collected a self-report measure of impulsivity (the UPPS-P; Lynam et al., 2006) 

alongside datasets 1 to 4, as we were interested in whether trait impulsivity or cautiousness 

correlated with response caution in the DMC. We report the results of this analysis elsewhere 

(Hedge, Powell, et al., 2020); briefly, we observed no evidence for a correlation. 

 

*Insert Table 1 here* 

*Insert Figure 2 here* 

Data analysis 

 We applied the same data analysis procedure to all datasets. We excluded participants 

who were below 60% accuracy in any task in each dataset (lenient in order not to limit 

variance; Supplementary material B shows a more conservative cut-off of 80% does not alter 

our conclusions). We removed RTs that were less than 100ms, and greater than the median 

plus three times the median absolute deviation for each individual in each condition. 
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 See Appendix A for the technical details of our model fitting approach, which is 

identical to previously published work (Hedge et al., 2019), and similar to common 

approaches to fitting evidence accumulation models (Vandekerckhove & Tuerlinckx, 2008; 

White et al., 2017). Our code is available online (https://osf.io/4c3we/). 

Meta-analysis of correlations 

 We calculated Spearman’s rho correlations for each model parameter for each pair of 

tasks (e.g. the correlation between the amplitude parameter from the flanker task in dataset 1 

with the amplitude parameter from the Simon task in dataset 1). This produced 13 

correlations for each parameter (15 for boundary separation, as we calculated separate 

boundary values and correlations for each of the three instruction conditions in the Dataset 4). 

These correlations were then meta-analysed using a multilevel random effects meta-analysis, 

implemented in the metafor package in R (R Core Development Team, 2017; Viechtbauer, 

2010). The multilevel approach allows us to account for the possibility that correlations taken 

from the same dataset (as with datasets 4 to 7) may be more similar to each other than 

correlations taken from independent datasets. In Supplementary Material B, we also account 

for the possibility that the correlation in certain task pairs (e.g. spatial Stroop and Stroop) is 

higher than in other pairs (e.g. flanker and Stroop). This does not alter our conclusions, and 

we report the simpler analysis here due to the limited number of data points. 

We also calculated the I2 statistic for each parameter (c.f. Viechtbauer, 2019), which 

is interpreted to represent the heterogeneity of the observed effects. An I2 of 0% would 

indicate that all the variability in the observed effect size estimates is due to sampling error, 

rather than ‘real’ differences between datasets and task pairs. We interpret I2 values of 25%, 

50% and 75% as low, moderate, and high levels of heterogeneity respectively (Higgins et al., 

2003). 

https://osf.io/4c3we/?view_only=c4d54575a8194c5f8c3e53e59f152f97
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Given that the literature does not find consistent correlations between tasks (Rey-

Mermet et al., 2018), it is likely that if a correlation between conflict parameters exists then 

the effect size would be small. We conducted a sensitivity power analysis to ascertain the 

strength of correlation that our meta-analysis is able to detect (Pigott, 2012), based on our 

number of observed effect sizes and average sample size. Assuming either low, moderate or 

high levels of heterogeneity, we have 80% power to detect average correlations of r=.07, 

r=.09, and r=.12 respectively. In other words, we are sensitive to most effect sizes 

traditionally considered small (r=.1, J. Cohen, 1988).  

Results and discussion 

Meta-analysis of model parameters. Our main question concerns the correlations 

between tasks for the model parameters (Figure 3). We report the results of this analysis first, 

before considering factors that might moderate our conclusions, such as the reliability of the 

data and model fits. If we assume that factors such as general processing speed and strategy 

confound behavioural measures of ‘inhibition’, then separating these out using a cognitive 

model may reveal correlations in the parameters representing conflict processing – the 

amplitude and time-to-peak of automatic activation. Figure 3 shows the weighted average 

correlation for each parameter, along with the individual correlations for each pair of tasks.  

We observed a very small and non-significant positive correlation for both the 

amplitude parameter (r=.04, 95% CI[-.01, .10], p=.13, I2=18.5%) and the time-to-peak 

parameter (r=.04, 95% CI[-.01, .08], p=.14, I2=20.5%). Note from the I2 values that the 

estimated heterogeneity is low (<25%), which is also reflected in the narrow range of r values 

in Figure 3. These correlations correspond to less than 1% of common variance on average, 

providing no support for the hypothesis of a common mechanism of conflict processing 

between tasks. The low I2 values suggest this to be the case consistently across all datasets. 

We again draw particular attention to Dataset 3, which did not deviate from the trend of low 
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correlations in amplitude (r=.04) and time-to-peak (r=-.07) despite consisting of the same 

Simon task performed with intermixed and blocked trials.  

 

*Insert Figure 3 here* 

 

In contrast to the weak correlations observed for the conflict parameters, estimates for 

the non-conflict parameters were consistently positive and statistically significant. In 

particular, we observed moderate to strong correlations in drift rate (r=.32, 95% CI[.26, .38], 

p<.001, I2=33.6%) and boundary separation (r=.54, 95% CI[.49, .60], p<.001, I2=50%). 

These parameters represent the efficiency of processing (i.e. general processing speed) and 

response caution, respectively. Finally, we also observed significant positive correlations in 

the mean (r=.56, 95% CI[.45, .67],  p<.001, I2=85.6%) and variability of non-decision time 

(r=.28, 95% CI[.21, .35],  p<.001, I2=57.1%), as well as in start point variability (r=.17, 95% 

CI[.08, .26],  p<.001, I2=72.9%). The model parameter correlations therefore provide good 

evidence for commonality in the mechanisms underlying general performance in conflict 

tasks, but not for the conflict and inhibition processes themselves. 

Behavioural performance. For completeness, we applied the same meta-analytic 

approach to the traditional behavioural indicators of conflict processing: the RT costs (r=.14, 

95% CI[.04, .24], p=.004, I2=64.4%) and error costs (r=.13, 95% CI[-.00, .27], p=.056, 

I2=83.1%). These are plotted at the bottom of Figure 3. It is notable that both showed positive 

correlations of a similar magnitude, with the RT cost reaching significance, though the effect 

sizes are small and heterogenous.  

In all tasks, we observed the expected pattern of increased error rates and slower RTs 

in incongruent trials relative to congruent trials (Supplementary Material C).  
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Reliability and parameter recovery.  Weak correlations in model’s conflict 

parameters could reflect instability in the parameter estimates. This is plausible, for two 

reasons: i) conflict parameters are essentially derived from differences between conditions, 

and differences are typically less reliable than their components (Cronbach & Furby, 1970); 

ii) cognitive tasks developed initially for within-subject analyses have to some degree been 

naturally selected for low between-subject variance in the mechanisms of interest, which 

causes reliability to be lower in correlational research (Hedge, Bompas, et al., 2020; Hedge, 

Powell, & Sumner, 2018b; Miller & Ulrich, 2013).  

We evaluated the parameter recovery of the model for our empirical fits (Appendix 

B), as well as the split-half reliability of our behavioural measures (for full details, see 

Supplementary Material C). Across all tasks and datasets, we observed sufficient recovery of 

the amplitude parameter (median r = .84) and the main non-conflict parameters: drift rate 

(median r=.93) and boundary separation (median r=.94). Our ability to detect correlations in 

the time-to-peak parameter is likely to be limited by its poor recovery outside of the Simon 

and spatial Stroop tasks (median r=.48). 

We have also previously examined the four week test-retest reliability of the DMC 

parameters in Dataset 4 (Hedge et al., 2019). Consistent with our parameter recovery exercise 

here, the amplitude parameter showed moderate reliability (ICC = .55 and .47 in the flanker 

and Stroop task respectively), and the reliability of the time-to-peak parameter was poor (ICC 

= -.04 and .19). For comparison, these fall within the ranges seen for the reliabilities of the 

RT costs (ICCs ranging from .38 to 66) and error costs (ICCs from .09 to .53) in these tasks. 

Drift rate (ICC = .77 and .48) and boundary separation (ICCs ranging from .39 to .71) tended 

to show similar or better reliability than the conflict parameters. Note that we had a total of 

six separate behavioural costs and boundary estimates in this study, corresponding to the 

three speed-accuracy trade-off instruction conditions in each task. 
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Model fits and sanity checks. We report the means and standard deviations for the 

model parameters in Appendix C.  For the two-choice tasks in Datasets 1:4, parameters were 

similar to those reported using comparable tasks (Ulrich et al., 2015). We observed slower 

RTs in the four-choice tasks (Stroop, Datasets 5:7), which corresponded to increases in 

average boundary separation and non-decision time, and a decrease in drift rate and the 

amplitude of automatic activation. The time-to-peak of automatic activation values were 

similar for different variants of commonly named tasks (e.g. the two-choice flanker and the 

four-choice flanker) and followed the expected pattern of being shortest for the Simon tasks 

and longest for the Stroop.  

 If the DMC is an appropriate model for these tasks, then the best fitting parameters 

should reproduce both individual differences in the data and capture key data patterns. We 

evaluated the model fits by calculating Pearson correlations for accuracy and RT quantiles 

(25th, 50th, 75th) of the observed data against data simulated using the best fitting model 

parameters for each participant (Voss et al., 2015). RTs for correct and incorrect responses 

were evaluated separately. We illustrate this with incongruent trials from two tasks in Figure 

4, which are representative of the range of fits we observed. In addition, we evaluated the 

extent to which the fits could qualitatively reproduce the conditional accuracy functions and 

delta plots in the observed data. We report the correlations and figures in Appendix C and 

focus here on the implications for our interpretations of the model parameters.  

 

*Insert Figure 4 here* 

 

Focusing first on individual differences, the model fits generally captured accuracy 

well. The minimum correlation between observed and simulated accuracy for any task/dataset 
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were r=.73 and r=.86 for congruent and incongruent trials respectively. Correct RTs were 

also captured well across all RT quantiles for congruent (minimum r=.85) and incongruent 

trials (minimum r=.91). The reproduction of RT for error trials showed more variability, 

ranging from .61 to .96 for incongruent trials. This is to be expected as error RTs are based 

on fewer trials, so the estimates are noisier. Notably, the model tended to systematically 

underestimate RTs for tasks that had slower RTs overall, particularly for errors (Stroop, 

Datasets 5 to 7; see Figure 4).  

A consequence of the underestimation of slow incongruent RTs was the 

underestimation of the RT cost in tasks with slower (correct) RTs. We elaborate on this 

behaviour in Supplementary Material D and consider the theoretical implications of these 

patterns in the discussion. A consequence for our meta-analysis is that the DMC parameters 

may be poorly estimated for these tasks where the data are less-well captured. This could 

contribute to the small correlations seen in the conflict parameters in Figure 3. We opted to 

include all the datasets in our meta-analysis despite this observation. We reasoned that the 

pattern of fast errors in most tasks was reflected in the model fits, which indicates that they 

are capturing the timing and strength of conflict effects to some degree. Further, the strong 

positive correlations in accuracy and RT quantiles indicate that individual differences are 

being captured by the model. The consistency of the conflict parameter correlations observed 

in our meta-analysis, indicated by the low I2 values, suggests that our conclusions are not 

dependent on the inclusion of particular datasets. 

Representativeness of datasets. The datasets included in our modelling were 

selected to have larger trial numbers than is normally seen in the literature. We might 

question whether this criterion or the limited number of sources (two labs, including our own) 

affects the representativeness of correlations seen in these datasets. A recent analysis by von 

Bastian et al. (2020) surveyed between-task correlations for “attention control” tasks, 
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including the conflict tasks we examine here, and others such as n-back and working memory 

updating. The median correlation between all task pairs was r=.16 (n correlations = 2114), 

and correlations were typically lower when pairs included at least one of the flanker, Simon 

or Stroop tasks. This overall value is similar to the averages we observe in our meta-analysis 

of RT costs (r=.14) and error costs (r=.13). von Bastian et al. further note that most 

correlations did not exceed r=.3. Similarly, most of our behavioural correlations fell between 

r=0 and r=.3, with a few exceeding this (min r=-.27, max r=.50; see Figure 3). Thus, the 

correlations in our datasets appear to be representative of those seen in the broader literature.  

Summary of empirical data. Overall, we observe weak or no correlation between 

tasks in DMC parameters representing conflict processing. However, we do observe 

consistent correlations in model parameters reflecting non-conflict decision processes. We 

see small but significant correlations in RT costs, though these could also be driven by 

common variance in strategy and processing speed across tasks. A critical step towards 

interpreting these effects is to understand the source(s) of individual differences in these 

measures. 

      

Part 2.  Could performance measures diagnose shared conflict mechanisms?  

We might interpret the weak correlations between parameters of conflict processing in 

our datasets as an indication of independent mechanisms underlying each task. However, a 

domain-specific account of conflict control is difficult to apply to Dataset 3, where the 

intermixed and blocked variants of the Simon task share surface characteristics. Although we 

expect trial arrangement and proportions to affect the processing demands of a task 

(Unsworth et al., 2004), there ought to be at least some degree of common conflict processing 

for the incongruent trials in blocked or random arrangement. But we observed no better 
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correlation than for other task pairings, suggesting that it is difficult to isolate individual 

differences in conflict processing among other processes that contribute to behaviour. 

Despite the absence of correlations in conflict model parameters, we did observe a 

small but significant positive correlation in RT costs, as well as a similar correlation in error 

costs. Can these correlations provide evidence of common conflict-processing mechanisms? 

We know they are not perfect evidence, as performance costs do not isolate ability in a 

specific cognitive domain (Hedge, Powell, Bompas, et al., 2018; Hedge, Powell, & Sumner, 

2018a; see also Draheim et al., 2016; Miller & Ulrich, 2013). However, this is not to say that 

they carry no information. In part 2, we evaluate this through simulation.  

First, we ask if detectable correlation in task performance is a necessary consequence 

of underlying common conflict-processing mechanisms. In other words, when we impose a 

correlation in conflict parameters in the model, how does this manifest in behavioural 

correlations in RT costs and/or error costs (when participants vary randomly in other ways)?  

Second, we ask if correlation in performance measures is sufficient evidence of 

common conflict-processing mechanisms. In other words, are correlations in RT costs and 

error costs driven just as well by shared non-conflict processes? 

We conducted a set of simulation studies to assess these questions. We imposed 

correlations in conflict model parameters (amplitude and/or time-to-peak) between two tasks 

to represent a common mechanism for conflict. We then compared this to an alternative, in 

which there are no correlations in conflict parameters, but the non-conflict decision 

parameters (drift rate and boundary separation) were correlated instead. We tested how these 

underlying structures would emerge in RT costs and error costs. Our simulations have the 

additional benefit that we are not limited by measurement noise due to low trial numbers or 
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reliability, so this approach provides a theoretical upper limit for the effect sizes we could 

expect to see in real data. 

Method 

We based our parameter ranges on a previous parameter recovery study (White et al., 

2017), which themselves were based on previous studies that had applied the DMC (Servant 

et al., 2016; Ulrich et al., 2015). White et al. observed high correlations between simulated 

and recovered parameters (r>.93 for all parameters when shape is held constant), so we can 

be confident that these ranges produce discriminable variation in behaviour. 

We simulated multiple scenarios that varied on three dimensions. The first dimension 

reflected different hypothetical tasks. We simulated hypothetical Simon, flanker, and Stroop 

tasks by varying the average value of the time-to-peak parameter to match what we observed 

in our model fits. We did this because this parameter has previously accounted for differences 

in behavioural patterns between tasks (Ulrich et al., 2015), and we reasoned that these 

different dynamics may affect the correlations observed in RT cost and error costs. For 

simplicity, and to maintain the approach of testing the upper limit of correlations we would 

expect in real data, we used the same means and standard deviations for the parameters in 

both simulated tasks within each scenario (i.e. we test for correlation between two versions of 

the same task). We also used the same mean and variance for the other parameters across all 

tasks to aid comparisons (see Table 2). We report correlations across different simulated tasks 

in Supplementary Material E. As expected, these were generally smaller than those we report 

here, but they followed the same patterns. 

 

*Insert Table 2 here* 
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The second dimension that we varied across scenarios was which mechanisms had 

correlations imposed across tasks in the underlying model. We imposed a common conflict-

processing mechanism in three ways: a correlation in the amplitude parameter only, the time-

to-peak parameter only, and both the amplitude and the time-to-peak parameters. In the 

fourth scenario, the conflict parameters were uncorrelated, and we imposed correlation in 

drift rate and boundary separation. We assumed no correlation (r=0) for all parameters other 

than those named in each scenario. 

The third dimension that we varied was the magnitude of the correlation that we 

imposed (r = .3, .5 and .7). We did this in order to evaluate whether RT costs and error costs 

were sensitive to changes in correlation in the underlying mechanisms. 

For each scenario and effect size, we simulated datasets for 2000 ‘participants’ 

comprised of 5000 congruent and 5000 incongruent trials each. This is more trials than would 

typically be run in an empirical study, but it allows us to minimise the impact of noise on our 

estimates. We expect behavioural correlations with lower trial numbers would be smaller. 

Parameters were generated from a multivariate normal distribution using Matlab’s mvnrnd 

function. This allows for the generation of two variables with specified means, standard 

deviation, and covariance (correlation). We derived the standard deviations by dividing the 

range of the uniform distributions used by White et al. (2017) by six, in order to obtain a 

similar range. In other words, the upper limit of the uniform distribution used by White et al. 

corresponds to 3 standard deviations above the mean of the normal distribution used in our 

simulation. For simplicity we did not include variability in non-decision time, and we fixed 

the shape parameter for automatic activation to 2, as in our empirical fits and Ulrich et al. 

(2015). 

Results and discussion 
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Performance correlations are not necessary evidence for common mechanisms of 

conflict processing. Spearman’s rho correlations between performance measures calculated 

from the two simulated tasks are shown in Figure 5. First, we evaluated whether correlations 

in performance are a necessary outcome of introducing correlations in the model conflict 

parameters. The white/pale sections in the first three scenarios (Figure 5) illustrate that this 

condition is not met. It was possible to observe no correlation in both RT costs and error costs 

in the presence of very strong (r=0.7) correlations in the time-to-peak parameter.  

The correlation in RT costs generally increased as the underlying correlation in the 

amplitude parameter increased and were largest in the scenarios where correlations were 

imposed in both the amplitude and time-to-peak parameters. However, the behavioural 

correlations were heavily attenuated in some cases, and to different degrees in different tasks. 

For example, whereas a correlation of rho=.52 was observed in RT costs in the Simon task 

when the correlation in both amplitude and time-to-peak was very strong (r=.7), the 

corresponding correlation in the Stroop scenario was small (rho=.21). This occurs because 

independent variance in the non-conflict parameters masks the effect of the conflict 

parameters and does so to different degrees depending on the temporal dynamics of the 

conflict process in each task. This pattern could lead researchers to incorrect conclusions 

about shared mechanisms across different types of task; correlations can be smaller simply 

because of slower activation of the conflict process, not necessarily because of more 

independence. Note that most correlations in RT and error costs predicted in the first three 

scenarios are below what is traditionally considered moderate (.3), except when the 

correlation in amplitude is very large (.7), or both the amplitude and time to peak parameters 

show strong (>.5) correlations. Based on our empirical fits, where the largest correlation we 

saw in conflict parameters in any dataset was rho=.19, we do not expect underlying 

correlations in currently used tasks to be strong. 
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*Insert Figure 5 here* 

 

Performance correlations are not sufficient evidence for common mechanisms of 

conflict processing. Next, we evaluated whether it is possible to observe correlations in RT 

costs and error costs in the absence of common mechanisms of conflict processing. In the 

fourth scenario (Figure 5), the mechanisms underlying conflict processing are independent 

(r=0), but we imposed correlations in parameters representing strategy and general processing 

efficiency. The key observation here is that the correlations can be similar to, and even 

exceed, those we see in the first three scenarios. This illustrates that non-conflict processes 

(e.g. strategy, processing speed) can create correlations in measures of ‘inhibition’ when the 

mechanisms of conflict processing are in fact independent.  

The magnitude of the correlations we observe in the fourth scenario may surprise 

some readers, though they are in line with previous simulations (Hedge, Powell, & Sumner, 

2018a; Hedge, Powell, Bompas, et al., 2018). The reason is that both RT costs and error costs 

are correlated with drift rate and boundary separation, and we impose a correlation on both 

these parameters simultaneously here, so they have a strong impact on behaviour. We show 

the correlations between the behavioural measures and parameters in Supplementary Material 

E. 

Caveats and considerations. A key inference from our simulations is that individual 

differences in non-conflict decision processes could mask individual differences in conflict 

processing in performance measures. In our first three scenarios, our simulated individuals 

varied in boundary separation and drift rate, but this variation was uncorrelated between 

tasks, and therefore adds ‘noise’ to the performance measures. The extent of noise is 
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dependent on the standard deviations used to generate the parameters (see Table 2). Smaller 

standard deviations for non-conflict parameters would allow stronger correlations in 

performance measures to emerge as a function of the conflict parameters. The standard 

deviations we chose were based on previous simulations (White et al., 2017) and empirical 

observations (Ulrich et al., 2015). Are they too large? In fact, we observed greater variance, 

not less, in several parameters in the fits to our data (see Appendix C). To check the 

robustness of our conclusions, we conducted an additional simulation in which we generate 

parameter sets using the means and standard deviations we observed in the DMC fits to our 

flanker, Simon and colour-word Stroop data (Supplementary Material E). The resulting 

between-task correlations in simulated performance measures did not exceed those reported 

for the analogous scenarios in Figure 5. Thus, our interpretation that shared conflict 

processing would have a relatively small effect on behaviour is not specific to the source of 

simulated parameter ranges. 

A second consideration is that we simulated the scenarios of shared conflict or non-

conflict mechanisms in isolation. When we assumed that the amplitude and time-to-peak 

parameters were correlated, we assumed that drift rate and boundary separation were 

uncorrelated and vice-versa. In reality these are not mutually exclusive - it is possible that 

both conflict and non-conflict processes are correlated in some scenarios, both of which 

contribute to positive correlations in performance costs. However, the challenge faced by 

researchers remains the same: The magnitude of correlations in RT costs or error costs cannot 

be interpreted as the degree of shared conflict processing or ‘inhibition’. 

We reiterate that our simulations represent scenarios where the underlying variance is 

not restricted (because the parameters can be recovered well; White et al., 2017), where the 

variance is similar between the two tasks, and where there is minimal noise in the behavioural 

measures due to the large number of simulated trials. Thus, if the model is an appropriate 
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one, the results represent the upper limit of what would be expected in real data. For example, 

in Figure 5, we see that large correlations in non-conflict processes lead to moderate 

correlations in error costs. However, despite our empirical meta-analysis showing that 

moderate to large correlations are present strategy and processing speed in real data, the 

corresponding average correlation in error costs is small. Error rates are often low in 

empirical data, making them difficult to measure reliably. As we and others have previously 

noted, poor reliability and low trial numbers can make it difficult to draw conclusions from 

small correlations (Hedge, Powell, & Sumner, 2018b; Miller & Ulrich, 2013; Rouder et al., 

2019).  

Summary of simulations. Correlations in conflict parameters do not always translate 

into behavioural congruency effects. On the other hand, correlations in non-conflict 

parameters can produce large correlations in behavioural congruency effects. Taken together, 

correlations in performance costs are neither necessary nor sufficient to infer there are 

common underlying conflict-processing mechanisms. 

  

Discussion 

The overarching questions we address here are: is there a common mechanism of 

conflict processing underlying performance across ‘inhibition’ tasks and, if there were, 

would we be able to detect it from RT and error costs? Our data and simulations suggest the 

presence or absence of correlations across conflict tasks is only weakly informative as to 

whether common conflict control mechanisms underlie performance.  

The meta-analysis of model parameters fit to multiple empirical datasets, parameters 

associated with conflict processing correlated weakly or not at all. This pattern persists even 
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when we examine two variants of the same task, which we assume share more common 

elements than tasks from different conflict domains. 

Our simulations indicate that it might be difficult to detect behavioural correlations 

even if shared conflict mechanisms exist, and that the degree of behavioural correlation 

cannot be specifically attributed to the degree of shared conflict processing. Parameters 

reflecting response caution and general processing efficiency contribute substantially to 

performance measures. In the presence of correlated conflict parameters, these non-conflict 

parameters add noise if they are uncorrelated between tasks, potentially leading us to 

conclude that conflict processing mechanisms are relatively independent. Alternatively, if 

these general processes are correlated between tasks – as they seem to be in the datasets 

presented above – they drive correlations in performance measures and could mislead 

researchers searching for common conflict mechanisms.  

Should we stop thinking about individual differences in ‘inhibition’? 

The construct of response control or response inhibition has been a core component of 

cognitive theorising for at least several decades (Logan et al., 1984; Miyake et al., 2000), and 

one that has been heavily implicated in neuropsychological disorders and brain dysfunction 

(Bari & Robbins, 2013; Chambers et al., 2009). Rey-Mermet et al. (2018) pose the question 

of whether inhibition is a useful psychometric construct, citing low and inconsistent 

correlations reported in the literature and their own data. Instead, they suggest that the ability 

to resolve interference is task specific, challenging the often-made assumption that 

performance on any given response control task can be interpreted in a broader context. Our 

findings are consistent with this position, but highlight that it is very difficult to draw any 

conclusions about inhibition constructs from the degree of behavioural correlations. 
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One clear finding from our meta-analysis was that we consistently observed little 

correlation in conflict-related model parameters. We could interpret this as evidence for 

modality-specific mechanisms, however, we still could not detect correlation between 

conflict parameters in our intermixed and blocked versions of the Simon task (Dataset 3). 

One explanation for this is that our blocking manipulation changed the way the stimuli were 

processed (Gehring et al., 1992; Hedge, Powell, Bompas, et al., 2018; Unsworth et al., 2004), 

to the point where automatic process are engaged differently by individuals in each context. 

We do not assume to have equated the way the stimuli are processed by changing only the 

blocking format, and we treat them as independent tasks in our fitting. Our assumption is that 

if there is a common inhibitory ability that manifests across tasks that differ in their blocking 

format as well as their stimulus features and response format, then a dataset with fewer 

differences is a low hanging fruit for observing correlations (for a similar approach, see 

Snyder, Rafferty, Haaf, & Rouder, 2019). That we do not observe a correlation when using 

two versions of (nominally) the same task has implications for studies that attempt to 

correlate different tasks that typically use blocked trials (e.g. the antisaccade) with tasks that 

typically intermix them (e.g. flanker, Simon, Stroop).  

The absence of correlations between two variants of the Simon task also raises the 

consideration of how perhaps seemingly neutral differences in task implementation can 

change what our tasks are measuring. Factor analytic studies of inhibition often include 

multiple versions of a flanker task (e.g. using letters or arrows; Kane et al., 2016; Rey-

Mermet et al., 2018; Rey-Mermet, Gade, Souza, et al., 2019) or Stroop-like tasks (e.g. colour-

word, number, spatial; Chuderski et al., 2012; Kane et al., 2016; Pettigrew & Martin, 2014; 

Rey-Mermet et al., 2018; Rey-Mermet, Gade, Souza, et al., 2019; Salthouse & Meinz, 1995; 

Shilling et al., 2002). However, there is limited evidence for higher correlations between 

these commonly named tasks than between differently-named inhibition tasks in young adults 
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(for a discussion of the Stroop, see Rey-Mermet et al., 2020). There has been recent interest 

in how design (e.g. trial numbers) and analysis choices impact the reliability of a measure 

(Hedge, Powell, & Sumner, 2018b; Parsons, 2020; Parsons et al., 2019; Rouder & Haaf, 

2019; von Bastian et al., 2020), and a similar approach to validity would improve our ability 

to construct a task in a way that maximally captures the process(es) that we are interested in. 

This could be done by systematically varying features of the task design (c.f. Baribault et al., 

2018), in combination with modelling how these affect the relative contribution of different 

underlying processes. 

Alternatively, we could conclude that it is simply too difficult to recover meaningful 

information about conflict from correlating tasks (Rouder et al., 2019). We believe that 

models are a useful tool for individual difference research, but that they are not a panacea 

(Hedge, Bompas, et al., 2020). We have shown here that correlations in non-conflict 

processes can confound the correlations we observe in behaviour, so there is a benefit to 

separating these out from conflict processes. Further, while we cannot expect to simply 

sidestep the reliability problems associated with difference scores (Hedge, Powell, & Sumner, 

2018b; Miller & Ulrich, 2013) by replacing them with model parameters that account for 

those same differences, there is a potential for improvement by utilising more information 

from the data we collect, including the simultaneous modelling of both accuracy and the 

shape of RT distributions. However, cognitive models should not be expected to create 

reliable individual differences in tasks that are not suited to eliciting them (Hedge, Powell, & 

Sumner, 2018b). If common mechanisms of inhibition do exist, they appear to be too fragile 

to detect in the context of individual differences in other mechanisms in our current tasks, 

such as those related to caution and processing speed. 

The answer to the question of whether we should stop thinking about inhibition as a 

general construct likely depends on why the researcher is interested in it. Researchers who 
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are interested in answering theoretical questions about the structure of executive functions 

(e.g. Friedman & Miyake, 2004) often administer multiple conflict tasks, use latent variable 

approaches to account for measurement error, and small but non-zero correlations can be 

theoretically meaningful. Research in this area is likely to continue, seeking improvements to 

task design and measurement (Draheim et al., 2020; Rey-Mermet, Gade, Souza, et al., 2019; 

Rouder et al., 2019; von Bastian et al., 2020). In contrast, some researchers use inhibition 

tasks as one of many tools to understanding individual differences in outcomes such as 

cognitive development (Carver et al., 2001; Dahlin, 2011), neuropsychological conditions 

(Hutton & Ettinger, 2006), or impulsivity (Skippen et al., 2019). Researchers in these 

contexts may use a single task, implicitly assuming it represents inhibition measures in 

general. For this assumption, large correlations between tasks are a prerequisite for 

interpreting any one task as a measure of general inhibitory ability. Our data, and the 

literature more widely, do not support such a generalisation. Instead, researchers in these 

areas might be better served by focusing on tasks that are sensitive to the domain of interest 

(c.f. Hutton & Ettinger, 2006; Rey-Mermet & Gade, 2018).  

Common non-conflict processes in conflict tasks 

Our meta-analysis revealed consistent evidence for moderate to strong correlations in 

drift rate and boundary separation, which represent the efficiency of task-relevant processing 

and strategy/caution respectively. These parameters are notable because our simulations show 

that these non-conflict processes contribute substantially to individual differences in RT costs 

and error costs (see also; Hedge, Powell, Bompas, et al., 2018; Hedge, Powell, & Sumner, 

2018a; Miller & Ulrich, 2013). These findings also converge with evidence from factor 

analytic studies that performance in inhibition tasks can be (at least partly) accounted for by 

processing speed (Jewsbury et al., 2016; Rey-Mermet, Gade, Souza, et al., 2019), or goal 

maintenance and implementation (Friedman & Miyake, 2017; Kane & Engle, 2003). Overall, 
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it appears that there are common mechanisms underlying performance in inhibition tasks, 

though they are not unique to conflict processing. 

Our findings and approach contribute to the discussion in several ways. First, multiple 

studies have assumed that strategy may confound the measurement of individual differences 

and take steps to control for it (e.g. Draheim et al., 2016; Rey-Mermet et al., 2019). However, 

they do not measure response caution and examine whether it correlates across tasks as we do 

here. Second, the finding that general processing speed is sufficient to account for individual 

differences in inhibition tasks in factor analytic studies is partly based on a failure to derive a 

unique inhibition factor (Karr et al., 2018; Rey-Mermet, Gade, Souza, et al., 2019). By using 

a model to dissociate and quantify the efficiency of controlled processing, captured by the 

drift rate parameter, we can provide positive evidence for common mechanisms.  

Finally, though we draw parallels between the drift rate parameter and latent 

perceptual/processing speed factors identified in factor analytic studies (Hedden & Yoon, 

2006; Jewsbury et al., 2016), it is not a given that they refer to the same underlying ability. A 

perceptual speed task might involve comparing the size of two letter strings to determine 

which is longest, with performance measured by the number completed in a fixed time limit 

(Hedden & Yoon, 2006). A latent variable – which might be called perceptual speed – is then 

derived from behaviour across multiple tasks assumed to measure the same construct. In 

contrast, a cognitive model attempts to dissociate latent processes that contribute to behaviour 

within a task. From an evidence accumulation model perspective, individual differences in 

this ‘perceptual speed’ factor could be driven by some combination of drift rate, boundary 

separation, and non-decision time. These two approaches to capturing latent psychological 

processes are not mutually exclusive, and some studies have used diffusion model parameters 

in a factor analysis in place of behavioural measures (e.g. Schmiedek et al., 2007). Such an 
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integration may a useful approach to overcome the impurity of behavioural measures that we 

evidence here. 

Alternative models 

 Our approach is only useful if the model employed is relevant to the way human 

brains process these tasks. All models make assumptions; we do not know the true model and 

the DMC may be a mischaracterisation of the mechanisms of response control. We chose the 

framework of evidence accumulation models because they have previously offered valuable 

insights into individual differences in choice RT behaviour (e.g. Hedge, Powell, Bompas, et 

al., 2018; Ratcliff et al., 2015). Further, we chose the DMC specifically because we needed a 

common framework for all tasks, whereas some alternative models invoke task specific 

mechanisms (White et al., 2011). Would we have reached different conclusions had we used 

a different evidence accumulation model, or a different family of models altogether? 

 It is common for evidence accumulation models to show a high degree of mimicry. 

Different models can often reproduce the same data patterns even though they make different 

assumptions (Donkin et al., 2011; Teodorescu & Usher, 2013). There are alternative 

sequential sampling models that have been applied to response control tasks, which involve 

extensions from standard diffusion or accumulator models (Bompas et al., 2017, 2019; 

Bompas & Sumner, 2011; Dillon et al., 2015; Hübner et al., 2010; Noorani & Carpenter, 

2013; Weigard et al., 2019; White et al., 2011). Many of these extensions are designed to 

capture the observation that errors to incongruent stimuli are typically fast in tasks such as the 

flanker. They do this by assuming that there is a non-linearity in the evidence accumulation 

process; information from the prepotent stimulus feature contributes more to the early period 

of the decision than it does to the late period. If we were to examine the evidence for 

common mechanisms in a different model, then we would inevitably look at correlations in 
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the parameters responsible for this non-linearity. We expect that this would lead to similar 

conclusions as we reach here because the challenge remains that these mechanisms contribute 

only in part to individual differences in behaviour. In no commonly used accumulation model 

would behavioural congruency effects be unaffected by parameters representing strategy or 

overall processing speed (Hedge, Powell, & Sumner, 2018a; Hedge, Powell, Bompas, et al., 

2018). Neither is this general point specific to evidence accumulation models (Miller & 

Ulrich, 2013; Pachella, 1974). 

 Outside of the accumulation model framework, different modelling approaches have 

been applied to conflict tasks. Perhaps most notable is the Stroop task, for which there are 

models based in a connectionist framework (e.g. J. D. Cohen et al., 1990), reinforcement 

learning (Verguts & Notebaert, 2009), and others (for a review, see Chuderski & Smolen, 

2016). These models do not necessarily conflict with an evidence accumulation model 

account, and they sometimes share similar assumptions (Hübner et al., 2010; van Maanen & 

van Rijn, 2007). Here, we started with the working assumption that all tasks could be 

explained using a common framework. Instead, there may be value in using different models 

that are tailored to the assumptions underlying each task and examining correlations in 

conceptually related parameters across different models. For our current purposes, alternative 

models would still need to deal with the difficulty in distinguishing individual differences in 

conflict processing amongst the other processes that contribute to behaviour.  

An alternative model could possibly provide better quantitative fits to some of our 

data than the DMC does here. Indeed, our fits reveal some data patterns that may challenge 

the assumptions of the DMC (see Supplementary Material E). In particular, in our 

implementation, the time-to-peak parameter couples the speed at which automatic activation 

peaks with the speed at which it is removed. This led to our fits erroneously predicting 

negative delta functions in data that had fast errors and slow RTs. It could be argued that this 
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is an unfair test of the DMC, as it is designed as a model of two-choice behaviour, and the 

data patterns that produced poorer fits were from four-choice tasks. The DMC reproduced the 

data patterns from our two-choice tasks well and was able to capture individual differences in 

all datasets to a degree. However, we are not the first to observe an underestimation of the 

conflict effect in slower RTs with the DMC (Hübner & Töbel, 2019). Notably, Hübner and 

Töbel also observed negative going delta functions in the flanker task when the onset of the 

flankers preceded the onset of the target. This suggests transient activation elicited by the 

conflicting stimulus feature is a plausible account of both the flanker and Simon tasks, though 

additional flexibility may be required to model it within a common framework. 

 We reiterate that our approach here is one of model application (Crüwell et al., 2019), 

and we are not testing the validity of the DMC. The primary motivation for developing the 

DMC was to demonstrate that positive and negative going delta functions can be understood 

within a common framework (Ulrich et al., 2015). The ability to capture individual 

differences is not a central assumption of the model, nor does the model assume that 

parameters should correlate across tasks.  

Alternative perspectives on response control 

To some theoretical perspectives, it may not be surprising that parameters derived 

from different tasks and modalities show weak correlations. Starting with Friedman and 

Miyake’s (2004; see also Miyake et al., 2000) influential work, many studies have used factor 

analysis to distinguish different subtypes of response control tasks (though earlier work had 

made conceptual distinctions (e.g. Nigg, 2000). The three factors identified were inhibition of 

prepotent responses (antisaccade, Stroop, and stop-signal tasks), resistance to distractor 

interference (flanker, word naming, shape matching) and resistance to proactive interference 

(Brown-Peterson, AB-AC-AD, cued recall). It could be suggested that low correlations 
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between some of our task pairs (e.g. flanker, Simon) occur because they span different 

subfactors of this framework. However, this interpretation would not account for the low 

correlations we observe between more closely related task (Stroop, spatial Stroop), or the 

blocked and intermixed Simon task variants in Dataset 3. 

We did not base our task selection on these previous taxonomies as they do not 

consistently replicate (Karr et al., 2018; Rey-Mermet et al., 2018). In recent revisions of their 

model of executive functioning, Miyake and Friedman (2017) have suggested that 

performance in inhibition tasks may be best explained by a more general construct, such as 

the ability to maintain and implement task goals. Recently, a large survey of the literature 

found that inter-task correlations were not substantially larger within theoretical subgroups of 

tasks compared to between-subgroup pairs (von Bastian et al., 2020), so we do not expect to 

have observed different results had we used different tasks. 

Beyond the individual differences context, Egner and colleagues (Egner, 2008; Egner 

et al., 2007) have suggested a dissociation between conflict arising from mismatched stimulus 

features (e.g. the font colour and the written word in the Stroop), and conflict arising through 

response mapping incompatibility (e.g. stimulus location and response hand in the Simon). 

Egner et al. (2007) found in an fMRI study that stimulus-based and response-based conflict 

modulated activity in parietal and premotor cortex respectively. Thus, processing bottlenecks 

may occur at different stages of the complex brain pathways dealing with each task, but the 

overarching principles of conflict control may still be similar. Differences in stimulus 

properties, task relevance, and response modality may all modulate the weighted engagement 

of different underlying mechanisms (Bompas et al., 2017; Bompas & Sumner, 2011). Using 

models such as the DMC to decompose performance into underlying components might 

reveal common principles across tasks without necessitating common neural mechanisms. 
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Mechanisms of control go beyond reactively coping with conflict within a trial.  For 

example, individuals adjust their behaviour for following trials after experiencing conflict or 

errors (e.g. Braem et al., 2014; Egner, 2008; Whitehead et al., 2019). Whitehead et al. (2019) 

found that the size of error-related slowing (Rabbitt, 1966) correlated across the flanker, 

Simon and Stroop tasks, whereas the sequential congruency or Gratton effect (Gratton et al., 

1992) did not. Further, the sequential congruency effect appears not to generally transfer 

from one type of conflict (e.g. a Stroop stimulus) to another (e.g. a flanker stimulus) when 

these different sources of conflict are intermixed (for reviews, see Braem et al., 2014; Egner, 

2008; though there are exceptions, e.g. Freitas et al., 2007). This represents converging 

evidence that there are task-specific mechanisms that process conflict, rather than shared. 

Summary and conclusions 

 In Part 1 of this paper, a meta-analysis showed no evidence for correlated conflict 

mechanisms, and robust evidence for correlations in strategy and processing speed across tasks. 

In Part 2, our simulations show that correlations in traditional behavioural measures (RT costs 

and error costs) are not diagnostic of the source of common variance. Individual differences in 

strategy and processing speed can create or mask correlations in behaviour depending on 

whether or not they are correlated themselves. Taken together, these findings show that 

drawing conclusions from individual differences in response control tasks, and, conversely, 

attempting to directly measure inhibition ability is a difficult task. This difficulty is an obstacle 

both to theory development, and to the study of neuropsychiatric disorders and socially 

problematic behaviours. We urge researchers to take into account individual differences in 

strategy and processing speed where possible, either at the task or analysis level. 
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Table 1.  

Summary of datasets that were used for modelling. N refers to the number of participants 

retained after exclusions.  

Dataset Source Tasks Neutral 

condition 

N Trials per 

condition 

1 New data Flanker 

Simon 

Yes 50 336 

2 Hedge et al. 

(2018) 

Flanker 

Colour-word Stroop 

Yes 103 480 

3 Hedge et al. 

(2018) 

Simon (blocked trials) 

Simon (intermixed trials) 

No 102 288 

4 Hedge et al. 

(2019) 

Flanker 

Colour-word Stroop 

Yes 43 576 

5 Whitehead et al. 

(2019) 

Flanker 

Colour-word Stroop 

Spatial Stroop* 

No 187 512 

6 Whitehead et al. 

(2019) 

Flanker 

Colour-word Stroop 

Spatial Stroop* 

No 203 256 Congruent 

768 Incongruent  

7 Whitehead et al. 

(2019) 

Flanker 

Colour-word Stroop 

Spatial Stroop* 

No 213 360 

Note. *The authors refer to this as a Simon task, noting that it can also be thought of as a 

spatial Stroop. We refer to it as a spatial Stroop to distinguish it from the format of the 

Simon task in datasets 1 & 3. See Supplementary Material A for details. 
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Table 2. 

Mean and Std. Dev. refer to the population values used to generate parameters for 

simulations, based on the ranges reported in Table A1 (Appendix A) and White et al. (2017). 

The three mean time-to-peak values correspond to separate simulations designed to represent 

the Simon, flanker and Stroop tasks. 

Parameter  Mean Std. Dev. 

Amplitude of activation (A) 27.5 4.17 

Time-to peak of activation (tau) 

72 

135 

501 

16.67 

Upper boundary (b) 62.5 5.83 

Non-decision time (Ter) 335 21.67 

Drift rate (μc) 0.5 0.1 

Starting point shape (a) 2.5 0.167 

Non-decision time variability 

(TerSD) 
0 0 
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Figure 1. Schematic of the diffusion model for conflict tasks (Ulrich et al., 2015). A) The 

decision process is implemented as noisy accumulation of evidence to either the upper (b) or 

lower (-b) boundary, here representing the correct and incorrect responses respectively. Non-

decision time (Ter) refers to sensory and motor processes, which occur before and after the 

decision phase. B) The average rate of evidence accumulation is determined by two 

underlying process. The drift rate of the controlled process (μc) represents the efficiency of 

processing the task relevant property of the stimulus (e.g. the central arrow in a flanker task). 

The amplitude (A) and time-to-peak (tau) describe a rescaled gamma function, which 

represents the automatic activation and subsequent removal of automatic activation (e.g. the 

processing of the flanking arrows). Here the automatic activation is depicted for incongruent 

trials (it is reversed for congruent trials) C) Mean evidence accumulation rates for different 

values for the amplitude and time-to-peak. The central grey line reflects a controlled drift rate 

of .4. Coloured lines above and below the grey line reflect congruent and incongruent trials 

respectively (combined controlled and automatic processing). Increasing the amplitude leads 
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to a greater deviation from the central line. Increasing the time-to-peak affects the time at 

which the maximum deviation is reached. D) Automatic activation functions for different 

values for the amplitude and time-to-peak. The amplitude parameter rescales the distribution 

to a specified maximum. Note the maximum value of the automatic activation may occur 

later than the typical decision time. E) Conditional Accuracy functions (CAFs) corresponding 

to panel C. CAFs show the accuracy of responses in quantiles of the reaction time 

distribution. Increasing the amplitude parameter (black vs. red line) increases the proportion 

of fast errors made in incongruent trials, reflecting an increase in response capture. Increasing 

the time-to-peak leads to errors being more distributed across the RT distribution, reflecting a 

slower removal (inhibition) of the automatic activation.  F) Delta functions corresponding to 

panel C. Delta plots show the RT cost at different quantiles of the RT distributions. 

Increasing the amplitude parameter leads to increased mean RT costs (higher average values 

of the delta functions on the y-axis). Increasing the time-to-peak (blue vs. black line) 

produces more positive going delta slopes. Note the correspondence between the shape of the 

delta functions and the shape of the automatic activation that produce them (Figure 1D). 
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Figure 2. Schematic of tasks. In the flanker task (datasets 1, 2 & 4), participants respond to the 

central arrow and ignore the flankers. In the Simon task (datasets 1 & 3), participants respond to the 

colour of the stimulus and ignore the location. In the Stroop task (dataset 2 & 4), participants 

respond to the colour of the font and ignore the written word. In the spatial Stroop task (datasets 5 

to 7, referred to as a Simon task by Whitehead et al., 2019), participants respond to the meaning of 

the written word and ignore its location. Whitehead et al. did not include neutral conditions, so we 

do not illustrate one for the spatial Stroop. The flanker task in datasets 5 to 7 consisted of 

horizontally distributed letters (e.g. DDDDD, FFKFF) instead of arrows. The flanker and Simon tasks in 

datasets 1 to 4 were two-choice tasks and all others were four-choice. 
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Figure 3. Meta-analytic (black diamonds) and observed (circles) zero-order correlations between 

tasks in parameters of the diffusion model for conflict tasks (DMC). We also plot the traditional 

behavioural metrics of reaction time (RT) costs, and error costs. Error bars show 95% confidence 

intervals. As we used zero-order correlations, and some datasets had multiple tasks (5:7) or 

speed/accuracy conditions (4), these datasets contribute multiple circles of the same colour to the 

plot. A multi-level random effects meta-analysis was performed on Spearman’s rho correlations 

calculated for each pair of tasks, allowing for clustering where multiple correlations were taken from 

the same dataset. The Amplitude and Time to peak parameters are associated with conflict 

processing. 
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Figure 4. Scatter plots showing fits for incongruent trials in the flanker task in Dataset 1 (two-choice, 

left column) and 7 (four-choice, right column). We chose these for illustration because Dataset 1 

shows a good fit while Dataset 7 shows a clear underestimation of the speed of slow RTs. We 

calculated Pearson correlations for accuracy (top row) and RT quantiles (25th, 50th, 75th; second, 

third, and fourth row respectively) of the observed data against data simulated using the best fitting 
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model parameters for each participant. For RTs, black circles represent correct responses, red 

crosses represent errors. A good fit is indicated by a strong positive correlation and a tight clustering 

of the points around the diagonal identity line. Note that in the right column, the red crosses cluster 

below the identity line, indicating that errors produced by the model fits tend to have lower RTs in a 

more restricted range than is observed in the data. Despite this underestimation, the correlations 

between observed and simulated data are reasonably strong. 
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Figure 5. Spearman’s rho correlations between performance costs calculated from two simulated 

datasets using the diffusion model for conflict tasks. The strength of the between-task correlation in 

the model parameter(s) is given in the “Simulated effect size” column. The columns to the right of 

this show the between-task correlations in the simulated error and RT costs respectively. The 

correlation between other model parameters (boundary separation, drift rate and non-decision 
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time) was set to 0 in the first three scenarios. In the fourth scenario, the correlation in conflict 

parameters was set to zero, and the non-conflict parameter correlations were varied. We used the 

same parameter ranges for both tasks within each scenario. For example, the ‘Simon’ column shows 

the correlations between two versions of a Simon task. Note that the size of the correlations in the 

fourth scenario are comparable to, and in some cases exceed, those observed in the first three 

scenarios.  
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Appendix A – model fitting details 

Model fitting 

To fit the DMC to experimental data, we adapted the approach of White et al. (2017). 

We estimated seven parameters of the DMC separately for each participant in each task. The 

parameters representing conflict processing were the amplitude of automatic activation (A for 

congruent trials, -A for incongruent trials) and the time to peak automatic activation (tau). 

The non-conflict decision parameters are boundary separation (b), drift rate of the controlled 

process (µc), and the shape parameter of the beta distribution used to represent starting points 

of the accumulation process (α). Finally, non-decision time is implemented as a Gaussian 

distribution with parameters for the mean (Ter) and variability (TerSD). In Datasets 3 and 4, 

we estimated additional boundary separation parameters to capture the experimental 

manipulations. In Dataset 4, we estimated three separate boundary separation values to 

capture strategic differences between blocks in which we emphasised either speed, accuracy, 

or both speed and accuracy. We calculated the between-task correlation in boundary 

separation under each instruction condition, and entered all three into our meta-analysis. In 

Dataset 3 (intermixed vs. blocked Simon task), we derived separate boundary separation 

estimates for congruent-only and incongruent-only blocks. As our mixed-trial Simon variant 

produced a single boundary separation estimate, we averaged the two values from the 

blocked variant to obtain a single correlation for this parameter. 

For datasets 1, 2 and 4, we also had data from a neutral condition, which we included 

in the fitting with the amplitude of the automatic activation fixed to zero. For each participant 

within each task only the amplitude parameter provides the difference between congruent, 

neutral and incongruent trials; all other parameters were constrained to be equal across 

conditions. As with Ulrich et al. (2015), the diffusion constant/within-trial noise (σ) was fixed 
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to 4. We fixed the shape parameter of the automatic activation function to 2 for all tasks, 

following Ulrich et al. (2015). 

We accuracy-coded our data, so that the upper and lower response boundaries 

correspond to thresholds for correct and incorrect responses respectively. Note that the DMC 

is a model of a two choice task, whereas some of our datasets contained four-choice tasks. 

Multi-choice tasks can be accommodated by accuracy coding, which, while not ideal, 

allowed us to interpret all the datasets within a common framework. Correct and incorrect 

RTs from congruent, neutral (where available), and incongruent conditions were separately 

binned into quantiles. Correct RTs were binned into five quantiles (.1, .3, .5, .7, .9) for each 

condition separately. The same approach was applied for incorrect RTs in each condition 

when the total number of errors in that condition ≥ 10. When between 5 and 10 errors were 

made, three quantiles were used (.3, .5, .9) for incorrect RTs. If fewer than 5 errors were 

made, we fit the median RT of the errors. We calculated the deviance (-2 log-likelihood) 

between observed and simulated quantiles, which was minimised with a Nelder-Mead 

simplex (Nelder & Mead, 1965) implemented in the fminbnd function in Matlab. We 

constrained the search such that all free parameters were positive, and the shape of the 

starting point distribution was greater than one.  

 We first fit the data using 5000 parameter sets generated from a uniform distribution 

within the minimum and maximum values given in Table A1 (based on White et al., 2017), 

with simulations consisting of 5000 trials per condition. We then took the 15 best parameter 

sets resulting from this initial search, and submitted each of those to the simplex algorithm, in 

which we simulated 10,000 trials per condition at each iteration. The simplex was re-

initialised 3 times to avoid local minima. After the process was completed, we took the single 

best fitting parameter set for each individual. This process took approximately 30-40 hours 
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per individual per task, and was performed on Cardiff University Brain Research Imaging 

Centre’s (CUBRIC) high performance computer cluster. 

 

Table A1. 

Parameter values used in model fitting and simulations, based on White et al. (2017). The 

minimum and maximum refer to the edges of a uniform distribution used to generate 

parameters for our initial fitting. The same ranges were used for all datasets except where 

values given in parentheses were used instead (for the four-choice and Stroop tasks).  

Parameter  Minimum Maximum 

Amplitude of activation (A) 15 40 

Time-to peak of activation (tau) 
20 

(100) 

120 

(600)  

Upper boundary (b) 45 80 

Non-decision time (Ter) 270 
400 

(500) 

Drift rate (μc) 0.2 0.8 

Starting point shape (a) 1 
3 

(10) 

Non-decision time variability 

(TerSD) 
20  50  

Note. White et al. report the boundary separation (upper boundary x 2). We fix the shape 

parameters of the automatic activation to two. The diffusion constant (within-trial noise) was 

fixed to four.  

 

At the time of fitting, we were the first to apply the DMC to a Stroop task (though see 

Ambrosi et al., 2019 for a recent analysis with child data), and we noticed during preliminary 

examination of our data that our fitting routine would typically converge to values outside our 
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initial search space for the non-decision time, time-to-peak, and shape of the starting 

distribution parameters. Unlike the flanker and Simon tasks, participants did not make fast 

errors in our Stroop task (see Appendix C; see also Figure 3 in Vandenbossche et al., 2012) 

for a similar pattern of errors in the Stroop task.). To aid parameter optimisation, we refit the 

Stroop data using a higher range of starting parameters, noted in Table A1. It is plausible that 

interference in the Stroop task has a later time course compared to the flanker task or Simon 

task, since semantic word processing is expected to be slower than processing of location or 

simple visual symbols. This is supported by evidence from event-related potentials (ERPs). In 

a study that combined flanker and Stroop stimuli, ERPs for congruent and incongruent 

stimuli diverged earlier for flanker conflict than for Stroop conflict (Rey-Mermet, Gade, & 

Steinhauser, 2019; see also Kałamała et al., 2018; Liotti et al., 2000). We also used the higher 

range of non-decision time when fitting Datasets 5 to 7, as these datasets typically had slower 

RTs.  
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Appendix B: Parameter recovery 

A parameter recovery exercise tells us whether the model and our fitting procedure 

can consistently identify different levels of a parameter in data. For example, if data are 

generated with a relatively high amplitude of automatic activation then we want our fitting to 

return a relatively high value. We simulated data from the best fitting parameters for each 

task and individual in a dataset, with the number of trials corresponding to what was 

originally administered in the task. We then fit the simulated data using the same procedure 

that we used on the empirical data and correlated the best fitting parameters with those used 

to generate the data. These correlations (Pearson’s r) are shown in Table B1.  

The amplitude parameter was recovered well for most tasks and datasets (median 

r=.84, range .56 to .95). Recovery of the time-to-peak parameter was relatively poor (median 

r=.48, range -.08 to .86). Recovery of the drift rate, boundary separation, mean non-decision 

time, and non-decision time variability parameters was good (median r≥.90 for all). Starting 

point variability could also be recovered to a lesser extent (median r =.62). The poor recovery 

for the time-to-peak parameter contrasts to the good recovery reported by White et al., (2018) 

using a similar approach. We suspect that the reason for this is that the time-to-peak values 

produced in our empirical fits of exceeded the maximum of the ranges used by White et al. 

(20 to 120), particularly in the flanker and Stroop tasks (see Appendix C). For example, the 

mean time-to-peak values range across datasets from 99 to 135 for the flanker tasks and 495 

to 634 for the Stroop tasks. It is possible that the time-to-peak parameter is not uniquely 

identifiable in tasks/ranges that do not produce negative going delta functions. 

In the main text, we reported the results of a sensitivity power analysis that showed 

that our meta-analysis had 80% power to detect an average correlation of r=.07 in the 

presence of low heterogeneity (which we observe in the conflict parameters). These 

parameter recovery simulations do not change the size of correlation that we can detect in the 
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data. However, if we assume that this observable correlation is attenuated due to less-than-

perfect parameter recovery, in the same way than unreliability attenuates correlations, then 

we can calculate the corresponding ‘true’ correlation using Spearman’s (1904) diattenuation 

formula below. For illustration, we apply this formula assuming a worst-case scenario for the 

amplitude parameter, where we assume all tasks in all datasets had recovery equal to the 

worst that we observed for any task (r=.56). Note that for most tasks and datasets it was much 

higher. 

 True r(𝑥, 𝑦) =
Observed r(x,y)

√Reliability(x).Reliability(y)
       =    0.13 =

0.07

√0.56.0.56
 

The demonstrates that a correlation of r=.07 in the data corresponds to an estimated 

‘true’ correlation of r=.13, which is on the lower end of what is traditionally considered to be 

a small effect size (r=.1; Cohen, 1988). In other words, our parameter recovery is sufficiently 

sensitive for our current purposes.    
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Table B1. Parameter recovery correlations (Pearson’s r) for the diffusion model for conflict tasks. Data were simulated from the best fitting 

parameters to our empirical datasets, and simulated data were subsequently fit using the same pipeline as our main analysis (see Appendix A). 

Dataset  Task Amplitude Time-to-peak Drift rate 
Boundary 

separation 

Non-decision 

time 

Starting point 

variability 

Non-decision 

variability 

1 Flanker 0.90 0.48 0.92 0.94 0.99 0.81 0.88 
 Simon 0.86 0.86 0.96 0.94 0.98 0.78 0.94 

2 Flanker 0.93 0.53 0.91 0.96 0.98 0.69 0.96 
 Stroop 0.84 0.01 0.94 0.94 0.97 0.62 0.98 

3 Simon intermixed 0.79 0.86 0.93 0.92 0.92 0.64 0.84 
 Simon blocked (cong.) 0.70 0.42 0.81 0.62 0.91 0.66 0.88 
 Simon blocked (incong.)    0.88    

4 Flanker (Standard) 0.88 0.48 0.86 0.97 0.98 0.70 0.98 

 Flanker (Speed)    0.97    

 Flanker (Accuracy)    0.94    

 Stroop (Standard) 0.59 0.17 0.95 0.99 0.95 0.37 0.97 

 Stroop (Speed)    0.98    
 Stroop (Accuracy)    0.98    

5 Flanker 0.58 0.55 0.93 0.95 0.98 0.62 0.90 
 Spatial Stroop 0.93 0.81 0.96 0.93 0.99 0.63 0.92 
 Stroop 0.85 0.33 0.90 0.90 0.94 0.46 0.83 

6 Flanker 0.67 0.11 0.95 0.94 0.88 0.58 0.87 
 Spatial Stroop 0.95 0.67 0.97 0.96 0.96 0.53 0.90 
 Stroop 0.80 0.20 0.91 0.92 0.92 0.47 0.94 

7 Flanker 0.56 0.38 0.87 0.91 0.89 0.43 0.89 
 Spatial Stroop 0.95 0.84 0.95 0.94 0.98 0.58 0.92 
 Stroop 0.84 -0.08 0.81 0.81 0.95 0.67 0.94 
 Median 0.84 0.48 0.93 0.94 0.96 0.62 0.92 

 Minimum 0.56 -0.08 0.81 0.62 0.88 0.37 0.83 

 Maximum 0.95 0.86 0.97 0.99 0.99 0.81 0.98 
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Appendix C: Descriptive statistics for model parameters and model fits 

Table C1. Means and Standard deviations for best fitting model parameters to empirical datasets. Multiple boundary separation values are given 

for tasks in which the parameter could vary between conditions. All other parameters were constrained across conditions 

Dataset Task Boundary Non-decision Amplitude Drift rate Time to peak Start shape 
Non-decision 

variability 

1 Flanker 55.6 (10) 334 (27) 31.5 (9) .76 (.13) 113 (23) 2.1 (0.8) 34 (8) 

 Simon 51.2 (12) 302 (23) 18.4 (4.9) .60 (.13) 72 (36) 2.4 (0.8) 38 (9) 
2 Flanker 53.5 (10.2) 343 (31) 23.8 (8) .65 (.15) 135 (24) 1.9 (0.8) 46 (15) 

  Stroop 71.7 (11.5) 435 (63) 19.3 (9.4) .33 (.07) 501 (192) 6.5 (2.9) 92 (38) 

3 Simon Mix 59.2 (11.8) 310 (22) 14 (5.7) .50 (.12) 69 (42) 2.1 (0.9) 42 (12) 

 Simon Cong. 48.3 (9.4) 264 (19) 22.9 (8.5) .87 (.21) 108 (31) 2 (0.7) 40 (9) 
 Simon Incong. 60.4 (13.8)       

4 Flanker Spd. 28.7 (10.7)       
  Flanker Std. 45.5 (12.4) 312 (22) 24(7.3) .68 (.13) 129 (40) 1.8 (0.7) 49 (8) 
  Flanker Acc. 59.5 (11.5)             

  Stroop Spd. 27.3 (13.9)       
  Stroop Std. 58.7 (13.8) 384 (29) 21 (7.6) .28 (.06) 634 (227) 8.3 (4.3) 82 (18) 
  Stroop Acc. 67.4 (13.7)             
5 Flanker 85.5 (24.1) 461 (85) 10.8 (5.8) .42 (.13) 100 (56) 2.8 (0.8) 72 (37) 

 Spatial Stroop 78 (12.5) 413 (51) 26.1 (8) .50 (.13) 87 (27) 2.6 (0.6) 58 (18) 

 Stroop 84.1 (16.5) 446 (76) 18 (10.1) .29 (.07) 538 (207) 6 (3) 83 (50) 
6 Flanker 84.3 (22) 468 (48) 7.4 (4.7) .40 (.12) 99 (50) 3.1 (0.9) 74 (36) 

  Spatial Stroop 78.2 (13.8) 427 (33) 20.7 (7.3) .48 (.14) 105 (29) 2.8 (0.5) 52 (15) 

  Stroop 87 (17.7) 427 (59) 16.1 (8.4) .28 (.07) 548 (194) 6.5 (3.2) 85 (50) 

7 Flanker 95.2 (28.8) 474 (70) 12.2 (5.8) .41 (.11) 101 (48) 2.7 (0.7) 81 (59) 

 Spatial Stroop 84.1 (13.6) 416 (35) 32.2 (9.8) .48 (.11) 122 (33) 2.7 (0.6) 51 (17) 

  Stroop 94.3 (17.4) 447 (92) 22.8 (10.1) .30 (.08) 495 (200) 5.2 (2.7) 93 (75) 
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Table C2. Pearson correlations between observed accuracy and accuracy in data simulated from best fitting model parameters for each 

individual. Correlations ranged from .73 to 1 (mean = .92). 

Dataset Task Congruent Neutral Incongruent 

1 Flanker 0.94 0.87 0.97 
 Simon 0.95 0.96 0.98 

2 Flanker 0.96 0.95 0.96 
 Colour word Stroop 0.93 0.94 0.94 

3 Simon blocked 0.82  0.95 
 Simon intermixed 0.92  0.95 

4 Flanker Speed 0.94 0.91 0.88 
 Flanker Accuracy 0.87 0.73 0.91 
 Flanker Standard 0.96 0.91 0.93 
 Stroop Speed 0.94 0.93 0.95 
 Stroop Accuracy 1 0.99 0.99 
 Stroop Standard 0.99 0.99 0.99 

5 Spatial Stroop 0.92  0.99 
 Colour word Stroop 0.92  0.92 
 Flanker 0.84  0.96 

6 Spatial Stroop 0.84  0.99 
 Colour word Stroop 0.73  0.9 
 Flanker 0.85  0.95 

7 Spatial Stroop 0.94  0.97 
 Colour word Stroop 0.79  0.87 
 Flanker 0.78  0.89 
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Table C3. Pearson correlations between percentiles of correct reaction times in data simulated from best fitting model parameters for each 

individual. Correlations ranged from .85 to 1 (mean = .97). 

    25th percentile 50th percentile 75th percentile 
Dataset Task Congruent Neutral Incongruent Congruent Neutral Incongruent Congruent Neutral Incongruent 

1 Flanker 0.98 0.96 0.96 0.99 0.97 0.98 0.98 0.97 0.98 

 Simon 0.98 0.98 0.98 0.99 0.99 0.98 0.99 0.99 0.99 
2 Flanker 0.96 0.97 0.96 0.98 0.98 0.97 0.99 0.97 0.98 

 Colour word Stroop 0.96 0.97 0.96 0.97 0.98 0.97 0.98 0.97 0.96 
3 Simon blocked 0.95  0.96 0.97  0.98 0.97  0.98 

 Simon intermixed 0.97  0.96 0.98  0.99 0.98  0.98 
4 Flanker Speed 0.97 0.97 0.96 0.96 0.96 0.97 0.96 0.94 0.96 

 Flanker Accuracy 0.96 0.94 0.95 0.98 0.96 0.99 0.98 0.97 0.99 

 Flanker Standard 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 

 Stroop Speed 0.95 0.96 0.94 0.94 0.98 0.96 0.95 0.98 0.96 

 Stroop Accuracy 0.99 0.99 0.99 0.99 1 0.99 0.99 0.99 0.99 

 Stroop Standard 0.99 0.99 0.99 0.99 1 1 0.99 0.99 0.99 
5 Spatial Stroop 0.99  0.98 1  0.99 0.99  0.99 

 Colour word Stroop 0.97  0.97 0.97  0.97 0.96  0.96 

 Flanker 0.99  0.99 0.99  0.99 0.99  0.99 
6 Spatial Stroop 0.94  0.97 0.95  0.98 0.96  0.99 

 Colour word Stroop 0.85  0.91 0.89  0.96 0.88  0.95 

 Flanker 0.95  0.98 0.98  0.99 0.97  0.99 
7 Spatial Stroop 0.96  0.92 0.99  0.96 0.98  0.98 

 Colour word Stroop 0.95  0.95 0.94  0.95 0.93  0.94 
  Flanker 0.96   0.97 0.98   0.98 0.98   0.98 
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Table C4. Pearson correlations between percentiles of incorrect reaction times in data simulated from best fitting model parameters for each 

individual. Correlations ranged from .34 to .98 (mean = .78). Correlations are expected to be lower for incorrect RTs as they are based on fewer 

data points. 

    25th percentile 50th percentile 75th percentile 
Dataset Task Congruent Neutral Incongruent Congruent Neutral Incongruent Congruent Neutral Incongruent 

1 Flanker 0.71 0.72 0.84 0.72 0.74 0.84 0.66 0.75 0.87 

 Simon 0.71 0.59 0.88 0.83 0.86 0.87 0.78 0.8 0.75 
2 Flanker 0.75 0.79 0.89 0.71 0.76 0.91 0.67 0.75 0.9 

 Colour word Stroop 0.81 0.84 0.77 0.83 0.81 0.8 0.79 0.79 0.78 
3 Simon blocked 0.55  0.7 0.56  0.73 0.56  0.73 

 Simon intermixed 0.77  0.83 0.83  0.87 0.81  0.87 
4 Flanker Speed 0.82 0.87 0.92 0.83 0.89 0.91 0.86 0.84 0.87 

 Flanker Accuracy 0.71 0.7 0.81 0.66 0.71 0.89 0.7 0.67 0.89 

 Flanker Standard 0.83 0.87 0.91 0.82 0.91 0.93 0.78 0.92 0.9 

 Stroop Speed 0.89 0.91 0.91 0.9 0.91 0.92 0.96 0.95 0.93 

 Stroop Accuracy 0.96 0.97 0.96 0.94 0.97 0.96 0.91 0.96 0.95 

 Stroop Standard 0.97 0.97 0.95 0.98 0.96 0.95 0.97 0.96 0.94 
5 Spatial Stroop 0.62  0.86 0.67  0.89 0.68  0.87 

 Colour word Stroop 0.73  0.69 0.66  0.68 0.65  0.68 

 Flanker 0.83  0.82 0.82  0.79 0.79  0.78 
6 Spatial Stroop 0.34  0.8 0.42  0.85 0.56  0.79 

 Colour word Stroop 0.62  0.8 0.57  0.71 0.53  0.65 

 Flanker 0.57  0.81 0.63  0.77 0.7  0.75 
7 Spatial Stroop 0.42  0.9 0.51  0.85 0.55  0.76 

 Colour word Stroop 0.56  0.7 0.67  0.65 0.68  0.61 
  Flanker 0.71   0.7 0.72   0.68 0.72   0.68 
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The following pages show scatter plots of the observed data against data simulated from the 

best fitting parameters for each dataset and task. The scatter plots show the data 

corresponding to the Pearson’s correlations reported in Tables C2 to C4. We plot each 

individual’s observed and simulated accuracy in each condition, along with the 25th, 50th 

(median) and 75th percentiles of the RT distribution. For RTs, the black circles reflect correct 

RTs and coloured crosses reflect error RTs.  

The model fits capture the rank order of participants in all task/datasets (there is a positive 

correlation between the observed and simulated data points). The most notable deviations are 

in Datasets 5 to 7, where the speed of slower RTs is underestimated. 

We also plot the conditional accuracy functions (CAFs)and delta functions for each 

task/dataset. The solid lines reflect the empirical data and the dashed lines reflect the model 

fits. The CAFs are generally captured well (the solid and dashed lines are closely aligned). 

The flanker and Simon tasks show the expected pattern of relatively fast errors to incongruent 

stimuli, whereas the CAFs are relatively flat for the Stroop task. 

The DMC predicts different patterns of errors for congruent and neutral trials, whereas 

performance is similar in the observed data. This is because the DMC assumes that the 

automatic activation is symmetrical across congruent and incongruent trials. Future 

applications of the DMC may benefit from including a neutral condition and estimating the 

amplitude separately in incongruent and congruent trials. 

The underestimation of slow reaction times can be clearly seen in the delta functions in 

datasets 5:7, and the Stroop task in dataset 2. This results of a reduction in the RT cost in 

slower RTs.
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