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In this paper, we reformulate the conventional DEA models as an imprecise DEA problem and propose a novel method for evaluating the 

DMUs when the inputs and outputs are fuzzy and/or ordinal or vary in intervals. For this purpose, we convert all data into interval data. In 

order to convert each fuzzy number into interval data, we use the nearest weighted interval approximation of fuzzy numbers by applying the 

weighting function, and we convert each ordinal data into interval one. In this manner, we could convert all data into interval data.  The 

presented models determine the interval efficiencies for DMUs. To rank DMUs based on their associated interval efficiencies, we first apply 

the 𝛺-index that is developed for ranking of interval numbers. Then, by introducing an ideal DMU, we rank efficient DMUs to present a 

complete ranking. Finally, we use one example to illustrate the process and one real application in health care to show the usefulness of the 

proposed approach. For this evaluation, we consider interval, ordinal, and fuzzy data alongside the precise data to evaluate 38 hospitals 

selected by OIG. The results reveal the capabilities of the presented method to deal with the imprecise data.   

Keywords: Data Envelopment Analysis, efficiency, ranking, fuzzy data, ordinal data, interval data, nearest weighted interval 

approximation. 

 

1.  Introduction 

 
Data Envelopment Analysis (DEA) is a linear programming approach for measuring the relative efficiency of 

peer decision-making units (DMUs) with multiple inputs and outputs. Since Charnes et al. (1978) first 

introduced DEA, it has been widely applied to evaluating the relative efficiencies in many applications such as 

schools, hospitals, banks, etc. (A Emrouznejad and Yang (2018)). The relative efficiency of each decision-

making unit is defined as the ratio of the members’ weighted sum of outputs to the weighted sum of inputs. The 

original DEA models assumed that inputs and outputs are measured by exact values on a ratio scale (Charnes et 

al. (1994)). However, there are many applications that this assumption may not be valid i.e., some or all of the 

inputs and outputs may be imprecise. The issue of imprecise in DEA appears when there is a notion of 

uncertainty in data, especially when a set of DMUs contain missing data, ordinal data, interval data, or fuzzy 

data. Therefore, evaluating the efficiency of a set of DMUs in this situation is worth investigating.  

The imprecise data representation with interval and ratio interval data was initially proposed by (Cooper et al. 

(1999); Cooper et al. (2001)) to study the uncertainty in some applications. Additionally, Cook et al. (1993) 
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developed a cone ratio model for incorporating an ordinal factor into the DEA structure. However, in many 

situations, such as in a manufacturing system, a production process or, a service system, inputs and outputs are 

volatile and complicated so, it is difficult to measure them accurately. Instead, the data can be given as a fuzzy 

variable. Many fuzzy approaches have been introduced in the DEA literature. Sengupta (1992) applied the 

principle of fuzzy set theory to introduce fuzziness in the objective function and the right-hand side vector of the 

conventional DEA model and developed the tolerance approach that was one of the first fuzzy DEA models. 

Selecting a suitable ranking method can be applied in choosing the desired criterion in a fuzzy environment. 

Saeidifar (2011) and Izadikhah et al. (2014) introduced and applied weighted mean concept to rank fuzzy 

numbers. They proposed a new ranking method for fuzzy numbers, which used a defuzzification of fuzzy 

numbers and a weighting function. They first, defined a weighted distance measure on fuzzy numbers, and then, 

by minimizing this distance, they obtained the nearest weighted interval and point approximations of fuzzy 

numbers. 

In this paper, first we convert each ordinal data into interval data. Using the nearest weighted interval 

approximation of a generalized fuzzy number, we convert each fuzzy number into an interval number. This done 

by using weighting functions to introduce the nearest weighted interval approximation of generalized fuzzy 

numbers. Therefore, we will have all data in an interval format. Further, we extend the DEA models to develop 

a methodology for calculating efficiencies and ranking DMUs in the presence of fuzzy, ordinal, and interval 

data.  

The rest of the paper is organized as follows: Section two gives the literature review. In section three, we review 

the required background information, including some basic concepts of DEA, basic definitions and notions of 

fuzzy numbers and possibility space, the nearest weighted interval approximations of fuzzy numbers, efficiency 

model with interval data and, the Ω-index for ranking of interval numbers. Section four proposes a new method 

for ranking efficient DMUs by introducing ideal DMUs. An algorithm for interval efficiency and ranking DMUs 

in the presence of fuzzy, ordinal, and interval data is proposed in section five. Section six presents a comparative 

study with some other existing DEA methods. In section seven, an illustrative example is used to demonstrate 

the proposed approach; and an application in hospital efficiency shows the applicability and usefulness of the 

proposed method. Conclusions and directions for future research are given in section eight. 

 
2. Literature Review 
 

In this section, we review some essential methods that deal with data envelopment analysis models with fuzzy 

and/or interval and/or ordinal data.  

 
2.1. Fuzzy Data Envelopment Analysis Models 
 

Kahraman and Tolga (1998) improved the Sengupta (1992) method to incorporate uncertainty into the DEA 

models by defining constraint violations' tolerance levels. This approach fuzzified the inequality or equality 

signs but, it does not treat fuzzy coefficients directly. Meada et al. (1998) introduced the based approach. This 

method was further improved by Saati et al. (2002) to solve fuzzy DEA model by parametric programming 

using 𝛼-cut. In this line, many authors tried to develop some new DEA models in fuzzy environment. Kao and 

Liu (2000) presented a procedure for determining the efficiencies of DMUs with fuzzy observations. Guo and 

Tanaka (2001) proposed a fuzzy CCR based DEA model to deal with the efficiency evaluation problem with the 

fuzzy input and output data. Lertworasirikul et al. (2003) developed fuzzy DEA models using imprecise data 
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and fuzzy data. Allahviranloo et al. (2007) presented an input-oriented envelopment fuzzy DEA model for 

measuring the efficiency of DMUs with a constant return to scale. Wen et al. (2010) reviewed some DEA 

models under fuzzy environment and presented a fuzzy DEA model based on credibility measures. Zerafat 

Angiz L. et al. (2010) developed a Fuzzy DEA model to evaluate DMUs under uncertainty under fuzzy 

environment. Ali Emrouznejad et al. (2011) developed an imprecise data envelopment analysis model to provide 

two methods for measuring the overall profit MPI when the inputs, outputs, and price vectors are fuzzy or vary 

in intervals. Kao and Lin (2011) considered the qualitative data as fuzzy numbers and presented a fuzzy DEA 

model to measure the performance of DMUs. Y.-C. Chen et al. (2013) provided a Fuzzy SBM model to evaluate 

the risk uncertainty of the Taiwan banking sector.  

Agarwal (2014) employed the 𝛼-cut approach to develop a fuzzy DEA model to deal with the efficiency 

measuring and ranking problem with the given fuzzy input and output data. Barak and Dahooei (2018) presented 

a hybrid method for ranking the airlines' safety based on fuzzy data envelopment analysis and fuzzy multi-

attribute decision-making method. Izadikhah and Khoshroo (2018) developed a non-radial DEA model based on 

a modification of enhanced Russell model in the presence of undesirable data and fuzzy data to evaluate the 

efficiency scores of 22 barley production farms.  X. Zhou et al. (2019) developed a dynamic network DEA 

model with interval type-2 fuzzy indicators to evaluate 20 sustainable supply chains based on optimistic-

pessimistic viewpoints. Heydari et al. (2020) provided a fully fuzzy network DEA-RAM model for evaluating 

airlines. Peykani et al. (2021) developed a fuzzy network data envelopment analysis for measuring the 

performance of DMUs in the presence of imprecise and vague data.  

 
2.2. Data Envelopment Analysis Models with Interval or Ordinal Data 
 

After the first attempts of Cooper et al. (1999), Cooper et al. (2001), and Cook et al. (1993) to extend DEA 

models in the presence of imprecise data, many other authors tried to continue their ideas and develop new DEA 

models with imprecise data. Despotis and Smirlis (2002) presented radial DEA models for dealing with 

imprecise data. Y.-M. Wang et al. (2005) proposed a pair of interval DEA models based on interval arithmetic 

to measure efficiency performance in the interval and/or fuzzy environments. Y.-M. Wang and Yang (2007) 

developed an interval efficiency such that the upper bound was set to one, and the lower bound was determined 

through a virtual anti-ideal DMU. Shokouhi et al. (2010) employed a robust optimization model to develop an 

adaptation of the standard DEA under conditions of uncertainty. The input and output parameters were 

constrained to be within an uncertainty set. Toloo and Nalchigar (2011) presented an integrated data 

envelopment analysis model to identify the most efficient supplier in the presence of both cardinal and ordinal 

data. Aliakbarpoor and Izadikhah (2012) presented an evaluating model to measure the efficiency performance 

of DMUs with undesirable and ordinal data. Fathi and Izadikhah (2013) developed a DEA model for evaluating 

the efficiency of DMUs in the presence of ordinal and fuzzy data.  

Hatami-Marbini et al. (2014) presented an evaluation process for measuring the relative efficiencies of a set of 

DMUs in DEA with interval data and negative data. Toloo et al. (2018) proposed pessimistic and optimistic 

DEA models to measure the interval efficiencies where some observed inputs, outputs, and dual-role factors 

have interval structures. Aparicio et al. (2019) developed a DEA efficiency model to measure the impact of 

imprecision and variability in data on US students and schools participating in PISA. Goker and Karsak (2020) 

developed an integrated MCDM and DEA method to identify the best performing DMU with the presence of 
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imprecise data. Ebrahimi et al. (2021) presented a pair of DEA models to determine the interval efficiency of 

DMUs in the presence of interval and weak ordinal data. 

 
3. Preliminaries   

This section reviews and justifies the required methods used throughout the paper. To this end, the concepts and 

models of data envelopment analysis, interval data, ordinal data and converting into interval data, basic concepts 

of fuzzy numbers, efficiency model with interval data, and the 𝛺-index for ranking of interval numbers are 

given.  

 

3.1. Data Envelopment Analysis 

 

Assume that there are 𝑛 DMUs, where each 𝐷𝑀𝑈𝑗(𝑗 = 1, . . . , 𝑛), uses 𝑚 different inputs,  𝑥𝑖𝑗  (𝑖 = 1, . . . , 𝑚) to 

produce 𝑠 different outputs, 𝑦𝑟𝑗  (𝑟 = 1, . . . , 𝑠). Also, we assume that the data set is positive and deterministic. 

Table 1 reports the used nomenclatures. 

 

Table 1. Nomenclatures 

Symbol Description Symbol Description 

𝐷𝑀𝑈𝑜 DMU under evaluation; 𝑥𝑖𝑗
𝐿  lower bound of the 𝑖𝑡ℎ input of the 𝐷𝑀𝑈𝑗 

𝐷𝑀𝑈𝑗 𝑗𝑡ℎ DMU; 𝑥𝑖𝑗
𝑈 upper bound of the 𝑖𝑡ℎ input of the 𝐷𝑀𝑈𝑗 

𝑚 Number of inputs; 𝑦𝑟𝑗
𝐿  lower bound of the 𝑟𝑡ℎ output of the 𝐷𝑀𝑈𝑗 

𝑠 Number of outputs; 𝑦𝑟𝑗
𝑈  upper bound of the 𝑟𝑡ℎ output of the 𝐷𝑀𝑈𝑗 

𝑥𝑖𝑗 𝑖𝑡ℎ input of 𝐷𝑀𝑈𝑗 𝜀𝑖 small positive number 

𝑦𝑟𝑗 𝑟𝑡ℎ output of 𝐷𝑀𝑈𝑗 𝜎𝑟 small positive number 

𝜆𝑗 Intensity; �̂�𝑖𝑗 Ordinal inputs after transformation 

𝑣𝑖 Weight of 𝑖𝑡ℎinput; �̂�𝑟𝑗 Ordinal outputs after transformation 

𝑢𝑟 Weight of 𝑟𝑡ℎ output; 𝜃𝑜 Input contraction; 

 
3.1.1. Input-oriented CCR model 

Model (1) given below is the basic model proposed by Charnes et al. (1978) to evaluate DMUs, an input-

oriented CCR model:  

min𝜃𝑜
𝑠. 𝑡.

∑𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝜃𝑜𝑥𝑖𝑜, 𝑖 = 1,… ,𝑚

∑𝜆𝑗𝑦𝑟𝑗

𝑛

𝑗=1

≥ 𝑦𝑟𝑜, 𝑟 = 1,… , 𝑠

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛

 

 

(1) 

Dual form of model (1), which known as multiplier form of CCR, is expressed as follows: 

𝑀𝑎𝑥  ∑𝑢𝑟𝑦𝑟𝑜

𝑠

𝑟=1

 

𝑠. 𝑡. 

 

 

  (2) 
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∑𝑣𝑖𝑥𝑖𝑜

𝑚

𝑖=1

= 1; 

∑𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0;    𝑗 = 1, . . . , 𝑛. 

𝑢𝑟 , 𝑣𝑖 ≥ 0;                    𝑖 = 1, . . . , 𝑚,  𝑟 = 1, . . . , 𝑠. 

 

Definition 1.  𝐷𝑀𝑈𝑜 is CCR-efficient if 𝜃𝑜
∗= 1 and all slack variables are zero in the alternative optimal 

solution. 

 

3.2. Interval data 

Assume inputs, 𝑥𝑖𝑗  (𝑖 = 1, . . . , 𝑚), and outputs, 𝑦𝑟𝑗  (𝑟 = 1, . . . , 𝑠), are imprecise but located in an interval, 

where 𝑥𝑖𝑗
𝐿  and 𝑥𝑖𝑗

𝑈 are the lower and upper bounds of the 𝑖𝑡ℎ input of the 𝐷𝑀𝑈𝑗, respectively, and 𝑦𝑟𝑗
𝐿  , 𝑦𝑟𝑗

𝑈  are 

the lower and upper bounds of the 𝑟𝑡ℎ output of the 𝐷𝑀𝑈𝑗, respectively, that is to say, 𝑥𝑖𝑗
𝐿 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗

𝑈 and 𝑦𝑟𝑗
𝐿 ≤

𝑦𝑟𝑗 ≤ 𝑦𝑟𝑗
𝑈 . Note that if 𝑥𝑖𝑗

𝐿 = 𝑥𝑖𝑗
𝑈, then the 𝑖𝑡ℎ input of the 𝐷𝑀𝑈𝑗has a definite value.   

 

3.3. Ordinal data and converting into interval data 

 

In this section, we consider the transformation of ordinal preference information about the output and input 𝑦𝑟𝑗 

and 𝑥𝑖𝑗 (𝑗 = 1, . . . , 𝑛). For weak ordinal preference information 𝑦𝑟1 ≥. . . ≥ 𝑦𝑟𝑛 and 𝑥𝑖1 ≥. . . ≥ 𝑥𝑖𝑛, we have the 

following ordinal relationships after scale transformation:
  

1 ≥ �̂�𝑟1 ≥. . . ≥ �̂�𝑟𝑛 ≥ 𝜎𝑟
   

and   1 ≥ �̂�𝑖1 ≥. . . ≥ �̂�𝑖𝑛 ≥ 𝜀𝑖 (3) 

Where 𝜀𝑖 is a small positive number reflecting the ratio of the possible minimum of ⟨𝑥𝑖𝑗|𝑗 = 1, . . . , 𝑛⟩ to its 

possible maximum and 𝜎𝑟 is a small positive number reflecting the ratio of the possible minimum of 

⟨𝑦𝑟𝑗|𝑗 = 1, . . . , 𝑛⟩ to its possible maximum. The decision-maker can approximately estimate it. It is referred as 

the ratio parameter for convenience. The resultant permissible interval for each �̂�𝑖𝑗 , �̂�𝑟𝑗 is given by: 

�̂�𝑟𝑗 ∈ [𝜎𝑟, 1], 𝑗 = 1,… , 𝑛 and �̂�𝑖𝑗 ∈ [𝜀𝑖 , 1],    𝑗 = 1, . . . , 𝑛 

For strong ordinal preference information: 

1 ≥ �̂�𝑟1, … , �̂�𝑟𝑗 ≥ 𝜒𝑟�̂�𝑟,𝑗+1 (𝑗 = 1, . . . , 𝑛 − 1)  and  �̂�𝑟𝑛 ≥ 𝜎𝑟 (4)
 

1 ≥ �̂�𝑖1, … , �̂�𝑖𝑗 ≥ 𝜂𝑖�̂�𝑖,𝑗+1  (𝑗 = 1, . . . , 𝑛 − 1) and  �̂�𝑖𝑗 ≥ 𝜀𝑖 (5)
 

Where 𝜒𝑟 and 𝜂𝑖 are preference intensity parameters satisfying 𝜒𝑟 , 𝜂𝑖 > 1, provided by the decision-maker and 

𝜀𝑖,𝜎𝑟 
are the ratio parameters also provided by the decision-maker. The resultant permissible interval for each 

�̂�𝑟𝑗 and �̂�𝑖𝑗 can be derived as follows: 

�̂�𝑟𝑗 ∈ [𝜎𝑟𝜒𝑟
𝑛−𝑗
, 𝜒𝑟

1−𝑗
] , 𝑗 = 1, . . . , 𝑛; with    𝜎𝑟 ≤ 𝜒𝑟

1−𝑛 
(6) 
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�̂�𝑖𝑗 ∈ [𝜀𝑖𝜂𝑖
𝑛−𝑗
, 𝜂𝑖
1−𝑗
] , 𝑗 = 1, . . . , 𝑛; with    𝜀𝑖 ≤ 𝜂𝑖

1−𝑛 
(7) 

In this way, all the ordinal preference information is converted into interval data. 

Remark 1. We will mention each input and output that is definitive transform into interval data as follow:
 

𝑥𝑖𝑗 ∈ [𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑈], where 𝑥𝑖𝑗
𝐿 = 𝑥𝑖𝑗

𝑈 = 𝑥𝑖𝑗
 

 

(8) 

𝑦𝑟𝑗 ∈ [𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑈 ], where 𝑦𝑟𝑗
𝐿 = 𝑦𝑟𝑗

𝑈 = 𝑦𝑟𝑗
 

 

 

3.4. Basic concepts of Fuzzy numbers 

 

In this subsection, we review some definitions and notions about fuzzy numbers and possibility space and the 

nearest weighted interval approximations.  

 

3.4.1 Basic definitions and notions about fuzzy numbers and possibility space 

Let 𝑅 be the set of all real numbers. We assume that a fuzzy number 𝐴 for all 𝑥 ∈ 𝑅 can be expressed as 

follows:  

𝐴(𝑥) = {

𝐴𝐿(𝑥), 𝑥 ∈ [𝑎, 𝑏]

1,                  𝑥 ∈ [𝑏, 𝑐]
𝐴𝑅(𝑥),         𝑥 ∈ [𝑐, 𝑑]
0,                 otherwise.

     (Ι) 

Where a, b, c and, d are real numbers such that 𝑎 < 𝑏 ≤ 𝑐 < 𝑑, 𝐴𝐿 is a real-valued function that is increasing 

and right continuous and 𝐴𝑅 is a real-valued function that is decreasing and left continuous.  

Definition 2. We denote the family of fuzzy numbers by 𝜉 . 

Definition 3. A fuzzy number 𝐴 = (𝑎, 𝑏, 𝑐, 𝑑) is called a trapezoidal fuzzy number if its membership function 

𝐴(𝑥) has the following form: 

𝐴(𝑥) =

{
 
 

 
 
𝑥 − 𝑎

𝑏 − 𝑎
,    𝑥 ∈ [𝑎, 𝑏];

1,             𝑥 ∈ [𝑏, 𝑐];
𝑑 − 𝑥

𝑑 − 𝑐
,    𝑥 ∈ [𝑐, 𝑑];

0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

   (ΙΙ) 

If b=c, then 𝐴 = (𝑎, 𝑏, 𝑐) is a triangular fuzzy number (see Fig. 1). 

 

Fig. 1: The membership functions of Fuzzy numbers 



 

7 

 

 

3.4.2. The nearest weighted interval approximations 

In this subsection, we recall the concept of the nearest weighted interval approximation to a fuzzy number. 

Definition 4. (Saeidifar (2011)) A weighting function is a function as f = (   𝑓 ,𝑓) : ([0,1], [0,1]) → ( 𝑅, 𝑅) such 

that the function  𝑓 , 𝑓 are nonnegative, monotone increasing and satisfies the following normalization 

condition: 

∫ 𝑓
1

0

(𝛼)𝑑𝛼 = ∫ 𝑓
1

0

(𝛼)𝑑𝛼 = 1

 
Remark 2. The function 𝑓(𝛼) can be understood as the weight of our interval approximation. The property of 

monotone increasing of function 𝑓(𝛼) means that the higher the cut level is, the more important its weight is in 

determining the interval approximation of fuzzy numbers. In applications, the function 𝑓(𝛼) can be chosen 

according to the actual situation. 

Theorem 1. (Saeidifar (2011)) Let 𝐴 ∈ 𝜉 be a fuzzy number with 𝐴𝛼 = [𝑎(𝛼), 𝑎(𝛼)] and 𝑓(𝛼) = (𝑓(𝛼), 𝑓(𝛼)) 

be a weighted function. Then, the interval  

𝑁𝑊𝐼𝐴𝑓(𝐴) = [𝑁𝑊𝐼𝐴𝑓(𝐴), 𝑁𝑊𝐼𝐴𝑓(𝐴)] 

is the nearest weighted interval approximation to fuzzy number A. 

Obviously, weighted interval approximation synthetically reflects the information on every membership degree. 

Its advantage is that different 𝛼-cut set plays various roles. 

Corollary 1. Let A= (a, b, c, d) be a trapezoidal fuzzy number, and 𝑓(𝛼) = (𝑓(𝛼), 𝑓(𝛼)) be a weighting 

function. Then 

 

For 𝑓(𝛼) = (𝑛𝛼𝑛−1, 𝑛𝛼𝑛−1), 𝑛 ∈ 𝑁 (natural number): 

 𝑁𝑊𝐼𝐴𝑓(𝐴) = [
𝑎+𝑛𝑏

𝑛+1
,
𝑛𝑐+𝑑

𝑛+1
].  (9) 

Example 2. Consider a trapezoidal fuzzy number𝐴 = (3,7,8,13). Assume 𝑓1(𝛼) = (2𝛼, 2𝛼) and 𝑓2(𝛼) =

(4𝛼3, 4𝛼3) are two weighting functions. Then the nearest weighted interval to 𝐴is as follows (see Fig. 2): 

 
𝑁𝑊𝐼𝐴𝑓1 = [

17

3
,
29

3
], 

𝑁𝑊𝐼𝐴𝑓2 = [
31

5
, 9]. 

 

 

 

 
Fig. 2: Fuzzy number (Example 2) 
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Example 3.  Let 𝐴be a fuzzy number with the following membership function 

 

�̃� = {1 −
(𝑥 − 5)2

4
, 3 ≤ 𝑥 ≤ 7;

0,                               Otherwise.

 

Assume 𝑓1(𝛼) = (2𝛼, 2𝛼) and 𝑓2(𝛼) = (4𝛼
3, 4𝛼3) are two weighting functions. Then the nearest weighted 

interval to A is as follows (see Fig. 3): 

 
𝑁𝑊𝐼𝐴𝑓1 = [

59

15
,
91

15
], 

𝑁𝑊𝐼𝐴𝑓2 = [
1319

315
,
1831

315
]. 

 

 

 

 
Fig. 3: Fuzzy number (Ex. 3) 

 

3.5. Efficiency model with interval data 

In this section, unlike the original DEA model, we assume further that the levels of inputs and outputs are not 

known exactly, the true input and output data are known to lie within bounded intervals, i.e., 𝑥𝑖𝑗 ∈ [𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑈]  and  

𝑦𝑟𝑗 ∈ [𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑈 ] with upper and lower bounds of the intervals given as constants and assumed strictly positive i.e. 

𝑥𝑖𝑗
𝐿 > 0 and 𝑦𝑟𝑗

𝐿 > 0. In this case, the efficiency can be an interval. To deal with such an uncertain situation, the 

following pair of LP models have been developed to generate the upper and lower bounds of interval efficiency 

for each DMU (for details, see Despotis and Smirlis (2002)). 

𝜃𝑜
𝑈 = 𝑚𝑎𝑥 ∑𝑢𝑟𝑦𝑟𝑜

𝑈

𝑠

𝑟=1

 

𝑠. 𝑡. 

∑𝑣𝑖𝑥𝑖𝑜
𝐿

𝑚

𝑖=1

= 1, 

∑𝑢𝑟𝑦𝑟𝑜
𝑈

𝑠

𝑟=1

−∑𝑣𝑖𝑥𝑖𝑜
𝐿

𝑚

𝑖=1

≤ 0, 

∑𝑢𝑟𝑦𝑟𝑗
𝐿

𝑠

𝑟=1

−∑𝑣𝑖𝑥𝑖𝑗
𝑈

𝑚

𝑖=1

≤ 0, 𝑗 = 1, . . . , 𝑛; 𝑗 ≠ 𝑜, 

𝑢𝑟 , 𝑣𝑖 ≥ 𝜀, ∀𝑟, 𝑖 

 

 

 

(10) 

And  
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𝜃𝑜
𝐿 = 𝑚𝑎𝑥 ∑𝑢𝑟𝑦𝑟𝑜

𝐿

𝑠

𝑟=1

, 

𝑠. 𝑡. 

∑𝑣𝑖𝑥𝑖𝑜
𝑈

𝑚

𝑖=1

= 1, 

∑𝑢𝑟𝑦𝑟𝑜
𝐿

𝑠

𝑟=1

−∑𝑣𝑖𝑥𝑖𝑜
𝑈

𝑚

𝑖=1

≤ 0, 

∑𝑢𝑟𝑦𝑟𝑗
𝑈

𝑠

𝑟=1

−∑𝑣𝑖𝑥𝑖𝑗
𝐿

𝑚

𝑖=1

≤ 0, 𝑗 = 1, . . . , 𝑛; 𝑗 ≠ 𝑜, 

𝑢𝑟 , 𝑣𝑖 ≥ 𝜀, ∀𝑟, 𝑖

 

 

 

 

 

(11) 

Therefore, we obtain the interval efficiency [𝜃𝐿, 𝜃𝑈] for each DMU. For more details, see illustrative Fig. 4.  

Efficient Frontier

ODMU
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Efficient Frontier
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O
u
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(a): Calculating 𝜽𝒐
𝑼 (b): Calculating 𝜽𝒐

𝑳 

Fig. 4: Comparison between 𝜽𝒐
𝑼 and 𝜽𝒐

𝑳 

In Fig. 4(a) and Fig. 4(b), there are four DMUs with one input and one output with interval data. From Fig. 4, 

we can see that 𝜃𝑜
𝐿, 𝜃𝑜

𝑈 < 1 and 𝜃𝑜
𝐿 < 𝜃𝑜

𝑈. 

3.6. The 𝜴-index for ranking of interval numbers 

In assessing the interval efficiency, since the final efficiency score for each DMU is defined as an interval, a 

practical, yet simple, ranking approach should be devised for comparison and ranking of the interval efficiencies 

of different DMUs. A few approaches have been developed for ranking interval numbers, but all of them have 

some shortcomings. Specifically, when interval numbers have identical centers, but different widths, their 

discrimination is difficult.  

One way for denoting the interval 𝑨 = [𝒂𝑳, 𝒂𝑹] is as 𝑨 = ⟨𝒎(𝑨),𝒘(𝑨)⟩, where 𝒎(𝑨) and 𝒘(𝑨) are the 

midpoint and the half of the width of the interval A, that is: 

𝒎(𝑨) =
𝟏

𝟐
(𝒂𝑳 + 𝒂𝑹),  and 

𝒘(𝑨) =
𝟏

𝟐
(𝒂𝑹 − 𝒂𝑳) 

Then, we can see that 𝒂𝑳 = 𝒎(𝑨) − 𝒘(𝑨) and 𝒂𝑹 = 𝒎(𝑨) + 𝒘(𝑨) and hence, the interval 𝑨 = [𝒂𝑳, 𝒂𝑹], can 

be stated as 𝑨 = [𝒎(𝑨) − 𝒘(𝑨),𝒎(𝑨) + 𝒘(𝑨)]. As a result, if 𝒎(𝑨) + 𝒘(𝑨) ≤ 𝒎(𝑩) − 𝒘(𝑩), we can say 

that the interval B is completely superior to interval A. The above inequality can be written as follows: 
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𝒎(𝑩) −𝒎(𝑨)

𝒘(𝑩) + 𝒘(𝑨)
≥ 𝟏 

The above fraction can be selected as a good tool for comparing intervals. The higher the value of the fraction, 

the greater the difference between two interval numbers.  

Definition 6. Let ∠ be an extended order relation between intervals 𝑨 = [𝒂𝑳, 𝒂𝑹] and 𝑩 = [𝒃𝑳, 𝒃𝑹] on the real 

line R. Then for 𝒎(𝑨) ≤ 𝒎(𝑩); we make an assumption (𝑨∠𝑩) which implies that A is inferior to B (or B is 

superior to A) in terms of value. Here, the term ‘‘inferior to’’ (or ‘‘superior to’’) is similar to ‘‘less than’’ (or 

‘‘greater than’’). 

Definition 7. Let I be the set of all closed intervals on the real line R. We define an acceptability function 

𝜴: 𝑰 × 𝑰 → [𝟎,∞), where 𝜴(𝑨∠𝑩) or 𝜴∠(𝑨, 𝑩) or, in short, 𝜴∠, is obtained from: 

𝜴∠ =
𝒎(𝑩) −𝒎(𝑨)

𝒘(𝑩) + 𝒘(𝑨)
 

𝜴∠ can be interpreted as ‘‘the degree of acceptability of the assertion that the first interval is inferior to the 

second interval’’. The degree of acceptability of  (𝑨∠𝑩) can be further classified according to the relative 

position of the mean and width of the interval B related to the mean and width of the interval A, as follows: 

𝜴(𝑨∠𝑩){

= 𝟎, if 𝒎(𝑨) = 𝒎(𝑩),

> 𝟎,< 𝟏, if 𝒂𝑹 > 𝒃𝑳 and 𝒎(𝑨) < 𝒎(𝑩),

≥ 𝟏, if 𝒂𝑹 ≤ 𝒃𝑳 and 𝒎(𝑨) < 𝒎(𝑩),

 

If 𝜴(𝑨∠𝑩) = 𝟎, then the premise ‘‘A is inferior to B’’ will not be approved. If 𝜴(𝑨∠𝑩) < 𝟏, then the 

interpreter will accept the premise (𝑨∠𝑩) with various grades of satisfaction from zero to one (excluding zero 

and one). If 𝜴(𝑨∠𝑩) ≥ 𝟏, then the interpreter is absolutely satisfied with the premise(𝑨∠𝑩), that is, he accepts 

that (𝑨∠𝑩) is true. 

Property 1. For any value judgment, the 𝜴-index always satisfies the decision-maker; for any two intervals A 

and B on R, we have one of the following cases:  

𝜴(𝑨∠𝑩) > 𝟎; or 𝜴(𝑩∠𝑨) > 𝟎; or 𝜴(𝑨∠𝑩) = 𝜴(𝑩∠𝑨) = 𝟎. 

Property 2. The proposed index is transitive: for any three intervals A, B, and C on R we have: 

if 𝜴(𝑨∠𝑩) ≥ 𝟎 and 𝜴(𝑩∠𝑪) ≥ 𝟎; then 𝜴(𝑨∠𝑪) ≥ 𝟎.  

But it does not mean that 𝜴(𝑨∠𝑪) ≥ 𝒎𝒂𝒙{𝜴(𝑨∠𝑩), 𝜴(𝑩∠𝑪)}.  

We can say a general statement about the function of the 𝜴-index: The position of the mean of an interval 

relative to the mean of another reference interval determines its superiority or inferiority. However, the width of 

the superior (or inferior) interval relative to the other interval determines the amount of satisfaction the decision-

maker feels regarding the superiority or inferiority of the interval related to the reference interval. 

Based on the 𝛀-index it may found more than one efficient DMUs such that their midpoints are equal to one, 

that lead to 𝛀-index equal to zero. So, for ranking between them we introduce an ideal DMU (�̂�, �̂�) and 

calculate the interval efficiency of each efficient DMU against this ideal DMU. 

 

4. Ranking efficient DMUs by introducing ideal DMUs 
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If there is more than one unit with midpoints equal to one, they have rank one. For ranking between them, we 

introduce an ideal DMU (�̂�, �̂�)
 
where  

{
�̂�𝒊 = 𝒎𝒊𝒏

𝟏≤𝒋≤𝒏
{𝒙𝒊𝒋
𝑳 }, 𝒊 = 𝟏, . . . ,𝒎

�̂�𝒓 = 𝒎𝒂𝒙
𝟏≤𝒋≤𝒏

{𝒚𝒓𝒋
𝑼 }, 𝒓 = 𝟏, . . . , 𝒔

 

Hence, we calculate the interval efficiency of each efficient DMU against this ideal DMU. This done by solving 

the following pair of DEA models: 

𝜑𝑜
𝑈 = 𝑚𝑎𝑥 ∑𝑢𝑟𝑦𝑟𝑜

𝑈

𝑠

𝑟=1

, 

𝑠. 𝑡. 

∑𝑣𝑖𝑥𝑖𝑜
𝐿

𝑚

𝑖=1

= 1, 

∑𝑢𝑟�̂�𝑟

𝑠

𝑟=1

−∑𝑣𝑖�̂�𝑖

𝑚

𝑖=1

≤ 0, 

𝑢𝑟 , 𝑣𝑖 ≥ 𝜀, ∀𝑟, 𝑖 
 

And  
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𝜑𝑜
𝐿 = 𝑚𝑎𝑥 ∑𝑢𝑟𝑦𝑟𝑜

𝐿

𝑠

𝑟=1

, 

𝑠. 𝑡. 

∑𝑣𝑖𝑥𝑖𝑜
𝑈

𝑚

𝑖=1

= 1, 

∑𝑢𝑟�̂�𝑟

𝑠

𝑟=1

−∑𝑣𝑖�̂�𝑖

𝑚

𝑖=1

≤ 0, 

𝑢𝑟 , 𝑣𝑖 ≥ 𝜀, ∀𝑟, 𝑖 
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Then for each efficient 𝑫𝑴𝑼𝒐we obtain the interval [𝝋𝒐
𝑳, 𝝋𝒐

𝑼], and by calculating the 𝜴-index we can rank 

them. 

Input

O
u

tp
u

t

A

B

C

D

E

F

Ideal Point
LU

 

Fig. 5: Ranking with the ideal point 

For example, see Fig. 5. In Fig. 5, there are six DMUs with one input and one output with interval data. In Fig. 5 

we can see 𝜽𝑬
𝑳 , 𝜽𝑬

𝑼 < 𝟏 and 𝜽𝑭
𝑳 , 𝜽𝑭

𝑼 < 𝟏. Also, 𝜽𝑪
𝑳 < 𝟏,  𝜽𝑪

𝑼 = 𝟏 and 𝜽𝑫
𝑳 < 𝟏,  𝜽𝑫

𝑼 = 𝟏. On the other hand, we can 

see that 𝜽𝑩
𝑳 < 𝟏,  𝜽𝑩

𝑼 > 𝟏 and 𝜽𝑨
𝑳 < 𝟏,  𝜽𝑨

𝑼 > 𝟏. 
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5.  An algorithm for interval efficiency and ranking DMUs in the presence of fuzzy, ordinal, and interval 

data 

 

We assume that there are 𝒏 homogeneous DMUs, and each 𝑫𝑴𝑼𝒋 uses 𝒎 inputs 𝒙𝒊𝒋 (i=1,…, m) to produce 𝒔 

outputs 𝒚𝒓𝒋 (r=1, . . . , s). We also assume that inputs and outputs aren’t necessarily deterministic and they may 

be known as definitive, fuzzy, ordinal, or interval data. We consider five steps to achieve for ranking these 

DMUs and total results: 

Step 1: Firstly, by using the formula (6), (7), and (9), convert all of the data into interval data. Therefore, each 

input 𝒙𝒊𝒋 as from [𝒙𝒊𝒋
𝑳 , 𝒙𝒊𝒋

𝑼] and output 𝒚𝒓𝒋 as from [𝒚𝒓𝒋
𝑳 , 𝒚𝒓𝒋

𝑼 ]. 

Step 2: By using the formula (10)-(11), we obtain the interval efficiency [𝜽𝑳, 𝜽𝑼] for each DMU. 

There are n DMUs 

Interval Data

Finish

Using the formula (12)-(13), to obtain the 

interval efficiency 

Rank the DMUs by us ing the Omega-

index

Using the formula (10)-(11), to obtain the 

interval  efficiency for each DMU

Fuzzy Data 

Ordinal Data

Choose 

Weighting 

Function

Convert to Interval Data 

Are there 

more than one 

efficient DMUs

Rank the DMUs by us ing the Omega-

index

No

Yes

 

Fig. 6: procedure of the proposed algorithm 

Step 3: We can rank the DMUs by using the 𝜴-index. If there are more than one efficient DMUs, go to step 4. 

Step 4: Using the formula (12)-(13), we obtain the interval efficiency [𝝋𝒐
𝑳, 𝝋𝒐

𝑼] for each efficient DMU. 

Step 5: We can rank efficient DMUs by using the 𝜴-index. 

Fig. 6 illustrated the procedure of the proposed algorithm. 
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6.  Comparing with some other existing extended DEA methods 
 

In Table 2, we compare some capabilities of the existing extended DEA models. Some of them, in addition to 

crisp data, consider interval data, or ordinal data, or fuzzy data. 

 

Table 2: Some capabilities of the existing extended DEA models 

No. Method 
Interval 

data 

Ordinal 

data 

Fuzzy data 

Other data types 

𝛼-cut 
Kind of fuzzy 

number 

1 Kao and Liu (2000) - - √ Any form - 

2 Agarwal (2014) - - √ Any form - 

3 Y.-C. Chen et al. (2013) - - √ Any form - 

4 Z. Zhou et al. (2012) - - √ Any form - 

5 Zerafat Angiz L. et al. (2010) - - √ TrFN - 

6 Guo and Tanaka (2001) - - √ Any form - 

7 Jahanshahloo et al. (2004) - - √ TFN - 

8 Kao and Lin (2011) - √ √ Any form - 

9 Wu and Lee (2010) - √ - - 
Stochastic data, 

Non-discretionary 

10 Toloo and Nalchigar (2011) - √ - - - 

11 Despotis and Smirlis (2002) √ √ - - - 

12 Zhu (2003) √ √ - - - 

13 Y.-M. Wang et al. (2005) √ √ - - - 

14 Kao (2006) √ √ - - - 

15 Hatami-Marbini et al. (2014) √ - - - Negative data 

16 Proposed Method √ √ - Any form - 

 

To compare our proposed method with some other extended DEA methods, we compare the proposed method 

with two fuzzy DEA methods, i.e., Kao and Liu (2000) and Agarwal (2014). Therefore, we use the data set 

taken from Kao and Liu (2000) that also used in Agarwal (2014) for analyzing four DMUs. There are one input 

and one output. Some of them are fuzzy, and some of them are crisp. Table 3 reports the data and the ranking 

results of Kao and Liu (2000) and Agarwal (2014).  

 

Table 3: Input and output data for four DMUs   

DMU Input Output Kao and Liu ranking Agarwal ranking 

A (11,12,14) 10 1 1 

B 30 (12,13,14,16) 3 2 

C 40 11 4 4 

D (45,47,52,55) (12,15,19,22) 2 3 
 

As is seen, both methods Kao and Liu (2000) and Agarwal (2014) identify DMUA as the most efficient DMU 

and DMUD as the most inefficient DMU. Now, in the proposed method, first, we convert each fuzzy and crisp 

data into interval ones.  
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To convert the fuzzy data into interval ones, we use a weighting function 𝑓(𝛼, 𝛼) = 3𝛼2 in the procedure 

mentioned in section 3.4.2. Therefore, the interval forms of inputs and outputs of Table 3 are obtained as Table 

4. 

Using the formula (14)-(15), we obtain the interval efficiency for each DMU as the fourth column of Table 4. 

Now, by using the concept of midpoint and the width of each obtained interval, we can rank the DMUs by using 

the 𝛺-index, as Table 4. The obtained results are similar to the results.  

The column related to 𝛺-index shows, for example,  

“Since, 𝛺(𝐵∠𝐴) = 0.676113 < 1, then the interpreter will accept the premise (𝐵∠𝐴) with grade 68 present of 

satisfaction.” 

Table 4: The results of the proposed method for data of Table 3 

DMU Interval Input Interval Output Interval 

efficiency 
𝑚(𝐴𝑖) 𝑤(𝐴𝑖) 𝛺-index Rank 

A [11.75,12.5] [10,10] [0.888,1] 0.944 0.056 0.676113 1 

B [30,30] [12.75,14.5] [0.425,1] 0.713 0.287 0.088613 2 

C [40,40] [11,11] [0.275,1] 0.638 0.362 - 4 

D [46.5,52.75] [14.25,19.75] [0.313,1] 0.657 0.343 0.027048 3 

 

Although, DMU C has crisp data, its performance is evaluated against other DMUs that have interval data. In 

this regard and with optimistic view point (when it compares against the worst parts of other DMUs, i.e. 

(𝑥𝑗
𝑈 , 𝑦𝑗

𝐿)), the efficiency score of DMU C is 1 and with pessimistic view point (when it compares against the 

best parts of other DMUs, i.e. (𝑥𝑗
𝐿, 𝑦𝑗

𝑈)), the efficiency score of DMU C is 0.275. We can see that the 𝛺-index 

for DMU C is not reported in Table 4. According to the Definition 7, 𝛺∠ can be interpreted as ‘‘the degree of 

acceptability of the assertion that the first interval is inferior to the second interval’’. Hare, there is no interval 

efficiency such that it is inferior to the interval efficiency of DMU C. 

 
7.  Applications 

7.1. An illustrative example 

In this section, we show the ability of the provided approach using a numerical example. We apply the proposed 

method for evaluating 15 units, which each unit uses four inputs to produce four outputs. The inputs 1 and 4 are 

completely known, input 2 is of the form of ordinal data and input 3 is of the form of fuzzy data. Also, the 

outputs 1 and 3 are of the form of interval data, output 2 is of the form of ordinal data, and output 4 is wholly 

known. The data set for this example are shown in Table 5. 

Table 5.  The data set of Example 7.1 

DMUs Input 1 Input 2 Input 3 Output1 Output 2 Output 3 

1 217 6 (3,5.5,8) [48,63] 1 64 

2 168 7 �̃�23 [24,50] 3 31 

3 245 2 �̃�33 [25,36] 14 68 

4 184 11 (3,7.5,10) [37,42] 13 75 

5 212 14 �̃�53 [56,70] 2 43 

6 205 12 (5,6,7,8.5) [58,61] 10 52 

7 190 5 �̃�73 [67,73] 5 69 

8 175 3 �̃�83 [32,41] 12 42 

9 255 1 �̃�93 [25,26] 15 79 

10 210 15 �̃�10,3 [39,65] 6 50 

11 220 8 (6,8.5,11.5) [37,63] 7 64 

12 265 9 (2,5,6,7) [48,54] 9 59 

13 137 10 (6.8,7.8,9.8) [28,35] 11 67 
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14 251 4 (6.7,9.7,10.2,12.3) [35,45] 4 71 

15 187 13 (5.7,7.4,9.7) [42,50] 8 60 

 

In Table 5, we can see that the data of input 3 are fuzzy data in general form. The membership functions of 

general fuzzy numbers of input 3 in Table 5 are as follows:  

By using the relations (6), (7) and (13), we can convert the data into interval data as Table 6. 

Table 6.  Interval form of data set of Example 7.1 

 Input 1 Input 2 Input 3 Output 1 Output 2 Output 3 

1 [217,217] [0.112, 0.387] [4.875, 6.125] [48,48] [0.066,0.38] [64,64] 

2 [168,168] [0.125,0.430] [1.375, 3.447] [24,24] [0.076,0.436] [31,31] 

3 [245,245] [0.074,0.254] [0.750, 1.724] [25,25] [0.163,0.933] [68,68] 

4 [184,184] [0.191, 0.656] [6.375, 8.125] [37,37] [0.152,0.871] [75,75] 

5 [212,212] [0.262, 0.900] [4.086, 5.914] [56,56] [0.071,0.407] [43,43] 

6 [205,205] [0.212, 0.729] [5.750, 7.375] [58,58] [0.124,0.808] [52,52] 

7 [190,190] [0.101, 0.348] [1.857, 2.143] [67,67] [0.087,0.501] [69,69] 

8 [175,175] [0.082, 0.282] [2.212, 4.143] [32,32] [0.142,0.813] [42,42] 

9 [255,255] [0.066, 0.228] [0.857, 2.143] [25,25] [0.175,1.000] [79,79] 

10 [210,210] [0.291, 1.000] [2.644, 3.356] [39,39] [0.094,0.537] [50,50] 

11 [220,220] [0.139, 0.478] [7.875, 9.250] [37,37] [0.1.00,0.575] [64,64] 

12 [265,265] [0.154, 0.531] [4.250, 6.250] [48,54] [0.115,0.661] [59,59] 

13 [137,137] [0.172, 0.590] [7.550, 8.300] [28,35] [0.132,0.758] [67,67] 

14 [251,251] [0.091, 0.313] [8.95, 10.725] [35,45] [0.081,0.468] [71,71] 

15 [187,187] [0.236,0.810] [6.80, 7.975] [42,50] [0.108,0.616] [60,60] 
 

To convert the fuzzy data into interval ones, we use a weighting function 𝑓(𝛼, 𝛼) = 3𝛼2in procedure mentioned 

in section 3.4.2. Also, by a procedure mentioned in section 3.3, we convert the ordinal data into interval data. 

Therefore, the interval forms of inputs and outputs of Table 5 are obtained as Table 6. 

Using the formula (14)-(15), we obtain the interval efficiency for each DMU, and we can rank the DMUs by 

using the 𝛺-index. The results are shown in Table 7. 

Table 7.  Interval efficiencies, 𝛺-index values, and ranks of the DMUs for data in Example 7.1 

DMU Interval efficiency 𝑚(𝐴𝑖) 𝑤(𝐴𝑖) 𝛺-index Rank 

1 [0.712,1] 0.856 0.144 0.040 8 

2 [0.469,1] 0.734 0.266 - 15 

�̃�23 =

{
 
 

 
 
0, 𝑥 ≤ 1
𝑥 − 1

0.5
, 1 ≤ 𝑥 ≤ 1.5

1, 1.5 ≤ 𝑥 ≤ 2

𝑒−
(𝑥−2)2

8
, 2 ≤ 𝑥

 

�̃�33 = {

𝑥, 0 ≤ 𝑥 ≤ 1

𝑒−
(𝑥−1)2

2
, 1 ≤ 𝑥

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

�̃�53 = {
1 − (𝑥 − 5)2

4
, 𝑥 ∈ [3,7]

0,                      Otherwise.

 �̃�73 = {
(𝑥 − 1)2, 𝑥 ∈ [1,2];

(𝑥 − 3)2, 𝑥 ∈ [2,3];
0,              Otherwise.

 

�̃�83 =

{
 
 

 
 
(𝑥 − 1)2

2
,   𝑥 ∈ [1,3]

1,                 𝑥 ∈ [3,4]

(5 − 𝑥)2,   𝑥 ∈ [4,5]
0,                Otherwise.

 
�̃�93 =

{
 

 
𝑥2,             𝑥 ∈ [0,1];

1,               𝑥 ∈ [1,2];

(3 − 𝑥)2, 𝑥 ∈ [2,3];
0,              Otherwise.

 

�̃�10,3 = {

2

1+(𝑥−1)2
− 1, 𝑥 ∈ [2,4]

0,                      Otherwise.
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3 [0.815,1] 0.908 0.092 0.179 5 

4 [0.889,1] 0.944 0.056 0.243 4 

5 [0.687,1] 0.844 0.156 0.066 9 

6 [0.736,1] 0.868 0.132 0.008 6 

7 [1.000,1] 1 0 1 1 

8 [0.597,1] 0.798 0.202 0.047 13 

9 [0.896,1] 0.948 0.052 0.037 3 

10 [0.626,1] 0.813 0.187 0.005 11 

11 [0.643,1] 0.822 0.178 0.025 10 

12 [0.555,1] 0.778 0.222 0.090 14 

13 [1.000,1] 1 0 1 1 

14 [0.622,1] 0.811 0.189 0.033 12 

15 [0.732,1] 0.866 0.134 0.036 7 

We can see DMU 7 and DMU 13 have ranked one. Therefore, we construct the ideal DMU, namely (�̂�, �̂�), as 

Table 8. 

Table 8. Ideal DMU 

Input Output 

I1 I2 I3 O1 O2 O3 

117      0.066    0.75 73      1 79 

By using the formula (16)-(17), we obtain the interval efficiency for DMUS 7 and 13, and therefore we can rank 

these DMUs by using the 𝛺 -index. The results are shown in Table 9. 
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Fig. 7: Interval Efficiency and Ranking  

Fig. 7 illustrates the obtained interval efficiencies of these 15 DMUs. The interval efficiencies of Table 8 are 

given in Fig. 7. From Fig. 7, we can easily see that DMU 13 and DMU 7 are ranked first and second.  

Table 9. Interval efficiencies, 𝛺-index values, and ranks of the DMUs 7 and 13 

DMU Interval efficiency 𝑚(𝐴𝑖) 𝑤(𝐴𝑖) 𝛺-index Rank 

7 [0.565,0.653] 0.609 0.044 - 2 

13 [0.724,0.724] 0.724 0 2.614 1 

 

From Table 9, as Fig. 7, we can see that DMUs 13 and 7 obtained the first and second ranking order, 

respectively. The proposed method can solve DEA problems with non-triangular and non-trapezoidal fuzzy 

numbers, but most of the other fuzzy DEA methods cannot solve these kinds of problems. 

 

7.2 Real-world data: Hospital Data 
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In this section, we apply our proposed method for evaluating 38 hospitals were selected by OIG to participate in 

this study. The input and output parameters and their associated values for the 38 hospitals, are presented in 

Table 10. Information was taken from Tavana et al. (2012).   

 

7.2.1 Data and Information 

This study uses three input and three output measures for evaluating these hospitals. Four selected inputs for the 

DEA analysis are Number of beds, Labor-related expenses and Patient care supplies and other expenses, and 

Overall hospital ranking in the League table. Three outputs include the Number of outpatient Department visits, 

Number of inpatient department admissions, and Overall patient satisfaction. Among these data, input 4 is of the 

form of ordinal data, and output 3 is in the form of fuzzy data, and other data are completely known. 

  

Table 10.  The hospital data 

 Input Parameters Output Parameters 

 

Numbe

r 

of beds 

Labor-related 

expenses  ($) 

Patient care 

supplies and 

other expenses 

($) 

Overall hospital 

ranking in 

League table 

Number of 

outpatient 

Department 

visits 

Number of 

inpatient 

department 

admissions 

Overall 

patient 

satisfactio

n 

1 83 5,428,903 3,142,311 28 42,859 5,274 ML 

2 78 6,583,333 4,126,127 15 48,367 5,268 M 

3 54 5,495,517 2,177,965 34 55,606 7,302 L 

4 80 6,426,532 3,501,847 31 48,879 7,077 MH 

5 75 6,782,869 2,894,877 26 46,801 6,593 ML 

6 87 5,491,546 2,565,741 35 57,977 7,574 VL 

7 58 3,778,001 2,036,342 38 57,787 5,264 MH 

8 71 6,999,241 3,036,959 33 70,031 6,090 VL 

9 76 7,942,581 3,982,119 22 62,102 5,157 M 

10 80 7,473,486 4,741,523 6 52,940 3,476 VH 

11 78 6,698,820 3,770,352 16 40,055 5,611 L 

12 60 4,293,792 2,110,921 36 56,555 5,586 MH 

13 78 7,199,197 3,166,796 27 64,143 5,170 H 

14 69 7,608,522 3,400,052 10 48,890 4,456 L 

15 80 6,775,716 3,495,441 18 54,330 4,774 M 

16 81 8,716,008 3,530,795 8 46,305 6,125 VL 

17 77 7,237,227 3,524,780 23 44,564 6,218 M 

18 87 7,592,595 4,701,414 1 52,283 3,798 MH 

19 49 5,604,079 2,696,243 25 41,782 4,814 VH 

20 64 6,721,746 2,760,717 24 38,308 6,418 VL 

21 90 5,147,491 2,618,025 32 42,211 5,618 M 

22 84 8,416,341 4,086,333 14 41,346 6,705 MH 

23 81 6,945,228 4,312,511 13 50,619 4,783 VH 

24 81 7,340,542 3,907,518 7 47,010 5,476 M 

25 89 9,202,308 4,637,745 12 67,091 5,179 L 

26 79 6,861,558 3,445,030 21 60,469 5,515 M 

27 86 8,359,115 3,718,448 20 61,267 6,225 VL 

28 70 7,636,593 2,870,895 29 47,437 6,843 VH 

29 81 7,939,155 4,219,269 5 46,235 5,620 L 

30 80 6,310,243 3,439,974 30 63,992 6,538 ML 

31 78 6,793,294 4,404,172 3 42,032 4,821 MH 

32 86 7,517,868 4,652,596 17 49,402 6,238 H 

33 55 6,808,131 2,303,569 37 78,483 5,866 VL 

34 80 6,109,813 3,449,003 9 35,649 4,495 M 

35 82 7,517,663 4,054,654 11 51,891 4,996 ML 

36 79 7,887,497 3,281,593 4 49,168 4,641 VL 

37 85 9,046,154 4,696,585 2 50,796 5,160 H 

38 85 7,033,971 4,098,183 19 56,017 5,017 L 
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The importance weights of the qualitative criteria and the ratings are considered as linguistic variables expressed 

in positive trapezoidal fuzzy numbers (see S.-M. Chen and Lee (2010); Xiao et al. (2012); Ploskas et al. (2017) 

and Akram and Arshad (2019)), as shown in Table 11.  

 
Table 11.  Linguistic variables and their associated trapezoidal fuzzy numbers 

Linguistic variables Associated trapezoidal fuzzy numbers 

Very low  VL  (0, 0, 0.1, 0.2) 

Low  L  (0.1, 0.2, 0.2, 0.3) 

Medium low  ML  (0.2, 0.3, 0.4, 0.5) 

Medium  M  (0.4, 0.5, 0.5, 0.6) 

Medium high  MH  (0.5, 0.6, 0.7, 0.8) 

High  H  (0.7, 0.8, 0.8, 0.9) 

Very high  VH  (0.8, 0.9, 0.9, 1) 

 

Additionally, the rule of conversion between linguistic variables and trapezoidal fuzzy numbers is shown in Fig. 

8. 

 

 

Fig. 8: Linguistic variables as trapezoidal fuzzy numbers 

 
7.2.2. Results of the models 

 

By using the relations (6), (7), and (13), we can convert the data into interval data as Table 12. 

 
Table 12. Interval form of data set of Example 6.2 

 Input Parameters Output Parameters 

 I1 I2 I3 I4 O1 O2 O3 

1 [83,83] 

[5428903, 

5428903] [3142311, 3142311] 

[0.068,0.076] 

[42859, 42859] 

[5274, 

5274] [0.28,0.42] 

2 [78,78] 

[6583333, 

6583333] [4126127, 4126127] 

[0.235,0.263] 

[48367, 48367] 

[5268, 

5268] [0.48,0.52] 

3 [54,54] 

[5495517, 

5495517] [2177965, 2177965] 

[0.038,0.043] 

[55606, 55606] 

[7302, 

7302] [0.18,0.22] 

4 [80,80] 

[6426532, 

6426532] [3501847, 3501847] 

[0.051,0.057] 

[48879, 48879] 

[7077, 

7077] [0.58,0.72] 

5 [75,75] 

[6782869, 

6782869] [2894877, 2894877] 

[0.082,0.092] 

[46801, 46801] 

[6593, 

6593] [0.28,0.42] 

6 [87,87] 

[5491546, 

5491546] [2565741, 2565741] 

[0.035,0.039] 

[57977, 57977] 

[7574, 

7574] [0.00,0.12] 

7 [58,58] 

[3778001, 

3778001] [2036342, 2036342] 

[0.026,0.029] 

[57787, 57787] 

[5264, 

5264] [0.58,0.72] 

8 [71,71] 

[6999241, 

6999241] [3036959, 3036959] 

[0.042,0.047] 

[70031, 70031] 

[6090, 

6090] [0.00,0.12] 

9 [76,76] 

[7942581, 

7942581] [3982119, 3982119] 

[0.120,0.135] 

[62102, 62102] 

[5157, 

5157] [0.48,0.52] 

10 [80,80] [7473486, [4741523, 4741523] [0.553,0.621] [52940, 52940] [3476, [0.88,0.92] 

VL L ML M MH H VH 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1 
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7473486] 3476] 

11 [78,78] 

[6698820, 

6698820] [3770352, 3770352] 

[0.213,0.239] 

[40055, 40055] 

[5611, 

5611] [0.18,0.22] 

12 [60,60] 

[4293792, 

4293792] [2110921, 2110921] 

[0.032,0.036] 

[56555, 56555] 

[5586, 

5586] [0.58,0.72] 

13 [78,78] 

[7199197, 

7199197] [3166796, 3166796] 

[0.075,0.084] 

[64143, 64143] 

[5170, 

5170] [0.78,0.82] 

14 [69,69] 

[7608522, 

7608522] [3400052, 3400052] 

[0.378,0.424] 

[48890, 48890] 

[4456, 

4456] [0.18,0.22] 

15 [80,80] 

[6775716, 

6775716] [3495441, 3495441] 

[0.176,0.198] 

[54330, 54330] 

[4774, 

4774] [0.48,0.52] 

16 [81,81] 

[8716008, 

8716008] [3530795, 3530795] 

[0.457,0.513] 

[46305, 46305] 

[6125, 

6125] [0.00,0.12] 

17 [77,77] 

[7237227, 

7237227] [3524780, 3524780] 

[0.109,0.123] 

[44564, 44564] 

[6218, 

6218] [0.48,0.52] 

18 [87,87] 

[7592595, 

7592595] [4701414, 4701414] 

[0.891,1.000] 

[52283, 52283] 

[3798, 

3798] [0.58,0.72] 

19 [49,49] 

[5604079, 

5604079] [2696243, 2696243] 

[0.090,0.102] 

[41782, 41782] 

[4814, 

4814] [0.88,0.92] 

20 [64,64] 

[6721746, 

6721746] [2760717, 2760717] 

[0.099,0.112] 

[38308, 38308] 

[6418, 

6418] [0.00,0.12] 

21 [90,90] 

[5147491, 

5147491] [2618025, 2618025] 

[0.046,0.052] 

[42211, 42211] 

[5618, 

5618] [0.48,0.52] 

22 [84,84] 

[8416341, 

8416341] [4086333, 4086333] 

[0.258,0.289] 

[41346, 41346] 

[6705, 

6705] [0.58,0.72] 

23 [81,81] 

[6945228, 

6945228] [4312511, 4312511] 

[0.284,0.319] 

[50619, 50619] 

[4783, 

4783] [0.88,0.92] 

24 [81,81] 

[7340542, 

7340542] [3907518, 3907518] 

[0.503,0.564] 

[47010, 47010] 

[5476, 

5476] [0.48,0.52] 

25 [89,89] 

[9202308, 

9202308] [4637745, 4637745] 

[0.312,0.350] 

[67091, 67091] 

[5179, 

5179] [0.18,0.22] 

26 [79,79] 

[6861558, 

6861558] [3445030, 3445030] 

[0.132,0.149] 

[60469, 60469] 

[5515, 

5515] [0.48,0.52] 

27 [86,86] 

[8359115, 

8359115] [3718448, 3718448] 

[0.146,0.164] 

[61267, 61267] 

[6225, 

6225] [0.00,0.12] 

28 [70,70] 

[7636593, 

7636593] [2870895, 2870895] 

[0.062,0.069] 

[47437, 47437] 

[6843, 

6843] [0.88,0.92] 

29 [81,81] 

[7939155, 

7939155] [4219269, 4219269] 

[0.609,0.683] 

[46235, 46235] 

[5620, 

5620] [0.18,0.22] 

30 [80,80] 

[6310243, 

6310243] [3439974, 3439974] 

[0.056,0.063] 

[63992, 63992] 

[6538, 

6538] [0.28,0.42] 

31 [78,78] 

[6793294, 

6793294] [4404172, 4404172] 

[0.737,0.826] 

[42032, 42032] 

[4821, 

4821] [0.58,0.72] 

32 [86,86] 

[7517868, 

7517868] [4652596, 4652596] 

[0.194,0.218] 

[49402, 49402] 

[6238, 

6238] [0.78,0.82] 

33 [55,55] 

[6808131, 

6808131] [2303569, 2303569] 

[0.029,0.032] 

[78483, 78483] 

[5866, 

5866] [0.00,0.12] 

34 [80,80] 

[6109813, 

6109813] [3449003, 3449003] 

[0.416,0.467] 

[35649, 35649] 

[4495, 

4495] [0.48,0.52] 

35 [82,82] 

[7517663, 

7517663] [4054654, 4054654] 

[0.344,0.386] 

[51891, 51891] 

[4996, 

4996] [0.28,0.42] 

36 [79,79] 

[7887497, 

7887497] [3281593, 3281593] 

[0.669,0.751] 

[49168, 49168] 

[4641, 

4641] [0.00,0.12] 

37 [85,85] 

[9046154, 

9046154] [4696585, 4696585] 

[0.810,0.909] 

[50796, 50796] 

[5160, 

5160] [0.78,0.82] 

38 [85,85] 

[7033971, 

7033971] [4098183, 4098183] 

[0.160,0.179] 

[56017, 56017] 

[5017, 

5017] [0.18,0.22] 

 
Using the formula (14)-(15), we obtain the interval efficiency for each DMU, and we can rank the DMUs by 

using the 𝛺-index. The results are shown in Table 13. 

 
Table 13. Interval efficiencies, 𝛺-index values, and ranking of the hospital 

DMU Interval efficiency 𝑚(𝐴𝑖) 𝑤(𝐴𝑖) 𝛺-index Rank 

1 [0.698,0.700] 0.699 0.001 1 22 

2 [0.623,0.657] 0.640 0.017 0.16 25 

3 [1.000,1.000] 1 0 1 1 

4 [0.810,0.914] 0.862 0.052 0.36 8 

5 [0.725,0.776] 0.751 0.026 0.05 14 

6 [1.000,1.000] 1 0 1 1 

7 [1.000,1.000] 1 0 1 1 

8 [0.817,0.817] 0.817 0 14 10 

9 [0.699,0.742] 0.720 0.010 0.21 18 
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10 [0.709,0.787] 0.748 0.039 0.15 15 

11 [0.620,0.622] 0.621 0.001 0.2 29 

12 [0.960,1.000] 0.980 0.020 1.64 7 

13 [0.804,0.862] 0.833 0.029 0.55 9 

14 [0.572,0.597] 0.685 0.013 0.85 23 

15 [0.615,0.654] 0.634 0.020 0.15 26 

16 [0.559,0.559] 0.559 0 2.75 36 

17 [0.694,0.724] 0.709 0.015 0.09 20 

18 [0.571,0.634] 0.602 0.032 0.16 31 

19 [1.000,1.000] 1 0 1 1 

20 [0.742,0.742] 0.742 0 0.61 16 

21 [0.787,0.791] 0.789 0.002 0.77 11 

22 [0.685,0.736] 0.710 0.026 0.02 19 

23 [0.721,0.846] 0.784 0.063 0.08 12 

24 [0.603,0.632] 0.618 0.014 0.35 30 

25 [0.590,0.600] 0.595 0.005 0.64 33 

26 [0.690,0.722] 0.706 0.016 0.41 21 

27 [0.631,0.631] 0.631 0 0.07 27 

28 [0.983,1.000] 0.992 0.008 0.43 6 

29 [0.544,0.553] 0.548 0.004 4.75 37 

30 [0.779,0.779] 0.779 0 1.08 13 

31 [0.602,0.680] 0.641 0.039 0.02 24 

32 [0.713,0.749] 0.731 0.018 0.28 17 

33 [1.000,1.000] 1 0 1 1 

34 [0.554,0.591] 0.572 0.018 0.72 35 

35 [0.564,0.598] 0.581 0.017 0.26 34 

36 [0.529,0.529] 0.529 0 - 38 

37 [0.616,0.644] 0.630 0.014 0.6 28 

38 [0.597,0.597] 0.597 0 0.4 32 

 

 
Fig. 9: Ranking DMUs based on the values of  𝑚(𝐴𝑖) 

 

From Fig. 9, we can see the ranking DMUs based on the values of 𝑚(𝐴𝑖). From Fig. 9 it is appear that DMUs 3, 

6, 7, 19 and 33 are the first ranking order based on the values of 𝑚(𝐴𝑖).  

Besides, from Table 13, we can see that, five DMUs 3, 6, 7, 19, and 33 have rank one. Therefore, we construct 

the ideal DMU, namely (�̂�, �̂�) as Table 14. 

 
Table 14. Ideal DMU 

Input Output 

I1 I2 I3 I4 O1 O2 O3 

49 3778001 2036342 0.026 78483 7574 0.92 
 

 

By using the formula (16)-(17), we obtain the interval efficiency for DMUS 3,6,7,19 and 33, and therefore we 

can rank these DMUs by using the 𝛺 -index. The results are shown in Table 15. 
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Table 15. Interval efficiencies, 𝛺-index values, and ranks of the DMUs 3,6,7,19,28 and 33. 

DMU Interval efficiency 𝑚(𝐴𝑖) 𝑤(𝐴𝑖) 𝛺-index Rank 

3 [0.901,0.901] 0.901 0 0.8 2 

6 [0.794,0.794] 0.794 0 1.52 4 

7 [0.736,0.782] 0.759 0.023 - 5 

19 [0.957,1.000] 0.978 0.022 3.5 1 

33 [0.891,0.902] 0.897 0.005 20.6 3 

 

From Table 15, we can see that DMU 19 has the best ranking order. Fig. 10 illustrates the obtained interval 

efficiencies of these best six DMUs. From Fig. 10 we can easily see that DMU 19 obtain the ranking order one 

and DMU 3 get the second ranking order. Also, DMU 7 gained the fifth ranking order. 
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Fig. 10: Interval Efficiency and Ranking for Efficient DMUs 

 
7.2.3 Analysis of linguistic variables 
 

Linguistic variables are the variables whose defining terms are not numerical values but rather sentences or 

words in a natural or artificial language. This kind of variable can well be represented by triangular or 

trapezoidal fuzzy numbers. For the study of linguistic variables, readers are referred to Zadeh (1975), Akram 

and Adeel (2016), Zhang et al. (2017), and Akram et al. (2019). Linguistic variables can be stated as various 

kinds of fuzzy numbers. S.-M. Chen and Lee (2010), Xiao et al. (2012), Ploskas et al. (2017), and Akram and 

Arshad (2019) considered linguistic variables as trapezoidal fuzzy numbers. In addition to the trapezoidal fuzzy 

numbers, Ertuğrul and Güneş (2007) and T.-C. Wang and Chen (2008) applied the triangular fuzzy numbers to 

interpret the linguistic variables. In this work, the rating of “Overall patient satisfaction” is described using 

linguistic terms induced by fuzzy linguistic variable, which was expressed in trapezoidal fuzzy numbers. To 

check the impact of different linguistic variables on the final result, we further run our models by associating 

triangular fuzzy numbers to linguistic variables as Table 16.  

 

Table 16: Linguistic variables and their associated triangular fuzzy numbers 

Linguistic variables Triangular fuzzy numbers (TFN) 

Very low  (0,0,0.1) 

Low  (0,0.1,0.3) 

Medium low  (0.1,0.3,0.5) 

Medium  (0.3,0.5,0.7) 

Medium high  (0.5,0.7,0.9) 

High  (0.7,0.9,1) 

Very high  (0.9,1,1) 
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The rule of conversion between linguistic variables and triangular numbers is shown in Fig. 11. 

 

Fig. 11: Linguistic variables as triangular numbers 

For this analysis, we calculated the equivalent interval for each triangular number of Table 16 and performed the 

models once again. The Spearman correlation coefficient between the ranking results of using trapezoidal fuzzy 

numbers (TrFN) and triangular fuzzy numbers is 0.925. This high correlation indicates that the results are not 

very sensitive to how to convert the linguistic variables into fuzzy numbers. Fig. 12 illustrates the high 

Spearman correlation coefficient between two different measures.  

 

Fig. 12: Spearman correlation coefficient 

 

8.  Conclusions 

Due to its widely practical used background, DEA has become a pop area of research. To deal with imprecise 

data, we incorporate fuzzy, ordinal and interval data to quantify imprecise and vague data in DEA models. In 

this paper, we reformulated the conventional DEA models as an imprecise DEA problem, and proposed a novel 

method for evaluating the DMUs when the inputs and outputs are fuzzy and/or ordinal, or vary in intervals. For 

this purpose, we converted all data into interval data. In order to convert each fuzzy number into interval data 

we used the nearest weighted interval approximation of fuzzy numbers by applying the weighting function, and 

we converted each ordinal data into interval one. In this manner, we could convert all data into interval data. 
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After that, we proposed an algorithm for ranking DMUs when we deal with these kinds of data. Finally, we use 

two numerical examples to illustrate the proposed DEA algorithm and the ranking method.  

Also, a case study was provided to demonstrate the efficacy of our proposed method. We tested our proposed 

method in the real-world by assessing 38 hospitals that were selected by OIG. Therefore, the proposed method 

was applied to evaluate and rank these hospitals. We used four inputs and three outputs for evaluating the 

hospitals. Five hospitals became efficient, and by further analysis in the second stage of our proposed algorithm, 

they were completely ranked. Table 15 and Figures 9 and 10 showed that hospital 19, is the best.  

In this paper, we focused on the CCR model, which is based on the constant returns to scale technology. For 

future works, one can apply variable returns to scale technology on our proposed method and present a new 

ranking approach based on the BCC model. Also, we can consider the slacks-based measure (SBM) model on 

our presented method to obtain a new ranking methodology for assessing DMUs. Also, one can extend our 

presented methodology by considering undesirable data and stochastic data. 
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