
JOURNAL OF PHYSICAL AGENTS, VOL. 8, NO. 1, JULY 2017 33

Use and advances in the Active Grammar-based
Modeling architecture

L.J. Manso, L.V. Calderita, P. Bustos, A. Bandera

Abstract—The choice of using a robotic architecture and one
of its possible implementations is one of the most crucial design
decisions when developing robots. Such decision affects the whole
development process, the limitations of the robot, and changing
minds can be prohibitively time consuming. This paper presents
the redesign and the most relevant implementation issues of the
Active Grammar-based Modeling architecture (AGM), as well as
the latest developments thereof. AGM is flexible, modular and
designed with computation distribution and scalability in mind.
In addition to a continuous refactoring of the API library and
planner, the most relevant improvements are an enhanced mission
specification syntax, support for representations combining sym-
bolic and metric properties, redesigned communication patterns,
and extended middleware support. A few use examples are pre-
sented to demonstrate successful application of the architecture
and why some of its features were needed.

Index Terms—robotic architectures, artificial intelligence

I. INTRODUCTION

ROBOTIC architectures aim to define how the different
software modules of a robot should interact. They are of

crucial interest because multiple properties of the robots are
affected by the architecture used. Most implementations of
advanced architectures provide users with reusable domain-
independent modules, such as executives or planners, to avoid
forcing users reinventing the wheel for every robot. These
implementations are important for the roboticists because they
influence the development process, the range of middleware
and programming languages supported. Modularity and scala-
bility are also affected by the concrete implementation of the
architecture.

Almost all advanced autonomous robots rely on some form
of a three-tiered robotics architecture (see [4]) in which
one can find a reactive layer, a plan execution layer and a
deliberative layer that monitors the state of the robot’s internal
world model to update the plan. The main differences come
from implementation issues such as the middleware used,
how intermediate-level modules and high-level modules such
as the planner and the executive communicate, or how is
the robots’ internal model represented. The Active Grammar-
based architecture (AGM) is no exception in this vein: it
proposes a detailed description of how the software modules
of the robots’ can interact and a world model structure.

In particular, AGM world models are multi-graph structures
with typed nodes (symbols) and edges (predicates providing

L.J. Manso, L.V. Calderita and P. Bustos are with the Computer and
Communication Technology Department of Universidad de Extremadura.
e-mail: {lmanso,lvcalderita,pbustos}@unex.es

A. Bandera is with the Electronic Technology Department of Universidad
de Málaga.
e-mail: ajbandera@uma.es

relationships between symbols), where the nodes can be at-
tributed with metric properties. These attributes are supposed
not to affect the plan, since the planner do not take them
into account1. Formally, these graph models can be defined
as tuples G = (V,E) where V is the set of nodes and E
the set of edges. Nodes are tuples n = (in, tn, an), where
in is a string identifier, tn is represents the type of the
node and an is a string to string mapping used to store an
arbitrary number of attributes for the symbols. Edges are tuples
e = (se, de, te), where se and de are the identifiers of the
source and destination nodes of the edge and te is a string
used to define a type for the edges. This kind of graph is used
to represent the robots’ knowledge, to describe how the world
models can change and to specify missions. See figure 2.

The architecture is built around the representation. There is a
deliberative module that, based on the robot’s domain and goal,
proposes a plan. The rest of the architecture is composed of a
pool of semi-autonomous software modules –named agents in
this context, as in M. Minsky’s Society of Mind [10]– which
are given the plan, can read and modify the representation, and
are in charge of performing a subset of actions. In the simplest
scenario each action is executed by a single agent, but actions
can also be executed by multiple agents in collaboration.
Agents can in turn be arbitrarily modularized, controlling their
own software modules. The deliberative module is also in
charge of managing the representation, accepting or rejecting
the update proposals made by the agents. The diagram of the
current architecture is shown in figure 1.

Depending on their purpose, the behavior of these agents
ranges from blindly contributing to the execution of multiple
actions of the plan to a pure reactive behavior2. Regardless
of this, they can modify the model or read it in order to
make the robot reach its goal. For example, the behavior
of some perceptual agents can be purely reactive, behaving
independently of the current plan (e.g., an agent in charge of
passively detecting persons). On the other hand, there can be
agents in charge of modifying the model when necessary, not
even performing physical actions.

Domain descriptions are sets of graph-rewriting rules de-
scribing how an action or percept can modify the robots’ world
models. Each rule in these sets is composed of a left-hand side
pattern (LHS) and a right-hand side one (RHS), and states
that, starting from any valid world model, the substitution of
the pattern in the LHS by the pattern in the RHS yields a

1Metric information that can potentially affect the plan can be symbolized
using regular predicates.

2Agents are given the full plan, not just the first action, so they can
anticipate further actions (e.g., robots can lift their arms to prepare for grasping
tasks when walking towards the corresponding object).



34 JOURNAL OF PHYSICAL AGENTS, VOL. 8, NO. 1, JULY 2017

Fig. 1: Redesigned diagram of AGM. The grammar-based controller is composed of the executive, the mission specification, the
world grammar (i.e., domain description) and the world model. The planner is used by the executive to find plans and verify
change proposals. The agents interact with the world perceiving or acting according to the plan, and propose to the executive
model updates to acknowledge new information gathered from the environment or their actions. The executive then broadcasts
to the agents those change-proposals that are found to be valid. The style of the arrow represents the nature of the information
flow: dashed, thick and thin lines, mean direct access, RPC-like and publish/subscribe communication, respectively. The only
modification in the diagram from the one in [8] is that change proposals are sent to the executive by RPC.

valid world model. This information is used by the executive
to compute plans and to verify that the world models held by
the robots are valid. See [6] for a deeper description of the
used formalism.

The limitations detected in the earliest versions of the
architecture and the new features implemented are described
in section II. To illustrate how AGM can be used, a selection
of concrete examples of use is presented in section III. The
conclusions and future work are presented in section IV.

II. NEW FEATURES

Since it was first presented in [8] the Active Grammar-based
architecture (AGM) has been used in multiple scenarios and
robots [11], [9], especially in the CORTEX architecture [1],
which is built on top of AGM. This extensive use has raised
several limitations and feature requests. This section describes
how the AGM architecture has evolved over time as the result
of the experience gained through its use.

A. Flexible mission definition

AGM targets, as proposed in [8], were defined as concrete
patterns sought to be found in the robot’s world model
representation. These patterns were specified using a graphical
model. Despite this approach is moderately easy to understand
and is enough to describe most missions (e.g., bringing objects,
going to places, even serving coffee [7]), these specifications
could only use conditions that were explicitly represented.
A simple example of this limitation can be seen in Table I,
where a clean-the-table mission is specified using a) the initial
approach and, b) the current approach. Using the former
approach the ”table clean” condition had to be explicitly
marked, whereas the current approach allows avoiding such
restriction.

Graphical models are easy to read and share with domain-
experts and have been demonstrated to be faster and less error-
prone. With the idea that increasing the expressive power of

(a) World model example describing three rooms connected in a row. The
robot is in one of the extremes of the room sequence. The number in the top
of each symbol is its identifier, the word in the bottom is its type.

(b) Rule example (left and right hand side of the rule). It describes using a
graph-grammar rule the preconditions and how the world model is modified
when the robot moves from one room to another. Note that variable identifiers
are used in rule definitions so that they can be used with any set of symbols
satisfying the conditions.

(c) Mission example in which a robot is required to be located in the room
identified with number 4. Note that mission definitions can combine concrete
identifiers (with numbers) and variable ones (the robot x in this case).

Fig. 2: Examples of how the AGM architecture uses graphs
to describe a) world models, b) domain descriptions, and c)
missions.

the visual language with disjunctive and quantified formulas
would keep domain reading easier than using a textual lan-
guage, it was decided to add a new optional textual section to
the mission definition. This section is applied in conjunction
with the graphic section. Its syntax is similar to the one of
PDDL [2]. The solution in Table I.a is clearly easier to read



MANSO ET AL. : USE AND ADVANCES IN THE ACTIVE GRAMMAR-BASED MODELING ARCHITECTURE 35

a) initial proposal:

b) current solution:

1 (forall something:object
2 (not (in something o))
3 )

TABLE I: A clean-the-table mission specified using a) the
initial approach, b) the current approach.

by domain experts than the one of Table I.b. However, this
approach requires continuously monitoring and updating the
world model to create and remove this kind of edges. Since
using the textual section is not mandatory, users can decide
which approach to use.

B. Native support for hybrid representations

The first robots using AGM used a single global refer-
ence frame for geometric information, so the pose of the
objects could easily be specified in the attributes of their
corresponding symbols3. However, as the number of robots
using the architecture increased, the need for a methodical way
to represent kinematic trees with different reference frames
became clear. Being able to extract this kinematic information
with an easy-to-use API was also deemed desirable.

Among all the possible approaches taken into account, the
decision was to include special transformation edges describ-
ing the kinematic relationships. The rest of the options were
discarded because they made kinematic structures harder to
understand at first sight or because their impact in the models
was bigger (regarding the number of additional symbols and
edges to include). However, to implement these edges, which
are identified by the ”RT” label, it was necessary to enable
edge attributes (a feature that the first AGM proposal missed).
From a formal point of view, only the definition of edges
is affected by this change. Edges are now defined as tuples
e = (se, de, te, ae), where se and de are the source and
destination nodes of the edge, respectively, te is a string used
to define a type for the edges and ae is a string to string map
used to store an arbitrary number of attributes for the edges.

While the initial world models of the robots in AGM are
defined using an XML format, their kinematic trees are usually
defined using specialized file formats such as URDF [12] or
InnerModel [5]. It would be time-consuming and error prone
to manually include and update these kinematic structures in
the robots’ world models if desired. Therefore AGM provides
two tools to automate the task:

3Keep in mind that these models were directed multi-graphs too, where
nodes and edges were typed. Additionally, nodes (only nodes) could have
optional attributes to store non-symbolic information.

• agminner is a tool provided to include the kinematic
structure of the robot in it’s internal model file.

• libagm is a C++ library which, among other purposes
such as general access to the graph model (see sec-
tion II-D), can be used to extract/update kinematics
specific objects with geometry-oriented API from the
model. Currently, libagm supports InnerModel kinematic
definitions.

One of the advantages of using graph-like structures to
represent the robots’ knowledge is that they are easy to
visualize. However, including their kinematic structures in the
model makes these models too large to be visualized. To
overcome this issue the AGM’s model viewer was endowed
with options that hide part of this information. See Figure 3.

C. Improvements in the communication strategy

Model modification proposals were initially published using
one-way communication with the executive so agents did
not get an answer when publishing new proposals. This
occasionally made change proposals be silently overwritten if
new ones arrived at a fast pace. The issue has been tackled by
substituting the one-way publishing mechanism which raises
an exception in case the executive is busy or the modification
is not correct.

Since the support for hybrid models the frequency of model
modifications increased dramatically. Publishing the whole
model with every change increased the cost of maintaining
complex hybrid models. For example, maintaining human
models involved updating a high number of joints and their
reference frames per second. The implemented solution was to
allow updating edge and node attribute maps without the need
of publishing the whole model: one at a time or –in order to
decrease the network overhead– multiple maps per request.

D. libagm

Agents receive the actions they have to perform as part of
the plans sent by the executive. To perform their corresponding
tasks they have to access the symbols included in the current
action, probably other additional symbols and, eventually
modify the graph accordingly. Programmatically implementing
some of these tasks is time-consuming and error-prone, so
libagm has included in its API new methods to ease:

• accessing the symbols in the current action
• accessing edges given the ending symbols
• iterating over the symbols connected to a specific symbol
• publishing modified models, making transparent the

middleware-dependent serialization
• printing and drawing the models

among other minor improvements and those commented in
section II-B.

Additionally, a detailed description of the API and examples
of its use have been written and published in the web4.

4http://www.grammarsandrobots.org



36 JOURNAL OF PHYSICAL AGENTS, VOL. 8, NO. 1, JULY 2017

(a) Whole model.

(b) Geometric view of the model.

(c) Model after filtering geometry-only nodes.

Fig. 3: Example of a complex AGM model: a) as it is, b) its
geometric view, c) filtering geometry-only nodes.

Fig. 4: Deployment network of the high level components used
in these examples of use.

E. Middleware support

The first version of the architecture supported the Robo-
Comp framework [3] which, despite of being a full-featured
framework, its user base is quite limited. Learning to use a new
framework or middleware is time-consuming, so roboticists
may not be sufficiently motivated to change. To overcome this
limitation, support for multiple frameworks is now underway.
The current solution allows cooperation between agents imple-
mented using different frameworks, specifically, RoboComp
and ROS. The new executive implements services for both
frameworks and, for each topic to subscribe to or publish, there
is a RoboComp and a ROS version. Of course, since each of
the agents can be programmed using these frameworks, they
can in turn use other lower-level components implemented in
the supported frameworks.

III. USE CASES

Instead of describing a full-featured robot domain we will
introduce several common robot tasks and how they were
solved in a real robot using the new features of the architecture.
Figure 4 depicts the executive and the set of agents used in
these examples along a mission viewer.

A. Changing rooms

For changing the room in which the robot is located it
uses the rule described in figure 2b. The robot and the rooms
are explicitly represented using robot and room symbols,
respectively. The current semantic location of the robot is
represented using a link labeled as in from the robot to the
corresponding room symbol. The rule depicted in figure 2b
describes how, given two rooms src and dst so that the robot
(bot) is located in src and there is a link labeled as way from
src to dst, the robot can change rooms. The result of such
action is that the link from bot to src is removed and a new
link from bot to dst is created. Note that, as in the previous
versions of AGM, removed elements are highlighted in red



MANSO ET AL. : USE AND ADVANCES IN THE ACTIVE GRAMMAR-BASED MODELING ARCHITECTURE 37

Fig. 5: Graph-grammar rule describing how object grasping
affects the models.

whereas those created as a result of the rule are highlighted
in green.

From the point of view of the execution of the rule, there are
two independent processes involved in the navigation agent.
First, when the executive requests the change room rule to
be triggered, the agent sends the corresponding command
to a lower level robot navigation component in charge of
actually moving the platform. Concurrently, it continuously
monitors the pose of the robot using another lower level
localization component. The limits of the rooms are specified
as an attribute of each room’s symbol, so when the robot
actually changes the room the navigation agent can update
the model correspondingly, modifying the in edge as depicted
in figure 2b.

B. Grasping

Grasping objects is slightly more complex than changing
rooms. If there is a robot r and a table t containing an object
o in a room m, if the o is reachable by the robot, such object
can change from being in the table t to being in the robot.

For this task, we benefited from the hybrid models support
combining symbols, relationships between the symbols, and
geometric information. Since the object to grasp and the robot
itself are represented in the model (as in figure 3a) we can
extract an InnerModel object (an instance of a class used
to support geometric calculations) to compute the necessary
geometry-related computations.

As described in section II-A, continuously monitoring the
model to highlight logical conditions that can be computed by
the planner (based on symbols and/or edges) is not necessary
anymore. However, geometric conditions are still necessary to
be continuously monitored. It is the case of the reach/noReach
edge that links each object and its status symbol. Depending
on whether the robot can or cannot reach an object, the
grasping agent, modifies the corresponding link. Only when
it is reachable is that the robot can actually grasp an object.
Therefore, before grasping an object an approaching action is
requested by the executive if necessary (i.e., if the object is
not close to the area of the space where the robot can grasp
objects).

If, for any reason, the robot platform starts moving, the
grasping action is paused. To implement this the grasping

agent needs to monitor the movement of the robot platform.
However, access to the platform by the grasping agent is not
recommended. Since it is included in the world model, the
robot could just monitor the position of the robot in the world.
However, the position of the robot in the world is given by a
localization component and the given pose may slightly vary
even if the robot is still. In order to make the grasping agent
able to monitor the raw odometry without providing it with
access to the platform, the navigation agent is also in charge of
including and updating the amount of movement of the robot
in the last seconds in a ”movedInLastSeconds” attribute of the
robot symbol.

C. Human representation

As introduced in section II-C, maintaining geometric human
models involves updating a high number of reference frames
per second. In particular, assuming that for every human a
total of 15 joints are tracked at 30Hz, it would require 450
updates per second per person. If the agent human, the one
in charge of this task would have to perform a remote call to
the executive per joint, it would require 900 remote calls per
second to track two humans in real time.

To ease this issue the new interface of the AGM’s executive
allows modifying multiple edges with just one call, and
without publishing the whole model. This made the frequency
of the agent go from 2Hz to 30Hz. Instead of publishing the
edges it would have also been possible to perform structural
change proposals sending the whole world model, but this kind
of behavior would slow the rest of the agents down because
they would have to extract their corresponding extracted
InnerModel objects much frequently.

IV. CONCLUSIONS AND FUTURE WORK

The improvements of the AGM architecture and the soft-
ware provided were presented. Section III described how can
different tasks be implemented using AGM.

There are two current lines of work to improve AGM. First,
support for hierarchical reasoning is underway. It will allow
the planner to avoid taking details into account until necessary.
Second, efforts are being made toward a decentralized repre-
sentation. Currently, the executive holds the valid world model,
however, it would be interesting to distribute the issue. To this
end, each agent proposing structural changes would have to
perform the model-checking mechanisms that the executive
currently performs.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish Min-
isterio de Economa y Competitividad Project TIN2015-65686-
C5-5-R, by the Extremaduran Goverment fund GR15120
”Ayudas a Grupos” and FEDER funds.

REFERENCES

[1] Luis Vicente Calderita Estévez. Deep State Representation: an unified
internal representation for the robotics cognitive architecture CORTEX.
PhD thesis, Universidad de Extremadura, 2016.



38 JOURNAL OF PHYSICAL AGENTS, VOL. 8, NO. 1, JULY 2017

[2] D. McDermott et al. PDDL: the planning domain definition language.
Technical Report DCS TR 1165, Yale Center for Vision and Control,
1998.

[3] L.J. Manso et al. RoboComp: a Tool-based Robotics Framework. In
Simulation, Modeling and Programming for Autonomous Robots, pages
251–262. Springer, 2010.

[4] E. Gat. On three-layer architectures. Artificial intelligence and mobile
robots, pages 195–210, 1998.

[5] Marco Antonio Gutierrez Giraldo. Progress in robocomp. Journal of
Physical Agents, 7(1):38–47, 2013.

[6] L.J. Manso. Perception as Stochastic Sampling on Dynamic Graph
Spaces”, school=Escuela Politécnica de Cáceres, Universidad de Ex-
tremadura year=2013. PhD thesis.

[7] L.J. Manso, P. Bustos, R. Alami, G. Milliez, and P. Núñez. Planning
human-robot interaction tasks using graph models. In Proceedings of
International Workshop on Recognition and Action for Scene Under-
standing (REACTS 2015), pages 15–27, 2015.

[8] L.J. Manso, P. Bustos, P. Bachiller, and P. Núñez. A perception-aware
architecture for autonomous robots. International Journal of Advanced
Robotic Systems, 12(174):13, 2015.

[9] Jesús Martınez-Gómez, Rebeca Marfil, Luis V. Calderita, Juan P. Ban-
dera, Luis J. Manso, Antonio Bandera, Adrián Romero-Garcés, and
Pablo Bustos. Toward social cognition in robotics: Extracting and
internalizing meaning from perception. In XV Workshop of Physical
Agents (WAF 2014), León, Spain, pages 93–104, 2014.

[10] Marvin Minsky. Society of mind. Simon and Schuster, 1988.
[11] Adrián Romero-Garcés, Luis Vicente Calderita, Jesús Martı́nez-Gómez,

Juan Pedro Bandera, Rebeca Marfil, Luis J. Manso, Pablo Bustos, and
Antonio Bandera. The cognitive architecture of a robotic salesman.
environment, 15(6):16, 2015.

[12] Martin Theobald, Mauro Sozio, Fabian Suchanek, and Ndapandula
Nakashole. Urdf: Efficient reasoning in uncertain rdf knowledge bases
with soft and hard rules. 2010.


