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Thesis Summary

Aston University

Disorder Induced Superconductivity in a Quasi One-Dimensional Strongly

Correlated System

Adam Lowe, Doctor of Philosophy, 2020

This thesis proposes two theoretical models. The first theory that is devised extends a model

suggested by Karnaukhov [1] which suggests spontaneously broken time reversal symmetry

(T - symmetry) in a superconductor, thus implying a non trivial topology with the system.

The first contribution of this thesis provides an analytical derivation for such a system, in

contrast to the original paper which relied on numerical techniques. The analytical solutions

confirm the results of the original paper. Furthermore, the assumption of the translationally

invariant gap field being homogeneous is checked. This yields the result that for zero chem-

ical potential there is a degeneracy of ground states along the diagonals of the Brillouin

zone, and thus it can not be claimed that the gap field is homogeneous in all cases [2]. Con-

sequently, it is found that T -symmetry may not be broken in the scenario for a zero chemical

potential, but in all other cases it is.

The other theory that is explored within this thesis is a quasi-1D model which is based

on Luttinger liquid wires which have superconducting coupling inbetween the wires. From

this a disorder term is added, and the relation between disorder and superconductivity is

studied. This was inspired by an experiment [3] which claimed that disorder could enhance

superconductivity. To solve the model, renormalisation group (RG) theory is applied, and

the coupled differential equations were solved. For certain initial conditions, it is found

that disorder could enhance superconductivity, which represents a novel piece of research.

Moreover, different mechanisms of how this phenomenon occurs are studied, by looking

at the competition between charge density wave (CDW), spin density wave (SDW) and the

normal state. In an attempt to fully reconcile the experiment with the theory, different prop-

erties of the resistivity are studied such that direct comparisons can be made between the

predictions of the theory and the experiment itself.

Keywords: Disorder Induced Superconductivity, Topological Superconductors
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Chapter 1

Introduction

1.1 Overview of the Thesis

Since superconductivity was discovered [4] at the onset of the 20th century, there has been

a focused scientific effort to understand the mechanism underlying superconductivity, in

addition to developing the experimental framework. The primary reason for devoting so

much research to this problem is inspired by the exciting prospect of room temperature

superconductors which would revolutionise our world due to the systems exhibiting van-

ishing resistivity, thus reducing the world’s energy usage. There are also uses for this re-

search in medicine for magnetic resonance imaging (MRI) machines, at CERN for the Large

Hadron Collider (LHC) and most recently deploying superconducting qubits in the first

testable quantum computer to demonstate quantum advantage [5]. One way to achieve

higher temperature superconductors is to use controllable techniques to adjust the physics

of the superconductors. A common method for altering the properties of the system is to

add disorder. However introducing disorder into a superconducting system was believed to

inhibit superconductivity. At least, that was until recently when an experiment [3] showed

that increasing disorder in a quasi one-dimensional (1D) system caused the critical tem-

perature of the superconductor to increase. This phenomenon has no accepted scientific

theory yet which consistently agrees with experiment. Nonetheless, there is a theory which

is widely accepted in 2D which relies on a screened Coulomb interaction [6]. Therefore,

the main aim of this thesis is to develop a theory which incorporates the interplay between

disorder and superconductivity resulting in an increased critical temperature for the super-

conductor. A major breakthrough in this field could lead to significant technical and social

benefits that would justify the research undertaken in this thesis.
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The rest of this chapter describes developments in the field of superconductivity from

discovery, up to 1986 where a new type of superconductor was discovered. The pre-1986

superconductivity only focused on what is known as "conventional superconductivity". An

experiment at IBM [7] revealed an incomplete understanding of superconductivity, which

led to the term "unconventional superconductivity" which shows characteristics not seen in

conventional superconductivity. This will be the focus of chaper 2, providing an overview

of the theoretical progress and how the theory links to experiment, in what is primarily an

experimentally driven field.

The original contributions of this thesis are in chapter 3 [2] and chapter 4. Chapter 3

focuses on how topology is a feature of certain types of superconductors, and how this

can be useful. Additionally a new synthetic model is proposed for finding a topological

superconductor which has unique properties since it has a continuum of energies at the

lowest energy level when the system is at half filling (when the chemical potential is zero).

Chapter 4 is the main focus of the thesis. The Luttinger liquid formalism is introduced

since an array of one dimensional chains with weak inter chain coupling is the basis of the

model. After this, superconducting coupling and disorder are introduced, and the inter-

play between disorder and superconductivity is studied. For certain parameters it is seen

that disorder can enhance superconductivity which helps explain the key experiment [3]

which first observed this unexpected phenomenon and is the inspiration for this theoretical

analysis.

Finally conclusions will be drawn and future work proposed with particular focus on

finding systems with experimental verification. Additionally, an emphasis will be put on

how this new theory can be used and developed for real world applications.

1.2 History of Superconductivity

In 1911, Onnes [4] found that when he cooled liquid helium to approximately 4K, the re-

sistivity vanished. This was the first experimental evidence for superconductivity and was

completely unexpected, as it was believed that the resistivity would tend to zero as the tem-

perature tended to zero. There was no theoretical explanation for this, and devising a theory

was elusive since the theoretical framework for quantum mechanics had yet to be created.
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Early in the 1930s, a further breakthrough occured when Meissner [8] found that when ap-

plying a magnetic field to a superconductor, the field is expelled around the superconductor

and was duly named the Meissner effect. This allowed theoretical progress since the Lon-

don brothers [9] subsequently developed a macroscopic explanation of how this Meissner

effect occured by way of the London equations which are given by

∂j
∂t

=
n
m

E, (1.1)

and

∇× j = − n
m

B, (1.2)

where j ≡ j(r, t) is the superconducting current density, r is the position, t is the time, n is

the electron density, m is the electron mass, E ≡ E(r, t) is the electric field, and B ≡ B(r, t)

is the magnetic field. These can be succinctly written in the Coulomb gauge as the famous

equation

j = − n
m

A, (1.3)

where A is the vector potential. Using these, in combination with Ampere’s law

∇× B = µ0j, (1.4)

where µ0 is the magnetic constant, allows an equation solely in terms of magnetic field to be

written as

∇2B =
1

λ2
L

B, (1.5)

where λL =
√

m
µ0n . Equation (1.5) clearly admits exponentially decaying solutions which

decays with the penetration length, λL and explains why the magnetic field is expelled from

a superconductor. Whilst this reveals some interesting physics about a superconductor, it

still does not explain the origin or anything about the phase transition. This is addressed in

the next section.
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1.2.1 Introduction to Phase Transitions and Ginzburg-Landau Theory

Phase Transitions

The theory of phase transitions in the modern era is broadly classified into two categories.

The first type of phase transition is a first order phase transition [10]. This type of transition

requires latent heat, and a common example is the phase transition from ice to water. This

type of transition has been widely understood for many years.

The other type of phase transition is a second order phase transition [11]. This type of

transition will be the focus of this thesis. A second order phase transition is continuous, and

occurs smoothly with change in temperature. Often, this transition occurs due to some type

of symmetry breaking. Subsequently, a superconducting phase transition is described by

second order phase transitions. The first phenomenological theory of second order phase

transitions was described by Landau, and extended upon to include superconductivity by

Ginzburg [12].

Ginzburg-Landau Theory

Ginzburg-Landau theory starts from the postulate that the state, as with all phases, is de-

scribed by an order parameter ∆ which is zero in the normal phase, and becomes non zero in

the superconducting phase. In this theory, the free energy F is written in terms of these order

parameters, and information can be extracted describing the physics of the phase transition.

This order parameter can be heuristically thought of as the superconducting wavefunction,

and therefore it must obey

ns(r) = |∆(r)|2, (1.6)

where ns(r) is the density of the superconducting wavefunction analagous to standard

quantum mechanics [13], where r is the position. To focus on the phase transition, it is

logical to think that the order parameter will be small as it will go from a region of being

non-zero to zero, and therefore this allows for a small order expansion about the order pa-

rameter for the free energy. For a spatially non varying order parameter this yields

F =
∫

dr
(

α(r)|∆(r)|2 + β(r)
2
|∆(r)|4

)
, (1.7)
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where α(r) and β(r) are coupling terms that correspond to the quadratic and quartic terms

respectively. These varying parameters determine how the phase transition occurs, and

provides insight to the physics of the transition. Generally the superconducting field can

vary in space, and therefore this needs to be accounted for. The gradient of the field is

incorporated such that

F =
∫

dr
(

α(r)|∆(r)|2 + β(r)
2
|∆(r)|4 + γ(r)|∇∆(r)|2

)
. (1.8)

However, this is still dependent on the choice of the gauge, so to make it gauge invariant,

coupling to the vector potential must be added by ∇ → ∇+ 2iA(r). Additionally to add

the magnetic field to the free energy, the term B2(r)/(8π) is included. The total equation is

then

F =
∫

dr
(

α(r)|∆(r)|2 + β(r)
2
|∆(r)|4 + γ(r)|(∇+ 2iA(r))∆(r)|2

+
B2(r)

8π

)
.

(1.9)

From this free energy, the Ginzburg-Landau equations can be found by minimising this

free energy with respect to the order parameter and A. After calculations [14] a Ginzburg

Landau parameter can be derived and is defined as

κ =
λL

ξ
, (1.10)

where ξ is a coherence length. This parameter is interestingly independent of temperature,

which is why it is useful experimentally. By using this parameter, certain properties of a

superconducting phase transition can be deduced within the Ginzburg-Landau framework.

The interesting physics behind this theory is that it is an entirely macroscopic approach

to calculating superconducting behaviour, and phase transitions. This method allows a phe-

nomenological approach when attempting to calculate the type of superconductivity in un-

conventional superconductivity. This will be shown explicitly in chapter 2. Additionally,

the concept of minimising the free energy with respect to the order parameter is a technique

that is used in chapter 3.
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1.2.2 Bardeen-Cooper-Schreiffer (BCS) Theory of Superconductivity

Whilst Ginzburg-Landau theory is useful and can be used for a wide variety of supercon-

ducting systems, both conventional and unconventional, it still does not give a microscopic

description, and therefore does not explain any of the underlying mechanisms behind su-

perconductivity. The first microscopic theoretical breakthrough came in the late 1950s by

Bardeen, Cooper, and Schreiffer (BCS) [15], which built on the work of Cooper [16], to de-

scribe superconductivity due to pairs of electrons which are coupled by phonons to form

quasiparticles known as Cooper pairs. When this mechanism occurs, the resistivity van-

ishes and superconductivity manifests. Before deriving this, it is useful to introduce the

mathematics of second quantisation [17] so the functional integral derivation for BCS the-

ory is clear. This technique will be used extensively throughout the thesis, so introducing it

now will clarify the mathematical techniques used in chapter 3.

The functional integral technique is a way of rewriting integrals over functions as op-

posed to just variables. This is a technique in many body physics. Treating such problems

in terms of functional integrals gives rise to elegant solutions. For a full derivation of this,

see Negele and Orland [17]. The final result gives the partition function, Z given by

Z =
∫

D [ψ∗k(τ), ψk(τ)] exp
(
− S(ψ∗k(τ), ψk(τ))

)
, (1.11)

where S(ψ∗k(τ), ψk(τ)) is the action, k is the momentum, τ is imaginary time and is defined

as τ = −it, and ψk(τ) represents the wavefunction. The action is defined as

S(ψ∗k(τ), ψk(τ)) =
∫ β

0
dτ ∑

k

[
ψ∗k(τ)∂τψk +H

(
ψ∗k(τ), ψk(τ)

)]
, (1.12)

where β = 1/T, with T defined as temperature, and

D [ψ∗k(τ), ψk(τ)] = lim
M→∞

M

∏
k=1

dψ∗k(τ)dψk(τ). (1.13)

Equations (1.11,1.12,1.13) allow a functional integral representation for any given Hamilto-

nian H. It can now be seen that any Hamiltonian can be substituted in, and the effective

action can be calculated. This is a common technique used in quantum field theory, from

condensed matter physics to particle physics. This mathematical formulation can be applied
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to BCS superconductivity.

The BCS theory of superconductivity is the most basic formulation of a superconducting

system. The system is assumed to be isotropic, and the interaction between the fermions

is attractive for a small band of fermions due to phonons. The phonon frequency results

in the attractive potential overcoming the repulsive potential from electrons. Consequently

a superconducting system can occur. The interacting Hamiltonian of the particles can be

written as

H = ∑
s

ψ̄sε f ψs − Jψ̄↑ψ̄↓ψ↑ψ↓, (1.14)

where ψ ≡ ψ(r, τ) is the wavefunction, J is the coupling constant and has no directional de-

pendence since it is an isotropic system, ε f ≡ ε f (r) is the Fermi energy, and the arrows and

s denote the spins of the particle. This Hamiltonian describes interacting particles, specifi-

cally fermions. Equation (1.14) can now be substituted into equations (1.11,1.12,1.13), which

results in

Z =
∫

D [ψ̄, ψ] exp
(
−∑

s

∫
dr
∫ β

0
dτψ̄s(∂τ + ε f )ψs +

∫
dr
∫ β

0
dτ Jψ̄↑ψ̄↓ψ↑ψ↓

)
. (1.15)

Since the quartic term is difficult to compute analytically, a transformation known as the

Hubbard-Stratonovich transformation [18] is applied. This changes the quartic term into a

quadratic term, by making use of completing the square. Equation (1.15) then becomes

Z =
∫

D [ψ̄, ψ] exp
[
−∑

s

∫
dr
∫ β

0
dτψ̄s(∂τ + ε f )ψs

−
∫

dr
∫ β

0
dτ
(
− |∆|

2

J
+ ∆ψ̄↑ψ̄↓ + ∆̄ψ↑ψ↓

)]
,

(1.16)

where ∆ is introduced as a quasiparticle through the transformation and can be thought of

as the gap parameter between the bands of energies of the fermions, where it is a constant.

It can have directional dependence in more general cases, but for this system it does not as

that is one of the assumptions of BCS superconductivity. Equation (1.16) can be rewritten in

terms of Nambu vectors as

Z =
∫

D [ψ̄, ψ] exp
(
−
∫

dr
∫ β

0
dτψ† Aψ +

∫
dr
∫ β

0
dτ
|∆|2

J

)
=
∫

D [ψ̄, ψ] exp
(
− (S1 + S2)

)
,

(1.17)
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where S1 =
∫

dr
∫ β

0 dτψ† Aψ, S2 = −
∫

dr
∫ β

0 dτ |∆|
2

J and A is defined as

A =

 ∂τ + ε f ∆̄

∆ ∂τ − ε f

 . (1.18)

An identity [17] can now be used to make use of A being in matrix form. This is defined as

∫
D [ψ̄, ψ] exp

(
−
∫

dr
∫ β

0
dτψ† Aψ

)
= exp

(
Tr
[

ln
(

det(A)
)])

, (1.19)

where ln is the natural logarithm and the trace is now only over the elements of the matrix.

Choosing a Fourier basis such that Ψ(k, ε) =
∫

dτdr ψ(r, τ)e−iετeik.r, changes A to give

A =

 −iε + Ek ∆̄

∆ −iε− Ek,

 . (1.20)

where the energy is now dependent on momentum. Using equation (1.20), the eigenvalues

are found to be

λ± = −iε±
√

∆2 + Ek
2, (1.21)

which will be substituted into (1.25). Now by integrating out the position, and over all τ for

the first term in the action, it is found that

S =
Vβ|∆|2

J
−∑

kε

tr ln

[
det

 −iε + Ek ∆̄

∆ −iε− Ek

]. (1.22)

The trace is now lower case since the sum is now only over a scalar whereas previously the

sum was over the vector. Now using two relations, S can be simplified further. The first

relation is

∑
k

f (k) = ∑
k

tr f (k) = V
∫ ddk

(2π)d f (Ek) = V
∫

dEρD(E) f (E), (1.23)

where k is the momentum, d is the dimension, ρD is the density. Since the superconducting

state only occurs for a small band of fermions where the attraction energy is greater than

the repulsion energy, ρD(E) → ρD can be viewed as a constant, and can be taken out of the
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integral. The second relation is based upon the Matsubara frequencies [17] and is given by

∑
ε

f (iε) = β
∫

γ

dz
4πi

tanh
(
− βz

2

)
f (−z), (1.24)

which is a generic relation that holds as long as the contour integral decays as 1/zn where

n ≥ 2. Now substituting the eigenvalue solutions into S, the result is

S =
Vβ|∆|2

J
−∑

kε

tr[ln(λ+λ−)] =
Vβ|∆|2

J
−∑

kε

tr
[

ln
[(
(−iε)2 − ∆2 − E2

k
)]]

. (1.25)

Combining equation (1.25) with the relations given in (1.23, 1.24), S takes the form

S =
Vβ|∆|2

J
−
[

VρDβ
∫

dE
∫

γ

dz
4πi

tanh
(
− βz

2

)
ln[(−z)2 − ∆2 − E2]

]
. (1.26)

To find where the dominant contribution for the superconducting state occurs, the function

is minimised and the point at the minimum is the most stable point and subsequently is

where the superconducting state occurs. This is done by differentiating S and setting equal

to zero to give

∂S
∂∆

= 2
Vβ|∆|

J
+

[
VρDβ

∫
dE
∫

γ

dz
4πi

tanh
(
− βz

2

) 2∆
z2 − ∆2 − E2

]
= 0. (1.27)

To evaluate the contour integral, the poles have to be found which forces the integrand→ ∞.

This occurs for z = ±
√

∆2 + E2, and Cauchy’s residue theorem is then applied to give

∂S
∂∆

= −VβρD

∫
dE

2πi
4πi

tanh
(βz

2

)2∆
z

+
2Vβ|∆|

J
= 0. (1.28)

Substituting the solution for z into equation (1.28) and rearranging gives

1 = ρD J
∫

dE
tanh

(
β
√

∆2+E2

2

)
2
√

∆2 + E2
. (1.29)

This is known as the BCS gap equation in a self consistency form. To find the temperature

at which the superconducting state occurs, ∆ is neglected due to the window of particles

with that energy being small, and the integration is carried out over the range of the Debye



Chapter 1. Introduction 10

frequency [19]. Consequently equation (1.29) is approximately evaluated to

1 = ρD J
∫ h̄ωD

−h̄ωD

dE
tanh

(
E

2kBTc

)
2E

= ρD J
∫ h̄ωD

0
dE

tanh
(

E
2kBTc

)
E

≈ ρD J ln
[ h̄ωD

kBTc

]
, (1.30)

where h̄ is Plank’s constant divided by 2π and ωD is the Debye frequency. The limits are

0 and h̄ωD, since that is the range of energy for the attractive fermions. Inverting equation

(1.30), the critical temperture is evaluated as

Tc =
h̄ωD

kB
exp

(
− 1

ρD J

)
. (1.31)

This equation describes the critical temperature for a BCS superconducting system. By sub-

stituting values for the variables, a value for the temperature can be found. The equation

was the first theoretical model for superconductivity and gave a theoretical prediction for

the phase transition temperature. This equation only describes the simplest type of super-

conductivity, known as s-wave superconductivity. For the rest of this thesis, natural units

will be used resulting in h̄ = kB = c = 1.

1.2.3 Post 1986 Superconductivity

All superconductivity up to 1986 was thought to be described completely by BCS theory

which is completely isotropic and thus has a gap function that has s-wave symmetry. This

original theory predicted a maximum critical temperature about Tc ≈ 30K, and it was be-

lieved that superconductivity would not occur above such a temperature. However, this

belief was dispelled by the Nobel prize winning work of Bednörz and Müller [7], which

showed a superconductor working at approximately 35K. This led to a flurry of new re-

search both experimentally and theoretically trying to understand this new type of super-

conductivity. Since this type of superconductivity behaved differently to previous super-

conducting theory, it was coined "Unconventional Superconductivity", which in the present

day is a definition for superconductivity which does not occur through standard s-wave

physics. The microscopic description is believed to occur through a variety of different

mechanisms, namely spin fluctuations, electron-electron interactions and the interplay be-

tween magnetism and electrons. In this state the gap function is no longer isotropic, leading
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to potential d-wave, p-wave, or f-wave symmetry. This is one of the signatures of uncon-

ventional superconductivity. There is currently no widely agreed microscopic theory for

unconventional superconductivity, and it is generally performed macroscopically by using

symmetries of the order parameter. The theory will be fully explored in chapter 2.

With the unexpected increase in critical temperature, it gave new impetus to experimen-

talists and theorists alike, to create room temperature superconductivity. Over the past 30

years, there has been significant progress with the highest known current critical temper-

ature at 250K [20], although this experiment was conducted at one million times standard

atmospheric pressure. Interestingly, the superconductivity is conventional and is based on

BCS with the extension of Eliashberg’s theory [21] which includes retardation effects. For-

mally this was predicted using density functional theory [22], however this is only valid for

extreme conditions for the atoms, hence the extremely high pressure.

Current theoretical research is starting to use a variety of different techniques from other

fields, such as topology and group theory, to create superconductors that have controllable

properties. Fortunately, experimentalists are finding ways of determining the topology of

such systems, thus giving the theories verifiable evidence. All the research within this thesis,

lies within the label of unconventional superconductivity, due to the non-BCS pairing mech-

anisms that are used in both chapters 3 and 4. Importantly, the motivation behind chapter 3

is the design of topological superconductors that could eventually be applied to the devel-

opment of quantum computers, whereas chapter 4 is focused on finding a mechanism for a

high critical temperature superconductor by introducing disorder into the system.

1.2.4 Effects of Disorder on Superconductivity

One of the most desirable properties for superconductivity is to be able to control the critical

temperature, and thus control the superconducting phase. A useful way of doing this is to

introduce disorder into the system, as this is a controllable feature. However, disorder had

previously been believed to reduce the critical temperature and in some cases destroy the

superconductivity completely [23]. This is because the Cooper pairs are not robust against

strong disorder. For weak disorder, the critical temperature remains unchanged, due to

Anderson localisation [24]. This is only the case for conventional superconductors. Con-

sequently, this unique feature can be exploited experimentally by using it as a method to

determine the difference between unconventional and conventional superconductivity [25].
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The negative correlation between disorder and superconductivity was unquestioned,

until a revolutionary experiment [3] showed that disorder could enhance the superconduct-

ing critical temperature. The most clear graph showing the positive correlation between

increasing disorder and critical temperature is shown below.

Graph showing the onset of the critical temperature against disorder

FIGURE 1.1: This graph [3] shows that as disorder is increased the temperature
at which superconductivity is about to occur increases. Tpk(K) ≡ Tpeak(K) is
the onset of superconductivity, and ρ(300K) is the value for the resistivity at
300K, which experimentally is the method for determining the initial disorder.
However, the theory of why this positive correlation occurs is unknown. This

graph was taken from the key experiment in reference [3].

The system was a quasi-1D strongly correlated model. This experiment showing that

disorder could enhance the critical temperature, had no theoretical model. This is the pri-

mary motivation for this thesis. The theory that has been designed to describe this model is

discussed extensively in chapter 4. Additionally, there are still many examples where disor-

der does break superconductivity, so it is not a general phenomenon that disorder increases

the critical temperature of superconductivitiy.

1.3 Literature Review of Quasi-1D Superconductors

This section explores some of the theoretical techniques used in current research, and will

explore the benefits and negatives of the techniques. There will be particular emphasis on
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one dimensional physics, and topological physics as these directly relate to the original con-

tent shown in this thesis.

1.3.1 One-Dimensional Physics

One-dimensional physics is an over simplification of a complex world, though recent ex-

periments [26] have shown that on a condensed matter level, the physics not only differs

from higher dimensions, but can be incredibly useful and used throughout high perfor-

mance electronics. However, the mathematical framework for one dimensional systems is

distinct to standard Fermi liquid theory [27]. The main cause for this is that Fermi liquid

theory breaks down when modelling a one dimensional system due to Peierls instability

[28]. The philosophical argument for Peierls instability is based on the belief that if the elec-

trons are primarily localised in Fermi liquid theory, which occurs when the dimensionality

of the system is of the order one (or for very low energies), then any perturbation of the

electrons is energetically favourable and thus resulting in an instability. Consequently, a

new model needed to be developed to explain the physics of the one-dimensional world

that removes any instability. The solution was proposed by Tomonaga and Luttinger, in

the suitably named Tomonaga-Luttinger liquid theory [29] which will henceforth be known

simply as Luttinger liquid theory in this thesis. This is derived in chapter 4 as it will be used

extensively within that chapter.

Experimental and Theoretical Development

One-dimensional physics, and the use of Luttinger liquid theory was originally believed to

be a theorist’s tool, rather than an actual practical theory. This belief changed when exper-

iments [30] were conducted on the Bechgaard salts [31], which showed that in a quasi-1D

system, power laws predicted from Luttinger theory were observed in experiment by use of

optics and photoemission. This validation led to a flurry of research at the turn of the 21st

century up to the present day.

From an experimental perspective, the natural place to study one-dimensional behaviour

is by creating coupled one-dimensional wires [32]. This methodology revealed Luttinger

liquid behaviour also. Furthermore, similar behaviour was observed when single walled

carbon nanotubes were created, providing a useful platform for studying one-dimensional

physics. These original results were verified and confirmed later [26]. An additional way
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in which one-dimensional systems can be accessed, makes use of the control of lasers by

cooling down atoms to form ladders [33]. This allows for a direction to be determined, and

therefore the interactions between the atoms would occur along one direction, simulating

a one-dimensional system. The most applicable example to the work done throughout this

thesis is by studying edge states of condensed matter systems [34], since these are obviously

one dimensional, where the main difficulty with these experiments is measuring the edge

state accurately.

From a theoretical perspective, this has become a rich research area, due to the curious

link between these systems and their topological properties [35]. For an exhaustive review

of one dimensional physics, see [27]. This review has particular emphasis on the theory

of formulating a 3D system from Luttinger theory in tandem with other models, namely

the Hubbard model [36]. This is a useful feature, as the Hubbard model can also be used

to describe a one dimensional chain, when used in tandem with the Luttinger model. As

an interesting aside, there is an extension of the model known as the t-J model [37] which

occurs for strong correlations, and has been used as an attempt to describe high temperature

superconductivity. Ultimately, it has not been consistent with experiment [38]. Regardless,

without the Luttinger model, the Peierls instability will still occur.

1.3.2 Topological Physics

The field of topological physics, specifically within condensed matter physics has been de-

veloping for the past 40 years, however the area has expanded drastically since the turn of

the 21st century due to the promising properties that non-trivial topology possesses [39].

The non-triviality arises since there is an added layer of protection for the state due to the

topology, typically as the Brillouin zone is deformed thus having a different topology, but

the state remains unchanged. The full use of the theory was confirmed by experiment [40].

It is important to understand the benefits that topology yields to condensed matter systems.

Primarily, the benefit is that the electronic properties of the edge states are changed such that

non trivial physics occurs, which has promising potential in industry. The main discovery

which prompted the field within the condensed matter physics community was the discov-

ery that the integer quantum hall effect [40] had topological properties [41]. Consequently,
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this revolutionary discovery opened up the potential for a variety of condensed matter sys-

tems posessing topological properties. It is curious to note, that the famous Berezinskii-

Kosterlitz-Thouless transition [42], is an example of a topological phase transition.

Advantages of Topological Physics

The reason that many researchers in the field today are dedicating their time to topological

materials is due to their advantages, namely, robustness against disorder [43, 44], quantum

computation [45], and increased communications since backscattering is dramatically re-

duced [46]. These novel states can behave as insulating in the bulk, and conducting on the

edge, which was predicted theoretically [47], and then confirmed experimentally [48].

The robustness against disorder is a particularly useful property as one could envisage a

scenario, where precise materials are built and any impurity could destroy the functionality

of the material. Using a topological material, allows for some extra protection that would

not exist in standard materials. The most useful application of topology within industry is

within the development of quantum computers. The theory is dependent on the existence of

non-Abelian anyons [49] since Kitaev showed [45] that by using such particles, quantum er-

ror correction [50] could be reduced. This is one of the biggest problems in making quantum

computing a widespread reality. The existence of non-Abelian anyons is still controversial,

there has been the hint of them in an experiment [51] studying the fractional quantum hall

effect but this is yet to be fully accepted within the community.

It is important to realise that the practical applications of topological physics are still in

their infancy, which is what makes the field so novel and exciting. These reasons are why

many research papers within the condensed matter community are studying topological

properties of materials that previously were believed to be "topologically trivial".

Interplay of Topology and Superconductivity

The interplay of topology and superconductivity is of particular focus for this thesis, and

chapter 3 will be discussing the research that has taken place in this field. Topological insu-

lators [48] were found before topological superconductors, so a large portion of the research

in topological physics was studied using insulating systems. Often the developments were

applicable to topological superconducting systems.
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In 2000, the first theoretical prediction of topological superconductivity was conducted

by Read and Green [52] who claimed that a phase transition occured which gave two dis-

tinctly different topologies and therefore different topological invariants. This was the first

sign that the gap functions of the systems could have non trivial topology, and thus by

studying the gap function, the topology of the system could be deduced. This paper was

quickly followed by another brilliant paper from Kitaev [53], which showed that Majorana

fermions could be hosted along quantum wires thus resulting in a topological state. If a

topological system has Majorana fermions on the edge states, this is arguably the best def-

inition for a topological system. A Majorana fermion is a particularly interesting particle

[54], since the anti particle is equal to the actual particle. It was first predicted by Ettore

Majorana in 1937 as a fundamental particle. As of yet, it has not been discovered fundamen-

tally, however a quasiparticle displaying the same effects has been experimentally verified

[55, 56]. Another reason this particle is so sought after, is due to the non-Abelian statistics

it posseses, meaning it is another promising candidate for developing quantum comput-

ers. Topological superconductivity has been recently verified [57], which further confirms

that it is a promising avenue to pursue. Another benefit of topological superconductivity

within quantum computers is that the topology protects the quantum nature of the qubit,

thus reducing the likelihood of quantum decoherence.

Additonally, due to the protective nature of topology, the mechanism could be used

to guard against perturbations which destroy superconductivity. Often, this can break the

Cooper pairs which leads to destruction of the superconducting state. If the Cooper pairs

were protected by topological properties, this could be a promising avenue for high temper-

ature superconductivity.

An obvious question about these systems, is how to quantify a system as being topo-

logical. This is primarily achieved by using topological invariants, thus forming different

topological classes of superconductors. However, this is created by the use of symmetries

which are introduced in the next section.

1.3.3 Comparing Symmetries in Superconductivity

The use of symmetries within phase transitions is crucial. By considering the symmetries

of the gap function and Hamiltonian, much of the physics of the system can be deduced

from the symmetries alone. For example, for a superconducting state, spontaneous U(1)
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symmetry breaking is a signature of superconductivity. This is known as global symmetry

breaking. Symmetry breaking can be thought of as adding an impurity to a symmetric

molecule. This destroys the rotational and translational symmetry of the system.

Formally, symmetry breaking occurs when a symmetry operator acts upon the state, and

the result breaks the symmetry relation given for the Hamiltonian, H. For the example of

time reversal symmetry (T -symmetry), a time reversal invariant state is written as

T HT −1 = H, (1.32)

therefore if the equation is not satisfied, it means T -symmetry has been broken. This can

happen both spontaneously and explicitly. In general, it is easy to break T -symmetry by

applying a magnetic field to the system, as this gives the system a change in behaviour

if time were reversed. The more interesting scenario, is when a system is modelled, and

the equations for the system are found, and these break T -symmetry. This is known as

spontaneous T -symmetry breaking. A different method is to test if the operator is anti-

unitary and does not commute with the Hamiltonian, then this also means the symmetry

is broken. If this symmetry is broken, it could suggest topological features of the system,

which as discussed have obvious benefits.

It is also important to emphasise the difference between discrete symmetries, and con-

tinuous symmetries. Discrete symmetries will be typically used throughout this thesis, and

these consist of T -symmetry, chiral symmetry, and particle hole symmetry. Whereas contin-

uous symmetries, namely rotational, translation, and time translational belong to a different

group in the context of group theory. These belong to a Lie group, whereas discrete sym-

metries belong to the finite group. With continuous symmetries, the fundamental Noether’s

theorem [58] can be used and this has been a pillar of modern physics.

The discrete symmetries can be used to classify topological superconductors and insu-

lators by way of the Altland-Zirnbauer periodic table of topological invariants [59] which

began in 1996. Before showing the periodic table, it is beneficial to introduce the chiral, and

particle-hole operator. This has been developed in a formal manner in this review [60].The

chiral and particle-hole operators vary from the T operator. The particle-hole operator C is

anti-unitary but anti-commutes with the Hamiltonian. Physically, this means the creation

and annihilation operators are symmetries of one another. Mathematically, the relation for
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C-symmetry to be conserved is

CHC−1 = H. (1.33)

Different to the previous symmetries, the chiral operator S is unitary, however it does anti-

commute with the Hamiltonian like the C operator. Physically, chirality is more complex.

The interpretation is that the handedness of the particles are invariant under a transforma-

tion. If this is not true, then the chirality is broken. When considering the Hamiltonian, the

chiral symmetry, S is given by

SHS−1 = H. (1.34)

Chirality is defined as the product of time reversal symmetry and particle-hole symmetry

such that

S = T .C. (1.35)

With this information, the periodic table of topological invariants can be introduced be-

low.

TABLE 1.1: This is the periodic table of topological invariants. It is a useful
way of classifying topological superconductors and insulators by the sym-
metries possessed by the Hamiltonian. The certain symmetries that the sys-
tems possess allow this classification, and thus define the nomenclature for
the field. As the dimensionality changes, physically certain symmetry rela-

tions will then change accordingly.

Class T C S d =0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0

AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI T 2 = 1 0 0 Z 0 0 0 2Z 0 Z2 Z2

BDI T 2 = 1 C2 = 1 1 Z2 Z 0 0 0 2Z 0 Z2

D 0 C2 = 1 0 Z2 Z2 Z 0 0 0 2Z 0

D III T 2 = -1 C2 = 1 1 0 Z2 Z2 Z 0 0 0 2Z

A II T 2 = -1 0 0 2Z 0 Z2 Z2 Z 0 0 0

C II T 2 = -1 C2 = -1 1 0 2Z 0 Z2 Z2 Z 0 0

C 0 C2 = -1 0 0 0 2Z 0 Z2 Z2 Z 0

C I T 2 = 1 C2 = -1 1 0 0 0 2Z 0 Z2 Z2 Z
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The topological invariants within the table are varieties of Z. The invariants change for

different dimensionality denoted by d. It was the Z2 invariant that was first introduced [47]

in the first theoretical topological superconductivity paper. These invariants are entirely

categorised by the Chern number [61], C. Note the Chern number, C is not the particle hole

operator C. Rigorous calculation of the Chern number will be computed in chapter 3. The

Z invariant implies that C can take any integer value, whereas the 2Z invariant implies that

C must take any doubling of an integer value. However, the Z2 invariant implies that C can

only be ±1, and therefore there are only two states this type of system can exist in.

Whilst table 1.1 is useful for discrete symmetries, it does not show how continous sym-

metries can be used. For many superconductors, the symmetry of the gap function are used

as the way to classify the material. The symmetries that are used are typically rotational, and

translational. These operations are applied on the order parameter, and the type of super-

conductivity is deduced. It is these symmetries, that reveal whether the superconductivity

is s, p, or d wave, since the symmetries of the gap function are compared to the symmetries

in spherical harmonics, hence the nomenclature. The mathematical formulation for this is

shown in chapter 2.

Within this chapter, the historical and mathematical formulation of conventional super-

conductivity have been discussed, from both a macroscopic, and a microscopic view. Ad-

ditionally, some of the underlying techniques that will be used throughout this thesis, such

as Luttinger liquid theory, and Ginzburg Landau theory have been introduced, for added

clarity for the later chapters. A brief introduction to how topology can be classified within

condensed matter systems has also been discussed, as these symmetry relations will be used

in unconventional superconductivity.

The purpose of this introductory chapter has been to motivate the rest of this thesis by

discussing the lack of theoretical progress in creating a theory which correctly describes

the interplay between disorder and superconductivity. In addition, the benefits of topology

within physics have been introduced, which again promotes the need for research in the

field.

Chapter 2 focuses on the mathematical techniques that are used in identifying the sym-

metries within unconventional superconductivity, and how these mathematical formula-

tions can be used when devising theories.
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Chapter 2

Unconventional Superconductivity

This chapter discusses aspects of unconventional superconductivity and the varying types

of superconductivity. The theory of unconventional superconductivity is based upon the

symmetries of the gap function. As discussed previously, the different classes of supercon-

ductivity depend on these symmetries. For example, standard BCS superconductivity has

an s-wave symmetry, and is therefore completely isotropic. The unconventionality comes

from certain symmetries being broken, which in turn means that unconventional supercon-

ductors occur at a lower symmetry group since it has fewer symmetries. Currently, this

has only been introduced from a qualitative perspective, however this chapter is dedicated

to introducing the techniques for computing the type of superconductivity from a formal

perspective. The majority of this chapter has been based on an excellent review [62].

The first evidence that the gap function may be non-isotropic was found in 1972 when it

was discovered [63] that superfluidity occurs in helium-3 and this could not be explained by

s-wave physics. Superfluidity is analagous to superconductivity, however the difference is

since for superfluidity, the vanishing resistance is in the flow of a fluid, rather than the flow

of electrons through a solid. This experiment encouraged theorists to look at the symmetries

of the gap function and how they can affect the interaction. The symmetries of the gap func-

tion, and thus the different types of superconductivity are directly correlated to spherical

harmonics that are associated with atomic physics. This is the reason for the nomenclature

being s-wave, p-wave, d-wave, and so on.
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2.1 d-vector Notation

To consider how a superconductor may be unconventional, first a generic wavefunction for

a Cooper pair is defined as

ψl
s,s′(r, r′) = χs,s′ fl(r− r′), (2.1)

where χs,s′ controls the spin part of the wavefunction and fl(r − r′) is the translationally

invariant spin independent part of the wavefunction. Equation (2.1) is decomposed to

ψl
s,s′(r, r′) = χs,s′ ∑

k
al(k)eik.(r−r′), (2.2)

where al(k) can be expanded in terms of spherical harmonics. It is this term that generates

the definitions of the different types of superconductivity. Expanding this term results in

al(k) =
l

∑
m=−l

∆l
mΥlm(k), (2.3)

where Υlm(k) are the spherical harmonics, and l is the angular momentum, and m is the

magnetic number.

Since the wavefunction must be anti-symmetric when the fermions are swapped, this

implies that

ψl
s,s′(r, r′) = −ψl

s′,s(r
′, r) = χs′,s fl(−(r− r′)), (2.4)

which implies that χs,s′ = −χs′,s for fl(r − r′) = fl(−(r − r′)). Whereas, χs,s′ = χs′,s for

fl(−(r − r′)) = − fl(r′ − r). The two results for this show that the spin part of the wave-

function depends on the parity, which is denoted by (−1)l . Thus for different values of l,

the wavefunction takes a different form. For even parity, the spin part is anti symmetric,

but for odd parity, the spin part is symmetric, and the orbital part is anti symmetric. Again,

this is a hint as to how the superconductivity changes according to l and hence spherical

harmonics. From this defintion, l = 0 results in an s-wave superconductor, and any l > 0

is the definition for an unconventional superconductor. When the orbital part of the wave-

function remains symmetric, namely for when l = 2n, where n is an integer, the total spin of

the system takes the value S = 1, however when l = 2n + 1, the system has total spin S = 0.
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When S = 0, the singlet state must be defined as

|singlet〉 = |↑↓〉 − |↓↑〉 , (2.5)

which is related to the spin part of the wavefunction by

χ
singlet
s,s′ = 〈s| 〈s′|

(
|↑↓〉 − |↓↑〉

)
, (2.6)

which when written in matrix form becomes

χ
singlet
s,s′ =

〈↑↑| ( |↑↓〉 − |↓↑〉 ) 〈↑↓| ( |↑↓〉 − |↓↑〉 )
〈↓↑|

(
|↑↓〉 − |↓↑〉

)
〈↓↓|

(
|↑↓〉 − |↓↑〉

)
 =

 0 1

−1 0

 = iσy, (2.7)

where σy is one of the Pauli matrices. From this, different values of l can be taken to get the

superconducting wavefunction. Namely, for l = 0 the equation in momentum representa-

tion yields

ψ0
↑,↓(k) = iσy∆0

0Υ00(k). (2.8)

By then finding the spherical harmonics for these values for l and m, the result is

ψ0
↑,↓ = iσy∆

1
2π2 , (2.9)

which gives only a single bare order parameter ∆, and the wavefunction is independent of

momentum, thus resulting in isotropy. The system becomes more interesting when taking

the total spin to be S = 1, since there are three different combinations for the spin to occur

this way. They are given by

|triplet〉 =


|T1〉 = |↑↑〉 = |1〉 ,

|T2〉 = |↑↓〉+ |↓↑〉 = |0〉 ,

|T3〉 = |↓↓〉 = |−1〉 ,

(2.10)
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using this, the spin part of the wavefunction in matrix form is calculated to be

χ
η
s,s′ =



χ1
↑,↑ =

1 0

0 0

 ,

χ0
↑,↓ =

0 1

1 0

 ,

χ−1
↓,↓ =

0 0

0 1

 ,

(2.11)

where η is the projection of the spin onto the z axis and corresponds to each component of

the spin triplet state. Using this definition, the wavefunction can be succinctly written as

ψl
s,s′(k) =

1

∑
η=−1

aη
l (k)χ

η
s,s′ , (2.12)

which when using the matrices above, allows the wavefunction to be written explicitly as a

matrix given by

ψ̂l(k) =

ψl
↑,↑(k) ψl

↑,↓(k)

ψl
↑,↓(k) ψ↓,↓(k)

 =

a1
l (k) a0

l (k)

a0
l (k) a−1

l (k)

 . (2.13)

Note for a gap function in the form of a matrix, due to the anti-symmetry for the odd parity

the matrix must obey

ψl
s,s′(k) = −ψl

s′,s(−k). (2.14)

To see how these components are related, the time reversal operator, T can be applied on

each component separately and equation (2.14) can be used. For the first component of the

matrix, the result is

T ψl
↑,↑(k)T −1 = (ψl

↓,↓(−k))∗ = −(ψl
↓,↓(k))

∗, (2.15)

which implies the diagonal elements of the matrix are related to each other by taking the

complex conjugate and multiplying by −1. For the off-diagonal elements, application of the
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T operator yields

T ψl
↑,↓(k)T −1 = −(ψl

↓,↑(−k))∗ = (ψl
↓,↑(k))

∗. (2.16)

This implies that the off diagonal terms are equal to each other. Consequently, a new con-

vention can be introduced to reduce the number of variables. This is known as d-vector

notation, by defining

ψ̂l(k) =

−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)


= (dx(k)σx + dy(k)σy + dz(k)σz)iσy = i(d(k)σ)σy,

(2.17)

where

d(k) =
l

∑
m=−l

∆l
mΥlm(k), (2.18)

and σ are the Pauli matrices. By using this expression, different forms of the wavefunction

can be found for different order parameters depending on the choice of quantum numbers.

The difference between spin singlet, and spin triplet superconductivity is emphasised by

how many more order parameters there are in the spin triplet case.

2.2 Generalised BCS Theory

Generalised BCS theory is different to standard BCS theory as it has a generalised potential,

so allows for more scenarios and thus has potential for more symmetries. The Hamiltonian

is written as

H = ∑
k,s

ξkψ̄k,sψk,s +
1
2 ∑

k,k′
∑

s,s′,s1,s′1

Vk,k′,s,s′,s1,s′1
ψ̄k,sψ̄−k,s′ψk,s1 ψ−k,s′1

, (2.19)

where the potential Vk,k′,s,s′,s1,s′1
must obey standard fermion anti commutation laws. The

interaction can then be assumed to be weak coupling up to some energy cutoff due the

system being described by Fermi liquid theory. From this, a mean field Hamiltonian can be

written as

H = ∑
k,s

ξkψ̄k,sψk,s +
1
2 ∑

k,k′
∑

s,s′,s1,s′1

(
∆̄k,s,s′ψ−k,sψk,s′ + ∆k,s,s′ ψ̄k,sψ̄−k,s′

−∆k,s,s′〈ψ̄k,sψ̄−k,s′〉
)

.

(2.20)
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From this equation, the gap functions are then defined as

∆k,s,s′ = ∑
k′,s1,s′1

Vk,k′,s,s′,s1,s′1
〈ψ−k,s1 ψk,s′1

〉, (2.21)

and the conjugate of this yields

∆̄k,s1,s′1
= ∑

k′,s,s′
Vk′,k,s,s′,s′1,s1

〈ψ̄k,sψ̄−k,s′〉. (2.22)

Since the spins can only take two values, this allows the gap function to be written as a

matrix such that

∆̂k =

∆k,↑,↑ ∆k,↑,↓

∆k,↓,↑ ∆k,↓,↓

 . (2.23)

The direct comparisons with equation (2.13) can be seen. For example, for spin singlet pair-

ing, for any even integer l, the gap function is

∆̂k = ial(k)σy, (2.24)

similar to the Cooper pair wavefunction. Therefore, extending this for the spin triplet case,

the gap function takes the form

∆̂k = i(d(k)σ)σy. (2.25)

It is this analogy, that allows the gap function to be thought of as similar to the Cooper

pair wavefunction. By considering only the gap function, this is a common method for

determining the type of superconductivity within a system. It is important to note, this is

a phenomenological approach, and does not give an accurate account of the microscopic

features of the system. To confirm that this theory still holds true for standard BCS theory,

consider equation (2.24), and choose l = 0. For this scenario, equation (2.9) is recovered.

2.3 Symmetries of the Gap Function

Studying the different symmetries of the gap function allows many physical properties to be

deduced about the superconductivity. As previously discussed, certain symmetry breaking

can lead to non trivial topological properties, and probing the gap function is a useful tool
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for a theorist. The T -symmetry operator has already been applied to a generic gap func-

tion, as that was used to derive the d-vector notation. However, there are still many other

symmetry operators that can be used as devices to demystify some of the properties of the

superconductivity.

Firstly, consider a variety of different symmetry operators. Time reversal symmetry,

particle hole symmetry, and chiral symmetry have already been introduced, but many others

exist. The next symmetry operators to be introduced are inversion, spin rotation, orbital

rotation, and the U(1) gauge symmetry. The inversion operator is defined as

I∆̂k = ±∆̂−k, (2.26)

where the + sign is the case for spin singlet superconductivity, and the − sign is for spin

triplet superconductivity. The spin rotation operator is defined by

G∆̂k = e−iS.φR ∆̂keiS.φR , (2.27)

where φR is the projection of the rotation of the spin, and S is the total spin. When S = 0,

as is the case for spin singlet superconductivity, the spin rotation operator has no effect. For

orbital rotation, the operator is given as

g∆̂k = ∆̂R(g)k, (2.28)

where R(g) is a rotation matrix which rotates the momentum. The final symmetry to be

introduced is U(1) gauge symmetry,

U ∆̂k = eiφ∆̂k, (2.29)

where φ is the phase of the gap function. This is an important symmetry, and will be crucial

to the research that takes place in chapter 3 since it is the breaking of U (1) symmetry which

defines superconductivity. All of these results, and the effects they have on both the spin

singlet, and spin triplet state can be summarised neatly in the table shown below [62]
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TABLE 2.1: This table shows how the different gap functions act under vary-
ing symmetry operators. It is important to notice how they can vary depend-

ing on whether superconductivity is spin singlet, or spin triplet.

Operator Spin Singlet State Spin Triplet State

Fermion Exchange ∆̂k = ∆̂−k ∆̂k = −∆̂−k

T -symmetry T ∆̂k = (∆̂−k)
∗ T ∆̂k = −(∆̂−k)

∗

Spin Rotation G∆̂k = ∆̂k G∆̂k = e−iS.φR ∆̂keiS.φR

Orbital Rotation g∆̂k = ∆̂R(g)k g∆̂k = ∆̂R(g)k

U(1) Gauge Symmetry U ∆̂k = eiφ∆̂k U ∆̂k = eiφ∆̂k

Conventionally in the literature, the spin singlet state is denoted by ψk, and the spin

triplet state is denoted by dk.

The different symmetry groups are crucial to the development of the standard model of

particle physics, since it is these symmetries which predict the existence of certain particles.

Whilst the application here is limited to condensed matter physics, the use of symmetries,

and symmetry breaking is a key concept throughout theoretical physics.

2.3.1 Examples of Unconventional Superconductivity

It is beneficial to see how the mathematical formulation that has been previously devel-

oped can be used in practice. Knowing that the gap function represents a quasiparticle,

and approximately corresponds to the Cooper pair wavefunction. To get the quasiparticle

spectrum, the absolute value squared must be taken, such that

|∆k|2 =
1
2

tr
(

∆̂†
k∆̂k

)
. (2.30)

This equation will be used throughout this section for different types of superconductivity.

p-wave Superconductivity

The first example of superfluidity discovered, was helium-3. This has been identified as a p-

wave superconductor, so the equations developed next apply to this system. For a p-wave

system, the angular momentum is l = 1, and m = ±1 which when using equation (2.18)
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gives

d(k) =
∆0

kF
(kx ± iky)ẑ, (2.31)

where kF is the Fermi momentum, and ∆0 is the weighting of the gap function. These pa-

rameters account for the constants. The quasiparticle spectrum is obtained as

|∆k|2 = |∆0|2
k2

x + k2
y

k2
F

. (2.32)

From equation (2.31), it can be seen that there are gap nodes along the z direction at ±1.

This implies that the angular momentum is conserved since the nodes do not occur within

the x, y directions. Due to this conservation, chirality occurs in the system. Consequently,

this type of spectrum is known as chiral p-wave superconductivity. However, since there

are different choices for m corresponding to a given l, the different choices for m can yield

different phases for the superconductor. The phase derived above is known as the A phase

[63]. This is not the only superconducting phase in helium-3. A similar type of interaction

can occur, but only along one of the spin channels such that the interaction takes place

for |↑↑〉. This is known as the A1 phase. Importantly, since the interaction occurs in one

element of the matrix, rather than for all of the spin channels in the matrix, this results in

a type of superconductivity known as non-unitary. For non-unitary superconductivity, the

quasiparticle spectrum is given by

|∆±k|2 = |d(k)|2 ± |d∗(k)× d(k)|. (2.33)

This equation can be used to find the A1 phase. By considering a solution for l = 1 which

only couples along the |↑↑〉 spin channel, this implies that the first element of the gap func-

tion matrix is taken in d-vector form such that −dx + idy corresponds to −kx + iky, and then

the spherical harmonics are found for such a system. Since the coupling is along the spin

up channel, the only combination is for l = 1 and m = 1. Writing the d-vector in directional

components yields

d(k) =
∆0

kF

(
kx + iky, ikx − ky, 0

)
. (2.34)
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The dependence on space can be found by taking the last term in (2.33) and computing it.

Noting that k2
z = k2

x + k2
y, the result is approximately

|d∗(k)× d(k)| =
∆2

0

k2
F

k2
z. (2.35)

This type of superconductivity is therefore anisotropic as it depends on the sign of the mo-

mentum from equation (2.33), and thus does not have a conventional quasiparticle spec-

trum. There is experimental evidence [64] that this phase exists, and occurs primarily in

ferromagnets, so is particularly susceptible to an applied magnetic field.

Another phase for superfluid helium, is the B phase. This occurs in all the spin channels,

but each spin channel corresponds to a different coupling. This is a unique phase, in the

sense that despite the unconventional superconductivity of the p-wave pairing, the quasi-

particle spectrum is found to be isotropic. Therefore, the gap function matrix has the same

symmetries as the constructed matrix from the wavefunction, such that

∆̂k =
∆0

kF

−kx + iky kz

kz kx + iky

 , (2.36)

which implies that

dυ = kυ, (2.37)

where υ = x, y, z from the previous notation. It can be seen the gap function is isotropic, and

the quasiparticle spectrum is given by

∣∣∆̂k
∣∣2 =

∆2
0

k2
F

(
k2

x + k2
y + k2

z
)
=

∆2
0

k2
F
|k|2 = ∆2

0. (2.38)

This result shows that the quasiparticle spectrum is entirely dependent on the magnitude

of the gap, and has no k dependence, similar to BCS. To determine the difference between

this superconductivity and standard BCS, a calculation for spin susceptibility was made

[65] due to the sensitivity of the spin to applied magnetic fields. This difference allows for

experimental verification of which type of superconductivity occurs.

There are different phases for spin triplet superconductors, as there are many different

solutions for each l, due to m. There are many more variations for which each mechanism

can affect which spin channel, however only experimentally observed phases for He-3 have
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been discussed. Sr2Ru04 is another famous example [66], which has similar behaviour to

what has been described, except the physics is specifically for superconductivity rather than

the general superfluidity which has been discussed here.

d-wave Superconductivity

The most promising pairing symmetry for the majority of the high temperature supercon-

ductors is d-wave superconductivity, particularly dx2−y2 . This signature has been observed

in a variety of materials [67, 68], primarily due to the point nodes on the diagonals. To for-

mulate this mathematically, d-wave pairing occurs for l = 2 which gives a total spin, S = 0.

Therefore equation (2.24) must be used. The quantum numbers are chosen to be l = 2 and

m = 2. There are many different combinations of l and m, so this is not the only pairing

mechanism for d-wave superconductivity, however it is the most commonly observed one.

Using these choices of l and m, the gap function becomes

d(k) =
∆0

k f
(kx + iky). (2.39)

This can be approximately written as

|∆k|2 ∝ (k2
x − k2

y), (2.40)

which is where the term dx2−y2 originates from.

All the pairing symmetries for higher values for l can all be derived by similar meth-

ods. Whilst it is relatively easy to suggest a pairing mechanism by adjusting the quantum

numbers, and choosing which spin channel the symmetry occurs along, this is only theory.

Finding experimental verification for these pairing symmetries is a difficult task and often

requires many indicators before the community accepts a certain symmetry. It is this reason

why there is still some debate about the type of symmetry in high temperature supercon-

ductivity.

Crystal Superconductors

Everything discussed so far about the mathematical formulation for unconventional super-

conductivity has required the models to be isotropic. This is required for the Cooper pairs
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to be described by the angular momentum. There are materials which do not adhere to

isotropy, and thus require a different mathematical description based upon point group

symmetries. By using point group symmetry, and a given l, the gap function can be writ-

ten in a basis of irreducible representations of the point group. There are 7 members of the

crystal family for the Bravais lattice, totalling in 32 point group symmetries and 230 space

groups [69]. Therefore, there are many different combinations which can be used, which can

not be covered within the timeframe of this thesis.

A typical point group symmetry that occurs regularly in high temperature superconduc-

tors is tetragonal symmetry [70]. There are different types of tetragonal symmetry, but the

one that corresponds to the high temperature superconductors is

R = D4I = D4h, (2.41)

where D4 describes the rotations for a body centred cubic Bravais lattice, and I describes

the inversion symmetry of such a system. D4 can be broken down into more symmetries,

which are given as C2, C3, C4, and C6, which denote rotations along the ẑ axis. Additionally,

there are symmetries along the x̂ axis denoted by Un.

These symmetries can be used to determine the gap functions, however the mathemati-

cal grounding of this is beyond the scope of this thesis.

2.4 Microscopic Theories

This section explores the speculative theories for the microscopic mechanism of unconven-

tional superconductivity. It is important to stress that these theories are not widely accepted

within the community, though there is still mathematical foundations behind these theories.

The typical belief is that the microscopic mechanism is dominated by strong electron

correlations, rather than the standard electron-phonon interaction used in BCS theory. This

is where the main question lies; how do the electrons interact in such a way that forms a

strong attractive interaction.
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2.4.1 Spin Fluctuation Theory

Spin fluctuation theory [71] is a commonly used explanation for unconventional supercon-

ductivity due to the intuitive logic, and relative experimental success. The theory is based

upon the magnetic fields that are generated by the alignment of the spins in the quasiparti-

cle which represents the spin excitations of the electrons. This is commonly referred to as a

magnon. Consequently, different types of magnetism correspond to different types of super-

conductivity. For example, ferromagnetic spin fluctuations typically correspond to p-wave

superconductivity, whereas anti-ferromagnetic fluctuations typically correspond to d-wave.

The theory can be thought of from a phenomenological perspective where an effective

interaction occurs. The interaction results in a spin susceptibility which is directly propor-

tional to the correlation length of the spin fluctuation squared, when the system is near the

magnetic instability. Intuitively, for spin fluctuations to induce superconductivity, the corre-

lation length must be large. This results in a large spin susceptibility thus giving a magnetic

instability which introduces the superconducting mechanism. This is the case for the weak

coupling theory. Much like Ginzburg Landau theory, the phenomenological aspect of this

approach to spin fluctuation theory allows generality, and thus is not restricted by micro-

scopic details. This leads to an incomplete understanding of the mechanism.

Weak Coupling Theory

Firstly, spin fluctuations can lead to different forms of interactions which is the origin of

weak/strong coupling theory. For weak coupling theory the interaction is due to the mag-

netic instability [67]. Formally, this is due to antiferromagnetic paramagnons, which is a

quasiparticle that contains all the information about the spin part of the wavefunction. Once

these quasiparticles are found, a weak coupling is introduced which occurs through a slight

magnetic field. By finding the spin susceptibility it can be shown that the interaction be-

tween these antiferromagnetic paramagnons enable a superconducting state to occur.

Strong Coupling Theory

Unlike weak coupling theory, strong coupling theory is not dependent on the magnetic in-

stabilities. The attraction between the quasiparticles is a result of scattering of the quasipar-

ticles in certain channels [71]. Additionally, the depairing effects are accounted for due to
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the scattering. To compute this, Green’s functions and the self energy are calculated, and the

quasiparticle spectrum is revealed. From this, superconducting properties can be deduced.

Both the weak and strong coupling theory are determined as a result of spin fluctuations,

but there is no accepted consistent theory which unites these two theories. At the time of

writing, FLEX theory [72] may provide a consistent theory.

FLEX (Fluctuation Exchange) Approximation

In order to describe this microscopic theory for spin fluctuations, the main theory that is

used is the FLEX approximation [73]. The FLEX approximation is based upon a pertubation

theory expansion where the result is taken at one loop level, and then the spin fluctuation

is renormalised. The theory takes the dressed one particle Green’s function, which contains

the renormalised mass and energy, and then uses it to calculate the spin susceptibility. From

this, the region where spin fluctuations dominate is known, and therefore in weak coupling,

the magnetic instability reveals the superconducting coupling, whereas in strong coupling,

the theory shows the important scattering effects.

It should be clear, that FLEX is a mathematical tool for deriving the physics for spin

fluctuation exchange, and it is not a complete theory.

Whilst the theory of spin fluctuation induced superconductivity has only been intro-

duced from a philosophical viewpoint, such that the motivation behind the theory can be

explained, to understand it fully a mathematically rigorous technique has to be introduced.

For the purposes of this thesis, the mathematical formulation will not be derived, however

this is done here [74, 75].

2.4.2 Interlayer Coupling [76] and Resonance Valence Bond Theory [77]

These two theories are linked since Anderson derived both of them in the same year, and

then used Resonance Valence Bond theory to explain interlayer coupling. Interlayer cou-

pling is not exclusively performed this way and can be a weak coupling theory, whereas

Resonance Valence Bond theory is a strong coupling theory.
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Interlayer Coupling

Interlayer coupling is a theory [76] that states there is an increased coupling in the particle-

particle channel between layers, when the layer is sufficiently small. Consequently, this

tunnelling allows for superconductivity to emerge, thus stabilising the superconductor, and

allows the system to reach a higher critical temperature. The coupling between the layers

essentially acts as a method for Josephson tunnelling. Therefore it is natural to assume that

interlayer coupling would help the superconducting state.

The contribution of this extra tunnelling manifests itself as a correction to the self energy,

thus the interlayer coupling can be thought of as another avenue which allows a supercon-

ducting current to flow. Additionally, the intralayer effects can change how the interlayer

coupling affects the superconductivity, so this also needs to be considered when construct-

ing the model.

Whilst this theory has some theoretical and experimental success, it does not have the

same support within the community as spin fluctuation theory.

Resonance Valence Bond Theory

Anderson [77] first proposed Resonance Valence Bond (RVB) theory in 1987, only a year

after the discovery of high temperature superconductivity by Bednorz and Müller. RVB is

a strongly correlated theory based on Cooper pairs having a singlet state which is bound,

but when the system is doped these spin singlet states are attracted to each other forming

a superconducting state. This is an example of how disorder can form a superconducting

state, however introducing further disorder does not raise the critical temperature.

The underlying theory behind the model relies on Mott insulators [78], as the phase

transition is claimed to be a Mott insulator-superconductor transition. Accepting that the

theory is based upon a Mott insulator immediately implies this theory is strongly correlated,

and that Fermi liquid theory is not relevant for RVB theory. The doping is crucial to the

underlying mechanism, as the doping creates an electron hole pair, which in turn results in

an attraction between the Cooper pairs.

From a technical perspective, the system is derived from the t-J model [79], which is

a logical step as the model describes strongly correlated systems. Since this model has a

familiar form of the Hamiltonian, known techniques can be used to find the valence bond
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wavefunction. The RVB analysis can then be extended to a mean field level, which allows a

solution for the gap function to be found, which yields the type of superconductivity.

This theory is not as popular as spin fluctuation theory. It does suggest that high tem-

perature superconductivity could be linked to strongly correlated systems, in a similar way

that spin fluctuation theory does. Whilst these theories are fundamentally different, the

underlying importance of spin is common.

All the theories discussed are not widely accepted within the whole community, either

experimentally or theoretically. The reason they have been introduced is to extend what

possible mechanisms could explain the underlying microscopic physics of unconventional

superconductivity.

The purpose of this chapter was to introduce the different theories of unconventional

superconductivity, both from a macroscopic and microscopic perspective. Within both of

these areas, only the essential features have been covered. For example, within macroscopic

unconventional superconductivity if the system can not be described by the quantum num-

ber l, point group symmetries have to be used. The microscopic part has been intentionally

introduced at a peripheral level, since there is no widely agreed consensus within the com-

munity. However, it is still informative to gain an understanding into what research is being

performed in the field.

The next chapter begins the research section of this thesis, and will focus on topological

superconductivity.
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Chapter 3

Topological Superconductors

This chapter provides an analytical framework extending the model in the paper by Kar-

naukhov [1] which shows that non-trivial topology occurs spontaneously in a superconduc-

tor. The mathematical derivation is similar to the one introduced for BCS theory, and it will

be written in terms of Green’s functions, for which a brief introduction will be given. Once

the gap function is derived, the Chern number will be formally introduced and used to cal-

culate the topology of the system. If the Chern number is found to be non-zero then the

system is said to have a non-trivial topology.

The claim of the Karnaukhov paper is that non-trivial topology arises spontaneously

in a superconductor, with no external perturbation. However, all the results in that paper

are based on numerical simulations. Within this thesis, the derivation of the ground state,

and subsequently the derivation of the gap function have been performed analytically using

justifiable assumptions. From this, the energy states are derived, and the minimum solution

for the system is found. The minimum energy is the favourable energy state. Since the

gap function is found using a saddle-point approach, the second equation in this approach

imposes an extra condition which means the solution for the gap function is dependent

on the phase of the gap function. This phase can take two values, and the value which

minimises the ground state energy is the favourable solution. From this favourable solution,

the topology of the system can be deduced.

An assumption by Karnaukhov was the gap function was homogenous, thus implying

the system was momentum (q) independent. The assumption was due to the system ex-

hibiting translational invariance. After performing the analytical results for q = 0, this

assumption will be checked. The method for this is by finding the solutions for the first

superconducting instability which occurs at the lowest energy eigenvalue. At that point,
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the value of q will determine the q dependence for the first superconducting Cooper pair.

This is done for varying values of chemical potential. If q 6= 0 for the first superconduct-

ing instability, this implies the assumptions are not justified. Moreover, if it is shown that

homogeneity in translational invariant systems can not necessarily be assumed, this could

shape the way in which future research is conducted.

3.1 Model

The model is a 2D spinless square lattice with attraction between the sites. It is not assumed

that the attractions in the x and y direction are the same, therefore homogeneity is not as-

sumed. The model can be shown graphically in figure 3.1.

Spinless square lattice with attraction between the sites

FIGURE 3.1: The diagram shows how each direction yields a different cou-
pling. The distance between the sites is the same but the coupling and trans-

lation vectors are not, hence the difference in labelling.

From this model, a generic Hamiltonian for the system can be written, the gap function

can be found and any assumptions about the model can be imposed on the gap function.

This will be explained in detail in the next section.
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3.1.1 Derivation of Gap Function

A generic Hamiltonian can be written as

Ĥ = ∑
rr′

(
ψ̂†

r ξrr′ ψ̂r′ − Jrr′ ψ̂
†
r ψ̂†

r′ ψ̂r′ ψ̂r

)
, (3.1)

where the sum over r, r′ is over all the lattice sites. At this stage, the Hamiltonian does not

yet have the full restrictions of the model above. These restrictions are imposed using the

gap function. Equation (3.1) can be used to write the action in terms of fermionic fields,

where imaginary time is used such that

S = ∑
rr′

(
∑
τ

ψ̄r(∂τ + ξr,r′)ψr′ − Jrr′ ψ̄rψ̄r′ψr′ψr

)
. (3.2)

In a similar way to what has been done previously, to introduce the gap function, a Hub-

bard Stratonovich transformation is chosen such that the gap field decouples the quartic

interaction term. Therefore the action becomes

S = ∑
rr′

(
|∆rr′ |2

4Jrr′
+ ∑

τ

ψ̄r(∂τ + ξr,r′)ψr′ +
1
2
(∆rr′ ψ̄rψ̄r′ + ∆̄rr′ψr′ψr)

)
. (3.3)

Using the property that the gap field is anti-symmetric due to the parity and the bosonic

statistics it possesses, allows the action to be written as

S = ∑
rr′

|∆rr′ |2

4Jrr′
+ ∑

τ

ψ†(∂τ + ξ̂)ψ +
1
2
(ψ†∆̂ψ̄ + ψT∆̂†ψ). (3.4)

Before writing the action in a full matrix form as before, the Fermi fields can be written

in Nambu notation. To do this, the non interacting part of the Hamiltonian must use the

relation that

ψ†(∂τ + ξ̂)ψ = −ψT(∂τ + ξ̂)Tψ̄. (3.5)

Another important relation to note, is that ∂T
τ = −∂τ which occurs because the conjugate of

imaginary time produces a minus sign. Defining the Nambu vectors as Ψ† = (ψ†, ψT), the

action becomes

S = ∑
rr′

|∆rr′ |2

4Jrr′
+

1
2 ∑

τ

Ψ†

∂τ + ξ̂ ∆̂

∆̂† ∂τ − ξ̂T

Ψ. (3.6)



Chapter 3. Topological Superconductors 39

This can now be written in terms of Green’s functions. To do this, the motive for using

Green’s functions will now be introduced.

Green’s functions are formal solutions to differential equations, and the link between

them and the correlation function has been exploited over the past 60 years. They are par-

ticularly useful when considering many-body physics. There are many different types of

Green’s functions, namely greater, lesser, imaginary, advanced, and retarded [17]. These are

related to the direction of time, and the physical space that they occupy. For the rest of this

chapter, imaginary time Green’s functions will be used, since they contain all of the thermal

information within the system. Importantly, imaginary time Green’s functions are valid for

τ going from 0→ β. To understand the origin of Green’s functions, consider

L(r)G(r, r′) = δ(r− r′), (3.7)

where L(r) is the Lagrangian, and G(r, r′) is the Green’s function. Using this, and noting

the Schrödinger equation, an analagous equation can be written as

(∂τ +H)G(r, r′; τ, τ′) = δ(r− r′)δ(τ − τ′), (3.8)

where the equation has been written in imaginary time. By then taking a Fourier transform

such that the Green’s function is in momentum and frequency space, this yields

G(k, ε) =
1

−iε + Ek
, (3.9)

which for a non interacting system gives

G(k, ε) =
1

−iε + ξk
. (3.10)

This is known as the non interacting Green’s function. To transform the Green’s function to

position and imaginary time, take the inverse Fourier transform and assume translational

invariance to get

G(r, r′; τ, τ′) =
1
β ∑

ε

∫
dkG(k, ε)ei(r−r′).k−i(τ−τ′)ε. (3.11)
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Green’s functions are directly related to correlation functions, which yields

G(r, r′; τ, τ′) = 〈ψ†(r′, τ′)ψ(r, τ)〉. (3.12)

where 〈. . . 〉 = (1/Z)Tr(. . .) is the thermal average of the system and is known as the cor-

relation function. The operators inside the brackets are normal ordered. Since this is the

thermal average, this result is known as the thermal Green’s function. The information con-

tained within this can be used to solve a range of problems. The non-interacting Green’s

function can be used to find solutions for interacting systems. This is done by defining a

Green’s function for a system of many particles such that

Gn(r1, τ1 . . . rn, τn; r′1, τ′1 . . . r′n, τ′n) = 〈ψ†(r′1, τ′1) . . . ψ†(r′n, τ′n)ψ(rn, τn) . . . ψ(r1, τ1)〉, (3.13)

To write this in a form of non-interacting Green’s functions consider

G(r, τ, r1, τ1; r′, τ′, r′1τ′1) = 〈ψ†(r′1, τ′1)ψ
†(r′, τ′)ψ(r, τ)ψ(r1, τ1)〉, (3.14)

which can be rewritten using Wick’s theorem [17] as

G(r, τ, r1, τ1; r′, τ′, r′1τ′1) = 〈ψ†(r′, τ′)ψ(r, τ)〉〈ψ†(r′1, τ′1)ψ(r1, τ1)〉

−〈ψ†(r′1, τ′1)ψ(r, τ)〉〈ψ†(r′, τ′)ψ(r1, τ1)〉.
(3.15)

Consequently, it can be seen that this many particle Green’s function has been reduced to

four non-interacting Green’s functions, which have already been calculated. It is useful

to know that once one type of Green function has been calculated, the other types can be

derived using known techniques.

Using this understanding, equation (3.6) can be written in terms of Green’s functions

such that

S = ∑
rr′

|∆rr′ |2

4Jrr′
+

1
2 ∑

τ

Ψ†Ĝ−1Ψ, (3.16)

where

Ĝ−1 =

∂τ + ξ̂ ∆̂

∆̂† −(∂τ + ξ̂)T.

 = Ĝ−1
0 + ∆̂. (3.17)
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This inverse is due to Ĝ−1
0 being the non interacting inverse Green function, and conse-

quently Ĝ0 is defined as

Ĝ0 =

ĝ 0

0 −ĝT

 , (3.18)

where ĝ = (∂τ + ξ̂)−1. The gap field matrix is

∆̂ =

 0 ∆̂

∆̂† 0

 , (3.19)

with ∆̂ = −∆̂T. Therefore, as previously derived, the Fermi fields can be integrated out to

give

S = ∑
rr′

|∆rr′ |2

4Jrr′
− 1

2
Tr ln Ĝ−1. (3.20)

Now the structure of the gap fields must be understood. Since the system is translation-

ally invariant and modelled on sites and links between these sites, it is convenient to re-

parameterise r and r′. This allows for a choice to be made such that

∆rr′ = ∆r−r′
( r + r′

2

)
= ∆l(R), (3.21)

where r = R + l/2 and r′ = R− l/2. The R can be thought of as the centre of mass of the

Cooper pair, and l is the link between each site. With this new parameterisation, R only

has relevance if the system is inhomogenous, however l will have relevance as the links

between sites can be different even if the system is translationally invariant. These gap field

equations can be extended to momentum representation which yields

∆kk′ = ∆k−k′
(k + k′

2

)
= ∆κ(q), (3.22)

where k = q + κ/2 and k = q− κ/2. Rewriting equation (3.22) as

∆κ(q) = ∑
l

∆l(q)eiφ(κ.l), (3.23)

allows a further simplification. This simplification yields

∆κ(q) = −i ∑
l

∆l(q) sin(κ.l), (3.24)
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since the gap field is anti-symmetric due to parity. This is as a result of the bosonic statistics

the gap field possesses. Therefore this solution respects the anti-symmetry required. Thus

in an homogenous situation, the gap field becomes

∆k = −i ∑
l

∆l sin(k.l). (3.25)

In the paper [1] which inspired this research, there was an ansatz that ∆k = |∆|eiφk which

was justified by a translational gap field. However this assumption will be checked in sec-

tion 3.3. Consequently, the structure of the gap function must be investigated. This is cal-

culated by performing a Ginzburg-Landau analysis on the gap function in the action such

that

S = ∑
Rl

|∆l(R)|2

4Jl
+

1
4

Tr
(
Ĝ0∆̂

)2
+

1
8

Tr
(
Ĝ0∆̂

)4, (3.26)

which can be reduced to

S = ∑
Rl

|∆l(R)|2

4Jl
− 1

2
tr
(
∆̂† ĝ∆̂ĝT)+ 1

4
tr
(
∆̂† ĝ∆̂ĝT)2. (3.27)

At this stage, time independence is imposed upon the system and the action is reduced to

the free energy since S = βF. This allows the quadratic part of the free energy to be written

as

F2 = ∑
ql

|∆l(q)|2

4Jl
− 1

2 ∑
εqk

gε
k+q/2g−ε

−k+q/2|∆k(q)|2. (3.28)

Using the definition for ∆k = −i ∑l ∆l sin(k.l), gives the quadratic free energy taking the

form

F2 = ∑
qll′

|∆l(q)|2

4Jl
− 1

2
∆̄l(q)Πll′(q)∆l′(q), (3.29)

where

Πll′(q) = ∑
εk

gε
k+q/2g−ε

−k+q/2 sin(k.l) sin
(
k.l′
)
, (3.30)

and is the kernel that dictates the superconducting instability. Since the system that is being

considered is a square lattice, it is believed to be homogenous which implies that q = 0.

Therefore, this new quadratic free energy becomes

F2 = ∑
ll′

|∆l|2

4Jl
− 1

2
∆̄lΠll′∆l′ , (3.31)
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with

Πll′ = ∑
εk

gε
kg−ε
−k sin(k.l) sin

(
k.l′
)
. (3.32)

Since the solution for ∆l is still not known, the fourth order term in the free energy needs to

be considered. The quartic term of the free energy can be written as

F4 =
1
4 ∑

εk

(
gε

kg−ε
−k

)2|∆k|4 = ∑
k

hk|∆k|4, (3.33)

where hk = 1
4 ∑ε

(
gε

kg−ε
−k

)2. This can be written as

F4 = ∑
kll′

hk
[(

∆lskl + ∆l′skl′
)(

∆̄lskl + ∆̄l′skl′
)]2, (3.34)

where skl = sin(k.l) ≡ s1, and skl′ = sin(k.l′) ≡ s2, ∆l ≡ ∆1, and ∆l′ ≡ ∆2. This can be

expanded to give

F4 = ∑
kη

hk
[
|∆1|4s4

1 + |∆2|4s4
2 + 2|∆1|2|∆2|2s2

1s2
2 + s2

1s2
2(∆1∆̄2 + ∆̄1∆2)

2], (3.35)

where η = 1, 2. Terms with odd sin terms are neglected due to their anti-symmetry, in

addition to terms which only contain momentum that does not correspond the field, namely

∆1s2 since they are weakly coupled so are negligible. Therefore the quartic free energy can

be further simplified to

F4 = ∑
kη

hk

[
b(|∆1|4 + |∆2|4) + c

[
2|∆1|2|∆2|2 + (∆1∆̄2 + ∆̄1∆2)

2]], (3.36)

where b = s4
1 + s4

2 and c = s2
1s2

2. The quartic free energy can now be minimised such that

∂F4

∂|∆1|
= 4b|∆1|3 + 4c|∆1||∆2|2 = 0, (3.37)

which admits solutions |∆1| = −|∆2| at φ = ±π/2. The solution for φ comes from a dot

product within the argument of s1 and s2 which allows b = c, and therefore allows this

choice for the minimisation of the function. Since it has been shown that the solution to the

gap function depends on the modulus and an angle, it justifies the ansatz that ∆k = |∆|eiφk .

Interestingly, the relation for the gap function shows a solution ∆1± i∆2 suggesting px ± ipy

superconductivity, which has been introduced previously as p-wave superconductivity.
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To determine how the topology occurs, the symmetries of the gap function can be stud-

ied. Since the gap function ansatz is ∆k = |∆|eiφk , the symmetry relations can be found.

When these are computed it is found that the non-trivial topological state is spontaneously

broken due to T -symmetry, when the solution for φ = ±π/2, whereas, the symmetry is

preserved for φ = nπ, where n is an integer.

3.2 Derivation of the Ground State For Zero Net Momentum

The ground state for a zero net momentum (q = 0) Cooper pair will now be derived. Im-

posing translational invariance on equation (3.6) and therefore changing to momentum rep-

resentation gives

S = N ∑
l

|∆l|2

4Jl
+

1
2 ∑

k,τ
Ψ†

k

∂τ + ξk ∆k

∆̄k ∂τ − ξ−k

Ψk. (3.38)

Integrating out the fermions as was done in the general case, allows a solution to be written

as

S = Nβ ∑
Γ

|∆Γ|2

4JΓ
− 1

2 ∑
k,τ

tr ln
[
(−iε)2 − E2

k
]
, (3.39)

where Ek =
√

ξ2
k + |∆k|2. Transforming to Matsubara frequencies to perform a complex

integral results in

S = Nβ ∑
Γ

|∆Γ|2

4JΓ
− 1

2 ∑
k

tr ln
[

cosh
(βEk

2

)]
. (3.40)

From this, the difference between the interacting action, and the non-interacting action can

be found such that

δS = S− S
(
∆Γ = 0

)
= Nβ ∑

Γ

|∆Γ|2

4JΓ
−∑

k
ln

[(
cosh

(
βEk

2

)
cosh

(
βξk

2

))]. (3.41)

In an attempt to find the lowest ground state, the limit as T → 0 or β → ∞ is taken, which

results in cosh(βEk/2)→ (1/2) exp((βEk)/2). This result implies

2δF(T = 0) =
|∆|2

J
−
∫

dk
(
Ek − ξk

)
. (3.42)
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To find the ground state energy, a saddle point approximation needs to be used such that

the minimum of the energy is found with respect to the gap function and the angle. These

give the gap equations. Before finding these equations, recall the definition that ξk =

−t/2[cos(kx) + cos
(
ky
)
]− µ, where the 1/2 is applied to stop overcounting of sites and µ is

the chemical potential. Throughout this derivation t will be normalised to 1. Additionally,

using the assumption that ∆kx ,ky = |∆|eiφ, where φ ≡ φk = φkx −φky . The gap function can be

written as |∆k|2 = |∆|2gk(φ) where gk(φ) = sin2(kx) + sin2(ky) + 2 cos(φ) sin(kx) sin
(
ky
)
.

Consequently, these gap equations are found by

∂δF(|∆|, φ)

∂α
= 0, (3.43)

where α = |∆|2, φ. These equations are found as

∂δF(|∆|, φ)

∂|∆|2
=

1
J
− ∂E(|∆, φ|)

∂|∆|2
= 0, (3.44)

which implies
∂E(|∆, φ|)

∂|∆|2
=

1
J

. (3.45)

The other gap equation is
∂δF(|∆|, φ)

∂φ
=

∂E(|∆|, φ)

∂φ
= 0, (3.46)

which can be further analysed to

∂E(|∆|, φ)

∂φ
= −1

2

∫
dk

sin(φ) sin(kx) sin
(
ky
)
|∆|2√

ξ2
k + |∆|2

(
sin2(kx) + sin2(ky) + 2 cos(φ) sin(kx) sin

(
ky
)) = 0.

(3.47)

This has trivial solutions for φ = nπ. If φ = ±π/2, then this yields a new solution for

the integrand. When this integral is computed, the result is zero, subsequently resulting

in φ = ±π/2 also being solutions to the gap equation. The non-triviality of the φ = ±π/2

solutions is due to the fact that these solutions break T -symmetry. Since solutions have been

found for one of the gap equations, it is then important to analyse the other gap equation

such that the minimum energy can be found. Therefore equation (3.45) can be written as

1
J
=
∫

dk
gk(φ)√

ξ2
k + |∆|2gk(φ)

, (3.48)
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where the 1/2 has been cancelled since the sum over the links gives 2. To find the ground

state energy for the system, the solution for energy must be found when the gap function is

evaluated at 1/J such that E(∆ = ∆(g)) ≡ E(g), where g ≡ 1/J = E′(|∆|2). The prime in

this case represents the derivative with respect to |∆|2. To calculate the minimum energy at

∆ = ∆(g), the energy must be minimised with respect to g such that

dE(g)
dg

=
dE(|∆|2)
d(|∆|2)

∣∣∣∣∣
|∆|=|∆(g)|

d|∆(g)|2

dg
= g

d|∆(g)|2

dg
. (3.49)

From this, E(g) can be found to give

E(g) = −
∫ ∞

g
dg′

dE(g′)
dg′

= −
∫ ∞

g
dg′g′

d|∆(g′)|2

dg′
= g|∆(g)|2 +

∫ ∞

g
dg′|∆(g)|2. (3.50)

Since the absolute ground state energy, is the smallest amount of energy possible, therefore

EGS =
1
2
[g|∆(g)|2 − E(g)] = −1

2

∫ ∞

g
dg′
∣∣∆(g′)

∣∣2. (3.51)

By then calculating this ground state energy for both solutions of φ will show which solution

is the favourable solution. To make use of the equation for the ground state energy, the

solution for the integral needs to be found to allow the gap function to be derived. The

integral is non-analytic and therefore approximations have to be made before a solution can

be found.

3.2.1 Edge of the Band

To find the most favourable solution for φ, the ground state energy must be calculated for

each value of φ. To do this analytically, assumptions must be made. By splitting the gap

function into two regions; one at the edge of the band, and one at the middle of the band,

relevant assumptions can be made and the ground state energy can be found in both cir-

cumstances. Since it is logical to assume, that if the ground state energy is minimised for

the same value of φ at both the edge and middle of the band, then it can be assumed which

value of φ would be the most favourable value, and thus the topology of the system can be

deduced.

To find an analytical solution at the edge of the band, certain assumptions must be made.



Chapter 3. Topological Superconductors 47

Since the momenta at the edge of the band is small, this allows a Taylor expansion to be

performed on the momentum dependent functions. The fact the Fermi surface is spherical

at the edge of the band also allows the choice of polar coordinates. This can be seen visually

in figure 3.2.

The Fermi surface of ξk in the 2D plane for µ = 0

FIGURE 3.2: This Fermi surface clearly shows that at the edge of the band, the
surface is spherical, and therefore allowing small momenta is a valid choice.
Near the middle of the band, this approximation is no longer valid and the

momentum distribution is approximately square.

Using this approximation results in equation (3.48) taking the form

g =
1
J
=
∫

dk
k2

x + k2
y + 2 cos(φ)kxky√(

− 2 +
k2

x+k2
y

2 − µ
)2

+ |∆|2
(
k2

x + k2
y + 2 cos(φ)kxky

) , (3.52)

This is now in the form where changing to polar coordinates is appropriate. Therefore kx =

k cos θ and ky = k sin θ, and the integral changes from
∫

dk =
∫

dkxdky →
∫

dkdθk. The

integral becomes

g =
∫ 2π

0

dθ

2π2

∫
dk

k(k2 + 2k2 cos(φ) sin(θ) cos(θ))√(
− 2 + k2

2 − µ
)2

+ |∆|2(k2 + 2k2 cos(φ) sin(θ) cos(θ))
, (3.53)
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which yields

g =
∫ 2π

0

dθ

2π2

∫
dk

k3(1 + cos(φ) sin(2θ))√( k2

2 − δµ
)2

+ |∆|2k2(1 + cos(φ) sin(2θ))
, (3.54)

where δµ = µ + 2. Since small momentum is being considered, this allows ξ = k2/2 where

the integration has limits from δµ− ω0 ≤ ξ ≤ δµ + ω0 which is the window of supercon-

ducting electrons. Using these bounds, the integral becomes

1
J
=

2
π

∫ 2π

0

dθ

2π
f (θ)

∫ ω0

−ω0

dξ
ξ + δµ√

ξ2 + 2(ξ + δµ)|∆|2 f (θ)
, (3.55)

where f (φ, θ) ≡ f (θ) = 1 + cos(φ) sin(2θ). Now this integral can be evaluated, by complet-

ing the square in the denominator such that

1
J
=

2
π

∫ 2π

0

dθ

2π
f (θ)

∫ ω0

−ω0

dξ
ξ + δµ√(

ξ + |∆|2 f (θ)
)2

+ a2
, (3.56)

where a2 = −|∆|2 f (θ)(|∆|2 f (θ)− 2δµ). Then let ξ + |∆|2 f (θ) = a sinh(s) ⇒ arcsinh((ξ +

|∆|2 f (θ))/a) = s. Also, dξ = a cosh(s), which yields

1
J
=

2
π

∫ 2π

0

dθ

2π
f (θ)

∫ arcsinh
(

ω0+|∆|
2 f (θ)

a

)
− arcsinh

(
ω0+|∆|

2 f (θ)
a

) ds
a cosh(s)

(
a sinh(s)− |∆|2 f (θ) + δµ

)√
a2
(

sinh2(s) + 1
) . (3.57)

This integral evaluated becomes

1
J
=

2
π

∫ 2π

0

dθ

2π
f (θ)

(
a cosh(s)− |∆|2 f (θ)s + δµs

)∣∣∣∣∣
arcsinh

(
ω0+|∆|

2 f (θ)
a

)
− arcsinh

(
ω0+|∆|

2 f (θ)
a

). (3.58)

Since the vicinity of interest is the phase transition, the approximation |∆| → 0 can be made

at the integration bounds such that

arcsinh
(ω0 + |∆|2 f (θ)

a

)
≈ arcsinh

(ω0

a
)
. (3.59)



Chapter 3. Topological Superconductors 49

Then using the fact that cosh(−x) = cosh(x), the integral approximately becomes

1
J
≈ 2

π

∫ 2π

0

dθ

2π
f (θ) arcsinh

(ω0

a
)[

2δµ− 2|∆|2 f (θ)
]
. (3.60)

Recalling a and using the identity arcsinh(x) = ln
(

x +
√

x2 + 1
)

, the result can be further

simplified. By also noting

ω2
0√

|∆|2 f (θ)(−|∆|2 f (θ)− 2δµ)
� 1, (3.61)

this implies that arcsinh(x) = ln
(

x +
√

x2 + 1
)
→ ln(2x), and therefore

1
J
≈ 2

π

∫ 2π

0

dθ

2π
f (θ) ln

[
2ω0√

−|∆|2 f (θ)(|∆|2 f (θ)− 2δµ)

][
2δµ− 2|∆|2 f (θ)

]
. (3.62)

Since the |∆|4 term in the denominator is small, this can be ignored, and therefore

1
J
≈ 2

π

∫ 2π

0

dθ

2π
f (θ) ln

[
2ω0√

2δµ|∆|2 f (θ)

][
2δµ− 2|∆|2 f (θ)

]
. (3.63)

Due to the δµ term being more dominant than the |∆|2 term, the equation is approximated

to

1
J
≈
∫ 2π

0

dθ

π2 f (θ)2δµ ln

[ √
2ω0√

δµ|∆|

]
− 1

2

∫ 2π

0

dθ

π2 2δµ f (θ) ln
(

f (θ)
)
. (3.64)

This is then at a point where the gap function can be written. Since

π

4δµJ
= ln

Ω
|∆| − γ(φ), (3.65)

where Ω =
√

2ω0/
√

δµ, and γ(φ) = 1
4

∫ 2π
0

dθ
π f (θ, φ) ln

(
f (θ, φ)

)
. From this,

∣∣∆φ

∣∣ = Ωe−γ(φ)e−g, (3.66)

where g = π/4δµJ. Since g� 1, this implies that the main contribution to the gap function

comes from the dependence on φ. By then substituting this into the equation for the ground
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state energy, the result becomes

EGS = −1
2

2δµ

π

∣∣∆φ

∣∣2 = −δµ

π

∣∣∆φ

∣∣2. (3.67)

Now to evaluate which value for φ gives a lower energy. By remembering that f (θ) =

1+ cos(φ) sin(2θ) ≡ f (φ, θ), allows the values for φ that were found previously to be substi-

tuted in. When φ = ±π/2, since cos is an even function, implies cos(π/2) = cos(−π/2) =

0, and f (±π/2, θ) = 1. Therefore f (π/2, θ) ln( f (π/2, θ)) = 1 ln(1) = 0. When this is

substituted into the ground state energy, the result is

E±
π
2

GS = −δµ

π

∣∣Ωe0e−g∣∣2 = −δµ

π

∣∣Ωe−g∣∣2. (3.68)

for φ = π/2. Now considering φ = nπ, implies that f (0, θ) = 1 + sin(2θ). Since there

is typically a sign change between cos(0) = 1, and cos(π) = −1, this requires more anal-

ysis. However, the sign change can be removed, if the momentum is flipped, since the

choice of the direction of momentum is not absolute. For a flipping of momentum, f (0, θ) =

1+ sin(2θ) = f (π, θ). It can be seen that the integral of f (nπ, θ) ln( f (nπ, θ)) is non-analytic.

To determine the result, two inexact approaches are used. The first is to plot the integrand,

and study whether the integral will be positive or negative based upon the graph. Since, it

is being compared with E±
π
2

GS , by determining whether γ(nπ) is positive or negative, deter-

mines which ground state energy is lower. The second method, is to compute the integral

numerically, and focus on the sign of the result. When looking at the plot of the integrand

shown in figure (3.3), it is clear that on average, the integrand is positive.
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The integrand f(θ)ln(θ) at φ = nπ plotted over the interval 0 to 2π

1 2 3 4 5 6

0.5

1.0

FIGURE 3.3: The figure clearly shows that the average of the integrand is pos-
itive, as there is only a small amount of the graph which becomes negative.

Therefore the integral is positive.

The first method suggests that φ = nπ yields a positive integral, which would result

in a less negative ground state energy than the solution for φ = ±π/2 since e−γ(nπ) <

1. Consequently, the non trivial φ = ±π/2 appears to be the favourable solution. This

is further confirmed, since the numerical solution for the integral in Mathematica gave a

solution γ(0, π) = 1.92801, which again is clearly positive. When considering Enπ
GS, and

in particular, e−γ(nπ) implies that for γ(nπ) being positive yields e−γ(nπ) < 1, resulting in

Enπ
GS > E±π/2

GS . Since the lowest energy is the most favourable state, this allows a favourable

solution for φ to be found. Using these two methods, it can be said that the non trivial

solution for φ at φ = ±π/2 is the favourable solution for the edge of the band, suggesting a

non trivial topology. The results need to be checked for the middle of the band.

3.2.2 Middle of the Band

To calculate the gap function for the middle of the band requires different methods as the

approximations used for the edge of the band can no longer be applied. By consulting figure

3.2, at the middle of the band, the Fermi surface appears square-like, therefore applying a

small momentum approximation, and writing only in terms of the angle is no longer valid.

For this scenario, new parameterisation needs to be performed such that

k± =
1
2
(
kx ± ky

)
, (3.69)
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which then implies

εk = −1
2
(

cos(kx) + cos
(
ky
))

= − cos(k+) cos(k−), (3.70)

and

gk(φ) = sin2(kx) + sin2(ky) + 2 cos(φ) sin(kx) sin
(
ky
)
= 2

[
v2 + cos(φ)(v2

+ − v2
−)
]
, (3.71)

where

v2 = v2
+ + v2

−, (3.72)

v± =
∂εk

∂k±
. (3.73)

The integration range for this problem is between −ω0 and ω0. Since, new variables have

been introduced, the variables in the integration must be changed too, such that

dkxdky = 2dk+dk−, (3.74)

where

dk+dk− = dεk
dk−
v+

= dεk
dk+
v−

= dεk
dl
v

, (3.75)

where l is a length parameter. Explicitly, the velocities are given by

∂εk

∂k±
= sin(k±) cos(k∓) = v±. (3.76)

Using all of this information, the integral above can be written as

1
J
= 2

∫ ω0

−ω0

dk+dk−
2π2

gk±(φ)√
ξ2

k± + |∆|
2gk±(φ)

. (3.77)

From this, the result can be calculated for each of the results for φ, and the most favourable

solution can be found.

By again considering the Fermi surface, whilst the system cannot be transformed into

k where the change is denoted by an angle, the system can be broken up into four quar-

ters. Since these quarters are symmetric and even, only one of these quarters needs to be

evaluated in the integral, and the integral can be multiplied by 4 to give the final result.
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Additionally, since only one of the quarters needs to be integrated, the limits for the integral

range from 0 to π/2. To now transform gk(φ) in terms of these defined variables above, it

is useful to evaluate gk(φ) at φ = nπ and φ = ±π/2. By evaluating gk(φ = 0), the solution

becomes

gk(φ = 0) = sin2(kx) + sin2(ky) + 2 sin(kx) sin
(
ky
)
=
[

sin(kx) + sin
(
ky
)]2

=
[
2 sin

( kx + ky

2
)

cos
( kx − ky

2
)]2

=
[
2 sin(k+) cos(k−)

]2
= 4v2

+,
(3.78)

similarly, gk(φ = π) becomes

gk(φ = π) = sin2(kx) + sin2(ky) = 2 sin(kx) sin
(
ky
)
=
[

sin(kx)− sin
(
ky
)]2

=
[
2 sin

( kx − ky

2

)
cos

( kx + ky

2

)]2
=
[
2 sin(k−) cos(k+)

]2
= 4v2

−.
(3.79)

For gk(φ = ±π/2), the calculation is

gk(φ = ±π/2) = sin2(kx) + sin2(ky) =
1
2
[
2 sin2(kx) + 2 sin2(ky)

]
=

1
2
[

sin2(kx) + sin2(ky) + 2 sin(kx) sin
(
ky
)

+ sin2(kx) + sin2(ky)− 2 sin(kx) sin
(
ky
)]

,

(3.80)

which by using the above formulae, allows

gk(φ = ±π/2) = 2
[(1

2
(sin(kx) + sin

(
ky
)
)
)2

+
(1

2
(sin(kx)− sin

(
ky
)
)
)2]

= 2
[
(sin(k+) cos(k−))2 + (sin(k−) cos(k+))2] = 2(v2

+ + v2
−).

(3.81)

Now, the two integrals can be written for both φ = nπ, and φ = ±π/2. Since, only one of

the momenta needs to be integrated over, dk+dk− becomes dεkdk−/v+ by using equation

(3.76). Therefore for φ = nπ the integral is

1
J
=

8
π2

∫ ω0

−ω0

dεk

∫ arccos |ε|

0

dk−
v+

v+√
(εk − µ)2 + 4|∆|2v2

+

, (3.82)

where the limits come from εk = − cos(k+) cos(k−), and at k = 0 ⇒ kx = ky = 0, and

consequently k− = 0. Also, for k = π/2, this means the maximum of cos(k+) = 1, and



Chapter 3. Topological Superconductors 54

εk = − cos(k−)⇒ k− = arccos |εk|. For the φ = ±π/2 integral, the result is

1
J
=

2
π2

∫ ω0

−ω0

dεk

∫ arccos |ε|

0

dk−
v+

2(v2
+ + v2

−)√
(εk − µ)2 + 2|∆|2(v2

+ + v2
−)

. (3.83)

As has previously been discussed, the signs of the momenta are interchangeable by symme-

try, this then implies that the numerator in the integral results in 4v2
+. This does not occur in

the square root in the denominator as this is not even. Consequently, the integral becomes

1
J
=

16
π2

∫ ω0

0
dεk

∫ arccos |ε|

0

dk−
v+

v2
+√

(εk − µ)2 + 2|∆|2(v2
+ + v2

−)
. (3.84)

To write v+ and v− in terms of k− and εk, equation (3.70) must be used. From this,

ε2
k = cos2(k+) cos2(k−) = cos2(k−)− cos2(k−) sin2(k+) = cos2(k−)− v2

+

⇒ v+ =
√

cos2(k−)− ε2
k.

(3.85)

To find v−, use ε2
k = cos2(k+) cos2(k−) and also v− = sin2(k−) cos2(k+), which can be

combined to give

cos2(k+) =
ε2

k
cos2(k−)

=
v−

sin2(k−)

⇒ v− = ε2
k tan2(k−).

(3.86)

As can be seen, even with this parameterisation, the integrals are still non-analytic, however

there are some assumptions that can be made at the middle of the band. Since |εk| �

1 at the middle of the band, this implies that v+ ≈ cos(k−) � v− almost everywhere,

except for near cos(π/2) ≈ π/2− k− ≤ |εk| where the Fermi surface starts to curve. By

neglecting this small contribution, the upper limit of the integral can be set to π/2. Using

these assumptions, the integrals can then be written as

I
(
φ = nπ

)
=

16
π2

∫ ω0

0
dξ
∫ π

2

0
dk

cos(k)√
ξ2 + 4|∆|2 cos2(k)

, (3.87)

I
(
φ = ±π

2
)
=

16
π2

∫ ω0

0
dξ
∫ π

2

0
dk

cos(k)√
ξ2 + 2|∆|2 cos2(k)

, (3.88)

where k = k−. Since the only difference between these integrals is a factor of 2 in the square
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root in the denominator, the integral for φ = nπ will be computed, and then the other result

will be deduced. The k integral is an exact integral and gives

I
(
φ = nπ

)
=

16
π2

∫ ω0

0
dξ

arctan
(

2∆
ξ

)
2∆

. (3.89)

The integral over the spectrum can be computed to give

I
(
φ = nπ

)
=

8
∆π2

[
ω0 arctan

(2∆
ω0

)
+ ∆ ln

(
4∆2 + ω2

0
)
− ∆ ln

(
4∆2)]. (3.90)

Since the calculation is taking place near the phase transition, the dominant terms in the

integral occur as ∆→ 0. Therefore, by only considering these terms, the result is

I
(
φ = nπ

)
=

8
π2

[
ln
(4∆2 + ω2

0
4∆2

)]
=

8
π2

[
ln
(4∆2 + ω2

0
∆2

)
− ln(4)

]
, (3.91)

and since ω0/∆� 4, the result simplifies to

I
(
φ = nπ

)
=

16
π2

[
ln
(ω0

∆

)
− ln(2)

]
=

1
J

. (3.92)

By now letting − ln(2) = γ, the gap function can be solved to yield

∆ = ω0eγe−
π2
16J = ω0eγe−g = ∆(φ = nπ). (3.93)

For the case when φ = ±π/2, the integral is

I
(
φ = ±π

2
)
=

8
π2

[
ln
(2∆2 + ω2

0
2∆2

)]
=

8
π2

[
ln
(4∆2 + 2ω2

0
∆2

)
− ln(4)

]
, (3.94)

which by similar cancellation of terms gives

I
(
φ = ±π

2
)
=

16
π2

[
ln
(√2ω0

∆

)
− ln(2)

]
=

1
J

. (3.95)

For the solution, the gap function can be found to give

∆ =
√

2ω0eγe−
π2
16J =

√
2ω0eγe−g = ∆

(
φ = ±π

2

)
. (3.96)
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Using these equations, this implies that

∆(φ = ±π

2
) =
√

2∆(φ = nπ). (3.97)

Since the equations are only different by a factor of
√

2, this means the integrals do not need

to be calculated explicitly, and only computed in terms of ∆(φ = nπ). By computing the

integrals, it is clear to see that |∆(φ = ±π/2)|2 = 2|∆(φ = nπ)|2, and therefore

EGS(φ = nπ) = −1
4
|∆(φ = nπ)|2 > EGS(φ = ±π/2)

= −1
4
|∆(φ = ±π/2)|2 = −1

2
|∆(φ = nπ)|2.

(3.98)

Consequently, it can be seen that the non trivial solution for φ is again most negative, and

is the favourable solution. Since this occurs at both the middle and edge of the band, it

can be claimed that the non trivial solution is the most favourable, thus implying a px + ipy

topological superconductor due to symmetries of the gap function, as shown earlier.

3.2.3 Calculation of Chern Number

The symmetries of the gap function for q = 0 imply a non trivial topology for φ = ±π/2,

since the minimum of the free energy had a solution for ∆1 ± i∆2 = 0 which in this square

lattice system corresponds to ∆x ± i∆y = 0. However, there are other methods of determin-

ing non trivial topology which have previously been mentioned in this thesis. The method

that will be used in this section is the calculation of the Chern number.

The full mathematical understanding of the Chern number is quite complex, so for the

purpose of this thesis, it will be introduced at a surface level. To understand the concept,

studying the Berry phase and Berry curvature introduces the foundational principles. The

important aspect to note, is that a non-zero Chern number implies non trivial topology, and

a zero Chern number implies a topologically trivial system. Physically, a non-zero Chern

number implies a protected edge state, since the closed curvature of the edge state can be

traversed more than once. However, if the Chern number is zero, this implies that the curva-

ture of the edge state can only be traversed once. This is intrinsically linked to the Winding

number [80], which is related to the Chern number.
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The formal definition of the Chern number is given as

C± =
1

4π

∫
BZ

dkxdky n̂k.(∂kx n̂k × ∂ky n̂k), (3.99)

where n̂k is the unit Bloch vector from the Bloch sphere. n̂k is the unit vector nk/|nk|,

where nk can be thought of as resolving the components of the Hamiltonian into x, y, z

components. Therefore, for the system that is being studied nk becomes

nk =
(
|∆| sin(kx), |∆| sin

(
ky
)
, ξk
)
, (3.100)

where ξk is defined as before. The result for the integrand is given by

n̂k.
(
∂kx n̂k × ∂ky n̂k

)
=

nk.(∂kx nk × ∂ky nk)

|nk|3

= −
|∆|2

(
cos(kx) + cos

(
ky
)
+ µ cos(kx) cos

(
ky
))∣∣(|∆| sin(kx), |∆| sin

(
ky
)
, ξk
)∣∣3

= −
|∆|2

(
cos(kx) + cos

(
ky
)
+ µ cos(kx) cos

(
ky
))(√

|∆|2(sin2(kx) + sin2(ky)) + ξ2
k

)3 .

(3.101)

The Chern number is

C± = − 1
4π

∫
BZ

dkxdky
|∆|2

(
cos(kx) + cos

(
ky
)
+ µ cos(kx) cos

(
ky
))(√

|∆|2(sin2(kx) + sin2(ky)) + ξ2
k

)3 , (3.102)

which can not be solved using standard analytical techniques. Numerical simulations have

to be performed in Mathematica to determine the Chern number and are shown below.
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Chern Number plotted against µ and |∆|
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FIGURE 3.4: This plot shows how the Chern number goes from −1 to 1 as
the sign of the chemical potential changes. However, the fact that the Chern
number is at ±1 further confirms that this is a topological superconductor.
The anomalies in this plot occur at |∆| = 0, and this is because it is not in the

superconducting phase.

The calculation of the Chern number provides further evidence that the system has non

trivial topology when the phase is φ = ±π/2, and the change in sign of the Chern number as

the chemical potential goes from negative to positive also reveals a new type of topological

phase transition in the system.

Figure (3.4) implies that at µ = 0, there is not a topological phase, since the Chern num-

ber is zero. Whether this is due to the system being in a different type of phase is a question

that requires addressing and is considered in the next section.

3.3 Superconducting Instability For Non Zero Net Momentum

The previous section regarding the ground state energy demonstrated a non trivial solution

for the gap function resulting in non trivial topology, and thus a topological superconductor

was created for q = 0. This was because analysis of the fourth order term in the free energy

was analytically difficult, and therefore the simplification of q = 0 was made. The benefit of

studying the fourth order term, allows information about the gap function to be deduced.

However, whilst q 6= 0 does not allow a solution for the gap function to be found from the
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fourth order term, information about the superconducting transition can still be found from

the second order term. For example, what is the most favourable solution for q when the

minimum of the energy is found. The purpose of this section is to study information about

the phase transition itself.

By referring to equation (3.31), this shows the scenario before the assumption of q = 0

was made. At this stage, the fact that the model is a square lattice can be imposed by setting

l = aµ and l′ = aν. Therefore the quadratic term becomes

F2 = ∑
q,µ,ν

∆†
µ(q)

[ 1
2J
− 1

2
Πµν(q)

]
∆ν(q), (3.103)

where Πµν(q) = ∑ε,k gε
k+q/2g−ε

−k+q/2 sin
(
k.aµ

)
sin(k.aν). Note that J no longer has direc-

tional dependence as it only occurs for nearest neighbour coupling, hence why a factor of 2

was introduced. Now the lattice spacing |a| can be set to 1. From this, the kernel in F2 can

be written in matrix form as

Π̂(T, µ) =
1
2 ∑

q

 1
J −Π11 −Π12

−Π21
1
J −Π22

 , (3.104)

where

Π±(q; T, µ) =
1
2
(
Π11 ±Π22

)
=

1
2

∫ π

−π

dk
2π2 πk(q; T, µ)

[
sin2(kx)± sin2(ky)

]
, (3.105)

Π⊥(q; T, µ) = Π12 = Π21 =
∫ π

−π

dk
2π2 πk(q; T, µ) sin(kx) sin

(
ky
)
, (3.106)

πk(q; T, µ) =
tanh

( ξk+ q
2

2T

)
+ tanh

( ξ−k+ q
2

2T

)
ξk+ q

2
+ ξ−k+ q

2

= gε
k+ q

2
g−ε
−k+ q

2
. (3.107)

The calculation for the Green’s functions is the same as the one that has been used previ-

ously, hence the tanh functions. Additionally remember that ξk = cos(kx) − cos
(
ky
)
− µ.

The superconducting instability occurs when the energy eigenvalue first reaches zero, and

the point at which this occurs reveals the most favourable choice for q. To find this, the

eigenvalues of this matrix need to be found as

E(q; T, µ) =
1
J
−Π+(q; T, µ)−

√
Π2
−(q; T, µ) + Π2

⊥(q; T, µ) =
1
J
+ E−(q; T, µ), (3.108)
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where E−(q; T, µ) is given by

E−(q; T, µ) = −Π+(q; T, µ)−
√

Π2
−(q; T, µ) + Π2

⊥(q; T, µ). (3.109)

By plotting E−(q; T, µ) and finding the minimum of this, deductions can be made about q.

Different plots will be made for different values of µ. If the minimum for the energy is at

q = 0 for any choice of µ, then the simplification that q = 0 is justified, and the previous

analysis holds in all cases.

Since the integrals in Π±(q, T, µ) and Π⊥(q, T, µ) are not analytically tractable without

any assumptions, the integrals will consequently be calculated numerically. Once the inte-

grals have been computed numerically, this allows for a plot of E−(q, T, µ) to be shown. The

expectation from these plots is that the minima will always be q = 0 regardless of the choice

of µ and T. First the plot for µ = −1 and T = 1 is shown in figure 3.5.

E−(q, T, µ) plotted at T = 1 and µ = −1
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-0.2100

FIGURE 3.5: This plot shows the expected behaviour, where the minimum of
the energy appears to be at q = 0. The diagonals are much lower than the off

diagonals, and further investigation is needed as to why this occurs.

This plot shows that for certain values, the assumption that the gap function is indepen-

dent of the momentum is a valid one. To further illustrate this conclusion, the minimum of

the energy being q = 0, a clearer plot is the density of the energy. This is shown below in

figure 3.6.
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Density of E−(q, T, µ) plotted at T = 1 and µ = −1

FIGURE 3.6: This density plot confirms the behaviour in figure 3.5. This is
since the darkest red is clearly focused at q = 0, whereas the areas around the

minimum appear only slightly above.

This further confirms that the gap function is momentum independent for a non zero

chemical potential. At this point, it is beneficial to vary the chemical potential to see how

this affects the plots, and whether the minimum of the energy is changed.
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E−(q, T, µ) plotted at T = 1 and µ = 0
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FIGURE 3.7: The plot shows that at half filling (µ = 0), there appears to be
minima which goes along the diagonals of the energy at qx = ±qy. Outside
of these diagonals, the energy increases as q increases, which is the expected

behaviour.

It is important to emphasise that the minima along the diagonals was not expected as it

is widely assumed that in a translational invariant system q = 0 is the favourable solution.

However, this graph appears to indicate differently. Interestingly, there appears to be a

continuum of ground state energies along the diagonals. This suggests any point along

these diagonals is equally likely to be a favourable solution. As a confirmation check, it is

useful to continue to plot the 2D profile of the height as a density plot. This is shown in

figure 3.8.
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Density of E−(q, T, µ) plotted at T = 1 and µ = 0

FIGURE 3.8: This density plot clearly shows that along the diagonals of the
energy at kx = ±ky, the energy is minimised. This is unexpected as it is gen-
erally assumed q = 0 for a translationally invariant system. However the

minimum for q is dependent on the chemical potential.

Since it is clear that there is a dependence on µ for the minima of the energy, ideally a

plot will be able to show whether the minima of q form a continuum of points, or a single

point for varying values for µ. The energy generally appears to increase as |q| is increased.

This allows a useful graph to be plotted where E−(π, π, 1, µ)− E−(0, 0, 1, µ) = δE(µ) which

will reveal whether the minimum of the energy is exactly along the diagonals. Since at

µ = 0, this difference should be zero if there are a continuum of Cooper pairs, the graph will

provide confirmation for this, in addition to determining whether this occurs for any other

values of µ.
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δE(µ) plotted as a function of µ
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FIGURE 3.9: The change in energy from (kx, ky) = (π, π) to (kx, ky) = (0, 0)
shows that as µ = 0 the result is zero, thus confirming the belief that there is
a continuum of Cooper pairs along the diagonals at µ = 0. However, this plot

also reveals that µ = 0 is the only point at which this happens.

Figures 3.7, 3.8, 3.9 show that at half filling, this superconductor has a continuum of

Cooper pairs along the diagonals of the Brillouin zone, when the superconducting state first

condenses, implying the widely used assumption that ∆(q = 0) for translationally invariant

systems may be limited. It has been shown that there is a dependence on this critical value

for q and the chemical potential µ.

3.4 Discussion

This chapter has provided a theoretical and numerical analysis for investigating non-trivial

topology in a 2D spinless square lattice. The main features are that non-trivial topology

spontaneously occurs due to T -symmetry breaking, but only when the chemical potential is

non-zero. This is due to the assumption that the gap field being homogeneous is only valid

for a non-zero chemical potential, as was shown in section 3.3. This analysis revealed that

a continuum of ground states could occur along the diagonals of the Brillouin zone for the

gap field, resulting in a inhomogeneous gap field at half filling.

It is worth considering how this system may be achieved experimentally. To determine

whether the predictions that are made within this chapter are valid, more calculation still
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needs to be performed. This is because a suitable method to determine the non-trivial topol-

ogy, and especially the non-zero nature of the Cooper pairs at half filling is to compute the

specific heat, since a jump in specific heat could imply these particular conditions. This is

scope for future work resulting from the research in this chapter, and is an opportunity for

collaboration between theorists and experimentalists.

The model which has been considered is a simple and highly symmetric system. There-

fore, this type of analysis can be extended for a system which is 3D as opposed to 2D. It

would be expected that the conclusions would be the same due to symmetry arguments of

the gap function, but this should still be investigated to confirm this belief. A benefit of

studying the system in 3D is that a solution for critical temperature could be found. The rea-

son the critical temperature was not found in the 2D scenario, is due to the gap function be-

ing an inaccurate way to determine the critical temperature. Additionally, the square system

could be changed to a different type of lattice, namely a hexagonal lattice. The methodology

used in this chapter would still apply, the difference would be absorbed in the gap func-

tion. A similar approach was performed numerically for a hexagonal lattice in the paper by

Karnaukhov [1].

The results of this chapter have contributed to original research in the field. The analyt-

ical method for showing a non trivial superconductor has not been performed previously.

Additionally, the analyticity of the method is rigorous in determining that the topologi-

cal phase is preferred over the normal superconducting phase. Moreover, by showing that

translationally invariant systems might be dependent on q, the way in which future re-

search will be conducted should change. It has been shown that q = 0 is a poor assumption

in certain cases as it may depend on µ, and should not be widely used.

The next chapter provides the framework for disorder induced superconductivity which

is the main focus of this thesis.
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Chapter 4

Disorder Induced Superconductors

This chapter focuses on the main inspiration for the thesis which was a result of an experi-

ment [3] which showed that disorder could enhance superconductivity. This was previously

believed to be physically unrealisable. The understanding of this phenomenon from a the-

oretical aspect is the focus of the chapter. Luttinger liquids are rigorously introduced, then

using this framework, a quasi one-dimensional model is designed such that there is Joseph-

son coupling between the Luttinger liquid wires. Once an action for this is written, disorder

is added, and the physics of the system is studied.

The analysis of this chapter, is a mixture of analytical and numerical work, where renor-

malisation group (RG) [81] is introduced such that the RG equations for the system can be

written. This results in a system of coupled linear first order differential equations. To deter-

mine how the parameters of the system affect each other, this system of equations is solved

numerically, and the results of this are shown graphically. From this analysis, conclusions

may be drawn.

4.1 Model

4.1.1 Luttinger Liquid Derivation

Since the basis of the model is a set of coupled Luttinger liquid wires, the mathematical

framework of Luttinger liquids is introduced. To derive the model [81] the initial assump-

tion is that the dispersion law can be linearised to give

ξq =
q2

2m
− µ =

(q− q f )(q + q f )

2m
≈


v f (q− q f ) near q = q f

−v f (q + q f ) near q = −q f

, (4.1)
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where q is the momentum, q f is the Fermi momentum, and v f is the Fermi velocity, ξq is the

dispersion law, and µ is the chemical potential. This approximation is valid for |E− EF| ≈

EF since the expansion is about the Fermi level, due to all long wave excitations being well

described by linearisation. This linearising means the dispersion relation can be written as

ξq = ηv f q, (4.2)

where η = R, L = ±1 to describe left moving and right moving particles respectively.

To derive the Luttinger liquid (LL) Hamiltonian, the most generic Hamiltonian needs to

be considered such as

H = ∑
η=R,L

H0η +Hint, (4.3)

where

Hint =
1
2

∫
ρD(x)V(x− x′)ρD(x′)dxdx′, (4.4)

and ρD(x) is the density matrix. Using this generic Hamiltonian, the aim is to write the

Hamiltonian in a bosonic form since for electron-hole pairs, when the number of particles

are conserved, the excitations are bosonic. This step is known as bosonisation [82] and is

crucial as it allows for condensates to form. The first step is to write the action as quadratic

in terms of density fields. Write the general expression for the non interacting action as

S0 =
∫
L0dxdt, (4.5)

where

L0 = ψ̄(x, t)[i∂t −H0]ψ(x, t), (4.6)

where the non interacting Lagrangian can be split into right and left moving particles from

the linearisation. The linear dispersion can be written as v f q, meaning the non-interacting

Hamiltonian is

H0 = ∑
η

ηv f q→ −∑
η

ηv f i∂x, (4.7)

consequently the directional action is

S0η =
∫

dxdt ψ̄η(x, t)[i∂t + iηv f ∂x]ψη(x, t) ≡
∫

dxdt ψ̄η(x, t)i∂ηψη , (4.8)
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where ∂η = ∂t + ηv f ∂x, which implies ∂± = ∂t ± v f ∂x. The wavefunction for both the left

and right moving particles can be written as

ψ(x, t) = exp
(
iq f x

) ∫
q>0

dq exp
(
i(q− q f )x− iωt

)
+ exp

(
−iq f x

) ∫
q<0

dq exp
(
i(q + q f )x− iωt

)
.

(4.9)

In the vicinities of ±qF, the wavefunction becomes

ψ(x, t) ≈ exp
(
iq f x

)
ψR(x, t) + exp

(
−iq f x

)
ψL(x, t), (4.10)

and therefore ρD(x, t) = ψ̄(x, t)ψ(x, t) = ρD,R + ρD,L since the cross terms do not contribute

when integrating over the fields in the action. Before calculating the action, the first step in

bosonising the Fermi fields needs to take place by writing

ψη(x, t) = χη exp
(
iθη(x, t)

)
, (4.11)

where θη(x, t) is a bosonic field which describes the left and right moving particles, and

χη is a Majorana field which is required to preserve the Fermi statistics and is spatially

independent. Importantly, the Majorana field has the property that the particle and anti

particle are equivalent, given by χ̄ = χ. If this new field is substituted into the directional

action, the result is

S′0η =
∫

dxdtχη [i∂η − αη ]χη , (4.12)

where αη = ∂ηθη . Since this new variable has been introduced, a gauge transformation must

be considered where

ψη(x, t) = ψ′η exp
(
iθη(x, t)

)
, (4.13)

such that ψ′η = χη exp
(

iθ
′
η(x, t)

)
. Later in the thesis (see Appendix B) it will be beneficial to

calculate current-current and density-density correlation functions, subsequently it is useful

to write in terms of the partition function. The functional integral for this system becomes

Zη =
∫
Dψ̄Dψ exp

(
iS0η

)
= J(αη)

∫
Dψ̄′Dψ′ exp

(
iS′0η

)
= J(αη)Z′η . (4.14)



Chapter 4. Disorder Induced Superconductors 69

The Jacobian for this gauge transformation must be calculated since this also contributes to

the action. Consequently, the Jacobian is found to be (see appendix A)

J(α) = J(θR, θL) = J+ J− = exp
[
−∑

η

iη
4π

Tr
(

∂ηθη∂xθη

)]
, (4.15)

and therefore the entire action is due to the contribution from the Jacobian. Using this, the

action can be written as

S0η = −i ln
(

J(αη)
)
= − η

4π
Tr
(

∂ηθη∂xθη

)
. (4.16)

To write the action in a more convenient form, new variables are introduced in the form of

φ =
1
2
(θR − θL), (4.17)

and

θ =
1
2
(θR + θL). (4.18)

When these new variables are substituted into −∑η
η

4π Tr
(
∂ηθη∂xθη

)
, the action becomes

S0 = ∑
η

S0η =
1

2π

∫
dxdt

(
− ∂tφ∂xθ − ∂tθ∂xφ− v f [(∂xφ)2 + (∂xθ)2]

)
. (4.19)

The first two terms in the integral can be integrated by parts which yields a generalised

coordinate ∂xφ, and a generalised momentum ∂xθ, which then implies that

H0 =
v f

2π

∫
dxdt[(∂xφ)2 + (∂xθ)2], (4.20)

since the terms resemble the general expression for the Lagrangian, L = pq̇−H0. Before the

interaction term is added, the density field needs to be rigorously defined. If it is treated as

normally known, ρD,η(x, t) = ψ̄η(x, t)ψη(x, t), then a quantum field theory anomaly occurs.

Therefore, to ensure a contribution occurs from the density, it needs to be introduced via a

source field, hη such that

S0(h) = S0 − i ∑
η

ψ̄ηhηψη = i ∑
η

∫
dxdtψ̄η(∂η − hη)ψη . (4.21)
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Consequently to calculate any correlation function involving the density, the Jacobian needs

to be calculated by using similar functional integral techniques and using the Green’s func-

tion without the source field due to no contribution from the density field and dividing it by

the Green’s function which includes the source field. After manipulation, this yields

Jη(h) = exp
[
iS0 −

iη
2π

∫
dxdt hη∂xθη

]
. (4.22)

The calculation is performed in a similar way as shown in appendix A. Now since the den-

sity can be explicitly obtained by taking the derivative of the non-interacting action with

respect to the source field, which implies

ρD,η = −i
∂ ln Z0η(h)

∂hη
= − η

2π
∂xθη , (4.23)

and therefore the full density is

ρD = ∑
η

ρD,η = ρD,R + ρD,L = − 1
π

∂xφ. (4.24)

Now the density has been defined, the interaction term can be added to the Hamiltonian.

A typical interaction is the density-density interaction, and the interaction can be defined to

be a contact interaction, this results in

Hint =
∫

Contact
dxdx′ψ̄(x)ψ̄(x′)V(x, x′)ψ(x)ψ(x′)

→ V
∫

dxρ2
D(x) = V

∫
dx
(
− 1

π
∂xφ
)2.

(4.25)

However, this potential V does not take into account the different interactions between the

different moving particles, namely R-R, L-L and R-L interactions. Terminology is introduced

to define these types of interactions such that the R-L interaction is defined as g2 interaction,

and the R-R and L-L interactions are defined as g4. The diagram in figure 4.1 shows the g4

interaction. The solid lines represent a right moving fermion, and the dashed lines represent

a left moving fermion. The arrows represent time.
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The g4 interaction for two fermions on the same side of Fermi surface

FIGURE 4.1: This diagram shows the g4 interaction. This is a coupling inter-
action for fermions on the same side of the linearised Fermi spectrum. Both

fermions are right moving, and the interaction maintains the directionality.

The next diagram shows the mechanism for the g2 interaction.

The g2 interaction for two fermions on opposite sides of the Fermi surface

FIGURE 4.2: This diagram shows the g2 interaction. This is a coupling interac-
tion for a left moving fermion and a right moving fermion on opposite sides of
the linearised Fermi spectrum. This does not change the directionality of the
fermions. Hence the fermions remain on their original side of the linearised

Fermi spectrum, this represents forward scattering.

There is also the possibility for backscattering interactions but these are known as g1

and g3 interactions and will not be discussed here as currently we have not taken spin into

account. The interacting Hamiltonian can be written as

Hint =
∫

dx
( g4

2 ∑
η

ρ2
D,η + g2ρD,RρD,L

)
, (4.26)
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andH0 is given by

H0 =
v f

2π

∫
dxdt[(∂xφ)2 + (∂xθ)2]. (4.27)

The full Hamiltonian is

H = H0 +Hint =
1

4π2

[(
2πv f + g4

) ∫
dxdt[(∂xφ)2 + (∂xθ)2]

−g2

∫
dxdt

(
∂xθL∂xθR

)]
,

(4.28)

which becomes

H = H0 +Hint =
1

4π2

[(
2πv f + g4

) ∫
dxdt[(∂xφ)2 + (∂xθ)2]

−g2

∫
dxdt[(∂xθ)2 − (∂xφ)2]

]
.

(4.29)

After algebraic manipulation, this can be simplified to the standard well known Luttinger

liquid Hamiltonian given by

H =
u

2π

[ 1
K
(∂xφ)2 + K(∂xθ)2

]
, (4.30)

where u = v f K, K is the Luttinger parameter and is defined by

K =

√
2πv f + g4 − g2

2πv f + g4 + g2
. (4.31)

A different derivation is found in [81]. A major benefit of this theory is that the Hamiltonian

is quadratic and thus is exactly solvable which allows for completely analytic solutions.

Using this Luttinger Hamiltonian, the action can be written as

S =
∫

dxdt
{ 1

π
∇θ∂t

(
∂xφ
)
− u

2π

[ 1
K
(∂xφ)2 + K(∂xθ)2

]}
, (4.32)

where one of the fields can be integrated out [81] to give

S =
∫

dxdt
K

2π

[ 1
u
(
∂tθ
)2 − u

(
∂xθ
)2
]
, (4.33)

or

S =
∫

dxdt
1

2πK

[ 1
u
(
∂tφ
)2 − u

(
∂xφ
)2
]
. (4.34)
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This total action contains everything that is expected in the standard Luttinger liquid theory.

However to reproduce the experiment, more terms must be added to the total action. The

main terms that need to be studied are the Josephson coupling as it represents supercon-

ductivity, the disorder term, and an extra spin interaction which included backscattering.

To explain the experiment, a positive correlation must be found between the Josephson cou-

pling and disorder. With this action, the model for the system can be constructed.

4.1.2 Full Action for Model

Now the Luttinger liquid theory has been rigorously introduced, an attempt to construct a

model which reproduces the experiment [3] can be performed. The action that is used is

essentially the same as one in the book by Giamarchi [81], except weak Josephson coupling

is allowed between the wires. It is based upon taking the standard action that has been

derived previously, and allowing for this action to have spin and charge parts, such that

S = ∑
η

∫
dxdτ

1
2πKη

[ 1
uη

(
∂τφη

)2
+ uη

(
∂xφη

)2
]
. (4.35)

where η = ρ, σ, where ρ and σ are the charge and spin degrees of freedom respectively. Also,

the fields have been changed to imaginary time. Since spin has been introduced, another

type of interaction can occur known as g1 which is when backscattering occurs for one type

of interaction given by the term R̄↑ L̄↓R↓L↑. Diagrammatically, this is given as

The g1⊥ interaction for two fermions on opposite sides of the Fermi surface

FIGURE 4.3: This diagram shows the g1⊥ interaction. The interaction couples
fermions on opposite sides of the linearised Fermi spectrum, and then changes
the direction of each fermion. Therefore the left moving fermion becomes
right moving, and vice versa. g1⊥ is a backscattering interaction in which the

interaction results in the fermions changing sides.
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Consequently, this term has to be added to the action, and is defined as

S⊥ = − 2g1⊥
(2πα)2

∫
dx cos

(√
8φσ

)
, (4.36)

where α is a small parameter cutoff and g1⊥ only occurs in the perpendicular direction. With

this new g1⊥ term, the Luttinger parameter K is modified such that it contains the g1⊥ terms

in the numerator and denominator of the square root, with the same sign as g2. Since this

experiment requires a disorder term, this is added by defining

Sdis = −
Db

(2πα)2 ∑
s

∫
dxdτdτ′ cos

[
2
(
φs(x, τ)− φs(x, τ′)

)]
, (4.37)

where Db is the bare disorder parameter, and s =↑, ↓. To add the superconducting term, use

the Josephson coupling definition which is given by

SJ = −J ∑
i,j

∫
dxdτ cos

[√
2
(
φi

ρ(x, τ)− θi
σ(x, τ)− (φ

j
ρ(x, τ)− θ

j
σ(x, τ))

)]
, (4.38)

where i, j denote the wires and J is the superconducting coupling. Using all of this, the total

action is given by

S = Sρ + Sσ + S⊥ + Sdis + SJ . (4.39)

From this action, renormalisation group equations can be written for the system to give a

description of the physics at the energy scales in condensed matter physics.

4.1.3 Renormalisation Group (RG) Analysis

Renormalisation Group theory [83] is one of the pillars of modern theoretical physics. The

whole of the standard model in particle physics relies on the theory, and it is widely applied

in condensed matter physics. The RG implemented within this thesis is Wilson RG [84].

The general approach is to split the modes into fast modes and slow modes, and then to

integrate one of the modes out so the action is dependent on one of the modes only. At

this point the action can be rescaled and renormalised. From this, the RG equations can

be extracted, which will then describe the physics at either the slow or fast mode scenario.

In condensed matter physics, since low energies are generally dealt with, the fast modes
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are integrated out in this scenario, such that the action is dependent on slow modes which

correspond to low energies.

By performing Giamarchi-Schulz RG analysis [85], see Appendix B for full derivation of

one of the equations, the equations derived from the action (4.39), are given by

ỹ′ = −2(K̃σ − 1)ỹ− D,

K̃′σ = −1
2

K̃2
σỹ2 − 1

2
K̃2

σD,

K̃′ρ = −1
2

K̃2
ρ

uρ

uσ
D,

D′ = −(K̃σ + K̃ρ + ỹ− 3)D,

J′ =
(

2− K̃σ −
1

K̃ρ

)
J,

ũ
′
ρ = −

ũ2
ρ

2ũσ
K̃ρD,

ũ
′
σ = − ũσK̃σ

2
D.

(4.40)

where y = g1⊥/π, D =
(
(2Dbα)/(πu2

σ)
)(

uσ/uρ

)Kρ

, and the differentiation is with respect

to − ln T ≡ l. The tilded variables are defined in equation (4.43). Note that J and D are not

tilded. The tilded variables result from introducing a low energy cutoff in the integral such

that |τ − τ′| < α, which leads to separating the integral into two terms for different times

[85, 86]. Since one of the terms can be absorbed into the standard Luttinger liquid, and it is

coupled to the g1⊥ term, this leads to the re-definition of g̃1⊥ given by

g̃1⊥(l) = g1⊥(l)−
2Dbα

uσ
. (4.41)

Therefore the remaining terms are re-defined due to the g1⊥ interaction. To solve the RG

equations, it is mathematically convenient to solve the equations in the tilde form, then

substitute in the bare parameters after. By considering equation (4.40), it can be shown that

ũρ/K̃ρ is constant, which implies that ũρ can be removed by letting

ũρ =
( ũρ

K̃ρ

)
K̃ρ =

( ũ(0)
ρ

K̃(0)
ρ

)
K̃ρ. (4.42)
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The bare parameters can be found by substitution and expansion for small D, such that

g̃⊥1 = g⊥1 − πuσD
( u(0)

ρ Kρ

K(0)
ρ uσ

)Kρ

,

K̃ρ = Kρ −
K2

ρ + 1
4

D
( u(0)

ρ Kρ

K(0)
ρ uσ

)Kρ

,

K̃σ = Kσ −
K2

σ + 1
4

D
( u(0)

ρ Kρ

K(0)
ρ uσ

)Kρ

,

ỹ = y− D
( u(0)

ρ Kρ

K(0)
ρ uσ

)Kρ

,

ũσ = uσ +
K2

σ − 1
4Kσ

uσD
( u(0)

ρ Kρ

K(0)
ρ uσ

)Kρ

,

(4.43)

where (0) represents the initial conditions. With these relations between the bare parameters

and the tilded parameters, the RG equations can be written purely in terms of the bare

parameters to yield

dKρ

dl
= −1

4
(
K2

ρ + 1
)(

Kρ + Kσ + y− 3
)

D
( u(0)

ρ Kρ

K(0)
ρ uσ

)Kρ

− 1
2

u(0)
ρ K3

ρ

K(0)
ρ uσ

D, (4.44)

dKσ

dl
= −1

2
K2

σy2 −
[1

4

(
K2

σ + 1
)(

Kρ + Kσ + y− 3
)
− yK2

σ

]
D
( u(0)

ρ Kρ

K(0)
ρ uσ

)Kρ

− 1
2

K2
σD, (4.45)

dy
dl

= 2(1− Kσ)y +
[
1 + Kσ − Kρ +

y
2

(
K2

σ − 1
)]

D
( u(0)

ρ Kρ

K(0)
ρ uσ

)Kρ

− D, (4.46)

dD
dl

= −(Kρ + Kσ + y− 3)D, (4.47)

duσ

dl
=

K2
σ − 1
4Kσ

(
Kσ + Kρ + y− 3

)
uσD

( u(0)
ρ Kρ

K(0)
ρ uσ

)Kρ

− uσKσ

2
D, (4.48)

dJ
dl

=
(

2− Kσ −
1

Kρ

)
J. (4.49)

Now these coupled differential equations must be solved, and the dependency on the su-

perconducting onset temperature and the bare value of disorder must be studied.

4.2 Disorder Induced Superconductivity

The coupled differential equations derived above represent all the necessary physics con-

tained within the system. Before solving them numerically, an attempt to understand any
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analytical properties can be made. Since in the experiment [3], the measurable is resistivity,

one needs to extract resistivity from the equations. which is given by [85]

ρ(l) = D(l) exp(−l), (4.50)

from which

ρ(T) = D(T)T. (4.51)

This equation for resistivity is used because the system is far into the localisation phase [81].

To reproduce the experiment, one of the main signatures is a large jump in the minimum of

resistivity at a specific value for a small increase in disorder. This is shown in figure 4.4 [3].

The temperature at which the minimum of the resistivity occured against the initial

value of disorder.

FIGURE 4.4: This graph was taken from the experimental paper [3] and shows
how there is a sudden jump in the temperature at the minimum of resistivity

for a slight increase in disorder. This is a clear signature of the experiment.
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The minimum in resistivity must be found from the derived equations. By substituting

equation (4.47) into (4.50) and minimising, it is found that

ρ′(l) = −
(
Kρ + Kσ + y− 2

)
D exp(−l) = 0, (4.52)

which means the minimum will occur when Kρ + Kσ + y− 2 = 0. Consequently, this will

be one of the measurables that will be plotted in the numerical analysis. Kρ + Kσ + y is

known as the scaling dimension of disorder and is denoted by [D(l)]. From this, the jump

in resistivity should be found accurately as finding the point where the scaling dimension

of disorder minus two
(
[D(l)] − 2

)
crosses zero defines the minimum. To reproduce the

experiment, this must produce large differences for small change in disorder.

Another important feature to be extracted comes from equation (4.49), since this fun-

damentally denotes the superconductivity in the system. It is imperative that it is always

increasing, especially with increasing disorder. The RG equation for J′ can be solved as

J(l) = J0 exp
[ ∫ lc

0
dl
(

2− Kσ −
1

Kρ

)]
. (4.53)

Therefore, to get an increasing superconducting coupling constant, 2− Kσ − 1
Kρ

> 0, and

henceforth Kσ + 1
Kρ

< 2. This is another key measurable that will be evaluated. Similarly,

Kσ +
1

Kρ
is known as the scaling dimension of superconductivity and is denoted by [J(l)].

Another important aspect is the use of RG within this model. RG is only valid for small

interaction parameters due to the rescaling in the theory, so when a parameter becomes of

order one, then the evolution of the system with respect to temperature must be stopped as

the physics becomes invalid. The physical implications for this are emphasised later in 4.2.1.

4.2.1 Numerical Results

With a problem of this nature, the choices for initial conditions are important. Since there

are six initial conditions that need to reflect the experiment, the choice for these cannot be

arbitrary. Since the focus of this theory is to determine how disorder changes the system, it

is beneficial to start without disorder, and examine how the system evolves under increasing

disorder. This is achieved by taking equations (4.44-4.49), and taking D = 0. From this the

separatrix of the system can be found. When disorder is ignored, only ỹ and K̃σ vary. A
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solution for ỹ can be found as

ỹ2 = 8
( 1

K̃σ
+ ln K̃σ − C

)
, (4.54)

where C = 1. Consequently, the RG trajectories without disorder will flow according to

equation (4.54). This is shown in figure 4.5.

The RG flow for the disorderless system

��� ��� ��� ��� ��� ��� ���

-�

-�

�

�

�

�σ ( � )

� ( � )

FIGURE 4.5: This graph shows the how the trajectories for initial points will
flow in the disorderless case. By studying this graph for the disordered case,

it can be deduced how disorder affects the system.

The numerical plot is computed in terms of the bare disorderless parameters. Therefore

increasing disorder will change how the trajectories flow, and thus will change the way the

system behaves. By varying the strength of the disorder, the amount by which the system

changes can be studied specifically in figures (4.9, 4.23 ).

The numerical results have been solved using Mathematica, where the solutions to the

coupled differential equations have been found, and then these results have been plotted.

The main plot that is considered depicts y against Kσ, as it is known how the RG flow de-

velops without disorder. Introducing disorder signifies how certain phase transitions are

induced by disorder. Once trajectories and values of disorder have been decided, then phys-

ical measurables are shown, namely resistivity and when superconducting order emerges.

The first numerical analysis experiment reveals whether the model predicts disorder

induced superconductivity. For this, both Tmin and Tpeak will be studied. Recall Tpeak from
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figure 1.1. However, for the purposes of the experiment, it is especially important that Tpeak

happens at higher temperatures for higher values of disorder.

After some exploration in selecting the initial conditions, disorder induced supercon-

ductivity was numerically observed. This is found by choosing K(0)
σ = 1.4, y(0) = −0.563,

K(0)
ρ = 2.16, u(0)

σ = 0.6, u(0)
ρ = 0.7, J(0) = 0.45. Using a disorder range which varies as

D(0) = 0.09, 0.11, 0.13, 0.15, the impact of disorder on the system is shown in figures (4.6 -

4.19)

The graphs for the important features, in addition to the graphs of the parameters are

shown below.

Resistivity for varying disorders
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FIGURE 4.6: The plot shows clear minimum for three values of disorder. It is
useful to consult the scaling dimension of disorder to check whether the sign
of the solution is changed from negative to positive as a confirmation in the

minimum of resistivity.
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Scaling dimension of disorder - 2 for varying disorders
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FIGURE 4.7: This graph shows the point at which the minimum in the resis-
tivity occurs, since that corresponds to the point where Kρ + Kσ + y− 2 = 0.
This graph clearly shows all disorders have a minimum in resistivity as all
trajectories cross the l axis. As the strength of disorder increases, the earlier

the trajectories cross the l axis.

Scaling dimension of superconductivity - 2 for varying disorders

0.5 1.0 1.5 2.0 2.5

-1.0

-0.8

-0.6

-0.4

-0.2

FIGURE 4.8: This graph confirms that all of the disorders give rise to supercon-
ductivity, as J(l) will be increasing due to the positive exponent since all tra-
jectories are negative. Importantly, the strongest disorder is the most negative
line, and this implies that there is strong correlation with increasing disorder

and inducing superconductivity.
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y(l) against Kσ(l) for varying disorders
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FIGURE 4.9: This is the same axis shown above for figure 4.5. Clearly
when disorder is introduced, the trajectories are dramatically shifted. As the
strength of disorder is increased from these initial conditions, it appears that
it is tending towards diverging y(l) → −∞ as Kσ(l) → 0. This would signify

potential spin gap opening.

Kσ(l) for varying disorders
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FIGURE 4.10: This graph shows that Kσ(l) decreases as the system evolves
through temperature. Additionally, the tendency is more pronounced for

stronger disorder. This agrees with the y(l) against Kσ(l) graph.
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Kρ(l) for varying disorders
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FIGURE 4.11: Similarly to the graph for Kσ(l), there is a tendency to decrease
Kρ(l) with increasing disorder. The upturn occurs as the disorder and spin

mechanism are becoming dominant.

J(l) for varying disorders
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FIGURE 4.12: This graph shows the onset of superconductivity. As previ-
ously discussed, due to the RG analysis, when the interaction parameters are
of order 1, the system changes into that state. Therefore the state becomes su-
perconducting at J(l) = 1 within our framework. As the disorder increases,
the temperature at which superconductivity occurs increases. This graph is
the first numerical evidence of disorder induced superconductivity. When the

trajectories cross J(l) = 1, this is defined as the onset of superconductivity
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D(l) for varying disorders
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FIGURE 4.13: This graph is important as it must be checked that D(l) < 1
before J(l) = 1, otherwise the disordered state would dominate and super-
conductivity would not be able to occur. Fortunately, whilst the two largest
disorders cross D(l) = 1, this happens after J(l) = 1, so the superconducting

state is already dominating.

y(l) for varying disorders
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FIGURE 4.14: This graph serves a similar purpose as the disorder graph. It
must be checked that −1 < y < 1 before J(l) = 1, otherwise the spin mecha-
nism would dominate. Whilst there are disorders which cross the y(l) = −1
line, this occurs after J(l) = 1. In a similar scenario to disorder, this does
not change the conclusions about disorder induced superconductivity as the

restriction imposed by RG are not contradicted.

To compare our model results with the experiment [3], a scatter graph is taken of Tmin(K)

and Tpeak(K) against the initial values of disorder. Using l = − ln T to rescale the variables,

the graphs are shown in figures 4.15 and 4.16.
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The value of l at the minimum for the resistivity against the initial disorder
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FIGURE 4.15: This graph shows some tendency towards figure 4.4, as it ap-
pears to correspond to the middle four disorders which show an increase in
T (decrease in l). However, this theory currently does not explain the largest

and smallest disorders in the experimental graph.

The value of T at the minimum for the resistivity against the initial disorder
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FIGURE 4.16: This graph is now in the form shown in the experiment [3], as
in figure 4.4 and this appears to correspond to the middle four disorders in
the experiment. As the disorder is increased comparably to the experiment,
the jump in Tmin(K) is more than doubled, in agreement with the experiment.
It is clear that the smallest and largest disorders of the experiment are not
explained. A similar logarithmic scale has been used for D(0) to match figure
4.4. If the disorders are extended it remains linear which suggests this does not
fully explain the experiement, and the smallest and strongest disorders may
occur via a different mechanism. To reconcile the theory with experiment,

there must be a plateau for the strong and weak disorders.

To find the peak of the resistivity and thus the onset of superconductivity, the values

when J(l) = 1 are found for each corresponding disorder, and these values can be plotted.
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The value for l when J(l) = 1 against the initial value of disorder
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FIGURE 4.17: This graph confirms that disorder does induce superconductiv-
ity in this model. As the disorder is increased, the value of lpeak is decreased,

which corresponds to a higher temperature.

The value for T when J(T) = 1 against the initial value of disorder
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FIGURE 4.18: This graph shows that the onset of superconductivity increases
with an increase in disorder. This again confirms the conclusion of disorder in-
duced superconductivity. However, this does not fully match the experimen-

tal evidence, as Tpeak does not increase with disorder as much as expected.

Aditionally, the full resistivity graph can be drawn, where the stop in the graph indicates

the onset of superconductivity. This is shown in figure 4.19
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The full plots of resistivity, ρ(T) including the onset of superconductivity
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FIGURE 4.19: This graph shows how the resistivity goes through a minimum,
and then starts to increase before J(l) = 1 occurs, and thus the onset of super-
conductivity occurs. When this happens, the lines are stopped to indicate the

resistivity would vanish at these points.

This section has succeeded in one of the aims of this thesis; to design a theory which

describes disorder induced superconductivity. As is clear in figure 4.18, the temperature at

which superconductivity occurs is higher for increasing disorder. However, this theory does

not currently explain the full experiment, in particular the signature for the graph of Tmin(K)

against initial disorder. The lowest and strongest disorder still need to be explained. This

is where the RG can be exploited, since when y(l) = ±1, this yields a new set of coupled

differential equations. This is explored in the next section.

4.3 Spin Gapped Superconductivity

In an attempt to explain the weakest and strongest disorder, it may be beneficial to consider

a different underlying physical mechanism which causes the minimum in the resistivity

and then consequently the onset of superconductivity. This leads to the question of what

happens when y(l) = 1. Recall that y = g1⊥/π , and g1 denotes a spin interaction. Therefore

when y(l) = 1, this corresponds to the spin interaction being dominant as the interaction

between the spins is strong, thus fixing the spins in alignment. Since there are two ways

the spins can be aligned, parallel or anti-parallel, this corresponds to two different states.

The parallel alignment is the ferromagnetic state, whereas the anti-parallel alignment is an

antiferromagnetic state.
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It has been established that superconductivity can occur in a spin gapped state [87],

therefore the aim is to try and reproduce the weakest and strongest disorders that are cur-

rently unexplained using a spin gapped mechanism. For a spin gapped system, the spins

align anti-parallel, so exhibit antiferromagnetism.

To derive the new coupled differential equations, the fact that the spin is now frozen is

used. This results in no spin interactions occuring. Mathematically, this means y, uσ and Kσ

no longer contribute to the evolution of the system in temperature. Therefore the new set of

differential equations is given by

dKρ

dl
= −1

2
K2

ρD +
1 + K2

ρ

4
(3− Kρ)D, (4.55)

dD
dl

= −(Kρ − 3)D, (4.56)

dJ
dl

=
(

2− 1
Kρ

)
J. (4.57)

These equations can be solved in a similar way to before. However before solving them,

information can be extracted from the equations analytically. Since the spin gap opening

needs to represent the minimum in resistivity, the exponent for resistivity must be positive.

By following the same analysis as equation (4.52), the exponent changes sign as Kρ = 2.

Since the exponent is negative for Kρ > 2, in order for the resistivity to have a minimum,

Kρ < 2. If Kρ > 2 then the resistivity will continue to decrease with no upturn. Therefore it

is imperative to ensure that when y(l) = ±1, Kρ < 2 simultaneously, otherwise the spin gap

opening will not describe the experiment as there would be no minimum in resistivity.

Additionally, the superconducting exponent must still be positive to ensure supercon-

ductivity will occur as T is decreased. For this to happen Kρ > 1/2, since that means the

exponent for J is positive. This restricts Kρ ∈ (1/2, 2). All the constraints from using RG will

still apply in these new set of equations, which imposes that J(l) = 1 has to occur before

D(l) = 1.

4.3.1 Numerical Results

To find a set of initial conditions which takes into account the disorder induced supercon-

ductivity, but also contains a spin gapped mechanism is difficult. A set of conditions was

found that may describe all the points except the strongest disorder. This set of conditions
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is given by K(0)
σ = 0.8, y(0) = 0.25, K(0)

ρ = 1.95, u(0)
σ = 4, u(0)

ρ = 0.5, J(0) = 0.115. Then by

choosing a disorder range which varies as D(0) = 0.02, 0.18, 0.19, 0.2, 0.21, 0.22, this allows

three different types of mechanism to occur. The spin gapped scenario when y(l) = −1,

the real minimum scenario shown in section 4.2, and the spin gapped scenario for y(l) = 1.

Similar graphs as shown previously are plotted, and comparisons are drawn about the sce-

nario.

Resistivity for varying disorders
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FIGURE 4.20: The smallest disorder does not have an upturn in resistivity,
whereas all of the other disorders have this upturn. As expected, the higher

disorders are higher in the graph.

Scaling dimension of disorder - 2 for varying disorders
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FIGURE 4.21: This graph confirms that for the five strongest disorders there
is a minimum in resistivity. Moreover for the weakest disorder there is no
minimum in resistivity which initially appears to contradict the experimental

results.
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Scaling dimension of superconductivity - 2 for varying disorders
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FIGURE 4.22: This graph shows that J(l) is always increasing due to the neg-
ative values of [J(l)]− 2. There is interesting behaviour as there is a crossover
for some of the disorders with the weak disorder which suggests that the weak
disorder may induce superconductivity faster. However, for the strongest two
disorders these would induce superconductivity faster than the weakest dis-

order.



Chapter 4. Disorder Induced Superconductors 91

y(l) against Kσ(l) for varying disorders
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FIGURE 4.23: This graph shows how varying disorder can change the be-
haviour of the system dramatically. This shows at some point the weak dis-
order will cross y(l) = 1, and conversely the stronger disorder will cross
y(l) = −1. The other graphs still need to be considered as the system may
already be superconducting, or the disorder may be too large, before any of

the spin gaps open.
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Kσ(l) for varying disorders
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FIGURE 4.24: This graph shows that Kσ(l) decays for all disorders. The trajec-
tories decay strongest with the strongest disorder. This appears to agree with

figure 4.23.

Kρ(l) for varying disorders
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FIGURE 4.25: This graph shows that Kρ < 2 for all disorders which is im-
portant. This implies that for any spin gap opening, a minimum will occur
and the exponent in resistivity will be positive and therefore resistivity must
be increasing. Additionally, this shows that as disorder increases, the rate of

increase in resistivity increases.
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J(l) for varying disorders
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FIGURE 4.26: This graph shows that J(l) = 1 occurs for all disorders. This
happens in close proximity for all disorders. The strongest disorder appears

to occur first. This is confirmed in table 4.1.

D(l) for varying disorders
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FIGURE 4.27: This graph shows that the three strongest disorders cross with
D(l) = 1. This is important, as all the relevant physics within the system must
occur before this happens for each corresponding disorder, otherwise the RG

equations become invalid.
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y(l) for varying disorders

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

FIGURE 4.28: This graph confirms the observations from figure 4.23. The
weakest disorder crosses y(l) = 1, and therefore would open up a spin gap
when that occurs. Similarly, the strongest three disorders open up a spin gap

at y(l) = −1. This graph is useful at showing when the spin gaps open.

To compare all of the physics regarding spin gaps, superconductivity, and disorder di-

vergence occurring, the points at which these corresponding phenomena occur need to be

found. This is found by numerically computing the values of l, when D(l) = 1, J(l) = 1,

y(l) = ±1. Additionally, since the experiment shows there must be a minimum in resistivity,

which could be due to a spin gap, or [D(l)]− 2 = 0, the minimum must also be considered.

This is all shown in table 4.1.

TABLE 4.1: This table shows the values for l when all of these important fea-
tures occur. This does not show what the true J(l) = 1 would be for the spin
gap scenarios since new equations must be solved. This is since for the weak-
est disorder y(l) = 1 occurs before J(l) = 1 and similarly for the strongest
disorder, y(l) = −1 occurs before J(l) = 1. The blank spaces represent the

scenarios where the features did not occur, and there was no solution for l.

D(0) 0.02 0.18 0.19 0.2 0.21 0.22

D(l) = 1 3.313 3.150 3.009 2.882 2.767

J(l) = 1 2.861 2.844 2.833 2.820 2.807 2.793

y(l) = 1 2.817

y(l) = −1 2.966 2.844 2.734

[D(l)]− 2 = 0 2.774 2.624 2.493 2.378 2.275

By studying table 4.1, and knowing that Kρ < 2 for these set of initial conditions, the
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minima for resistivity can be plotted. It is seen that the weakest disorder has a minimum

which is due to a spin gap opening since y(l) = 1. The other disorders have minima which

occur due to the exponent in resistivity changing sign in the expected way, as shown in

section 4.2. Importantly, these minima occur before any other physical phenomena for the

corresponding disorders. In terms of temperature, this means that as the samples are cooled,

the first phenomena that are seen are the minima in resistivity. The values for lmin(D(0)) and

therefore Tmin(D(0)) are plotted in figures 4.29 and 4.30.

The value of l at the minimum for the resistivity against the initial disorder
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FIGURE 4.29: This graph shows that the weakest disorder appears to display
similar characteristics to the experiment. This is since the minimum occurs
at a similar temperature, but the value of disorder is significantly lower. This
mimics the behaviour of the experiment. Unfortunately the strongest disorder
does not plateau as expected. If disorder is increased further, then lmin(D(0))

occurs at a similar rate to what is seen currently.
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The value of T at the minimum for the resistivity against the initial disorder
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FIGURE 4.30: This graph shows close resemblance to the experimental graph.
As disorder is increased there is a plateau, then at a critical disorder a jump
in the minimum of resistivity. This appears to be due to the differing mecha-
nisms. However, this still requires investigation. The strongest disorder does

not plateau as expected.

Interestingly, there is evidence in the experiment which suggests that the first three dis-

orders occur due to a spin gap mechanism which would suggest this Tmin(D(0)) graph is

incorrect. Therefore it could be coincidence that the form appears correct. This could be

worth further investigation in the future.

Previously, the Tpeak(D(0)) graph was plotted by extracting the points where J(l) = 1

for each disorder and plotting these on a scatter graph. In this circumstance, the two spin

gap disorders; the weakest and the strongest, have new equations which require solving to

find the new values of J(l) = 1 for each disorder. This is done by extracting the new initial

conditions for equations (4.56), (4.57) and (4.55) by finding the value of these parameters

when y(l) = ±1 for the weak and strong disorder respectively, and substituting that lc

into Kρ(lc), D(lc) and J(lc). This gives the new set of initial conditions. The equations are

subsequently solved and must obey all the standard RG rules.

The new values of J(l) = 1 are found, whilst keeping D(l) < 1. This is plotted in figure

4.31.
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The value for l when J(l) = 1 against the initial value of disorder
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FIGURE 4.31: This graph does confirm that this scenario has disorder induced
superconductivity. The value for lpeak at the weakest disorder is still similar
to what it would have been without the spin gap due to how close y(l) = 1
and J(l) = 1 occuring was. However, for the strongest disorder the spin gap
has decreased lpeak more than otherwise. This implies that a spin gap opening

increases the rate at which superconductivity occurs.

The value for T when J(T) = 1 against the initial value of disorder
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FIGURE 4.32: This graph shows disorder induced superconducting in T as ex-
pected. This does not exactly correspond to the experimental graph as there is
expected to be a larger gap between the disorders. Additionally it is expected
that the strongest disorder would start to plateau as in the case for Tmin. This

could be due different mechanisms being required.

Now the resistivities for all of the disorders can be plotted. Due to the differing mecha-

nisms it is beneficial to plot each mechanism individually.
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The full plots of resistivity, ρ(T) including the onset of superconductivity for the real

minimum
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FIGURE 4.33: This graph is similar to figure 4.19 however the values for Tpeak
are much closer in this graph. The resistivities follow the expected trajectory
from experiment where as T is decreasing, a minimum occurs and then J(l) =

1 signalling the onset of superconductivity.

The full plot of resistivity for the weak spin gapped disorder
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FIGURE 4.34: This graph shows similar behaviour to figure 4.33 in the sense
there is a minimum in resistivity and then quickly the onset of superconduc-
tivity occurs. This corresponds with the results from table 4.1. The main strik-
ing difference is the value of ρ(Tpeak) which is two orders of magnitude lower

than figure 4.33.
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The full plot of resistivity for the strong spin gapped disorder
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FIGURE 4.35: This graph appears to follow the same template as figure 4.33,
including a similar value for ρ(Tpeak). Therefore the spin gapped scenario

does not always give drastically different behaviour in resistivity.

Another graph that is shown in the experiment is the values for ρ(Tpeak) against D(0).

This reveals the difference in the mechanisms in another way due to the large difference

between ρ(Tpeak) for the smallest disorder compared to the other disorders.

The value of ρ(Tpeak) against initial values of disorder
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FIGURE 4.36: This graph confirms there is a large difference of about two or-
ders of magnitude in the value of ρ(Tpeak). In the experiment the three weak-
est disorders appear to have a ρ(Tpeak) ≈ 10−5 which suggests the three weak-
est disorders should occur via the spin gap mechanism for y(l) = 1 which

contradicts what is found here.
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4.4 Discussion

The main result of this section is a possible explanation of the jump in the minimum of

the resistivity, by using different mechanisms to explain different parts of the experiment.

Ultimately the strongest disorder was not able to reproduce the experiment for the set of

parameter initial conditions chosen. The disorder could not be raised further either since if

this occured then D(l) = 1 would occur in the spin gapped scenario before J(l) = 1 so the

RG equations would lose their validity. It is an interesting question to speculate what might

happen when D(l) = 1 occurs, as that could possibly explain the physics of the strongest

disorder point in figure 4.4.

Additionally ρ(Tpeak) was found to vary by two orders of magnitude by changing mech-

anisms from spin gapped for y(l) = 1 to [D]− 2 = 0. This showed some correspondence

to the experiment except for their change in magnitude was approximately four orders of

magnitude. Currently there is no explanation for this. Additionally, the experiment had the

three weakest disorders which had ρ(Tpeak) being consistent with the y(l) = 1 spin gapped

scenario in this model. Therefore this implies that the first three disorders may need to all

occur via this mechanism. This could be looked into in the future, however there was no

current evidence a Tmin(D(0)) could be reproduced to match the experiment via this mech-

anism. Due to the number of initial conditions and the sensitivity of the system on these

initial conditions, the scenario may exist and is yet to be found.

In summary, disorder induced superconductivity has been found numerically within

this theory, which in itself is a novel and exciting observation, other experimental signatures

are also found within the theory suggesting there is promise in pursuing and developing the

theory, as this could be the first theoretical description of disorder induced superconductiv-

ity which correctly describes what is seen in experiment.
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Chapter 5

Conclusions and Future Work

The primary novel research of this thesis was presented in chapters 3 and 4. In chapter 3,

an analytical derivation of a non trivial topological superconductor was presented where

the topology was dependent on the chemical potential. When the chemical potential was

found to be zero, this resulted in a trivial topological state, however the ground state for

this system was unusual since it had a continuum of ground states along the diagonals of

the Brillouin zone. This scenario is particularly interesting as it shows that a widely held

assumption, the gap field being homogeneous for a translationally invariant system, may

not hold in all cases. This is because it has been shown that the gap field may depend on

momentum for certain scenarios.

Experimental work is needed to check this prediction. A potential way to find this topo-

logical phase transition would be to compute the specific heat. This should give a jump as

the system goes through the transition. Once the expected behaviour jump is confirmed

theoretically, it would give experimentalists a signature to study, and the dependence of the

translational invariance of the gap field on chemical potential could potentially be found.

This piece of research yields an exciting opportunity for collaborative work between the-

orists and experimentalists. The benefit of topological superconductors has been widely

discussed within this thesis, culminating in potentially finding a material which could be

used for quantum computing. This branch of research is worth pursuing in the future.

From a theoretical perspective, the most significant discovery was the dependence of the

gap field on momentum if chemical potential is zero. This at the time of writing was not

known. Therefore there may be other theories which must account for this caveat. Addi-

tionally, it demonstrates how a highly symmetrical model could potentially yield non trivial

topology. This implies a link between symmetry and topological properties. This prediction
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could be used as another way of designing a topological material.

The novel research explained in chapter 4 has significant implications both theoretically

and experimentally. There are few theories that describe how disorder could induce super-

conductivity, and currently at the time of writing, there is no theory that is widely accepted

which agrees with any of the experiments which suggest disorder-induced superconduc-

tivity. This could be the first theory which agrees, at least partially, with experiment. Part

of this reason is by design. The action that was written is a quasi-1D model which reflects

the experiment. After solving the action in terms of RG equations, this allows the study of

how the parameters affect the system. This is where the bulk of the research was developed

within chapter 4. One issue with this theory is the dependence on the initial conditions.

Since slightly changing the initial conditions can significantly change the behaviour of the

system, it is difficult to predict whether the full experiment can be explained by this theory.

Nevertheless, a clear jump in Tmin is found, which is one of the main signatures of the ex-

periment. Most importantly, there are scenarios in which disorder is numerically found to

induce superconductivity.

Another fascinating discovery is how superconductivity can occur in different states

within this model, and the competition between them. The difference between spin gapped

states and the normal state was studied extensively. The y(l) = 1 spin gapped state cor-

responds to a spin density wave (SDW) system, and the y(l) = −1 state corresponds to a

charge density wave (CDW) state. It appears the order of increasing superconductivity with

disorder starts with SDW, and goes through a transition to the normal state, and then fin-

ishes with a CDW. The competition between these states disregarding superconductivity is

an interesting theoretical find.

Unfortunately, the theory does not align perfectly with the model. The main discrepancy

is that experimentally there is a plateau in both the Tmin and Tpeak graphs for the strongest

disorder. This is not seen in the theory for the range of initial conditions attempted. It was

believed this plateau may be due to a different mechanism, namely the CDW. However this

was not seen. Another difficulty with the strong disorder point, was that the RG equations

did not allow the true strongest disorder to be chosen, as the experimental strong disorder is

about four times larger than the middle four points. When attempting to do this in numer-

ical simulations, the strong disorder renormalised to unity before any superconductivity or

spin gap could occur. Therefore the RG approach limits the model. There are also results



Chapter 5. Conclusions and Future Work 103

which suggest this is only a two-mechanism scenario, not a three-mechanism scenario as is

being proposed in this model. One of the graphs in the experiment shows how the peak

of resistivity at the onset of superconductivity differs by five orders of magnitude from the

three weakest disorders to the three strongest disorders. This implies there are only two

mechanisms. However numerical simulations that describes the Tmin graph could not be

found for such a scenario. The only mechanism which gave a significantly different ρ(Tpeak)

was the SDW state. For this model it was approximately two orders of magnitude different.

The largest limitation of this theory is the dependence on initial conditions. Since there is

an abundance of physics contained within the theory, it is difficult to extract the complete

experimental results. This does not mean a relevant set of initial conditions do not exist.

Consequently, this could be an opportunity for collaboration with machine learning experts

to use interpolation techniques to decisively determine whether there is a set of initial con-

ditions within this theory which can reproduce the experiment.

The future work that can be performed from this research is extensive. From the theo-

retical perspective, our set of inital conditions was fixed, and the only changing parameter

was the initial disorder. If it could be shown justifiably that disorder itself changes the initial

conditions of the other parameters, then matching the theory to the experiment would be a

much simpler task. Moreover, an ambitious task, but nonetheless important, would be to

try and definitively confirm the mechanism for this type of superconductivity, and the detail

of how disorder enhances this mechanism. Understanding this could lead to other theories

based on this mechanism in non quasi-1D scenarios. This could ultimately lead to a higher

Tc superconductor, and potentially a room temperature superconductor.
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Appendix A

Calculating the Jacobian

This appendix provides the detail relevant to the derivation of the Luttinger liquid Hamil-

tonian in section 4.1.1. This derivation is computed at zero temperature. Starting from

Zη =
∫
Dψ̄Dψ exp

(
iS0η

)
= J(αη)

∫
Dψ̄′Dψ′ exp

(
iS′0η

)
= J(αη)Z′η , (A.1)

it can be seen that the Jacobian can be written as

J(αη) =
Zη

Z′η
. (A.2)

Now recall equation (1.19), which states

Z =
∫
Dψ̄Dψ exp

(
iψ̄Aψ

)
= det A, (A.3)

when calculated in real time. This identity is true for fermions. For bosons the result is

1/ det(A). In this relation A is typically denoted by G−1, which is the Green’s function. This

is discussed in more detail in chapter 3. Now by using the results for S0η and S′0η , the result

for the Jacobian becomes

J(αη) =
det

(
G−1

η

)
det

(
G−1

η − αη

) =
det

(
G−1

η

)
det

(
G−1

η − αη

) . (A.4)

By then using the relation

ln det(A) = Tr ln(A), (A.5)
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equation (A.4) becomes

J(αη) = exp
[

Tr ln G−1
η − Tr ln

(
G−1

η − αη

)]
= exp

[
− Tr ln

(
1− αηGη

)]
= exp

[
− Tr

∞

∑
n=2

(
αηGη

)n

n

]
.

(A.6)

The n = 1 term is a global term so is cancelled without the gauge transformation, however

for n > 2 all the terms vanish due to the Dzyaloshinskii-Larkin theorem [88]. This implies

that

ln Jη = −1
2

Tr
(
αηGη

)2

= −1
2

∫
dξdξ ′αη(ξ)Gη(ξ − ξ ′)Gη(ξ

′ − ξ)αη(ξ
′),

(A.7)

where ξ = (x, t). In momentum space this is

ln Jη = −1
2

∫
dkαη(k)αη(−k)

∫
dpGη(p)Gη(p + k), (A.8)

where k = (k, ω) and p = (p, Ω). Compute the p integral such that

∫
dpGη(p)Gη(p + k)

=
∫

dp
1

Ω + ω− ηv(p + k) + iδsgn(Ω + ω)

1
Ω− ηvp + iδsgnΩ

,
(A.9)

which becomes

∫
dpGη(p)Gη(p + k) = 2πi

∫
dp

η(Hp − Hp+k)

ω− ηvk + iδsgnω

=
2πikη

(ω− ηvk + iδsgnω)
= 2πikηGη(k),

(A.10)

where Hp and Hp+k represent the heaviside step functions, and arise from the complex inte-

gration. From this, the k integral becomes

ln Jη = −πiη
∫

dkαη(k)αη(−k)kGη(k), (A.11)

which can be transformed back to real space to give

ln Jη =
η

4π
Tr
[
αη∂xGηαη

]
, (A.12)
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then remember that αη ≡ ∂ηθη and Gη ≡ −i∂−1
η , which implies Gηαη = −iθη . Therefore

ln Jη = − iη
4π

Tr
[
∂ηθη∂xθη

]
, (A.13)

which means the full Jacobian is

J(θR, θL) = exp
[
−∑

η

iη
4π

Tr
(

∂ηθη∂xθη

)]
. (A.14)
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Appendix B

Derivation of a Renormalisation

Group Equation

This will show the derivation of the g⊥ RG equation and is based on the derivations in [81,

85, 86]. Starting with the partition function for the action in equation (4.39) in chapter 5, only

including the g⊥ term, the result is

Z =
∫
Dφ(x, τ) exp

(
− S(φ(x, τ))

)
, (B.1)

where φ includes both the spin and charge components. The first step of RG is to write φ in

Fourier modes as

φ(x, τ) =
1

βΩ ∑
k,ε

exp
(
i(k.x− εt)

)
φ(k, ε). (B.2)

Then these modes can be decomposed into fast and slow modes which represent different

energy scales. This is done by imposing cutoffs, Λ, Λ′ and writing φ(r) = φ>(r) + φ<(r),

where

φ>(r) =
1

βΩ ∑
Λ′≥|q|≤Λ

exp
(
iq.r

)
φ(q), (B.3)

and

φ<(r) =
1

βΩ ∑
q<Λ′

exp
(
iq.r

)
φ(q). (B.4)
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For the quadratic in φ(r) part of the action, write as S0(r) = S>
0 (r) + S<

0 (r). Divide the

interacting partition function by the non-interacting partition function and expand such that

Z
Z0

=
1

Z0

∫
Dφ(r, r1, r2) exp

(
− S>

0 − S<
0
)[

1−

2g1⊥
(2πα)2u

∫
d2r cos[

√
8(φ>(r) + φ<(r))] +

2g2
1⊥

(2πα)4u2∫
d2r1

∫
d2r2 cos[

√
8(φ>(r1) + φ<(r1))] cos[

√
8(φ>(r2) + φ<(r2))]

]
.

(B.5)

The fast modes can now be integrated out, to leave the action only dependent on the slow

modes. This yields

Z
Z<

0
=

1
Z0

∫
Dφ(r, r1, r2) exp

(
− S<

0
)[

1−

2g1⊥
(2πα)2u

∫
d2r cos[

√
8φ<(r)] exp

(
− 4〈(φ>r)2〉

)
+

g2
1⊥

(2πα)4u2 ∑
ν=±1

∫
d2r1

∫
d2r2 cos[

√
8(φ<(r1) + νφ<(r2))]

exp
(
− 4〈(φ>(r1) + νφ>(r2))

2〉
)
]
]
.

(B.6)

Now the equation must be reexponentiated to get it in the form of the effection action. This

results in

Z
Z<

0
=

1
Z0

∫
Dφ(r, r1, r2) exp

[
− S<

0 −
2g1⊥

(2πα)2u∫
d2r cos[

√
8φ<(r)] exp

(
− 4〈(φ>r)2〉

)]
exp

[ g2
1⊥

(2πα)4u2 ∑
ν=±1

∫
d2r1

∫
d2r2 cos[

√
8(φ<(r1) + νφ<(r2))]

exp
(
− 4〈(φ>(r1) + νφ>(r2))

2〉
)
]
]

exp
[
−

g2
1⊥

(2πα)4u2

∫
d2r1

∫
d2r2 cos[

√
8(φ<(r1)] exp

(
− 4〈φ>(r1)〉

cos[
√

8(φ<(r2)] exp
(
− 4〈φ>(r2)〉

]
.

(B.7)

At this stage, the first terms can be compared. In this equation it is only in terms of the slow

modes. To relate it back to the original action, the momentum, position and time must be
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rescaled such that

dk =
Λ′

Λ
dk,

dx =
Λ
Λ′

dx′,

dτ =
Λ
Λ′

dτ′.

(B.8)

From this, the coupling constant g1⊥ has been rescaled such that

g1⊥(Λ′) =
( Λ

Λ′
)2

g1⊥(Λ) exp
(
− 4〈(φ>(r)2〉

)
=
( Λ

Λ′
)2

g1⊥(Λ) exp
[
− 4

βΩ ∑
Λ′≥|q|≤Λ,ε

πKu
ε2 + u2q2

]
.

(B.9)

The correlation function has been evaluated and the derivation is found in [81]. To further

evaluate this equation, β = L → ∞, and the sum over Matsubara frequencies is computed.

This gives

g1⊥(Λ′) =
( Λ

Λ′
)2

g1⊥(Λ) exp
(
− 2

∫ Λ

Λ′
dq

K
q
)
=
( Λ

Λ′
)2

g1⊥(Λ) exp
[
− 2K ln

( Λ
Λ′
)]

. (B.10)

Now parameterise the cutoff as Λ(l) = Λ0 exp(−l), where Λ0 is the bare cutoff. Then an

infinitesimal change is applied such that Λ(l)′ = Λ0 exp(−l − dl), and therefore

g1⊥(l + dl) = g1⊥(l) exp
(
(2− 2K(l))dl

)
, (B.11)

and therefore the RG equation is initially

g′(l) = g(l)(2− 2K(l)). (B.12)

This in terms of y(l) is

y′(l) = y(l)(2− 2K(l)). (B.13)

This is not the full RG equation. This is because as y(l) renormalises, D also renormalises

with it since the action terms are both cosines. These can be combined for g1⊥ to give

yD
∫

dx cos
(√

8φσ(x)
) ∫

dx′ exp
(

i
√

2φρ(x′)
)

cos
(√

2φσ(x′)
)

= yD
∫

dx
∫

dx′ exp
(

i
√

2φρ(x′)
)

cos
(√

2φσ(x)
)

,
(B.14)
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which is the definition of a disorder term from Giamarchi [81]. Therefore when solving the

RG equations for y(l), there must be a disorder term. Since in the action the disorder term

comes with a minus sign, the full RG equation is

y′(l) = y(l)(2− 2K(l))− D(l). (B.15)

The remaining RG equations are derived in a similar way. For full details see [81, 86, 85].
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