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Abstract

Cultivated meat is an emerging field, aiming to establish the production of animal

tissue for human consumption in an in vitro environment, eliminating the need to

raise and slaughter animals for their meat. To realise this, the expansion of primary

cells in a bioreactor is needed to achieve the high cell numbers required. The aim of

this study was to develop a scalable, microcarrier based, intensified bioprocess for

the expansion of bovine adipose‐derived stem cells as precursors of fat and muscle

tissue. The intensified bioprocess development was carried out initially in spinner

flasks of different sizes and then translated to fully controlled litre scale benchtop

bioreactors. Bioprocess intensification was achieved by utilising the previously de-

monstrated bead‐to‐bead transfer phenomenon and through the combined addition

of microcarrier and medium to double the existing surface area and working volume

in the bioreactor. Choosing the optimal time point for the additions was critical in

enhancing the cell expansion. A significant fold increase of 114.19 ± 1.07 was ob-

tained at the litre scale in the intensified bioprocess compared to the baseline

(**p < .005). The quality of the cells was evaluated pre‐ and post‐expansion and the

cells were found to maintain their phenotype and differentiation capacity.
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1 | INTRODUCTION

Over the past couple of years, the concept of cultivated meat has re-

ceived increased attention due to its undeniable potential as a sustain-

able food source, as well as its ability to address many of the existing

challenges and detrimental effects of livestock meat. Cultivated meat,

also referred to as cultured meat or clean meat is a new food technology

that will positively impact animal welfare and the environment, while

offering a potentially healthier and safer option for consumers (Mouat &

Prince, 2018; Stephens et al., 2018; Tuomisto & de Mattos, 2011).

The first step in the production of any cultivated meat product is

the expansion phase of the primary cells used as a cell source for
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production of fat and muscle. The sourced cells are expanded in high

numbers and then differentiated into the respective tissues. It has

been estimated that 1011 cells are needed to make 1 kg of meat,

including all cell types involved (Post et al., 2020). Realistically, such

cell numbers are only attainable in bioreactor cultures.

To date, a significant number of published studies have de-

monstrated the ability to expand human mesenchymal stem cells

(hMSCs) at different scales (deSoure et al., 2016; Hanga, Nienow,

et al., 2020; Hewitt et al., 2011; Lawson et al., 2017; Rafiq

et al., 2013, 2017, 2018). More recently, bovine adipose‐derived
stem cells (bASCs) as precursors for fat and muscle tissue were also

expanded successfully in spinner flasks (Hanga, Ali, et al., 2020).

However, that study was carried out in a semi‐controlled environ-

ment as spinner flasks rely on the temperature and gas control

within an incubator. The next step for scalable production is trans-

lation to fully controlled bioreactors. This is, to our knowledge, the

first report of litre scale expansion of bASCs for cultivated meat

production.

Microcarrier culture in bioreactors has a significant ad-

vantage over monolayer culture due to their high surface‐area‐
to‐volume ratio. In addition, this surface area can be expanded in

bioprocesses through the provision of additional microcarriers,

thus maximising cell expansion, while maintaining cell growth in

the exponential phase for longer. This approach has been re-

ported previously for expansion of human MSCs on microcarriers

(Hervy et al., 2014; Rafiq et al., 2018), as well as for the expan-

sion of skeletal muscle satellite cells (Bodiou et al., 2020;

Verbruggen et al., 2018). It is believed that a key mechanism for

the success of this approach is the phenomenon known as a bead‐
to‐bead transfer. This refers to the migration of adherent cells

from one microcarrier to another in suspension culture (deSoure

et al., 2016; Rafiq et al., 2018; Takahashi et al., 2017). Bead‐to‐
bead transfer and surface area addition are approaches of

particular interest from a manufacturing perspective as they

facilitate process intensification, thereby increasing cell yield and

reducing process time.

In this study, we investigated the surface area addition approach

for process intensification, while translating the bioprocess for ex-

pansion of bASCs from spinner flasks to litre scale bench‐top bior-

eactors, thus benefiting from full environmental monitoring and

control. The continuous monitoring of process parameters possible in

such bioreactors and the offline measurements of important re-

presentative metabolites (Moutsatsou et al., 2019) and cell counts

performed throughout the culture enabled a better understanding

and faster optimisation of the expansion bioprocess of these cells.

Such work has not been reported before for bASCs culture and re-

presents a major step forward for this novel use of stem cell culture.

2 | MATERIALS AND METHODS

2.1 | Planar culture of bASC

bASCs were purchased from Cellider Biotech (Spain) and they were

cultured as previously reported (Hanga, Ali, et al., 2020) in a growth

medium comprising α‐Modified Eagle Medium (BE12‐169F; 1 g/L

glucose; Lonza) supplemented with 10% (v/v) foetal bovine serum

(FBS; F7524; Sigma‐Aldrich), 2 mM ultra‐glutamine (BE17‐605E/U1;
Lonza) and 1 ng/ml bFGF (100‐18B; Peprotech). bASCs between

passages 3 and 5 were used for all experiments.

2.2 | Microcarrier culture in spinner flasks

Two different‐sized spinner flasks with the same type of impeller

were used in this study: 100ml capacity (Bellco) (Figure 1a) and

500ml capacity (Wheaton Celstir) (Figure 1b). Before use, all spinner

flasks were coated with Sigmacote (Sigma‐Aldrich) to prevent cell

attachment to the glass (Nienow, Coopman, et al., 2016). SoloHill

Plastic microcarriers (Pall) were chosen for this study based on their

excellent performance, animal‐free characteristics, and commercial

availability (Hanga, Ali, et al., 2020; Rafiq et al., 2016). The

F IGURE 1 Photographs of bioreactors used
and their impellers. (a) Bellco spinner flask with a
maximum working volume of 100ml. (b) Wheaton
spinner flask with a maximum working volume of
500ml. Both Bellco and Wheaton spinner flasks
are equipped with paddle blade impellers. (c) Litre
scale bioreactor assembly comprising Mobius 3 L
vessel, peristaltic pump and addition bottle. The
Mobius 3 L vessel (with a maximum working
volume of 3 L) is equipped with a marine impeller.
None of the vessels were equipped with baffles
[Color figure can be viewed at
wileyonlinelibrary.com]
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microcarriers were weighed to achieve the surface area needed and

then suspended in D‐PBS without calcium and magnesium (BE17‐
516F; Lonza) for autoclaving. The surface area concentration used

was 5 cm2/ml of medium. bASCs were seeded at the optimal seeding

density of 1500 cells/cm2 established in our previous study (Hanga,

Ali, et al., 2020). The feeding regime previously established to be

optimal at 80% medium exchange was carried out on Day 3 and then

every other day until the end of culture (Hanga, Ali, et al., 2020).

Briefly, the agitation was stopped to allow microcarriers to settle

(~5min), then the volume was removed and replaced with a fresh

medium. The spinner flasks were then transferred back to the in-

cubator and the agitation was restarted. All spinner flask cultures

were agitated at the minimum speed required to just suspend the

microcarriers (Njs). NJS is usually assessed visually as the speed at

which no particles remain static on the base of the vessel at any

point for more than 1 to 2 s (Zwietering, 1958). At this speed, all cells

attached to microcarriers are able to access nutrients from the

medium and pass metabolites into it. Higher speeds do not enhance

those processes, but greatly increase the potential for damage to

cells from microcarrier‐microcarrier or microcarrier‐impeller impacts

and enhanced turbulent stresses (Nienow, Rafiq, et al., 2016). The

first time the use of NJS was proposed as a preferred operating

criterion for the culture of MSC was by Hewitt et al. (2011) for

spinner flasks and it was later shown to be appropriate for a range of

bioreactors by Nienow, Coopman, et al. (2016). For both types of

spinner flasks used in this study, this speed was visually assessed to

be 30 rpm, which was kept constant throughout the culture. The

spinner cultures were carried out for 11 days when the full harvest

was done by using a previously published protocol (Nienow, Hewitt,

et al., 2016). Three different combinations of parameters were in-

vestigated for the ability to intensify the bioprocess and these are

shown in Table 1. Briefly, the “Baseline” experiments were per-

formed in the Bellco spinner flasks at the constant volume of 100ml

and constant surface area of 500 cm2. The “microcarriers (MC) only

addition” experiments were also carried out in the Bellco spinner

flasks at the constant volume of 100ml, but with the doubling of

surface area from 500 to 1000 cm2. The “microcarriers (MC) +

volume addition” experiments were carried out in the Wheaton

spinner flasks which have a maximum capacity of 500ml. The geo-

metry of the Wheaton spinner flask doesn't allow operation at

100ml due to the positioning of the impeller. As a result, they were

operated at the starting volume of 200ml with the surface area

adjusted to 1000 cm2 up to Day 5 to maintain the same microcarrier

concentration, after which both the microcarrier surface area and

the volume were doubled to a surface area of 2000 cm2 in a volume

of 400ml.

2.3 | Microcarrier culture in bioreactors

A single‐use, disposable stirred tank bioreactor vessel (Mobius Cell

Ready 3 L, Millipore) of a 3 L nominal size was used for all experi-

ments. The bioreactor controller (EZ‐Control), probes (temperature, T
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pH, DO), and other relevant accessories (heating mantle, motor

adapter) were purchased from Applikon. A 2‐point calibration was

performed on the pH probe which was then sterilised by autoclaving.

The DO probe was first autoclaved and then calibrated post‐
assembly in the bioreactor using saturation with air supplemented

with 5% CO2 as 100% DO. Aeration was achieved through the

headspace using air supplemented with CO2 which has been pre-

viously established to be sufficient for the oxygen demand of human

MSCs up to the 5 L scale (Nienow, Rafiq, et al., 2016; Rafiq

et al., 2013).

SoloHill Plastic microcarriers (Pall) were also used for the bior-

eactor cultures and were weighed to provide a surface area of

5000 cm2/L. The microcarriers were sterilised by autoclaving before

their addition to the bioreactor vessel. Cells were inoculated on the

microcarriers at the established optimal seeding density of 1500

cells/cm2 (Hanga, Ali, et al., 2020). The “baseline” bioreactor runs

were initially operated at a working volume of 1 L containing a sur-

face area of 5000 cm2 throughout the culture. The “MC+ volume

addition” runs started with 5000 cm2 in 1 L up to Day 5 after which

both surface area and volume were doubled to achieve 10,000 cm2 in

2 L (Table 1). For all bioreactor experiments, the agitation speed was

kept constant throughout culture at the Njs, which for this vessel‐
impeller combination was assessed by visual observation and it was

found to be 60 rpm. The bioreactor cultures were also maintained for

11 days when the harvest was performed. Medium exchanges in the

bioreactor were carried out on the bench using the peristaltic pump

(Watson‐Marlow 120S), pre‐sterilised glass bottles, and a sterile

welder (Terumo TSCD‐II) for establishing sterile connections

(Figure 1c). The medium exchange % was limited to 50% when the

bioreactor was operated at the 1 L volume because of the positioning

of the sampling port on the Mobius vessel, which only allows the

removal of a maximum volume of 500ml. For the “MC+ volume

addition,” the 50% medium exchange was maintained for con-

sistency. The first medium exchange was performed at Day 3, then

every other day until the end of the culture. Briefly, the agitation was

stopped to allow microcarriers to settle (~5min), then the volume

was removed and replaced with fresh medium. The agitation was

then restarted. During all processing steps, aeration and temperature

were controlled at all times.

2.4 | Cell harvest

Cell harvesting from microcarriers in spinner flasks was carried

out using the protocol previously developed by Nienow, Hewitt,

et al. (2016). For cell harvest from microcarriers in the bior-

eactor, the same protocol was adapted to the litre scale with the

difference that all steps were carried out directly in the bior-

eactor on the bench using the peristaltic pump and sterile welder

rather than transferring to the biological safety cabinet. Briefly,

the agitation was stopped and the microcarriers were allowed to

settle for 5 min before removing 50% of the spent medium and

replacing it with DPBS for washing under agitation at the

established Njs. These steps were repeated three times, followed

by removal of 50% of the volume and replacing with 0.25%

trypsin‐EDTA (25200072; Gibco, Thermo Fisher Scientific). The

incubation with the enzyme was carried out for up to 20 min at

37°C, while stirring at 150 rpm. For “Baseline” and “MC addition

only” conditions, the exposure time to the proteolytic enzyme

was 15 min, while for the “MC + volume addition” conditions

where large cell densities were obtained, 15 min was not deemed

satisfactory and thus, it was extended to 20 min. A sample was

then taken for microscopic evaluation of complete cell dissocia-

tion from microcarriers. Once this was confirmed, the enzyme

was then inactivated with growth medium to double the volume.

For spinner flasks, the total volume of 100 ml was then taken

post‐dissociation, while for the bioreactor culture, only a sample

of 200 ml was taken post‐dissociation for the filtration step to

remove the microcarriers. This was achieved using Steriflip fil-

tering devices (Millipore; 90 µm pores). The cell suspension was

then centrifuged at 250g for 5 min to obtain a pellet.

2.5 | Process analytics

wSamples were taken at the same time points when feedings were

performed and were used for cell imaging, cell counting and glucose,

and lactate measurements before and after medium exchanges. Live/

dead staining kit (L3224; Thermo Fisher Scientific) comprising calcein‐
AM for live cells and ethidium homodimer for dead cells was used

following the manufacturer's instructions to assess cell viability on

microcarriers using a fluorescent microscope (Evos FL, Thermo Fisher

Scientific). Spent medium samples were collected before and after

medium exchanges and were analysed for glucose and lactate con-

centrations on the AccuTrend Plus meter (Roche). Fresh growth

medium was used as the baseline control. Cell counts were performed

directly onto microcarriers using the reagent A100 and reagent B

protocol on the Nucleocounter NC‐3000 (Chemometec). Briefly, the

cell‐microcarrier suspension was diluted to a 1:3 ratio with reagent

A100 (lysing agent) and reagent B (stabilising agent). The resulting

suspension was then loaded onto a Via‐1 Nucleocassette pre‐loaded
with acridine orange and 4′,6‐diamidino‐2‐phenylindole (DAPI).

Based on cell counts, the following parameters were calcu-

lated: µ (specific growth rate, h−1) μ Cx t Cx
t

ln( ( ) / (0))
⎡
⎣
= ⎤

⎦Δ
, td (doubling

time, h) td ln2
⎡
⎣

= ⎤
⎦μ
and FI (fold increase) FI Cx t

Cx
( )

(0)⎡
⎣

= ⎤
⎦
. Cx(t), Cx(0)

are cell numbers at the end and the start of the culture.

2.6 | Cell product characterisation

All chemicals were purchased from Sigma‐Aldrich unless stated

otherwise. Cells from both spinner flasks and bioreactor cultures

were harvested at the end of culture as described in Section 2.4

and used for characterisation.
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2.6.1 | Tri‐lineage differentiation potential

The StemPro differentiation kits (Thermo Fisher Scientific) were

used to drive differentiation of bASCs to adipogenic (A1007001),

osteogenic (A1007201), and chondrogenic (A1007101) lineages.

bASCs were seeded at 5,000 cells/cm2 for osteogenic and 10,000

cells/cm2 for adipogenic differentiation. For chondrogenic test-

ing, the micromass method was used (Hanga et al., 2017; Hanga,

Ali, et al., 2020; Rafiq et al., 2017). Briefly, 5 µl droplets of a

highly concentrated bASCs suspension (1×107 cells/ml) were

seeded in an empty well plate (Corning) and incubated for 1‐2 h.

The chondrogenic differentiation medium was then carefully

added dropwise. All cultures were kept in their respective media

(StemPro, Thermo Fisher Scientific) for 21 days with a medium

change every 3–4 days. The cells were then fixed with 4% par-

aformaldehyde (PFA) for 20 min at room temperature and

stained with their corresponding stains. Oil Red O was used for

confirming adipogenic differentiation. Von Kossa stain was used

to assess osteogenic differentiation, while the chondrogenic

differentiation was assessed using Alcian blue.

2.6.2 | Cell surface marker expression

The expression of two cell surface markers with bovine reactivity

(CD73—ab231643, CD90—ab212885; Abcam) was assessed

using immunocytochemistry staining. All stains were used at the

manufacturer's recommended dilutions. Briefly, the cells were

fixed as above and then permeabilised for 5 min using Perm Wash

(421002; Biolegend). Two washes with cell staining buffer

(420201; Biolegend) were performed, followed by an incubation

step with normal serum block (927502; Biolegend) for 45 min in

the dark. The primary antibody was then added at the re-

commended dilution and incubated overnight at 4°C. The sec-

ondary antibody containing the fluorophore was then incubated

with the pre‐stained cells for 2 h at room temperature in the

dark. DAPI was used for nuclei staining at the 300 nM working

concentration. Phalloidin (94072; Sigma‐Aldrich) was used to

stain the cytoskeleton. Stained cells were then imaged on a

fluorescence microscope (Evos FL; Thermo Fisher Scientific).

2.7 | Statistical analysis

All spinner flask experiments were performed in four biological

repeats, while bioreactor experiments in triplicates. Cell counts

were obtained from two independent samples from each repeat.

Data were expressed as mean ± SD. Statistical analysis was car-

ried out using Graph Pad Prism 9. For comparison of multiple

data sets, significance was determined by one‐way analysis of

variance. Statistical significance was considered when p < .05.

3 | RESULTS AND DISCUSSION

The aim of this study was dual: (1) to investigate the potential for

process intensification through surface area addition by utilising the

bead‐to‐bead transfer phenomenon and (2) to translate the im-

proved bioprocess to litre scale in controlled bioreactors. To the best

of our knowledge, no such study has been done using bovine stem

cells. The assumption was that the bead‐to‐bead transfer phenom-

enon would be applicable to the bovine‐derived MSCs and would

lead to higher cell yields.

3.1 | Bioprocess intensification for bASCs
expansion in spinner flasks

The first objective was to investigate if, through fresh microcarrier

addition and utilising the bead‐to‐bead transfer phenomenon, the

freshly added microcarriers would be populated with attached cells,

thereby maintaining cell growth and enhancing total cell numbers

over the same culture period. Enhanced total cell numbers in the

same timeline is an indication of process intensification, which is

highly advantageous leading to an increased cell number while re-

ducing process time. Bead‐to‐bead cell transfer is a phenomenon that

can be influenced by multiple factors, including medium composition,

attachment substrate (i.e., type of microcarrier), feeding regime, time

point for fresh microcarrier addition, agitation intensity and possibly

other parameters (deSoure et al., 2016; Ferrari et al., 2012; Hervy

et al., 2014; Rafiq et al., 2018; Takahashi et al., 2017). Many of these

parameters were kept constant between the baseline and the mi-

crocarrier addition bioprocesses reported in this study.

The “baseline” bioprocess for the bASC expansion on micro-

carriers in the Bellco spinner flasks was developed in our previously

published work (Hanga, Ali, et al., 2020) and it was used here as a

starting point for the intensification of the expansion bioprocess by

keeping cell seeding density, initial surface area, and the feeding

regime the same. The first critical parameter for process in-

tensification is the selection of the optimal time point for micro-

carrier addition. In this study, two time points were investigated:

Days 5 and 7. The better microcarrier addition time point was

selected based on the observed development of aggregation

throughout the culture and its effect on final cell number. At Day 7,

cell‐microcarrier aggregates of three or more microcarriers were

observed in all experiments, while at the earlier time point (Day 5),

zero or minimal aggregation was observed in the samples (Figure 2a).

In the “MC only addition” runs, different levels of cell growth

were found when the microcarriers were added at either Day 5 or 7.

At Day 7, a fold increase of 30.78 ± 4.60 was obtained which was

lower than the “baseline” bioprocess that yielded a fold of

37.10 ± 6.73. On the other hand, when microcarriers were added at

the earlier time point in culture (Day 5), it resulted in a slightly higher

fold increase of 43.13 ± 9.17 (Figure 3a). It was postulated that when

HANGA ET AL. | 5



the addition was performed at the later time point, the lower cell

growth obtained was linked to the existence of the cell‐microcarrier

aggregates observed then (Figure 2a). Cell aggregation is a known

issue in bioreactor cultures as it can cause heterogeneity in the

culture environment and depending on the size of aggregates, it can

lead to cell exposure to concentration gradients, especially low

oxygen (Ferrari et al., 2012; Wu et al., 2014). The existence of ag-

gregation at Day 7 was assumed to lower the efficiency of the bead‐
to‐bead transfer, thus explaining the diminished growth registered.

However, although the early addition of extra microcarriers gave a

better measurable performance, the differences compared to the

“baseline” were not statistically significant (ns; p > .05). In these runs,

there is a possibility that, as known in early work on hMSCs (Hewitt

et al., 2011), above a certain concentration of microcarriers per ml of

medium, the culture performance deteriorates. More recent work

has emphasised quantitatively how the microcarrier collisions with

rotating impellers and particularly between themselves increases

with concentration (Nienow, Coopman, et al., 2016). As the cells are

situated on the surface of the microcarriers, these collisions can

cause damage and a reduction in culture performance and thus

possibly resulting in cell death. This mechanism might also explain

why the difference in cell growth between the “baseline” and the two

different addition time points, were not statistically significant.

Another possible cause of this finding could be that nutrients pro-

vided in the constant volume were either depleted faster or were not

sufficient for the amount of cells now proliferating on the doubled

surface area. Alternatively, metabolite production (e.g., lactate) could

also have an inhibitory effect on cell growth (Qie et al., 2012; Schop

et al., 2009). However, neither of these latter reasons are relevant

here as glucose depletion or lactate accumulation didn't occur in

either the “baseline” or the “MC only addition” runs (Figure 3d).

Other nutrients such as glutamine or metabolites such as ammonia

could have been depleted or respectively produced in high con-

centrations, thus influencing cell growth negatively (Schop

et al., 2009). However, these were not measured here.

The next step was to combine microcarrier addition at the de-

termined better time point of Day 5 with volume doubling at the

same time (“MC+ volume addition”). This new approach yielded ap-

proximately 1.8 × 108 cells at Day 11 (Figure 2c) equivalent of a fold

increase of 116.65 ± 9.73. This increase was 3.14 times higher than

the “baseline” yield and 2.7 times higher than the “MC only

addition” yield (****p < .0001) (Figure 3a). The “MC+ volume addi-

tion” resulted in a significantly higher specific growth rate of

0.0180 ± 0.00 h−1 (****p < .0001) (Figure 3b) and a significantly lower

doubling time of 38.48 ± 0.65 h (***p < .0001) (Figure 3c) compared

to the other conditions tested.

F IGURE 2 Expansion of bASCs in spinner flasks for up to 11 days. (a) Representative phase contrast images taken before microcarrier
addition at Days 5 and 7 in culture. White arrows point to cell‐microcarrier aggregates. Scale bar = 200 µm. (b) Cell number over time in a
baseline bioprocess in the Bellco spinner flasks compared to microcarrier addition at different time points in a constant volume. (c) Cell number
over time in the Wheaton spinner flask in which surface area and volume were doubled. The arrow indicates the time point (Day 5) for the

addition. Data expressed as mean ± SD, n = 4 [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 3 Comparison of (a) fold increase, (b) specific growth rate (h−1) and (c) doubling time (h) of the expansion of bASCs in a baseline
and microcarrier addition (Bellco spinner flasks) or microcarrier and volume addition (Wheaton spinner flasks) bioprocesses. (d) Glucose and
lactate concentrations (mmol/L) over time in the baseline, microcarrier addition at Day 5 and microcarrier and volume addition bioprocesses.
Data expressed as mean ± SD, n = 4; ns, not significant; ***p < .0001; ****p < .00001

F IGURE 4 Bioprocess translation from
spinner flasks (100ml scale) to the litre scale in a
fully controlled Mobius bioreactor (1 L scale)
[Color figure can be viewed at
wileyonlinelibrary.com]
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3.2 | Bioprocess translation to litre scale

The “baseline” and “MC+ volume addition” bioprocesses developed

in spinner flasks were then translated to the litre scale in the single‐
use, disposable, Mobius bioreactor vessel. The bioprocess para-

meters translated from spinner flasks to the litre scale bioreactor are

shown in Figure 4. The initial cell seeding density, feeding regimes,

and concentration of microcarriers per volume of medium (5 cm2/ml)

were kept the same. It was not possible to translate the 80% medium

exchange from spinner flasks to the Mobius bioreactor when oper-

ated at 1 L because of the vessel design and positioning of the

medium removal port, which creates a dead volume of approximately

500ml. Nevertheless, earlier work (Nienow, Hewitt, et al., 2016;

Rafiq et al., 2013) suggested that similar results could be obtained at

50% medium exchange and with increasing scale, a smaller exchange

volume would represent a significant cost saving.

bASCs cultured on Plastic microcarriers in the Mobius bior-

eactor using the “baseline” operating parameters grew successfully,

achieving an average yield of 3.02 × 108 cells in 11 days of culture,

which was the equivalent of a fold increase of 40.31 ± 3.53

(Figure 5a). Moreover, the cells remained viable on the microcarriers

as shown by the live/dead staining (Figure 5b). Even with the in-

creased levels of aggregation which occurred in the last days of

culture, cell viability was maintained high with only a small number of

dead cells (red) observed (Figure 5b). As anticipated, following the

smaller scale studies in the spinner flasks, the “MC+ volume addi-

tion” bioprocess also yielded a significantly higher number of cells

(1.01×109 cells) compared to the “baseline” (****p < .0001)

(Figure 6a). The equivalent fold increase of 134.75 ± 36.94 was 3.34

times higher than the “baseline” bioprocess (*p < .05) (Figure 6b). The

specific growth rate (h−1) was calculated as 0.0184 ± 0.00004 h−1 in

the “MC+ volume addition” bioprocess compared to the “base-

line” which was only 0.0140 ± 0.0003 h−1 (**p < .005) (Figure 6c); and

the doubling time was significantly lower in the same bioprocess at

37.56 ± 1.93 h compared to 49.55 ± 1.13 h (**p < .005) in the

“baseline” (Figure 6d).

The metabolic analysis showed many differences between the

“baseline” and the “MC+volume addition” bioprocesses, particularly to-

wards the end of the culture (Figure 7). These differences were observed

in both glucose consumption and lactate production. In the baseline,

glucose depletion was not reached at any time point in culture with a

minimum of 1.36mmol/L reached (Figure 7a1), while lactate concentra-

tion reached a maximum of 3.73mmol/L as an average (Figure 7a2). On

the other hand, the “MC+volume addition” bioprocess resulted in almost

two times higher lactate concentration at Day 11 with a steep increase

from Day 5 onwards despite the doubling of volume (Figure 7b2). The

glucose concentration also showed a steep decline from Day 5 onwards,

reaching low levels (<1mmol/L) at the final day of culture (Figure 7b1).

From Day 9 onwards, increasing the glucose concentration in the culture

medium proved difficult with the 50% exchange and feeding regime at

the frequency adopted, which could explain the small drop in total cell

numbers at Day 11. As the lactate concentration reached levels of over

7mmol/L, to avoid inhibitory concentrations, medium refreshment might

be needed. The metabolite inhibitory levels are cell line and type de-

pendent (Schop et al., 2009) and to the best of our knowledge, no

published study has investigated those levels for bovine ASCs. Overall,

the glucose and lactate trends correlated well with the cell growth ob-

tained in both bioprocesses. pH and dissolved oxygen (DO, %) were

continuously monitored throughout the bioreactor cultures. In the

“baseline” bioprocess, the pH was recorded and maintained within the

F IGURE 5 bASC expansion overtime on
Plastic microcarriers in the fully controlled
environment of the Mobius bioreactor vessel in a
working volume of 1 L. (a) Total cell number over
time. Data expressed as mean ± SD, n = 3.
(b) Live/dead staining of samples taken from the
Mobius bioreactor at Days 3 and 10 in culture.
Live cells appear green, while dead cells appear
red. Scale bar = 1000 µm [Color figure can be
viewed at wileyonlinelibrary.com]
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F IGURE 6 Comparison of bASC expansion
over time in the Mobius bioreactor vessel in a
baseline versus a microcarrier and volume
addition bioprocess at the litre scale. (a) Total cell
number over time. (b) Fold increase. (c) Specific
growth rate (h−1). (d) Doubling time (h). Data
expressed as mean ± SD, n = 3; *p < .05; **p < .005

F IGURE 7 Glucose (a1; b1) and lactate concentrations (mmol/L) (a2; b2) measured when bASCs were expanded at the litre scale in the
Mobius bioreactor. (a) In the baseline bioprocess. (b) In the microcarrier and volume addition baseline. The arrow shows the time point in
culture for microcarrier and volume addition (Day 5). Data expressed as mean ± SD, n = 3
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range of 7.3 to 7.4. However, for the “MC+volume addition” bioprocess,

the pH range recorded was wider, from 6.88 to 7.3 (Figure 8a) and it was

outside the physiological pH range, which also may have impacted the

cell number towards the end of the culture. The DO levels showed a

steep decrease over time in both the baseline and the intensified bio-

processes. In the “baseline” bioprocess, the lowest DO level was 34.2%

(Figure 8b). Such a level would not be expected to cause a problem with

the cells; indeed there is some evidence to suggest that even lower

values are beneficial (Heathman et al., 2019). However, that study was

done using human MSCs and not bovine. The “MC+volume addition”

bioprocess reached low levels of DO (4.63%) meaning there was a higher

oxygen demand which correlates with higher cell numbers. The “MC+

volume addition” conditions in both spinner flasks and the Mobius

bioreactor resulted in higher cell concentrations of 4.37× 105 and

5.05 × 105 cells/ml, respectively, compared to maximum 3×105 cells/ml

for baseline and “MC addition only” conditions (Table 1, column 10).

Moreover, the volumes of media required to produce 1 ×106 cells were

the lowest for the “MC+volume addition” conditions with only 4.8ml

needed in spinner flasks and 4.9ml in the Mobius bioreactor compared

to 15.1ml (spinners) and 9.9ml (Mobius) for baseline (Table 1,

column 13). This suggests that the intensified bioprocesses would be

more cost‐efficient particularly given that the media is the main con-

tributor to the overall manufacturing cost. Overall, the volume of media

required to produce 1×106 cells was lower in the bioreactor at the litre

F IGURE 8 Process parameters monitored during the bASCs
expansion on microcarriers in the Mobius bioreactors. (a) pH and
(b) DO (%). Data expressed as mean ± SD, n = 3

F IGURE 9 Cell quality assessment of bASCs pre‐ and post‐expansion in the Mobius bioreactor. Immunocytochemistry staining for CD73
and CD90 markers expression (green), phalloidin (red) for cytoskeleton, and DAPI (blue) for nuclei for (a) pre‐bioprocessing. Scale bar = 100 µm.
(b) Post‐bioprocessing in the “Baseline” bioprocess. Scale bar = 200 µm. (c) Post‐bioprocessing in the “MC+ volume” bioprocess. Scale
bar = 200 µm. Differentiation towards the three lineages: adipogenic, osteogenic and chondrogenic for (d) pre‐bioprocessing; (e) “Baseline”
bioprocess and (f) “MC+ volume” bioprocess. All scale bars for differentiation are 200 µm [Color figure can be viewed at wileyonlinelibrary.com]
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scale compared to the spinner flasks. In the Mobius bioreactor, only a

50% medium exchange was possible due to the vessel configuration

which resulted in media saving without compromising the final cell yield.

Additionally, the final cell densities (cells/cm2) followed a similar pattern

with the highest obtained at the litre scale and in the “MC+volume

addition” conditions (Table 1, column 11) suggesting that in the in-

tensified bioprocesses, better utilisation of surface area was achieved.

3.3 | Potential ways to further improve the
intensified culture

Several issues were identified in these experiments when scaling up the

“MC+volume addition” bioprocess in the Mobius bioreactor even

though this process still gave the best performance. From Day 9 on-

wards, the frequency of feeding with only a 50%medium exchange could

not prevent the decrease in glucose concentration to almost depletion.

However, this issue could be easily resolved by either increasing the % of

medium exchange from 50% to ~75% which with a 2 L operating volume

would be possible in the Mobius bioreactor (and probably in other

bioreactor designs). Alternatively, supplementation with glucose and/or

other depleted nutrients could also be used, with the latter being more

cost‐effective. The pH was also found to drop below the physiological

range in the intensified bioprocess particularly towards the end of the

culture. However, this difficulty is again easy to address by controlling

the pH through the addition of a base or acid, rather than just relying on

the buffer system present in the medium. The very low DO levels

reached towards the end of the intensified bioprocess could also be an

issue. Aeration in these experiments was done via the headspace with no

further supplementation with oxygen. This approach was found sufficient

until Day 9 of culture, but not beyond when in the final stages of the

culture, oxygen supplementation is necessary. However, it is also possible

that the lower DO was one of the reasons for the improvement as

reported in the growth of hMSCs and is certainly worthy of further

investigation.

3.4 | Cell quality assessment pre‐ and post‐
bioprocessing

In the absence of tests proscribed for bovine ASCs and as discussed and

justified in our earlier paper, cell quality was assessed using the guide-

lines proposed by Dominici et al. (2006). Pre‐ and post‐bioprocessing, the
bASCs retained their ability to differentiate towards adipogenic, osteo-

genic, and chondrogenic lineages. Moreover, in all conditions tested, the

cells retained their expression of CD90 and CD73 markers (Figure 9).

4 | CONCLUSIONS

The first step in the production of cultivated meat is the expansion of the

sourced cells. This study focused on the translation to the litre scale and

intensification of a bioprocess for the expansion of bASCs as a source of

fat and muscle. This aim was achieved through a combination of surface

area and volume addition during the culture. This approach took ad-

vantage of the bead‐to‐bead transfer phenomenon in which cells already

attached to microcarriers have the ability to populate fresh microcarriers

when added during culture. However, the time point for the addition is

critical as the cells lose this ability when the level of aggregation is too

high. Here, we found Day 5 to be the better time point for surface area

addition compared to Day 7. Microcarrier addition was much more ef-

ficient when combined with volume addition rather than when the vo-

lume was kept constant, probably because with the “surface only”

addition, the increased concentration of microcarriers per ml resulted in

an increased probability of microcarrier collision during agitation with cell

damage as a consequence. The “surface + volume addition” approach

lead to significantly higher cell numbers in the same timeline in a spinner

flask and to an even better performance in the well‐instrumentedMobius

bioreactor. Overall, intensification using the “surface + volume addition”

in the bioreactor lead to the highest number of cells/cm2 and the highest

cells/ml and reduced the volume of media required for the production of

1 × 106 cells from about 15ml in the baseline in the spinner flask to just

under 5ml. This bioprocessing approach could be implemented with

other adherent cell types and other species for applications not only in

cultivated meat production but also cell manufacturing for therapeutics.
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