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Abstract –Angle of rotation is a key parameter in motor fault 

diagnosis under varying speed conditions, and is usually 
measured by an optical encoder. However, the use of encoders is 
intrusive and in many scenarios its signal is difficult to access due 
to technical or commercial reasons. In this study, a novel rotation 
angle measurement method based on stray flux analysis is 
proposed and applied to bearing fault diagnosis of brushless 
direct-current (BLDC) motors. The measurement accuracy of the 
proposed method is comparable to that from an encoder. The 
developed method is flexible, noninvasive, and nondestructive. It 
is easy to implement and eliminates the need for long cables and 
access of the motor control system. The proposed method can be 
extended to the diagnosis of motor electrical and drive faults. If 
implemented with an Internet of Things (IoT) or a hand-held 
device, it can further improve the reliability of sensorless motor 
drive systems in industrial automation so as to meet Industry 4.0 
requirements. 

Index terms—Bearing fault, BLDC motors, fault diagnosis, 
rotation angle measurement, stray flux, vibration signal analysis 

I. INTRODUCTION 

Brushless direct current (BLDC) motors are a type of 
common pivotal actuators used in the field of industrial 
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automation. Early fault diagnosis is of critical importance as it 
can extend the healthy operation of motors and reduce the 
likelihood of severe accidents. Typical motor failures are 
classified into three types: electrical, magnetic, and mechanical 
failures. The electrical faults include winding interturn 
short-circuit faults, winding open-circuit faults, winding 
resistance imbalance, and broken rotor bars [1, 2]. The 
magnetic faults include magnet damage and demagnetization, 
and iron core defects [3]. The mechanical faults involve bearing 
faults and rotor eccentricity [4, 5]. Typical mechanical faults 
can directly lead to a breakdown of the motor drives while 
electrical faults take a longer time to develop from a minor to a 
severe fault. Therefore, this study focuses on bearing faults, 
which account for about 45% of the total motor faults [6]. 

The motor bearings are usually subjected to cyclic loads at 
axial direction, and the alternating stress can lead to fatigue 
after a certain of cycle times. The fatigue further leads to crack, 
pitting, and scratch. The incipient failures will expand to 
large-size ones and finally to severe failures such as broken 
cage and rollers, wearing of outer and inner raceways. The 
original manufacture defects or improper operation 
(misalignment or overloading) can accelerate the degradation 
of the bearing [7]. 

Bearing faults produce vibration and noise that can be 
detected externally. In industry, vibration signal analysis is one 
of the most effective methods. When a motor operates at a 
constant speed, the fault signatures appear periodically in the 
acquired vibration signal. Waveform or spectral analysis 
methods can be used to estimate the intervals or frequencies of 
the periodic features. However, if the shaft speed varies with 
time, the fault features become non-stationary, and the 
traditional spectral analysis becomes less effective. Under this 
condition, an order analysis technique can be used to process 
the time-varying signals in the angular domain [8]. In this case, 
the rotation angle information is required to aid in the analysis. 
This can be obtained from an encoder if it is installed in the 
motor shaft. However, many industrial motors are based on 
sensorless control where an encoder is not employed [9, 10]. 

Thus, the rotating angle must be estimated from other signals, 
such as video stream, motor current, and vibration signal [11]. 
For instance, a vision-based measurement system that uses a 
linearly varying density fringe pattern was designed for speed 
monitoring [12]. A current-aided order analysis method was 
developed for bearing fault diagnosis [13]. A rolling element 
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bearing fault diagnosis method based on fault characteristic 
order (FCO) analysis was proposed in [14], in which the 
rotation angle is estimated from the vibration signal. More 
details about rotation angle or speed measurement methods 
without using a tachometer can be found in a review article [8]. 

Whilst existing angle measurement methods are effective in 
different mechanisms, they have their limitations. For instance, 
video signals can provide the rotation angle but require the use 
of an expensive high-speed camera [15]. The measurement 
accuracy of the camera is affected by several factors, such as 
illumination intensity and surface texture. Similarly, vibration 
signals are rich and easy to capture but its measurement 
accuracy is affected by the surrounding environment [13]. 
Machine winding currents can be presented with some bearing 
fault signatures, but these are transmitted through the main flux 
and stator windings. Any disturbance and interference can 
impact on the measurement accuracy. 

In this study, a method based on stray magnetic signals is 
proposed for motor rotation angle measurement. The 
advantages of the proposed method are evaluated in a BLDC 
motor servo drive unit in industrial automation. As shown in 
Fig. 1, this unit consists of a BLDC servo motor, a power 
supply, a controller, current, flux and vibration sensors, and 
connection cables. The motor rotation angle can be obtained 
from an encoder, a current probe, and a stray flux sensor for 
comparison purposes. The measured data are conditioned 
through a data acquisition system (DAS) which is connected to 
a PC for analysis. The interfaces of the current sensor and the 
encoder are located on the electrical cabinet side, and no 
connector is exposed on the actuator side. For this reason, 
several long cables should be wired between the motor and the 
power supply to obtain the angle signal. 

 

 
Fig. 1. Different rotation angle measurement methods for the fault diagnosis of 
a typical servo driving unit under variable speed conditions. 
 

However, wiring long signal cables is undesirable in 
industrial applications. Mutual interference between cables 
may occur and the impedance of cables may give rise to 
measurement uncertainties. By contrast, magnetic sensors can 
capture the stray flux leaking from the main flux and they can 
be installed on the motor housing [16]. A relatively short signal 
cable is used as the magnetic sensor is close to the DAS. In 
addition, the DAS, magnetic sensor, and accelerometer can be 
integrated into one unit in Internet of Things (IoT) applications 
or a hand-held instrument to eliminate the use of connection 
cables and improve flexibility. 

Although magnetic sensors are promising tools for 
measuring the rotation angle, the stray magnetic signals are 
nonlinear and weak. The technical challenge lies in the 
measurement accuracy [17]. In this study, a series of algorithms 
are proposed to achieve high-accuracy measurements from 
stray magnetic signals. The novelty and contributions of this 
study are summarized as follows. First, this study is the first to 
propose a stray flux-based BLDC motor rotation angle 
measurement. Second, the flux signal is processed adaptively, 
and the accuracy of the measured angle curve is comparable to 
that obtained from optical encoders. Lastly, this study 
introduces a new approach for motor fault diagnosis under 
varying speed conditions which eliminates long cable wirings 
and enables IoT and hand-held instrument applications. 

The remainder of the paper is organized as follows. Section 
II introduces the principle of rotation angle measurements from 
stray flux signals. Section III presents the new algorithms for 
angle measurements. Section IV presents the experimental 
setup. Section V evaluates the performance of the motor 
rotation angle measurement and fault diagnosis. Section VI 
verifies the robustness of the proposed method. Section VII 
discusses the proposed method in practical applications. 
Section VIII provides the conclusions and further work. 

II. PRINCIPLE OF ROTATION ANGLE MEASUREMENTS FROM 

STRAY MAGNETIC SIGNALS 

The BLDC motor is a permanent magnet synchronous motor 
energized by a three-phase power converter with trapezoidal 
currents. The cross-sectional view of the BLDC motor is shown 
in Fig. 2. The motor stator consists of six salient poles wrapped 
with three-phase coil windings, whereas the motor rotor 
comprises two pairs of permanent magnets mounted on the 
rotor surface. The motor driver energizes the windings with the 
sequences as: 1) A+B-, 2) C+B-, 3) C+A-, 4) B+A-, 5) B+C-, 
and 6) A+C-. The stator rotational magnetic field pulls the rotor 
to rotate synchronously [18]. 

 
Fig. 2. Cross-sectional view of the BLDC motor. 
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The energy transfers from the stator to the rotor through the 
air gap. As shown in Fig. 3(a), part of the air-gap flux Φa 
(denoted as Φl) leaks to the outside of the motor housing. This 
phenomenon can be mathematically expressed as [19]: 

= l ap  ,           (1) 

where p is the ratio of flux leakage. The leakage flux density is 
affected by the structure and material of the iron laminations, 
reluctance, and position of the magnetic sensor installed in the 
motor housing [19-22]. 

In this study, the rotation angle is measured from the 
magnitude fluctuation of the stray flux density. As this is a 
synchronous motor, the stray flux changes synchronously with 
the main flux. The speed of the mechanical shaft can be 
obtained as: 

sfd
r

f
f

np
 ,            (2) 

where fsfd is the frequency of the stray flux and np is the number 
of motor pole pairs. Fig. 3(b) is an illustration of the waveforms 
of the air-gap flux Φa and leakage flux Φl for a motor with np = 
2. A full rotation cycle of the mechanical rotor corresponds to 
two full cycles of the flux signal. In addition, flux Φl is an 
attenuated version of the flux Φa, and their period and 
frequency are strictly equal. Therefore, the rotation angle of the 
rotor can be measured from the stray flux signal. In this study, 
the ratio of flux leakage p does not need to know for angle 
measurement. 
 

 
Fig. 3. (a) Illustration of the air-gap flux and leakage flux and (b) their 
waveforms. 

III. ROTATION ANGLE MEASUREMENT AND FAULT DIAGNOSIS 

In practice, the magnetic signal is impaired by the noise 
interference. Therefore, a digital signal processing method is 
proposed to analyze the magnetic signal to obtain an accurate 
rotation angle measurement. The motor fault diagnosis based 
on order analysis can be realized on the basis of the measured 
rotation angle. The method includes magnetic signal 
time–frequency analysis (TFA) and instantaneous frequency 

(IF) extraction, rotation angle calculation, and vibration signal 
resampling for fault diagnosis. 

A. TFA and IF Extraction 

Considering that the time-varying magnetic signal is 
non-stationary, TFA is used to extract the dominant IF 
component that is highly related to motor rotation. Many TFA 
methods, including short-time Fourier transform, 
Wigner–Viller distribution, and wavelet transform, are studied 
to analyze vibration signals [23, 24]. This study adopts the 
wavelet synchrosqueezed transform (WST) for the TFA 
because of its high accuracy in IF estimation and extraction [25, 
26]. A continuous magnetic signal with K components can be 
expressed as: 

1

( ) ( )cos ( ) ( )
K

j j
j

M t A t t n t


  ,     (3) 

where Aj(t) and ωj(t) are the instantaneous amplitude (IA) and 
IF of the jth component of the magnetic signal, respectively, n(t) 
is the noise introduced during the measurement, and M(t) is a 
time-varying signal. WST extracts and reconstructs the IAs and 
IFs of the components. 

Continuous wavelet transform is applied to M(t) to estimate 
the IFs as: 

-1 2( , ) ( ) ( )M

t b
W a b a M t dt

a
  

  ,     (4) 

where a and b are the scale and shift coefficients of the wavelets, 
respectively, ψ(ꞏ) is the mother wavelet, and ψ*(ꞏ) is its 
conjugation. The IF for any WM(a, b) ≠ 0 can be calculated as: 

( ( , ))
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M

M
M
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f a b

W a b b

 



.       (5) 

where i denotes the imaginary unit and it is induced from the 
cosine components in M(t) according to the Euler's formula, i.e., 
cosωj(t) = [exp(iωj(t)) + exp(-iωj(t))]/2. The detailed 
derivations can be referred to Ref. [25]. 

Eq. (5) establishes a map from (b, a) to (b, fM(a, b)). WST 
then redistributes the energy on the time-scale plane and 
converts it on the time-frequency plane as [27]: 
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  , (6) 

where TM(f, b) is a function with respect to frequency f, WM(a,b) 
and fM(a,b) are the functions with respect to a and b, δ is the 

accuracy, and   0h C   is a smooth function that satisfies 

1 1
L

h  . The practical magnetic signal M[n] (n = 1, 2,…, N, 
where N is the signal length) is discrete. The discrete form of 
Eq. (6) can be written as: 

3 2

: ( , ) 2

[ , ] [ , ] ( )
j j n l

M l n M j n j j
a f a b f f

T f b W a b a a

 

  ,     (7) 

where aj and bn are the discrete forms of the wavelet 
coefficients, fl is the lth discrete angular frequency (∆f = fl − fl-1), 
and (∆a)j = aj – aj−1. Considering that the noise is inevitable in a 
discrete signal, a hard threshold λ is introduced to smooth the 
signal component during computation. Namely, if the value of 
signal point is smaller or equal to λ, this point is disregarded. 
The detailed discussion of the threshold value can be referred in 
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[27]. 
After TFA, a ridge extraction algorithm is used to obtain the 

IFs. The locations of the energy peaks in the time axis of the 
time-frequency plane are denoted as mm[bn], and the 
magnitudes of the peak points are denoted as Um[bn] (m = 1, 
2,…, Np[bn]). The amplitudes of the ridges are obtained as: 

( )

( )

( )

( )
[ ] [ ] = [ , ]

m
n

m
n

f b

m n m n M l nf b
U b y b T f b f


  ,       (8) 

where (f+
(m)[bn], f-

(m)[bn]) is the widest region of the nonzero 
amplitudes decomposed by WST at time instance bn. The 
frequencies of the ridges are determined as: 
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     ,   (9) 

where Real[] represents the real part of a complex variable. 
The multiple IFs of the magnetic signal are extracted by 

applying WST and ridge extraction. In accordance with the 
rotation angle measurement principle in Sec. II, the IF with the 
highest energy is selected to reconstruct the rotation component 
without heavy noise interference. The discrete IF and IA curves 
are denoted as IF[n] and IA[n] (i = 1, 2 ,…, N), respectively. 

B. Rotation Angle Calculations 

The BLDC motor is fed with trapezoidal currents, which can 
be corrupted by electrical noise. TFA and IF extraction 
algorithms are used to extract the IF of the signal component 
relative to the motor rotation. The quadrature parts of the 
rotation signal component are expressed as xr[n] and yr[n], and 
this component is reconstructed as: 

         , 1,...,r r rS n x n cosm n y n sinm n n N     , (10) 

where cosm[n] and sinm[n] are expressed as: 

        
        

= cos 2 ,
1,...,

sin 2 ,

cosm n cumtrapz t n IF n
n N

sinm n cumtrapz t n IF n






 



. (11) 

In Eq. (11), t[n] is the synchronous sampling instant sequence 
of the magnetic and vibration signals and cumtrapz() is a 
MATLAB function used for cumulative trapezoidal numerical 
integration. In practice, to improve the computation efficiency, 
the magnetic signal can be firstly downsampled, and then 
processed by the WST. Finally, the length of the reconstructed 
signal is extended to that of the original magnetic signal by 
using numerical interpolation. 

In accordance with the principle of order analysis, the motor 
rotation angle with respect to time is calculated to resample the 
vibration signal. The phase of the reconstructed magnetic signal 
is obtained as: 

  
  

Imag
[ ] arctan , 1, 2,...,

Real
r

r

HS n
Pm n unwrap n N

HS n

          
,  (12) 

where HSr[n] is the analytic signal of Sr[n] obtained using 
Hilbert transform, Imag() represents the image part of the 
signal, and unwrap() is a MATLAB function used to unwrap the 
signal to obtain a continuous and smooth phase curve. 

The mechanical rotation angle of the motor shaft can be 
calculated as: 

    180
[ ] 1 , 1,2,...,mRa n Pm n Pm n N

np
   





.   (13) 

By introducing the term −Pm[1], the initial angle of Ram[n] is 
set to 0. Note that the initial angle 0 is a relative angle to 
represent the start point of the signal segment, and it is 
independent of the absolute angle of the motor rotor. In other 
words, the method begins to calculate the angle increment from 
the first point of the sampled signal. The successive motor 
rotation angle can be measured adaptively from the noisy 
magnetic signal by using the above algorithms.  

C. Order Analysis and Fault Diagnosis 

Order analysis involves a numerical interpolation on the 
time-domain vibration signal in accordance with the vector of 
the rotation angle. Through this analysis, the dispersive energy 
of the fault characteristic frequency (FCF) will concentrate to 
the FCO, which is a beneficial phenomenon for fault 
identification. The vibration signal synchronously sampled 
with the magnetic signal is denoted as Vib[n] (n = 1, 2 ,…, N). 
The signal is resampled as: 

RVib[n] = resample(Vib[n], Ram[n]),    (14) 
where resample() is a MATLAB function for signal resampling. 
The resampled vibration signal, which is still a modulated 
signal, is demodulated as: 

     2 2
[ ] Imag [ ] Real [ ]Dem n HRVib n HRVib n  ,  (15) 

where HRVib[n] is the analytic signal of RVib[n] obtained 
through Hilbert transform. The spectrum of Dem[n] is 
computed using fast Fourier transform, and fault diagnosis is 
conducted by comparing the fault indicator in the spectrum 
with the theoretical one. 

D. Algorithm Flowchart 

The flowchart of the algorithm of the proposed method is 
shown in Fig. 4. The left panel shows the flow for measuring 
the rotation angle from the magnetic signal acquired using a 
Hall sensor, whereas the right one displays the flow for motor 
bearing fault diagnosis based on the analysis of the vibration 
signal acquired using an accelerometer. 

 
Fig. 4. Flowchart of the algorithm of the proposed method. 
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IV. EXPERIMENTAL SETUP 

The effectiveness of the proposed rotation measurement 
method is verified through an experiment (Fig. 5). The 
parameters of the BLDC motor used in the rotation angle 
measurement are listed in Table I. The test motor drives an AC 
generator via a mechanical coupling, and the generator 
connects to an AC-DC converter and then to a DC electrical 
load (DL3021, Rigol, Inc.). The rotation speed is varied using a 
speed controller. A Hall sensor (AH49E, BCD Semiconductor 
Manufacturing Limited) with a typical sensitivity of 1.6 
mV/Gauss is installed at the center of the side face of the motor 
housing to measure the stray flux density. An encoder 
(ZSP3806, TOONE, Inc.) with a resolution of 500 pulses per 
revolution is installed at the motor shaft to evaluate the 
measurement accuracy of the proposed method. In addition, a 
current probe (80i-110s, Fluke, Inc.) with a sensitivity of 100 
mV/A is used to acquire the winding current signal for method 
comparison. An accelerometer (CA-YD-1182, SINOCERA, 
Inc.) with a sensitivity of 100 mV/g is installed at the motor 
housing to acquire the bearing vibration signal. The magnetic, 
vibration, encoder, and current signals are acquired using a 
DAS (USB4432, NI, Inc.) with a sampling frequency of 51.2 
kHz and a sampling duration of 4 s. 
 

 
Fig. 5. Experimental setup. 
 

TABLE I 
BLDC MOTOR PARAMETERS 

Type Rated 
Voltage 

Rated 
Torque 

Rated 
Power 

No. of 
Pole 
Pairs 

No. of 
Slots 

No. of 
Phases

80BL110 48 VDC 1.6 Nm 500 W 2 6 3 

 

Two deep groove ball bearings with outer and inner raceway 
faults are separately installed at the side of the output shaft. The 
fault with a size of 1 mm × 1 mm (depth × width) is set through 
electrical discharge machining. When the bearing rotates, the 
rolling elements roll over the outer or inner raceway defects and 
generate the impulses. The period or frequency of the 
occurrence of the impulses is determined via the bearing’s 
geometric and the rotational speed. Hence, the bearing fault 
type can be diagnosed through the spectral analysis of the 
vibration signal. The bearing type and parameters are 

summarized in Table II. The FCO is the normalized FCF with 
respect to rotation frequency. The FCO for the outer and inner 
raceway fault are respectively calculated as [14]: 

1

2

1 cos
2O

dNR
FCO

d


 
  

 
,      (16) 

1

2

1 cos
2I

dNR
FCO

d


 
  

 
,      (17) 

where NR is the number of rolling elements, d1 is the diameter 
of the rolling element, d2 is the pitch diameter, and γ is the 
contact angle. In the test bearing (type 6002), γ is 0°. FCOO and 
FCOI are calculated based on the bearing parameters as shown 
in Table II. 
 

TABLE II 
BEARING PARAMETERS 

Type 
Outer 

Diameter
(mm) 

Inner 
Diameter 

(mm) 

Number of 
Rolling 

Elements 
FCOO FCOI

6002 32 15 9 3.59 5.41 

V. PERFORMANCES OF MOTOR ROTATION ANGLE 

MEASUREMENT AND FAULT DIAGNOSIS 

In this section, the fault diagnosis performance of the 
proposed motor rotation angle measurement method is 
evaluated. 

A. Diagnosis of Bearing with Outer Raceway Fault 

The bearing with outer raceway fault is tested firstly. The 
BLDC motor is configured to spin at variable speed, and the 
duration of the acquired stray magnetic signal is 4 s (Fig. 6(a)). 
The signal amplitude and period fluctuate with the variable 
speed. A zoomed-in figure within 0–0.06 s is shown in the 
middle are of Figs. 6(a) and 6(b). The waveform resembles a 
sinusoid, but the distortion and noise interference are clearly 
captured. 

 
Fig. 6. (a) Magnetic signal acquired at variable speed condition and (b) 
time-frequency representation of the magnetic signal. 
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The time-frequency representation is displayed in Fig. 6(b), 
where the yellow part on the right side depicts the dominant IF. 
Given that the BLDC motor is fed with trapezoidal currents, the 
waveform distortion induced by high-order harmonics is 
observed at around 200 Hz. The high-frequency noise 
interference is obvious around 1000 Hz. If the rotation angle is 
directly measured from the stray magnetic signal, the accuracy 
is affected as the interference impairs the signal. 

To improve the measurement accuracy, the magnetic signal 
is processed using the proposed method. To reduce the 
computation time, the magnetic signal is downsampled with a 
factor of 10, and then analyzed by the WST method. The 
detailed parameters of the WST are configured as (using 
MATLAB code format): discrete scale coefficients aj = 
2^(1/32)^(1:416) and shift coefficients bn = (1:20480)/5120 
(corresponding to Eq. (7)); the hard threshold λ for smoothing is 
set as 10^(-8). The IF is extracted from the time–frequency 
representation (Fig. 7(a)). The fluctuating IF curve indicates 
that the motor speed changes with time. The rotation signal 
component is constructed from the extracted IF (Fig. 7(b)). The 
length of the reconstructed signal has been extended back to 
204,800 points by using numerical interpolation. 

 The zoomed-in figures of the original and reconstructed 
stray magnetic signals in Fig. 7(c) show that the latter is 
reasonably sinusoidal and almost noise-free. Subsequently, 
Hilbert transform is applied to the reconstructed signal Sr[n] 
and a complex signal HSr[n] is obtained. The real and image 
parts of HSr[n] are plotted in Figs. 7(d) and 7(e), respectively. It 
can be found that the real part of HSr[n] is the same with the 
original signal Sr[n]. The accumulative rotation angle curve is 
derived from the signal HSr[n] to resample the vibration signal. 

 
Fig. 7. (a) Extracted IF of the magnetic signal, (b) original magnetic signal and 
reconstructed rotation signal component, (c) zoomed-in version of (b), (d) and 
(e) the real and image parts of the signal HSr[n]. 

The vibration signal is analyzed for motor bearing fault 
diagnosis. Fig. 8 shows the vibration signal that is 
synchronously acquired with the magnetic signal and its 
envelope spectrum. The signal amplitude fluctuates with the 
motor speed, and the fault-induced impulse train appears in the 
signal waveform. After signal demodulation, the energy of the 
impulses transfers from the high-frequency region to the 
low-frequency one (Fig. 8(b)). However, the FCF changes with 
the motor rotation speed, and the spectral line expands and 
smears along with the frequency-axis. The ranges of the 
rotation frequency and FCF are 14–29 Hz and 50.54–104.69 Hz, 
respectively. The magnitude of the center frequency (77.62 Hz) 
is 0.03 g as shown in Fig. 8(b). In practice, the range of FCF is 
uncertain when the rotation speed and the bearing fault type are 
not known before. Hence, the smearing frequency hinders the 
determination of the bearing fault type in the spectrum. 

 
Fig. 8. (a) Synchronous sampled vibration signal and (b) its envelope spectrum. 
 

To address this issue, an order analysis is performed on the 
time-domain vibration signal. The signal Vib[n] is resampled 
on the angular domain in accordance with the instants of the 
rotation angle signal Ram[n]. The resampling function in Eq. 
(14) interpolates Vib[n] linearly onto a vector of uniformly 
spaced instants with the same endpoints and number of samples 
as Ram[n]. More details can be referred to [28]. The resampled 
signal RVib[n] and its demodulated signal Dem[n] are shown in 
Figs. 9(a) and 9(b), respectively. The spectrum of Dem[n] is 
calculated and displayed in Fig. 9(c). It can be seen that the 
fault indicator FCOO and its multiple harmonics are clearly 
displayed in the spectrum. By performing order analysis, the 
influence of speed variation is eliminated, and the spectral line 
becomes a single line with a narrow range. As confirmed by the 
theoretical FCOO value in Table II, the motor bearing is 
subjected to an outer raceway fault. As a comparison, the 
magnitude of FCOO has been improved to 0.27 g, which is 9 
times of that of the center frequency in Fig. 8(b). This result 
indicates that the signal resampling procedure eliminates the 
frequency smearing phenomenon, thereby benefiting bearing 
fault identification. 
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Fig. 9. (a) Resampled vibration signal based on Hall signal and (b) its 
demodulated signal, and (c) the spectrum of the demodulated signal. 

 

B. Diagnosis of Bearing Inner Raceway Fault with Variable 
Load: A Comparison Study 

To further validate the robustness of the proposed method, a 
bearing with inner raceway fault is tested. In this experiment, 
the DC electrical load is set to a constant value of 10 Ω. The 
voltage output of the generator varies with the rotation speed of 
the driving motor. Hence, the consumed power of the electrical 
load varies with time, i.e., the driving motor works at variable 
load conditions. 

 
Fig. 10. (a) Envelope spectrum of the vibration signal with inner raceway fault, 
and (b) envelope order spectrum obtained by using the proposed method. 
 

The envelope spectrum of the vibration signal and the 

envelope order spectrum processed by using the proposed 
method are shown in Figs. 10(a) and 10(b), respectively. The 
frequency bins in the the spectrum in Fig. 10(a) distribute in 
disorder, and no useful information can be obtained for fault 
identification. The vibration signal is resampled according to 
the rotation angle curve calculated from the Hall signal by 
using the proposed method. It can be seen that the rotation order 
(RO) and its second harmonic, and the FCOI and its second to 
fifth harmonics are clearly illustrated in Fig. 10(b). These 
results indicate that an inner raceway fault exists in the test 
bearing, which is agree with the pre-set fault type. This case 
study validates the robustness of the proposed method in 
variable load conditions. 

In addition, the performance of bearing fault diagnosis is 
highly related to the accuracy of the estimated rotation angle. 
Hence, the accuracies of the estimated angles from different 
sensors are compared. The angles estimated from the raw Hall 
signal, raw current signal, and the proposed method are 
compared with that from the encoder signal. Partial of these 
angle curves are shown in Fig. 11. It can be seen that the angle 
curve of the proposed method is close to that of the encoder, 
whereas obvious deviations appear among the curves of raw 
Hall signal, raw current signal, and encoder signal. In particular, 
the angle curve is a quasi-horizontal line from around 0.490 s to 
0.494 s. To better illustrate such a phenomenon, the ideal phase 
current waveform and the measured rotor angle from current 
signal in six-step commutation are plotted in Fig. 12. As the 
motor is driven by a trapezoidal wave, the current in the 
energized cycle (for instance, 0 – 2TE/6, TE is a full 
commutation cycle) is a horizontal line. Hence, it does not yield 
any angle increment information. The angle increment is only 
obtained at the falling or rising edge of the current as shown in 
Figs. 12(a) and 12(b). In sum, the rotor angle curve estimated 
from the motor current is a discontinuous stepped curve. The 
comparative results indicate the high accuracy of the proposed 
method in angle measurement. 

 

 
Fig. 11. Comparison of the rotation angle measurement results obtained from 
encoder sensor, current signal, and Hall signals with and without processing. 
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Fig. 12. BLDC motor with 2 pole pairs under six-step commutation: (a) ideal 

phase current waveform and (b) measured rotor angle from current signal. 

 
The root mean square error (RMSE) between the measured 

angle and the referenced angle for different methods are 
calculated as shown in the second column in Table III. It can be 
found that the proposed method has the minimal RMSE value 
as compared with other two methods. Besides, the procedure of 
order analysis makes the dispersed energy of the smearing 
frequency components astringe to a narrow bandwidth as 
shown in Fig. 10. Hence, a higher FCOI magnitude signifies a 
higher resampling accuracy in the order analysis. The indexes 
for different methods are calculated as shown in the third 
column in Table III. The maximal FCOI magnitude is obtained 
when the encoder signal is used for signal resampling, because 
the encoder generates the highest angle measurement accuracy. 
The magnitude of the proposed method is close to that of the 
encoder, which indicates that the Hall signal processed by using 
the proposed method has a relative high accuracy. 

As shown in Figs. 9(b) and 10(b), bearing fault type can be 
determined by the FCO and its harmonics. For a given vibration 
signal, the harmonic magnitude can reflect the accuracy of a 
fault diagnosis method. Here, the sum of frequency magnitudes 
from 1 × FCOI to 5 × FCOI are calculated and shown in the 
fourth column in Table III. The result of the proposed method is 
higher than that of the Hall and current signals without 
processing. 

TABLE III 
COMPARISON OF DIFFERENT METHODS 

Method 
Angle 

RMSE (°) 
FCOI 

Mag. (g)* 
Harmonics 
Mag. (g) 

Comp. 
time (s)#

Encoder (base line) 
Proposed 
Raw Hall 

Raw current 

- 
0.4323 
2.1967 
6.3791 

0.3451 
0.3343 
0.3150 
0.2829 

1.5443 
0.9626 
0.7240 
0.3759 

0.2301 
7.3348 
0.2599 
0.2271 

* Mag. = Magnitude; # Comp. = Computation 

 
Finally, the computation time is evaluated to make the 

proposed method more explicit in practical applications. The 
platform for computation is configured as: Quad-Core 1.8 GHz 
CPU, 8 GB Memory, WIN10 OS, and MATLAB 2019b. 
Because extra time-frequency analysis is conducted, the 
computation time of the proposed method is larger than that of 
other methods. Nevertheless, considering that the monitoring 
period of the bearing is generally multiple minutes to hours, the 
computation time (~7 s) is far less than the monitoring period. 
In other words, online bearing condition monitoring and fault 

diagnosis can be realized by using the proposed method. With 
the rapid development of the hardware platform, the 
computation time can be further decreased in the future. The 
advantage of the proposed method in rotation angle 
measurement from stray magnetic signals is confirmed by the 
comparative analysis. 

VI. METHOD ROBUSTNESS EVALUATION 

A quantitative analysis is conducted to evaluate the 
robustness of the proposed method. A coordinate system is 
constructed on the motor side (Fig. 13), and the Hall sensor is 
attached to the center of the side face at (5 cm, 2 cm). As shown 
in Fig. 13, the coordinates of the Hall sensor change within the 
grid with a step of 1 cm. The range of the coordinates in the 
x-axis is within 0–10 cm, whereas that in the y-axis is within 
0–4 cm. The total number of test locations is 55. 

 
Fig. 13. Hall sensor locations for sensing the stray flux density. 

 

 
Fig. 14. RMS values of the stray flux density at different locations. 

 
The BLDC motor is set to rotate at a constant speed. The root 

mean square (RMS) value of the stray flux density is measured 
and plotted in Fig. 14. Large RMS values are observed at the 
central area of the side face. RMS decreases in both axes as the 
distance of the Hall sensor from the central area increases. This 
phenomenon can be explained by two reason. First, the lengths 
of the rotor mounted with magnets and stator winding in the 
x-axis are less than that of the motor housing. Therefore, the 
leakage flux, which is a part of the air-gap flux between the 
stator and the rotor, will decrease as the Hall sensor deviates 
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from the central area. Second, because the stator yoke is 
circular and the motor housing is flat in the y-axis, the vertical 
displacement between the air gap and the sensor decreases 
when the Hall sensor deviates from the center. From the 
measurement perspective, a high sensor output magnitude will 
improve the signal-to-noise ratio (SNR) if the background 
noise remains at a certain level. High output SNR is beneficial 
for further signal analysis. Therefore, the Hall sensor should be 
placed at the central area rather than in the edge of the side face 
of the motor housing. 

To further assess the rotation angle measurement accuracy, 
the RMSE between the angles of the Hall and encoder signals is 
calculated. The RMSE values at different sensor locations are 
shown in Fig. 15. A lower RMSE value indicates a higher 
rotation angle measurement accuracy and vice versa. The 
findings reveal that high accuracy values are generated in the 
central area. This phenomenon is consistent with the results of 
the RMS experiment in Fig. 14, that is, the magnetic signal 
obtains high output magnitude and high SNR when the Hall 
sensor is placed in the central area. As a result, the accuracy 
improves. The minimum RMSE value is observed at 0.37° at (4 
cm, 2 cm). The resolution of the encoder is 0.36° degree 
because the rising and falling edges of the encoder pulses are 
used to calculate the rotation angle in this study. The results 
indicate that the proposed method achieves high accuracy in 
rotation angle measurement. The RMSE values of 21 locations 
are lower than 1°, which means that the proposed method is 
robust when the sensor is placed at different locations. 
Installing the Hall sensor at the central area will yield 
satisfactory results of motor rotation angle measurement and 
fault diagnosis. 
 

 
Fig. 15. RMSE values of rotation angle measurements at different locations. 
 

VII. DISCUSSIONS 

Stray flux has been widely investigated for measurement of 
motor parameters and conditions including current, power, 
mechanical and electrical faults. In this study, the stray flux 
signal is used for rotation angle measurement of motor shaft. As 
indicated from the above experimental results, if the encoder 
signal is not available or wiring cables is not convenient, the 
proposed method based on stray flux measurements can 

provide an alternative solution for realizing fault diagnosis 
under varying speed conditions. According to this principle, a 
hand-held instrument can be designed for noninvasive, 
nondestructive, and in situ motor bearing fault diagnosis as 
illustrated in Fig. 16. Such an instrument provides much more 
conveniences as it doesn’t need to access to the motor drive and 
control systems which could have potential hazards. Indeed, the 
measurement principle can be extended to other types of 
synchronous motors, and also asynchronous motors if the slip 
rate is known. 

 
Fig. 16. Illustration of hand-held device for noninvasive, nondestructive, and in 
situ motor bearing condition monitoring and fault diagnosis. 

VIII. CONCLUSIONS 

This paper has presented a novel method based on stray 
magnetic signal analysis for BLDC motor rotation angle 
measurement. The principle and performance of the proposed 
approach were comprehensively discussed, and the potential 
applications in motor fault diagnosis under varying speed 
conditions were validated through experiments. The robustness 
of the proposed method was also evaluated through a 
quantitative analysis. The experimental results indicated that 
the accuracy of rotation angle measurement obtained using the 
external Hall sensor was similar to that obtained using 
conventional optical encoders. As the stray magnetic signal can 
be acquired from the motor housing by using a low-cost Hall 
sensor, the proposed method provides an efficient and feasible 
alternative to motor rotation angle measurements. It is 
nonintrusive and eliminates the use of long cables and encoders 
in motor drives. Moreover, the proposed approach can be 
extended to the diagnosis of other electrical and drive faults of 
motors under varying speed conditions. If implemented with an 
IoT or a hand-held device, it can further improve the reliability 
of sensorless motor drive systems in industrial automation. This 
will be developed in the future work in order to meet Industry 
4.0 requirements in industrial automation applications. 
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