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Thesis Summary 

Drug-induced seizure is a major reason for compound attrition during drug development, hence 
testing the potential of novel agents to induce such neurotoxic events is a vital process. 
Currently, in vivo and in vitro animal assays are used for seizure-liability studies; yet controversy 
over the relevance, efficacy and cost of these methodologies has led to interest in the 
development of human based models, for increased translatability and data extrapolation. 

Human induced pluripotent stem cells (iPSCs) are a revolutionary platform for neurotoxicity 
testing. However, considerable variation in culturing protocols, growth media and analytical 
techniques exists, with no validated standard for drug-induced seizure-liability testing.  

In this thesis, this cutting-edge iPSC technology, in combination with concurrent morphological 
and functional analysis has considered several methods for generation of a robust, reproducible 
human seizure-liability model, capable of responding to ionic and pharmacological stimuli. 

Spontaneously differentiated neural cultures display electrical activity, but sporadic 
epileptiform activity, as observed with fluorescent calcium imaging. Moreover, weak functional 
activity and longevity and the absence of characteristic seizure-like activity was observed in 
isolated monocultures of neurons and astrocytes. Various co-culture protocols were developed 
and tested, displaying greater baseline activity, network interconnectivity and responses to pro-
convulsant conditions than spontaneously differentiated cultures; highlighting the absolute 
requirement for both cell types to be present in culture. Final experiments introduced 
interneuronal populations to the established co-culture protocol; with preliminary results highly 
suggestive of providing a robust system which can be used for widespread seizure-liability 
assessment. 

This thesis provides the first comparison of iPSC-derived culture methods for seizure-liability 
testing, whilst factoring in several variables which currently exist in the literature; including 
growth medium, duration of differentiation and methods to control cell proliferation. In 
addition, a proposal for a validatory panel of pro-convulsant conditions for the inclusion of 
human iPSC-derived platforms in safety pharmacology studies is presented.  
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Chapter 1 

1: GENERAL INTRODUCTION 

1.1 Introduction  

The human brain is the most complex organ in the body, controlling our highest functions, as 

well as regulating myriad processes which incorporate the entire physiological system. The brain 

is vulnerable to damage by physical trauma and a multitude of injurious agents, including 

pathogens, pharmaceuticals and toxins. Physiological and anatomical protection and regulation 

for the controlled environment of the brain is provided by the blood-brain barrier (BBB). This 

consists of brain endothelia, astrocytes and pericytes, providing a system of tight endothelial 

junctions where selective permeability to water, some gases and fuel sources such as glucose 

and amino acids can be modulated (Daneman & Prat, 2015). The presence of glial cells in 

particular regulates the ionic and nutrient composition of fluid surrounding neurons (Prat et al., 

2001). Should these mechanisms fail, brain functionality can be compromised. Indeed, seizure 

is one such severe neurological complication that can present from several circumstances, 

ranging from an adverse drug reaction (ADR), to infection or as a result of trauma (Koseki et al., 

2014; Vaughan & Delanty, 2003). 

1.2 Definitions: Seizures and Epilepsy 

A seizure is the defining symptom of epilepsy, which is one of the most common chronic 

neurological disorders, estimated to affect 65 million individuals worldwide (Thurman et al., 

2011). ‘Epilepsy’ encompasses multiple syndromes which predispose the individual to 

generation of epileptic seizures (Fisher et al., 2005). A seizure itself is defined as an abnormal, 

transient discharge of neurons in the brain (Fisher et al., 2005), and is broadly characterised by 

neuronal hyperexcitability and hypersynchrony (Jiruska et al., 2013). If an individual suffers a 

single event with no recurrence, they are said to have suffered a seizure. If multiple consecutive 
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and/or recurring seizures are experienced, the patient may be diagnosed with epilepsy 

(Scharfman, 2007).  

In a clinical/research context, seizures are referred to as ‘ictal events’, with the period leading 

up to seizure termed pre-ictal, the period following seizure termed post-ictal and for individuals 

with recurrent seizures, the period between each event is known as the interictal state (Fisher 

et al., 2014). Epileptogenesis describes the processes which render a healthy system capable of 

generating seizures, whilst also establishing the condition, hence making recurrent seizures 

more likely (Blauwblomme et al., 2014; Pitkänen, 2010). Ictogenesis refers to the transition 

between the interictal state to the ictal state in an already hyperexcitable brain (Dichter, 2009). 

This thesis makes frequent reference to ‘seizurogenesis’, which in this context describes the 

generation of seizures in reference to pharmacological/ionic stimuli.  

Patients suffering from seizures experience different effects depending on the brain region 

involved. The International League Against Epilepsy (ILAE) classify seizures into four categories: 

focal, generalised, those of an unknown onset (formerly classified as epileptic spasms) and 

unclassified – where insufficient data exists to categorise the seizure (Fisher et al., 2017). Focal 

seizures originate in neuronal networks in one part of the cerebral hemisphere, whereas 

generalised seizures begin and spread bilaterally to incorporate the entire brain, explaining the 

variety of symptoms and often loss of consciousness which results (Stafstrom & Carmant, 2015). 

It is worth highlighting that the classification of seizures and epilepsy is a very dynamic process, 

with revisions to the terminology published almost annually. An expanded description of the 

most recent classification is shown in Figure 1.1. Symptoms of seizures may include changes in 

cognition, paraesthesia, or the experience of flashing lights or unusual odours. Convulsions are 

commonly observed, which can be accompanied by various combinations of muscle rigidity 

(tonic) and jerking limb (clonic) activity. Atonic seizures, also called ‘drop attacks’ are associated 
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with a sudden loss of muscle tone, with patients often collapsing. They are characteristic of focal 

seizure types and more common in the adult population (Baraldi et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: ILAE classification of seizures and their major symptoms. Adapted from Fisher et 
al., (2017). 

 

Although seizure is the defining symptom of the epilepsies, only about 25% of patients who 

suffer seizure have an epilepsy syndrome (Stasiukyniene et al., 2009). The remaining patients 

suffer seizures from the major causes listed above, as well as neonatal occurrences amongst 
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infants. These seizures may be described as provoked or acute symptomatic, as they are not the 

result of established or enduring brain alterations; but rather occur in an acute and transient 

manner (Fisher et al., 2005; Thurman et al., 2011). The potential severity of induced seizures 

makes them an important metric for the necessity for predictive neurotoxicity assays. 

1.3 Mechanisms of Seizure Induction 

Seizurogenesis falls under the broad umbrella of epileptogenesis – modifications in the brain to 

support seizure development. It is likely that epileptogenic mechanisms occur before, 

throughout and following seizurogenesis to support seizure propagation, leading to changes 

within the brain which are receptive to seizurogenesis before a seizure occurs (Blauwblomme 

et al., 2014). However, neither of these processes are entirely understood and both 

seizurogenesis and epileptogenesis can arise from multiple mechanisms, which adds increased 

complexity. On the most elementary level, one can consider seizurogenesis to be the result of 

perturbation to the delicate balance between neuronal excitation and inhibition, mediated by 

ion flux and ion channels. Indeed, suppressing inhibition and enhancing excitation are both 

criteria for epileptic discharges (Lerche et al., 2001).  

1.3.1 Healthy neuronal activity  

Neurons are excitable cells. At rest, a membrane potential of roughly -70 mV is established by 

the ionic gradient which exists between sodium (Na+), potassium (K+), chloride (Cl-) and organic 

cations in the cellular environment. This resting membrane potential (RMP) arises from higher 

intracellular K+ and higher Na+ in the extracellular space and is maintained by a series of voltage-

gated channels, the sodium-potassium ATPase active transporter (Na+-K+ pump) (Chrysafides & 

Sharma, 2019) and leak channels, of which the neuron has considerably more, allowing the  

passage of K+ (Lesage, 2003). When excited, the membrane potential is depolarised, primarily 

due to the opening of sodium channels and influx of Na+ to reach the action potential (AP) firing 

threshold. The repolarisation phase involves the efflux K+ to return to the RMP and prevent 

repetitive stimulation (Raimondo et al., 2015).  
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As the Na+-K+ pump plays such a vital role in maintaining resting neurons, if dysfunctional, the 

RMP may not be established. As a result, the neuron can depolarise to the point where the 

electrochemical balance becomes unstable and hence, neurons become hyperexcitable (Funck 

et al., 2015). Indeed, it has been shown that partial inhibition of the Na+-K+ pump induces 

epileptiform burst-firing (Vaillend et al., 2002). Dysfunction of the Na+-K+ pump may also be 

associated with provoked neonatal seizures in infants, based on evidence that in rodents, the 

development of this protein is delayed after birth. It may be possible that the same process, or 

alteration to the corresponding protein occurs in humans who are predisposed to neonatal 

seizure (Scharfman, 2007).  

1.3.2 Potassium  

Neuronal cells are highly permeable to K+ movement through membrane ion channels, making 

K+ the principle regulator of neuronal excitability. Action potentials lead to increased 

extracellular potassium concentrations ([K+]e), which are returned to a resting state following 

the opening of potassium channels, the Na+/K+ pump and glial cell K+ uptake (Larsen et al., 2016). 

Normally, the accumulation of K+
e is prevented to avoid widespread depolarisation, which can 

lead to increased firing and burst-firing, facilitating seizurogenesis. Exceeding an extracellular 

concentration of 2.7 – 3.5 mM can have effects on either nerve terminals (whose depolarisation 

results in neurotransmitter release) or neurons themselves (whose depolarisation leads to AP 

discharge). Mild depolarisation increases excitability by moving towards the more positive firing 

threshold. If the [K+]e exceeds 10 mM, ‘persistent’, slowly inactivating Na+ currents increase the 

likelihood of recurrent seizure (Somjen, 2002). Baseline K+
e has been shown to be approximately 

25-fold lower than intracellular K+, which means a small efflux of K+ can generate large changes 

in the transmembrane K+ gradient (Jiang & Haddad, 1991) and furthermore, significant 

membrane depolarisation (Lesage, 2003).  

As K+ plays such an integral role in excitability and the movement of K+ is enabled by various 

channels and transporters, it is not surprising that mutations in and dysfunction of ion channels 



16 
 

can directly affect brain excitability and induce seizure activity (Steinlein et al., 2001). Potassium 

channels are the most widely distributed neuronal and glial ion channels in the nervous system, 

comprising voltage-gated (VG), calcium-dependent and sodium-activated channels (de Curtis et 

al., 2018). VG channels are involved in repolarisation following AP (Gutman et al., 2005), 

calcium-dependent are sensitive to changes in intracellular [Ca2+] following AP and are involved 

in setting the RMP (Marrion & Tavalin, 1998) and sodium-activated potassium channels mediate 

the outward current, regulating neuronal excitability during repetitive AP’s (Bhattacharjee & 

Kaczmarek, 2005). Unregulated activity in any of these channels can provide an ionic basis for 

the generation of hyperexcitability and repetitive AP discharge, which is typical of a seizure. 

Indeed, the inherited epileptic syndrome ‘benign familial neonatal convulsions’ is associated 

with the mutation of two potassium channels: KCNQ2 and KCNQ3, which normally contribute 

to repolarisation of the neuron during action potentials (Lerche et al., 1999).   

Whilst perturbation of normal ionic gradients can lead to seizurogenesis, seizures themselves 

also affect the ionic environment and can generate conditions which promote seizure 

recurrence. During seizure, [K+]e increases and extracellular sodium and calcium ([Na+]e/[Ca2+]e) 

decreases, due to neuronal release and uptake, respectively (Feldberg & Sherwood, 1957; 

Somjen, 2002). This can create a cycle of depolarisation, promoting further AP discharge from 

continuous excitation (Sypert & Ward, 1974). Experiments with canine and feline models as 

early as the 1940’s showed the seizurogenic effects of elevated K+
e and that neurons release 

excess K+ during electrical stimulation and seizure (Cicardo & Torino, 1942; Feldberg & 

Sherwood, 1957). The accumulation of K+
e as a result of seizure is undisputed, however, whether 

this alone causes seizure is a topic of debate. The ‘potassium accumulation hypothesis’ theory 

(Fröhlich et al., 2008) suggests that seizure-induced K+
e accumulation triggers the onset of 

seizure and leads to a positive-feedback cycle, only slowed when a depolarisation block occurs. 

Depolarisation blocks are a result of Na+ channels becoming inactivated following severe 

depolarisation (Raimondo et al., 2015). Irrespective of the debate, it is widely accepted that K+ 
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is an integral ion in maintaining neuronal ionic homeostasis and conditions of hyperexcitability. 

In Chapter 4, experimental means of modulating K+
e are discussed in detail. 

1.3.3 Sodium  

Alongside the undisputed importance of K+ flux, neurons would be unable to initiate or 

propagate AP’s without Na+. Similarly to K+ flux, Na+ currents are established by the passage of 

Na+ via a series of ion channels which open, close or inactivate, depending upon the membrane 

potential. Na+ currents can participate in epileptiform firing (Stafstrom, 2007) due to their effect 

on membrane depolarisation and hence, excitability. Such effects can result through modulation 

of sodium ion channels. Decreased inactivation and increased activation and opening times, for 

example, would all support the influx of Na+ and the subsequent continued depolarisation of 

the neuron.  

Mutations in three genes encoding sodium channels (SCN1A, SCN2A and SCN1B) can result in 

various epilepsy syndromes (Escayg & Goldin, 2010). Mutations to SCN1/2A leads to genetic 

epilepsy with febrile seizures plus (GEFS+), characterised by febrile seizures in infants, persisting 

beyond 6 years of age (Wallace et al., 1998). In addition, mutations to SCN1B have also been 

reported in GEFS+ patients (Wallace et al., 2001).  

Dravet’s syndrome (DS, Severe myoclonic epilepsy of infancy) is another inherited epilepsy 

syndrome, the hallmarks of which include febrile seizures during the first year of life and 

impaired psychomotor development (Dravet & Bureau, 1981). Furthermore, seizures observed 

in DS often do not respond to anticonvulsant treatment (Lossin, 2009). Mutations in SCN1A are 

observed in 33%-100% of patients with DS (Tonekaboni et al., 2013). Mutations of sodium 

channels have been shown to promote a gain-of-function effect, leading to hyperexcitability of 

neurons, however whether this mechanism is consistent between mutations to other sodium 

channels is yet to be determined (Lossin, 2009). 
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In combination with section 1.3.2, mutations to sodium-activated potassium channel ‘KCNT1’ 

can result in severe epileptic encephalopathies, via faster recovery from AP discharge, leading 

to rapid firing (Quraishi et al., 2019). 

1.3.4 Chloride 

Chloride (Cl-) is the most abundant negatively charged ion in the body, and its homeostasis is 

regulated predominantly by membrane Cl- channels and transporters, particularly the Cl- 

extruder: potassium-chloride co-transporter (KCC2) (Chamma et al., 2012). Cl- in the CNS plays 

crucial roles in neurotransmitter uptake and moderating neuronal excitability by determining 

the responses of the inhibitory neurotransmitters γ-aminobutyric acid (GABA) and glycine on 

post-synaptic cells (Ben-Ari et al., 2007). In particular, Cl- modulates inhibitory responses from 

activation of GABAA receptors to reduce neuronal excitability via the maintenance of 

hyperpolarising GABAergic transmission (Di Cristo et al., 2018; Rahmati et al., 2018). With 

relevance to epilepsy, KCC2 mutations have been found to attenuate Cl- movement and hence, 

impairs inhibition, leading to neuronal excitation (Duy et al., 2019).  

1.3.5 Neurotransmitter involvement in seizure 

Synaptic transmission involves the release of neurotransmitter from a pre-synaptic nerve 

terminal across a synapse to receptors on the post-synaptic neuronal membrane. 

Neurotransmitters are an absolute requirement for brain function at every level, hence they can 

play integral roles in seizurogenesis. Glutamate and GABA are the major excitatory and 

inhibitory neurotransmitters in the mammalian CNS, respectively. 

1.3.5.1 Glutamate and excitation 

Glutamate is the main excitatory neurotransmitter in the human brain. Put simply, 

depolarisation (excitation) is mediated by synaptic currents resulting from glutamatergic 

transmission. Glutamate and its associated receptor agonist subtypes can stimulate a variety of 

ionotropic and metabotropic receptors to exert its excitatory effects. The N-methyl-D-aspartate 

(NMDA) and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are 
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particularly important in seizure and activation of multiple NMDA receptors (NMDAR) further 

depolarises the cell and promotes increased Ca2+ influx (Vaughan & Delanty, 2003). At resting 

potential, NMDAR are blocked by magnesium (Ruppersberg et al., 1994), which can be rapidly 

removed via depolarisation (Mayer et al., 1984). Increased depolarisation during seizure can 

lead to increased NMDAR activation and hence, NMDA and AMPA receptor antagonists are well-

known to suppress seizurogenesis (Blauwblomme et al., 2014). AMPA receptor activation 

enables K+ and Na+ flux into the cell, generating a fast excitatory postsynaptic current (EPSC). 

The flow of ions from the EPSC generates an excitatory postsynaptic potential (EPSP), which 

increases the likelihood of reaching the threshold for AP firing. EPSCs are also generated by 

NMDA and kainate receptor agonism, however, the kinetics of NMDAR pore unblocking are 

complex and consist of both rapid and slower components, resulting from the magnesium pore 

block (Vargas-Caballero & Robinson, 2003). The strength of the EPSCs can vary between 

receptors, however, small EPSCs can integrate excitatory inputs over a large time period so 

could still lead to AP discharge (Lerma, 2003). 

1.3.5.2 GABA and inhibition 

γ-aminobutyric acid (GABA) is the principle inhibitory neurotransmitter and as such, plays an 

important role in counterbalancing neuronal excitation and excessive AP discharge. GABA 

antagonism is a major mechanism of seizurogenesis, as the inhibition of GABA’s inhibitory mode 

of action results in excitation. This is supported by common GABA agonists such as 

benzodiazepines and barbiturates, which are known to be anti-convulsive and function by 

enhancing the inhibitory effect of GABA (Wong et al., 2010). Similarly, antagonistic agents which 

block GABA synthesis (such as isoniazid) are documented pro-convulsants (Treiman, 2001). In 

this context, GABA acts upon either the GABAA or GABAB receptor (GABAR), regulating Cl- entry 

or increasing K+ conductance, respectively. GABAA are postsynaptic receptors, whereas GABAB 

are found presynaptically (Bromfield et al., 2006). GABAergic transmission mostly results in 

hyperpolarisation (making AP discharge less likely) and GABAergic synapses are most abundant 
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in GABAergic interneurons (discussed below). Cl- currents hyperpolarise neurons as they enter 

the cell, reducing the likelihood that threshold will be reached for AP discharge. Stimulation of 

metabotropic GABAB receptors decreases Ca2+ entry to the presynaptic cell, reducing 

neurotransmitter release (Treiman, 2001).  

1.3.6 Interneurons and their role in seizure 

Despite the seemingly well-understood evidence of inhibitory neurotransmission, the effects of 

GABAA receptor-mediation are paradoxical. GABAergic interneurons (GIN) are a diverse subset 

of neurons, widely expressed throughout the CNS, which function predominantly as inhibitory 

cell types. However, depending on the brain region and disease conditions, the effects of GIN 

may also be excitatory (Snodgrass, 1992; Ye & Kaszuba, 2017). Whilst interneurons 

hyperpolarise roughly 80% of pyramidal neurons in the cortex (Benes & Berretta, 2001), the 

remaining 20% become depolarised (Blauwblomme et al., 2014; Neske et al., 2015), challenging 

the popular tenet that GIN are consistently inhibitory in nature.  

The past decade has seen an increase in evidence that GABAA receptor-mediated mechanisms 

and GIN in particular, are involved in seizurogenesis (Huberfeld et al., 2015) and that the onset 

of seizure correlates with reduced neuronal firing and enhanced GABAergic interneuronal 

network activity (Librizzi et al., 2017). Moreover, in the absence of ionotropic glutamatergic 

transmission, enhanced GABAergic activity alone is sufficient to result in epileptiform activity in 

in vitro experimental slice preparations and synchronised burst firing of pyramidal neurons 

(Lévesque et al., 2016; Uusisaari et al., 2002). Interestingly, depolarising effects of GABA are 

seen in developing cortical networks alongside chronic epileptic brains, due to reduced 

capability of the neuronal Cl- transporter KCC2 (discussed above), which renders neurons with 

a high intracellular chloride concentration. A different transporter (NKCC1), imports Cl- into the 

immature cells, resulting in Cl- efflux, which depolarises the membrane and leads to excitation 

(Wang & Kriegstein, 2009). During seizure, excessive inhibitory currents may overload KCC2’s 
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function to maintain low intracellular [Cl-], resulting in depolarising, GABAA receptor-mediated 

potentials. 

 

 
Figure 1.2: Ion transmission at excitatory and inhibitory synapses. Glutamate release from 
excitatory presynaptic cells binds to various glutamate receptors (GluR) on the postsynaptic 
membrane, resulting in sodium influx and subsequent calcium increase and depolarisation. 
Potassium efflux occurs via potassium receptors (KR), leading to an overall increase in potential 
in the postsynaptic cell. GABA release from inhibitory neurons binds GABAA subtype receptors 
(GABAR), leading to chloride influx, resulting in a decrease in membrane potential and 
hyperpolarisation. The potassium chloride transporter 2 (KCC2) facilitates flux of chloride and 
potassium to restore baseline potential.  

 

Whilst the precise mechanisms of GIN-mediated excitatory effects are not entirely understood, 

several suggested mechanisms have been postulated. Firstly, GIN can excite post-synaptic 

neurons due to the raised reversal potential of GABAR in post-synaptic cells. Secondly, the 

continuous activity of GIN could lead to reduction in GABA levels, preventing their inhibitory 

mode of action on excitatory pyramidal cells. Excessive depolarisation of GIN can result in a 

depolarisation block and subsequent failure to fire AP (Trevelyan & Schevon, 2013). Thirdly, GIN 

can synchronise network activity during seizure activity and in addition, GIN can disinhibit other 
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GIN, leading to excitation (Ye & Kaszuba, 2017; Zhu et al., 2018). Furthermore, GABAR 

antagonism results in more rapid spread of seizure activity suggesting interneurons provide an 

inhibitory restraint on seizure propagation (Wenzel et al., 2017) and breakdown of feed-forward 

inhibition occurs during the spread of seizure activity across the cortex (Trevelyan et al., 2006, 

2007), which is likely due to membrane depolarisation of GIN (Cammarota et al., 2013). As such, 

the roles which GIN function and dysfunction play in seizure are myriad, complex and not fully 

understood.  

Synchronisation of neurons is essential for seizure activity, and interconnectivity between 

neuronal subtypes in the cortex supports network synchronisation, mediated by GIN (Magloire 

et al., 2019). It has been demonstrated that synchronisation and hyperexcitation observed in 

seizures can result from altered GIN activity (Avoli & de Curtis, 2011; Dinocourt et al., 2003; 

Hedrich et al., 2014). Pyramidal cells in all layers of the cortex project locally and distally to other 

pyramidal cells, as well as GIN. Each cortical neuron receives thousands of excitatory synaptic 

inputs, and as functionally related areas are particularly highly interconnected, neuronal activity 

can spread very rapidly between these densely unified regions (McCormick & Contreras, 2001). 

GIN such as the basket cells innervate pyramidal neurons and as they are distributed throughout 

the cortex and cerebellum and are multipolar, they connect to many surrounding cells. As a 

result, discharge of a single GIN can result in the synchronous hyperpolarisation of the 

surrounding population of pyramidal cells and characteristic epileptiform activity.  

The effects of GIN-mediated seizure activity can also affect ion currents. As the inhibition 

depletes and the cell begins to depolarise, currents such as the T-type Ca2+ current become 

active, which are regarded as pivotal mechanisms underlying the generation of neuronal burst-

firing (Cain & Snutch, 2013). Whilst relatively inactive at RMP, hyperpolarisation relieves 

inhibition and influx of Ca2+ occurs. T-type Ca2+ channels require only low-threshold 

depolarisations for bursts of action potentials and are the first to respond to small 
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depolarisations, with their activity leading to further depolarisation of the cell. Indeed, blockade 

of the voltage-gated Ca2+ channel can prevent burst-firing activity of neurons, which normally 

result in seizure. In fact, this is the mechanism of action of ethosuximide, which is used as an 

anticonvulsant (Leresche et al., 1998). Finally, gap junctions facilitate low-resistance movement 

of current between cells; particularly between GIN in the cortex and other GABAergic cell types. 

This promotes rapid and effective synchronisation between local networks (Scharfman, 2007). 

In summary, the roles of interneurons in controlling and indeed, in generating seizures are a 

highly significant complicating factor in epilepsy and seizure, hence, their inclusion is essential 

for a heterogenous epileptic model.  

1.3.7 Astrocytes and their role in seizure 

Many studies of seizures describe properties of excitatory and inhibitory neurons and the 

resulting networks which form from their interaction. However, glial cells such as astrocytes, 

oligodendrocytes, microglia and Schwann cells perform vital tasks in the nervous system. It has 

been shown that the neuron:glia ratio varies considerably throughout areas of the brain (von 

Bartheld et al., 2016). In the cerebellum, glial cells make up only 18.9% of cells, whilst in the rest 

of brain this figure can increase to 91.7% (Herculano-Houzel, 2014). Despite this very significant 

quantity, it is only relatively recently that astrocytes have been studied in sufficient depth to 

appreciate the full diversity of their roles in the brain and seizure.  

There are several ways in which astrocytes are actively involved in transmission at synapses and 

consequent excitation of neurons and as such, their typical neuronal-supportive function is to 

protect against hyperexcitation and seizure activity (Volman et al., 2012). Excessive 

glutamatergic excitation of neurons can cause excitotoxicity, resulting in damage to, and the 

eventual death of the neuron (Maragakis et al., 2004). Astrocytes take up excess ammonia and 

glutamate from the synaptic cleft via the GLT1 (EAAT2) transporter (Maragakis et al., 2004) and 

use glutamine synthetase to convert it to glutamine via a condensation reaction (Choi, 1987). 

Inhibition of astrocytic glutamine synthetase has been implicated in multiple neurodegenerative 



24 
 

disorders, including epilepsy (Eid et al., 2013). Furthermore, GLT1 knockout rats have an 

increase in neuronal cell death and in extracellular glutamate concentration, characteristic of 

excitotoxicity (Rothstein et al., 1996). Alongside glutamate, astrocytes can affect extracellular 

GABA levels. Increase of GAT3, the astrocytic GABA transporter, reduces extracellular GABA 

prior to seizure onset (Lee et al., 2006).  

In addition to neurotransmitter levels, healthy astrocytes also regulate the extracellular 

concentration of Na+, K+, Cl- and Ca2+, determining the reversal potentials of these ions in 

neighbouring neurons. Indeed, alteration to the reversal potential has a direct effect on cell 

excitability (Annunziato et al., 2013). In particular, astrocyte membranes are highly permeable 

to K+, as they contain many potassium channels along with sodium/potassium ATPases, which 

together normally prevents hyperexcitability of neurons (Carmignoto & Haydon, 2012). In 

rodent models, these transporters are responsible for maintaining low extracellular K+ levels 

and importantly, restore resting levels of K+ following epileptiform activity (Coulter & 

Steinhäuser, 2015). Dysfunction of astrocytic uptake of extracellular K+ and astrocytic 

uncoupling can lead to the generation and propagation of seizure (Bedner et al., 2015). 

Interestingly, astrocytes can regulate osmotic homeostasis via selective membrane water 

channels called aquaporins (AQP). AQP4 is highly expressed in the end-feet of astrocytes, 

surrounding capillaries and the BBB, and is highly abundant at sites of fluid transport (Hubbard 

et al., 2015). There is an increasing body of evidence for the ability of astrocytes to affect K+-

mediated epileptiform activity by regulating extracellular cerebrospinal fluid (CSF) volumes. This 

was hypothesised following the observation that astrocytic AQP4 is often co-localised with 

Kir4.1 potassium channels (Nagelhus et al., 2004) and that in AQP4 knockout mice, decreased 

water permeability (Solenov et al., 2004) and significantly impaired K+ clearance was reported 

(Binder et al., 2006). 
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Figure 1.3: Excitatory tripartite synapse and the role of astrocytes in excitability. The tripartite 

synapse is formed between the pre and postsynaptic nerve terminals and the close proximity of 

astrocytic end feet. Upon depolarisation and release of neurotransmitter at the presynaptic 

terminal (blue dots), some glutamate can diffuse to metabotropic glutamate receptors (mGluR) 

on astrocytes. Stimulation of astrocytic mGluR results in elevation of inositol trisphosphate (IP3) 

and subsequent calcium release (pink dots). This increased astrocytic calcium can cause release 

of astrocytic glutamate (orange dots). Release of intracellular astrocytic calcium can lead to 

glutamate release, affecting presynaptic mGluR and postsynaptic NMDA receptors, enhancing 

presynaptic release or postsynaptic excitability, respectively.  

 

Moreover, in these knockout models, the duration of seizure activity was increased (Binder et 

al., 2006). The evidence suggests that astrocytic regulation of fluid in the extracellular 

environment can lead to depolarisation of astrocytes from K+ accumulation, activating a sodium-

bicarbonate cotransporter, which leads to a surge in intracellular osmolarity. As a result, water 

intake into the astrocytes via AQP4 increases, leading to swelling of the cell and shrinkage of its 
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surrounding extracellular space. The decrease in extracellular space reduces the distribution 

area for extracellular K+, lowering the seizure threshold and promoting excitability (Volman et 

al., 2012).  

Astrocytes can release glutamate and ATP via calcium-dependent gliotransmission, which in 

turn, can regulate neuronal activity (Hubbard & Binder, 2016), including synchronisation of 

neurons in the hippocampus (Angulo et al., 2004). Furthermore, application of ATP analogues 

has been shown to evoke neuronal excitation and promote seizure activity (Rassendren & 

Audinat, 2016). Alongside gliotransmitter release and ion buffering and uptake, connectivity 

between astrocytes and neurons can influence seizure dynamics. It is now accepted that 

neurons and astrocytes communicate bidirectionally, and that their interaction is achieved by 

close physical proximity of the pre-synaptic membrane, post-synaptic membrane and glia, 

termed the ‘tri-partite synapse’ (Figure 1.3). Whilst neurons are synaptically connected, 

astrocytes communicate through gap junctions, via calcium signalling, which enables them to 

redistribute neuro/gliotransmitters and ions released by neurons in the tripartite synapse 

(Perea et al., 2009). During preictal activity, astrocytes are highly active and display synchronised 

activity across large brain distances, independent of neuronal activity. In addition, glial activity 

surges during seizurogenesis, and consequently produces a strong increase in neuronal network 

activity (Nikolic et al., 2019) via a rapid increase in extracellular glutamate and gap junction 

signalling (Diaz Verdugo et al., 2019). The roles of astrocytes in a healthy system and in seizure 

activity warrant their inclusion in studies of disease and epileptogenesis. Their ability to 

influence neuronal excitation and integrate into healthy and epileptic networks highlights their 

absolute relevance to seizure activity and may provide previously unconsidered contributions 

to initiation and propagation of seizures. 
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1.4 Anti-epileptic drugs 

Despite the prevalence of epilepsy globally, the same anti-epileptic drugs (AED) have been used 

for several decades (Dichter & Brodie, 1996). Although there are roughly 25 AED licensed for 

clinical use, many patients find themselves on a combination of established medication, termed 

‘rational polytherapy’, as roughly 30% of patients have drug refractory epilepsy (Perucca et al., 

2007). In turn, rational polytherapy increases the occurrence of ADR. Recent years have seen 

the development and clinical use of numerous new AEDs, which are superior in their reduction 

of ADR and teratogenicity and have increased target specificity. However, despite these obvious 

benefits, the new classes of drugs offer no improved anti-epileptic effect compared with 

traditional AEDs (Hanaya & Arita, 2016), even though newer AEDs presented with novel 

mechanisms of action (Shih et al., 2013).  

Many first-generation agents, including phenytoin and benzodiazepines, modulate sodium 

channels to prevent neuronal depolarisation and excitability, or function as GABA agonists to 

increase inhibition, respectively. Whilst new agents would seem a welcome inclusion to 

treatment of seizure and epilepsy, Perampanel (Fycompa), a clinically approved novel inhibitor 

of AMPA-induced intracellular Ca2+ increases, has potential for abuse and addiction (Shih et al., 

2013). There exists a delicate balance between anti-epileptic effect and ADR for even the newer 

AEDs, suggesting that the development of AEDs with a high safety profile that is also efficacious 

is a significant challenge.  

A compound gaining significant media attention and notoriety is cannabidiol (CBD), that has 

demonstrated anticonvulsant properties via modulation of G protein-coupled receptor 55 at 

excitatory synapses. It is believed to reduce intracellular Ca2+, alongside adenosine-mediated 

signalling (Nichols & Kaplan, 2020). Its notoriety arises from its derivation from cannabis plants, 

currently categorised as a Class B controlled substance in the UK, however, CBD can also be 

produced synthetically and does not act directly upon the cannabinoid receptors (Lattanzi et al., 

2018). As such, the psychoactive side effects reported from illegal cannabis use is not of concern 
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when taking CBD therapeutically. Whilst currently licensed for use in severe epilepsy cases, 

further study into this seemingly safe, efficacious compound is required before widespread 

prescription can be expected.  

The exact mechanisms of action of all AED are beyond the scope of this thesis, with the 

exception of the first-generation AED sodium valproate, which is discussed in detail in Chapter 

6.1. Figure 1.4 briefly summarises the action of many AED.  

Figure 1.4: Mechanisms of action of anti-epileptic drugs. AEDs display diverse mechanisms of 
action, affecting both inhibitory and excitatory nerve terminals. GAT-1: sodium and chloride-
dependent GABA transporter 1, SV2A: synaptic vesicle glycoprotein 2A. Modified from Shih et 
al., 2013. 
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1.5 Current animal models of seizure-liability 

CNS toxicity testing of any new pharmaceutical is a vital procedure and a legal requirement for 

safety pharmacology studies (ICH, 2000). A drug-induced seizure is an example of a potentially 

fatal ADR and is the most commonly encountered CNS-related issue during the drug 

development process (Authier et al., 2016). Pre-clinical seizure liability (PSL) testing is essential 

to identify such ADRs, however these tests usually occur late in the drug development process 

(Figure 1.5) (Easter et al., 2007). Despite the severity of drug-induced seizure, there are no 

official guidelines outlining how this issue should be tested and regulated (Easter et al., 2009; 

Will et al., 2016). In vitro and in vivo models enable potential side effects to be discovered 

earlier, thereby saving time, cost and resources. However, current models are hindered by 

limitations such as low-throughput capabilities, heavy reliance on animal studies and arguable 

relevance to man, whilst often incurring considerable financial expense. Furthermore, with 

relevance to in vivo PSL testing, the severity of assays frequently requires specialist 

practitioners, further increasing costs and decreasing throughput. In 2018, the UK performed a 

total of 474,000 procedures on animals for regulatory testing, of which toxicity testing 

comprised 31%. In addition, over 200,000 procedures were carried out for basic nervous system 

research (21% of all basic research) (Home Office, 2018). There is increasing pressure to reduce 

the numbers of animals used, without sacrificing on the quality of information provided by such 

tests.  

Current effective in vitro models include rodent brain tissue slices and CNS cell cultures. These 

have been employed for decades and are credited with the discovery of mechanisms pertinent 

to seizure, epilepsy and neurobiology in general. Animal-based models of seizure are important 

for defining epileptogenic and ictogenic activity, as well as providing a reference point for the 

more recent human-based research. Whilst seizure describes a full ictal event in vivo, the term 

‘seizure-like event’ (SLE) more accurately describes the effects seen in in vitro and predictive in 

silico models.  
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There are many animal-based in vitro and in vivo models for seizure-liability testing. For 

simplicity, the following section will focus on the models most commonly used in toxicity 

screening. Most current models employ rodents, as the rodent brain develops incredibly rapidly, 

with a gestation period of 18-24 days and tissue can be ready for neurological experimentation 

from Day 7-10 postnatal; compared with 9 months gestation for humans, followed by years of 

maturation (Murray et al., 2010; Semple et al., 2013). 

1.5.1 In vivo methods 

It has been estimated that a single compound requires several hundred rodents and 

approximately £1 million for complete assessment of neurotoxicity and seizure liability (Moser, 

2011; OECD, 2006; Smirnova et al., 2014), due in part to the low-throughput capabilities and 

specialised tests performed on whole animals. Whilst the range of species used is considerable, 

varying from zebrafish to baboons, there exists no standard platform for which all methods of 

inducing seizure in vivo can be applied. 

Despite this considerable expense, there are many established in vivo models for modelling 

epilepsy and PSL, ranging from the cortical implantation of metals known to induce seizure, to 

drugs known to modulate GABA inhibitory activity, to electroshock and implanted electrode 

models (Rubio et al., 2012). These models were classified according to their method of 

epileptogenesis (Fisher, 1989), summarised in Table 1.1. Discussion of these is beyond the scope 

of this thesis, however an excellent review into in vivo models of epilepsy and seizure is available 

(Rubio et al., 2012) 
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Figure 1.5: The drug development process (Grainger et al., 2018). Taking anywhere up to 15 
years and a cost of ~$1.7 Billion, the process can be separated into pre-clinical and clinical 
testing. Pre-clinical studies consist of in silico, in vitro and in vivo animal and cell-based assays. 
Post-market surveillance continues indefinitely (Paul et al., 2010). Reducing these studies or 
finding better alternatives can save time, cost and resources. 
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Table 1.1: Classification of in vivo models of epileptogenesis, based on ILAE guidelines (Fisher, 
1989; Rubio et al., 2012). 

Simple partial seizure models 
Cortically implanted metals 

Aluminium, Cobalt, Zinc 

Complex partial seizure Model 

Kainic Acid administration 

Repetitive electrical stimulation 
(Kindling) 

Tetanic Toxin administration 

Generalised tonic-clonic seizure models 

Maximum electroshock 

Pentylenetetrazol 

Flutotyl 

Generalised partial seizure models 

Penicillin 

GABA 

Bicuculline 

Generalised absence seizure models 
Audiogenic seizures in mice 

Genetic: Photosensitive baboons 

Status epilepticus Pilocarpine 

 

1.5.2 In vitro methods 

Whilst in vivo methods ensure a living, complete system and provide insights not only into the 

cellular effects of seizure induction, but also behavioural and physical aspects, they are not high-

throughput systems, are very expensive and raise considerable ethical concerns. In vitro models 

are often used as complements to whole animals, beneficial for their increased throughput and 

less specialised tests. A comparison of the most common methods of PSL using in vitro models 

is given in Table 1.2. 
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1.5.2.1 Acute slice assays 

In a 2016 industrial survey of nervous system safety pharmacology, the rat ex vivo hippocampal 

slice assay was found to be most commonly used for seizure-liability testing (Authier et al., 

2016). Slices can be obtained from any region of any species with a complex brain. Hippocampal 

slices (HS) are useful in vitro models as they retain a defined cytoarchitecture and relevant 

receptors and constituents of the full brain system, including inter-area connectivity. This is of 

great importance, as the cause of seizures and epileptiform activity can be complex and 

interlinked with multiple hierarchical levels of the CNS (Scharfman, 2007). External conditions 

can be precisely controlled and manipulated with HS. Indeed, slice assays typically involve 

manipulation of the extracellular ionic milieu to induce SLE, discussed in Chapter 4.1. 

Furthermore, the mechanisms by which different agents induce SLE is highly variable. With 

tissue slices, it is more likely that all necessary cell types and receptors to respond to diverse 

pharmacological agents are present. Acute slices are harvested from adult rodent brain, 

intended for experimentation on the same day to study individual neurons or neuronal circuits 

(Lein et al., 2011). However, difficulties in inter-species extrapolation reduces the utility of the 

platforms and inevitably, slice preparations undergo important cellular and environmental 

changes including ischaemia and severing of projection neurons that would have connected the 

slice to the rest of the system. 

Obviously, human brain tissue is problematic to obtain (except for limited excised epileptic 

tissue), so efforts to refine the commonly used rodent HS or replace with non-human primates 

have been attempted (Easter et al., 2007). Once removed from the animal, slices rapidly begin 

to deteriorate, making them an expensive and low-throughput model system; however, a semi-

automated platform has been validated for use in pre-clinical testing, allowing multiple slices 

per animal to be perfused simultaneously, thus, increasing the throughput capabilities of the 

platform (Easter et al., 2007).  
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1.5.2.2 Organotypic slice assays 

In contrast to acute slice preparations, organotypic slices (OS) are derived from neonatal 

rodents and are maintained in vitro for several weeks (Lein et al., 2011). Compared with acute 

slices, OS require more time and resources; in particular, culture medium which can provide 

essential growth factors, hormones and metabolites; which may or may not include serum. As 

variability between culture media can frequently be attributed to serum, chemically defined 

media have also been developed and have been shown to support OS culture and more 

importantly, facilitate seizurogenesis (Liu et al., 2017).  

Organotypic slices are representative of their respective in vivo counterpart. They contain most 

of the neuronal subtypes present in the brain and retain local intrinsic connective properties of 

the tissue. As previously mentioned, excision of acute slices leads to cellular damage, ischaemia 

and an altered metabolic state, however OS can recover from these insults during culture and 

have been shown to exhibit synaptogenesis and early studies demonstrated the formation of 

new functional contacts (Chen et al., 2008; Robain et al., 1994; Sato et al., 2007). Furthermore, 

any necrotic cells or debris disappears after several weeks in culture (Lein et al., 2011). OS are 

particularly useful for assessing long-term effects of agents or SLEs, as they can be further 

incubated following experimentation. 

Despite the supposed benefits of OS, there are limitations in using them as models, cf acute 

slices. There is concern that as the tissue is harvested from neonates, that this is not entirely 

representative of adult tissue. Whilst any acute damage to OS rectifies itself, synaptic 

reorganisation and axonal/dendritic remodelling can occur from destruction of afferent 

connections of neurons – a process termed deafferentation (Gutiérrez & Heinemann, 1999). The 

trauma of slicing can also activate glial cells, leading to the formation of an astrocytic scar, which 

was believed to prevent axon regeneration; although this is now disputed (Anderson et al., 

2016; Lein et al., 2011).  
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1.5.2.3 Primary cell culture assays 

The second most commonly used model system for seizure-liability studies is primary neuronal 

cell cultures (Authier et al., 2016). Similarly to slice models, primary rodent CNS cultures can 

contain most, if not all, of the components of intact cortex, which bear a true resemblance to 

the cells in vivo. However, the structure and three-dimensional nature of the brain is lost. Unlike 

slice assays, cell cultures are typically higher throughput, but do take several weeks in culture 

to reach maturity, as is the case with OS.  

Whilst neurons are an absolute requirement for seizure activity, they are not the only cell type 

involved (Section 1.3.7). Indeed, omitting other cell types, or culturing ratios of subtypes not 

representative of in vivo ratios could affect the validity of such models. There is also concern 

that certain receptors or channels may not appear in cultured neurons, which may or may not 

influence the outcome of experiments (Dichter & Pollard, 2006). Despite this, primary cell 

culture assays can reliably and consistently predict seizure-liability. Recent literature has 

produced a comprehensive in vitro screen for seizure-liability using primary rat cortical neurons, 

including ratios of neurons and astrocytes observed in the intact rat brain (Bradley et al., 2018). 

In addition, the predictive capability of rat cortical models from cultures containing both 

excitatory and inhibitory neuronal subtypes has been demonstrated (Kreir et al., 2018). In both 

instances, rodent cells were shown to be able to respond to a large group of agents known to 

induce SLEs, with consideration of multiple neural activity markers. However, like OS, there is 

controversy over when the cultured cells reach maturity and at which point they should be used 

for seizure-liability studies so that they are as representative of the living system as possible. 

Arguably, the most important consideration for epileptiform studies is the capability of cells to 

evolve network functionality, which can develop, propagate and sustain SLEs.   
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1.6 Human neurotoxicity models  

Just as many animal-based models have been developed and widely used for disease modelling 

and drug testing, there exists several human cell models which have been used as animal 

alternatives for some time. Whilst these models have the benefit of being human derivatives 

and are rapidly cultured with relatively low expense, these methods are outdated and inferior 

compared to animal models. Two particular human cancer cell-derived models are most well-

known: the neuroblastoma SH-SY5Y cell line and the embryonal carcinoma NT2/D1 line.  

1.6.1 SH-SY5Y Neuroblastoma line 

The subclone of neuroblastoma line SK-N-SH, SH-SY5Y neuroblast-like cells can be differentiated 

in the presence of retinoids, to form neuronal-like cultures, possessing a similar karyotype to 

human cells (Biedler & Schachner, 1978; Yusuf et al., 2013). SH-SY5Y cells are mostly used for 

studies with dopaminergic pathologies, such as Parkinson’s disease, owing to their tendency to 

generate dopaminergic neurons (Shipley et al., 2016). Despite the publishing of protocols to 

differentiate SH-SY5Y into adrenergic-like and cholinergic-like subtypes (Shipley et al., 2016), 

the author is unaware of any reliable protocol for the generation of cortex-specific neurons; 

likely a result of SH-SY5Y not being precursors to any specific cell fate. Moreover, functional 

studies have been performed using SH-SY5Y cultures, wherein changes in K+ conductance to 

known seizurogenic agents were not observed and electrophysiological properties were highly 

variable (Tosetti et al., 1998). SH-SY5Y are not an appropriate system for studying seizure-

liability, owed to their lack of heterogeneity, their functional inactivity and the display of several 

genetic aberrations, typical of a cancer cell origin (Xicoy et al., 2017).  

1.6.2  NT2/D1 Embryocarcinoma cell line 

In contrast, the NTERA-2 cl. D1 (NT2/D1) cell line has been widely used to generate both neurons 

(Andrews, 1984) and functional astrocytes, following retinoid treatment and mitotic inhibition 

(Bani-Yaghoub et al., 1999). Compared with SH-SY5Y, the individual cell types are functional, 

displaying complex network activity including wave propagation and respond to various 
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compounds with increases or cessation of calcium-mediated activity, where appropriate (Hill et 

al., 2012). Further research in our laboratory has confirmed these culture models are effective 

as platforms for toxicological investigations and pharmacological interrogation (Hill et al., 2012; 

Tarczyluk et al., 2015; Woehrling et al., 2006, 2007, 2010, 2011, 2013). 

NT2 D1 differentiate to form co-cultures of functional neurons and astrocytes within 2 months, 

without the need for expensive or specialised growth medium considerations. The 

differentiation process is reproducible and faster than other stem cell models, making them an 

attractive model system. However, as with SH-SY5Y cultures, NT2 cells originate from a cancer 

cell, which can preclude their usage when other, non-cancerous cell types are available. Indeed, 

NT2’s have been shown to contain a highly variable karyotype of up to 60 chromosomes in a 

large percentage of cells (Mostert et al., 1996).  

1.6.3 Human tissue 

Current research into the mechanisms and treatment of drug-refractory epilepsy is using 

resected human tissue from patients. This condition is diagnosed when seizures cannot be 

controlled by at least two or three anti-convulsants appropriate for the epilepsy syndrome (Tang 

et al., 2017). The possibilities for human tissue range from histopathological analyses, to 

modulation of SLE in drug-resistant tissue and the testing of novel anti-convulsant compounds 

and electrophysiological investigation (Gabriel et al., 2004; Hsiao et al., 2015; Klaft et al., 2016). 

Furthermore, several methods are now available that increase the longevity of the resected 

tissue, enabling increased throughput of investigations (Schwarz et al., 2017; Wickham et al., 

2018). However, it is unlikely that enough human tissue will ever be available for high-

throughput compound screening. Furthermore, the tissue is often in a diseased state, which 

may demonstrate different responses to otherwise healthy tissue.  

Ethical considerations and consent also need to be obtained to use human tissue, further 

complicating an already limited process. Human stem cells could provide a viable alternative to 
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human tissue, allowing researchers to generate functional neuronal networks for high 

throughput drug testing. 

It is also possible to obtain human cerebrospinal fluid (hCSF) from patients, which has been 

shown to have a protective effect on resected human tissue, promoting longevity compared 

with culture medium (Schwarz et al., 2017). Furthermore, preservation of electrophysiological 

properties, including network-level activity is observed. Whilst it appears unlikely that hCSF 

would be readily available in the quantities necessary to culture and assess iPSC-derived neural 

models, it would nevertheless be interesting to determine what effects, if any, this composition 

has on the electrophysiological activity of the cultures. 

1.7 Requirements for a human in vitro model of seizure-liability testing 

As discussed above, an ideal model system for in vitro PSL testing should therefore be able to 

recapitulate the information existing models provide and address some of their limitations. The 

most obvious shortcoming for current platforms used for seizure-liability testing is that they use 

animals. An ideal platform would therefore be relevant to humans, using cells which are 

phenotypically human, expressing human receptor proteins with which current convulsant and 

anti-convulsant compounds can interact. The cells should also be able to form functional 

neurophysiological networks, containing the various cell types seen in the intact brain, with 

brain region specificity, as opposed to current generic models. Importantly, the platform must 

be capable of pharmacological interrogation, of displaying phenotypic human seizure-like 

activity and of sensitivity to known therapeutic anti-convulsants. The system should also be 

robust and amenable to high-throughput testing and predictive of the effects of diverse 

neuroactive compounds. A human-based in vitro seizure-liability platform for pre-clinical 

neurotoxicity testing should in theory and practice, fundamentally perform as existing animal 

models do, whilst improving species translation with human seizure activity.  
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1.8 Human induced pluripotent stem cells  
Induced pluripotent stem cell (iPSC) technology (Takahashi & Yamanaka, 2006) is a ground-

breaking, revolutionary method, with considerable potential for toxicity testing and disease 

modelling, allowing the generation, growth and study of human cells without the need for 

invasive isolation procedures or extensive ethical approval. Previously, sources of human stem 

cells were primarily embryos, causing considerable political and moral controversy. In addition, 

the use of embryonic stem cells (ESC) in the clinic is limited by the rejection of the transplanted 

cells by the patient’s immune system (Park et al., 2008).  

Similarly to ESCs, human iPSCs can differentiate into any cell type generated by the three germ 

layers which develop in utero and retain the ability to propagate in culture indefinitely (Robinton 

& Daley, 2012). Pioneering work reprogrammed murine (Takahashi & Yamanaka, 2006) and 

human (Yu et al., 2007) fibroblasts via retroviral transduction of transcription factors: c-Myc, 

Oct4, Klf4 and Sox2; now referred to as the ‘Yamanaka Factors’.  Since the original methods of 

reverting adult cells to a state of pluripotency, there have been considerable advances and 

refinements in the process, moving from viral methods (which typically have large footprints, 

with viral vector sequences integrating into the genome) to episomal and mRNA-based 

reprogramming with typically lower footprints, which may be less efficient (Malik & Rao, 2013).  

The application of iPSCs extends from neurotoxicity testing and disease modelling to drug-

screening and cell-based therapies (Jung et al., 2012; Kumar et al., 2012). Neuronal cultures 

which are derived from human iPSC could be a suitable addition to PSL testing, as the systems 

are closer to humans than a primary rodent-derived cell line. In addition, a remarkable benefit 

of iPSCs is that they retain the genotype of the original fibroblast cell and indeed, any cell then 

generated from iPSCs also shares that genetic background. This is invaluable in disease research, 

as cells taken from both patients and controls can be studied and compared.   
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1.8.1 iPSC-derived neural seizure-liability models 

The foremost aim of in vitro neurotoxicity tests, including iPSC-derived PSL models, should be 

to replicate the in vivo morphology and functionality as closely as possible. Diseases of the 

cerebral cortex are major causes of morbidity and mortality. Hence, iPSC-derived cortical 

neuronal systems could provide a reliable predictive base for PSL testing and are conceptually 

more relevant to toxicity testing than animal tissue, as they are human cells. Indeed, the cortex 

of primates is considerably different to that of rodents, with a marked increase in size relative 

to the rest of the CNS and its complexity (Shi et al., 2012a). Moreover, diversity of the neurons 

within the layers of the cortex and their respective developing stem cell populations means a 

truly representative model needs to use human stem cells to follow this pattern of 

differentiation.  

Protocols for the development of iPSC-derived cortical neurons and characterisation of cortical 

neurogenesis and terminal differentiation to achieve mature electrophysiological properties 

and functional excitatory synapses have been developed, as shown in Figure 1.6 (Chambers et 

al., 2009; Shi et al., 2012b). Neural induction methods for generating NPCs from iPSCs are 

classified into 3D spheroid-based and 2D monolayer protocols. Irrespective of the culture 

method used, the process is largely the same and it was found that both methods produce 

neurons with similar electrophysiological properties and similar morphological endpoints, with 

subtle differences in neurite length and proportion of progenitor cell expression 

(Chandrasekaran et al., 2017). 2D culture methods (Chambers et al., 2009; Shi et al, 2012b) 

produced more SOX1 positive cells, with smaller neurite extensions, whereas 3D floating sphere 

methods (Gunhanlar et al., 2017) produced cells with higher levels of PAX6 expression. In 

addition, 3D methods form neurons with longer neurite extensions, which may be advantageous 

for the production of forebrain cortical neurons (Chandrasekaran et al., 2017).  

In either case, the protocols are largely similar and involve the culturing of iPSCs on a gelatinous 

protein substrate, reminiscent of the basement membrane matrix. Neural induction involves 
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the suppression of epidermal fate, as opposed to the induction of a neural fate, meaning the 

default state of naïve ectoderm is neural (Colas & Schoenwolf, 2001). The inhibition of 

epidermal fate is achieved by the inhibition of SMAD signalling – which are a family of proteins 

that function as the main signal transducers for TGFβ and bone morphogenetic proteins (BMP) 

and are essential cytokines for development of the nervous system (Chambers et al., 2009). 

Inhibition is achieved via the synergistic action of two inhibitors (SB431542 and Noggin) which 

induces rapid and complete neural conversion of >80% of human stem cells under monolayer, 

adherent conditions (Chambers et al., 2009). Specifically, SB43142 is a small molecule which 

enhances neural induction via TGFβ inhibition and Noggin inhibits BMP.  

Figure 1.6: Neural induction of iPSCs to form neural subtypes. Patient fibroblasts are 
reprogrammed with the Yamanaka factors Klf-4, Sox2, c-Myc and Oct4 to a state of pluripotency. 
Dual SMAD inhibition of iPSCs via the small molecule SB431542 and Noggin/dorsomorphin can 
then induce the iPSCs to a neural fate, leading to the generation of neural precursor stem cells 
(NPCs), typically arranged in a cortical rosette structure. Defined growth medium and 
differentiation of NPCs leads to the generation of radial glia and glial progenitor cells, both of 
which can generate astrocytes. Neurons result following radial glia formation. Modified from 
Grainger et al., 2018. 



42 
 

Following the work of Shi et al., (2012a,b), it was found that vitamin A derivatives are crucial for 

induction of in vitro cortical neurogenesis, as is reported in vivo (Kim et al., 2010) and the use of 

retinoids, combined with an alternative small molecule SMAD inhibitor to Noggin 

(dorsomorphin) greatly reduces variation in cortical induction and increases efficiency of 

conversion to near 100% (Shi et al., 2012b).  

The development of iPSC-derived cortical cultures should demonstrate the presence of cortical 

neuronal markers, astrocytes and populations of excitatory and inhibitory neurons (which exist 

at roughly 80% to 20% in the human cortex, respectively (Shi et al., 2012a). Indeed, the cortical 

induction method proposed by Shi et al., (2012b) showed the generation of astrocytes following 

spontaneous differentiation. Moreover, it has been shown that human iPSCs can also be 

differentiated exclusively into astrocytes (Shaltouki et al., 2013) and interneurons (Kim et al., 

2014; Liu et al., 2013). This is of critical importance when considering the seizurogenic potential 

of novel compounds. An entirely excitatory or inhibitory culture is not a representative system 

and accurate drug responses may not be observed without inclusion of both major neural 

subtypes. Efforts have been made to determine the presence of excitatory and inhibitory 

neuronal populations and neuron/astrocyte ratios and it would appear that immunostaining for 

morphological assessment and pharmacological interrogation can suggest the 

presence/absence of such neuronal subtypes and astrocytes (Gunhanlar et al., 2017; Kuijlaars 

et al., 2016; Tukker et al., 2016). A complete, demonstrative, heterogenous system must include 

all subtypes and at ratios close to those observed in vivo. Furthermore, assessing the effects of 

compounds on astrocytes will provide increased accuracy and validity, particularly as astrocyte-

specific agents can be tested and monitored in mixed cultures (Hill et al., 2012). 
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Table 1.2: Comparison of current major seizure-liability testing platforms. Modified from Grainger et al., (2018). 

Model Benefits Limitations 
Acute slice assay • Representative of in vivo adult rodent brain • Difficulty in inter-species extrapolation 

• Same day experimentation • Preparations undergo cellular changes and damage 

• Validated for use • Projection neurons severed 

• Defined cytoarchitecture • Typically low throughput 

• Current ‘gold standard’  

• Forms functional network  

Organotypic slice culture • Representative of in vivo rodent • Difficulty in inter-species extrapolation 

• Retain connective properties of the tissue 

• Forms functional network 

• Derived from neonates, so may not be predictive of 
matured system 

• Can recover from damage from slicing • More time consuming than acute slices 

• Can assess long-term effects of neuroactive 
chemicals 

• Requires supportive culture medium 

• Synaptic reorganisation/remodelling 
Primary CNS culture • Representative of cell subtypes in vivo, as 

derived from intact system 
• Difficulty in inter-species extrapolation 

• Loss of structure and 3-dimensionality 

• Predictive model validated • More time consuming 

• Higher throughput than slices • Do cultured cells reach maturity? 
 • Often cultured in absence of astrocytes or other neural 

cells 
iPSC-derived culture • Human-based • Expensive 

• Exhibit humanoid morphology • Time consuming 

• No ethical considerations • Research still in infancy, lacking validation 

• Amenable to high throughput • No defined ultrastructure 

• Retain genotype of original fibroblast, so they 
can be used to model genetic components of 
human epilepsies 

• No standard protocol 

• No guarantee of presence of desired cell types, unless 
co-cultured 
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1.9 Functional analysis of iPSC-derived cultures 

Whilst there are now many emerging disease platforms and investigative models using iPSC-

derived neurons, research using human iPSC neural networks for the express purposes of drug 

screening is still in its infancy. It has been shown that iPSC-derived neurons respond 

appropriately to convulsant and pro-convulsant agents and could be utilised in PSL testing (Ishii 

et al., 2017; Odawara et al., 2014; Tukker et al., 2016). Whilst typical endpoints for current PSL 

tests include assessment of biochemical, morphological and physiological endpoints, the 

throughput capabilities of these assays are too low for toxicity screening. Changes to ion 

channels, calcium changes and network responses are implicated in many toxicity pathways and 

functional techniques used must be able to detect these changes. Convulsant compounds affect 

the nervous system and neuronal excitability as discussed in depth in Chapter 4. These 

disruptions in turn affect nervous system physiology, often preceeding or occuring in the 

absence of the typical morphological/biochemical changes. Furthermore, some existing 

methods fail to record the most rapid events, such as action potentials, or are not amenable to 

high-throughput testing, making them less desirable for toxicity screening. Therefore, methods 

used with iPSC-derived neural models must demonstate a relatively high-throughput capability, 

without compromising on the quality of the information obtained. Techniques enabling 

network-wide effects to be recorded and visualised would provide relevant endpoints to 

monitor drug induced SLEs. 

In many cases, gold-standard electrophysiological techniques such as patch clamping are 

employed to accurately monitor electrical activity and responses, however, these are invasive 

and are traditionally limited to measurement of a single cell. Individual manual patch clamping 

is also a very technically demanding and precise method and requires a high-level of expertise. 

However, there is potential to increase throughput capacity via automated patching systems, 

which can measure several neurons simultaneously (Kodandaramaiah et al., 2012) and indeed, 

recent developments have enabled multiple-cell patch clamping to be used in industrial 
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applications (Vardi et al., 2016). Whilst patch clamping is a particularly efficient and accurate 

method of studying ionic currents, its use for large-scale toxicity screening is not practical.  

1.9.1 Calcium Imaging  

Calcium imaging is a well-established technique which enables visualisation of free intracellular 

Ca2+ from populations of cells. Calcium indicators are sensitive to calcium movement and can be 

loaded in a non-invasive manner to neuronal cells, although, prolonged exposure to the dye is 

toxic. Fluorescent dyes can either be single wavelength or ratiometric. Fluorescent calcium 

imaging enables the researcher to explore  the role calcium is playing in the cell, due to specific 

calcium-mediated processes occuring over different time periods. For example, calcium-

mediated neurotransmitter release occurs much more rapidly than calcium-mediated gene 

expression in the nucleus (Grienberger & Konnerth, 2012).  

With regards to PSL, calcium imaging can be used to detect responses to electrical activity, 

oscillatory activity, synchrony and network activity, making it a very useful tool for assessing 

neural circuitry and drug responses (Smetters et al., 1999). This approach has been used in an 

effort to characterise the development and maturation of iPSC-derived neural calcium activity 

and to study network responses to neurotransmitters/drugs (Kirwan et al., 2015; Tukker et al., 

2016). These studies have demonstrated maturation of oscillatory calcium activity and 

increased activity when exposed to excitatory compounds. However, to the author’s knowledge, 

the use of calcium imaging as a method for PSL testing in iPSC-derived neural networks has not 

yet been demonstrated, despite preliminary work showing the capability of iPSC-derived 

neurons to respond to the GABA antagonist picrotoxin with increased synchronised activity 

(Kuijlaars et al., 2016). In contrast, the response of primary rodent neural cultures to a panel of 

neurotransmitters and convulsants has been shown by multi-well calcium imaging (Pacico & 

Meur, 2014), with large increases in repetitive calcium-mediated activity observed in the 

presence of pro-convulsants, suggesting that calcium imaging as a method for viewing SLE is 
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valid. Whilst the author in this case opted for a non-optical method of calcium imaging, the 

ability to visualise cell calcium activity in near real-time is extremely advantageous.   

Ultimately, optical fluorescent calcium imaging allows for greater resolution at a cellular level, 

as opposed to single cell patches which can miss considerable amounts of data and not 

necessarily inform on the activity of the entire network. Fluorescent calcium imaging of iPSC-

derived neural networks for seizure-liability testing has not previously been performed and as 

such, there is scope for this technique and platform to incorporate into the existing strategies 

for toxicity testing.  

1.9.2 Multi-electrode array recordings 

Multi-electrode array (MEA) systems are increasingly used with iPSC-derived cultures to assess 

spontaneous electrical activity, synchronous epileptiform bursting activity, drug-responses and 

network mechanisms, such as long-term potentiation and depression (Matsuda et al., 2018; 

Odawara et al., 2014, 2016a, 2016b; Seidel et al., 2017). MEAs take advantage of the generation 

of neuronal ion currents and membrane action potential firing. MEAs transduce this ionic 

voltage change to electronic current, which can then be detected and analysed by a wide range 

of commerically available and custom-made software.  

This cutting-edge technology is non-invasive, enabling the real-time analysis of activity in 

multiple locations in cultured neurons and recording of extracellular potentials and basic 

measures such as spiking and bursting activity and network responses (Johnstone et al., 2010). 

The use of primary rat cortical neurons on the MEA is well characterised, with extensive neural 

activity endpoints. The parameters and results from primary models are important for providing 

a comparative system for emerging iPSC-derived MEA data (Bradley et al., 2018). A number of 

studies have been carried out to determine whether MEA analysis of iPSC-derived neural 

networks is a viable option for toxicity screening. Furthermore, a broad panel of drugs have 

been evaluated, and results suggest that MEAs are a useful tool in screening compounds with 
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diverse mechanisms of action (Kasteel & Westerink, 2017; McConnell et al., 2012; Valdivia et 

al., 2014). In addition, over the past several years, multi-well MEAs have emerged, with capacity 

of upwards of 300-1000 recording electrodes. These systems significantly increase the 

throughput capabilities of primary cell culture and slice assays, further making them attractive 

systems for predictive toxicity tests and drug screening. 

As the throughput capabilities of MEAs increase and their usage in toxicity screening becomes 

more widespread, it will be important to generate standard protocols and definitions of SLEs in 

iPSC-derived models. A recent study by Bradley et al., (2018) has assessed a wide variety of 

endpoints to demonstrate epileptiform activity and network functionality, providing a 

comprehensive predictive primary rodent model. Whilst there are some commonalities 

between approaches, each group using MEAs for neurotoxicity screening assess different 

endpoints based upon their respective experimental design. For example, a common endpoint 

to consider is the number of spikes in a burst, with bursts being typical of epileptiform activity. 

However, the definitions set on burst parameters have large variation and as such, analysis is 

specific to particular cell lines, which makes standardisation difficult. Despite this, recent 

literature has suggested a stepwise method for detection of synchronised burst firings in iPSC-

derived neural cultures (Matsuda et al., 2018). This is a positive move towards standard 

protocols for assessing epileptiform activity using the MEA with human iPSC-derived cultures, 

with a particular emphasis on toxicity testing, especially as many difficulties in MEA analysis 

have presented themselves with this modern technique. Moreover, as this technology is a 

recent introduction to the field, there are challenges with culturing cells for experimentation, 

as historically MEA studies utilised slice assays, which do not require a specialised culturing 

protocol.  

Compared to traditional electrophysiological techniques, the MEA enables network electrical 

activity to be monitored, especially in the recent high-throughput systems. This means 
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substantially more data can be derived than for equivalent patch/ current clamp recordings, is 

more rapid and for epileptiform studies in particular, network activity visualisation is more 

beneficial than individual cells. A benefit of using these established techniques is that several 

software packages are available for data acquisition and analysis, many with user-friendly 

interfaces. However, for newer technology, software is limited and analysis is more complex.  

Presenting a novel method of seizure-liability testing of iPSC-derived neural cultures must 

include a suitable analytical protocol, so that meaningful data can be generated from the 

studies.  
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1.10 Aims and Objectives 

The current methods of pre-clinical seizure-liability testing are heavily reliant upon animal-

based platforms. Human induced pluripotent stem cell technology has revolutionised 

regenerative medicine, providing an essential tool for generating human cells in a non-invasive 

and ethically sound manner. The generation of morphologically distinct, functionally active, 

pharmacologically responsive neural cells from iPSC could supplement existing strategies in drug 

development, with more relevance to man, whilst removing doubts from inter-species 

extrapolation. To date, the inclusion of human-based platforms as models for seizure-liability is 

extremely limited, due to a lack of a complete, robust system. Furthermore, the methods used 

to assess seizure-liability in these cultures are developments in progress. Consequently, this 

thesis aims to contribute to the cutting-edge platforms of iPSC-derived toxicity testing.  

To that end, the overall aim of this thesis is to develop a protocol for the differentiation of 

human iPSC-derived cortical cultures which can respond to pro-ictogenic compounds with 

increased activity and synchrony and interface with a high-throughput analytical technique. 

In order to achieve this aim, the following objectives will be considered: 

1) To generate morphologically distinctive cortical cell types in culture, consisting of 

neurons, astrocytes, cortical layers and synapses, assessed via immunostaining and 

qPCR 

2) To produce electrically functional cultures, which can generate action potentials, 

network activity and respond to excitatory stimuli, via fluorescent calcium imaging and 

multi-electrode array analysis 

3) To induce hyperexcitable and hypersynchronous activity in culture, via addition of ionic 

and pharmacological manipulations widely used as convulsants in toxicity testing and 

observe said activity using optical and MEA approaches  

4) To establish a suitable analytical protocol for functional assessments 
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Chapter 2 

2: MATERIALS AND METHODS 

All reagents were purchased from Sigma-Aldrich (Poole, UK) unless otherwise stated.  

2.1 Cell culture  

2.1.1 Coatings 

Cultureware was pre-treated to improve the hydrophilicity of surfaces to enhance adherence of 

cells for long-term culture. All mentions of incubation refer to a humidified 5% CO2 incubator at 

37°C, unless otherwise stated. 

2.1.1.1 Plastic multi-well plates 

Plastic 6-well, 12-well and 96-well plates (Corning, CA, USA) were coated with 200 µL/cm2 of 20 

µg/mL poly-L-ornithine (PORN) and incubated for 4 hours, followed by two sterile dH2O washes. 

Laminin was dissolved in sterile dH2O to a 10 µg/mL working solution and coated at 200 µL/cm2, 

then incubated overnight. Prior to cell seeding, wells were washed with D-PBS without 

magnesium or calcium.  

2.1.1.2 Glass coverslips 

For immunocytochemistry and calcium imaging experiments, glass coverslips (13 mm thickness, 

VWR) were sterilised in 70% ethanol and dried overnight in the laminar flow hood to ensure 

evaporation. Coverslips were then placed in 6-well and 12-well plates and treated with PORN-

laminin as described in 2.1.1.1. 

2.1.1.3 Multi-electrode array planar chips 

Platinum and carbon-coated MED-P515A planar multielectrode array (MEA) chips were 

purchased from Alpha Med Scientific (Osaka, Japan). The arrays comprised a 10 mm culture 

depth with 64 electrodes in an 8 x 8 grid arrangement with 150 µm spacing between electrodes. 

Arrays were rinsed in sterile dH20 and gently submerged in 70% ethanol for a maximum of 15 
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minutes for sterilisation. Ethanol was aspirated and the array left to dry in the laminar flow hood 

under UV irradiation for 60 minutes. Arrays were coated with 100 µL 20 µg/mL PORN and 

incubated for 6 hours. PORN was aspirated and arrays were rinsed with sterile dH20, before 20 

µL of 10 µg/mL laminin was pipetted directly over the electrodes. Arrays were incubated for 30 

minutes and laminin aspirated ready for immediate cell seeding. After seeding, cells were left 

to adhere for 1 hour, before gently being flooded with cell culture medium (2.1.2.1).  

2.1.2 Neural precursor stem cell differentiation 

2.1.2.1 Cell culture medium 

Axol: Axol Neural Maintenance Medium and Supplement Kit, Ax0031 (Axol Bioscience, 

Cambridge, UK). 

SCT: BrainPhys™ Basal medium, 2% (v/v) SM1 supplement, 1% (v/v) N2A supplement, 100 

µg/mL brain-derived neurotrophic factor (BDNF), 100 µg/mL glia-derived neurotrophic factor 

(GDNF), 100 mg/mL cyclic adenosine monophosphate, sodium salt (cAMP) and 50 µg/mL L-

ascorbic acid (all components from StemCell Technologies, Cambridge, UK). 

Astrocyte medium: ScienCell Astrocyte medium, 2% (v/v) foetal bovine serum, 1% (v/v) 

penicillin-streptomycin and 1% (v/v) astrocyte growth supplement (all components from 

ScienCell Research Laboratories, CA, USA).  

Sync SCT: BrainPhys™ Basal medium, 2% (v/v) SM1 supplement, 1% (v/v) N2A supplement, 100 

µg/mL BDNF and 100 µg/mL GDNF.  

 
2.1.2.2 Spontaneous differentiation 

Cryopreserved Ax0013 neural precursor cells (NPCs) from cord blood CD34+ cells of a healthy, 

newborn male donor were purchased from Axol Bioscience (Cambridge, UK). Cells were fast-

thawed in a 37°C water bath, resuspended in Axol media and centrifuged for 5 minutes at 200 

x g. The cell pellet was resuspended in Axol and a sample taken for haemocytometer counting. 
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Cells were seeded at a density of 50,000/cm2 onto pre-treated PORN-laminin culture plates, 

glass coverslips and MEA chips as described in 2.1.1. Spontaneously differentiating cells were 

fed with Axol every other day, with a complete media change. Neuronal differentiation and 

confluency were monitored via daily phase contrast microscopy images using the EVOS XL Core 

Imaging System (Life Technologies, UK). Once cells reached ~80% confluency, they were 

passaged by discarding spent media from the culture and rinsing with D-PBS without magnesium 

or calcium.  

To detach the cells, 100 µL/cm2 accutase (Thermo Fisher, MA, USA) was distributed over the cell 

layer and incubated for 5 minutes. Four times the accutase volume of Axol was added to each 

well to neutralise the dissociation reaction. Dissociated cells were centrifuged at 200 x g for 5 

minutes and the cell pellet was resuspended in Axol, before a sample was taken for cell 

counting. Cells were seeded as above. Cells were expanded through 3-5 passages, for final 

plating for spontaneous differentiation experiments at passage 6.  

Passage 6 cells were fed with either Axol or SCT, as described in 2.1.2.1. Every other day, a 

complete Axol and half SCT media exchange was done. Cells were differentiated over various 

timepoints, being monitored daily using phase contrast imaging, as mentioned previously.  

2.1.2.3 Synchronised neural differentiation 

Cryopreserved Ax0013 were fast-thawed, plated and expanded to passage 6, as described in 

2.1.2.1.  However, for final plating to passage 6, cells were seeded at 100,000 cells/cm2 and 

cultured in Sync SCT media. Cells were incubated overnight and the following day, a full media 

change was performed, adding 10 µM N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine 

t-butyl ester (DAPT; Abcam, ab120633) to enable all neurons to exit the cell cycle at the same 

time. Full Sync SCT media changes with 10 µM DAPT were done every other day, so the cells 

were incubated with DAPT for a total of 7 days. On day 8, cells were returned to Sync SCT media 

without DAPT and media replaced every other day until day 14. On day 14, BDNF and GDNF 
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were removed from the media and the cells were fed every other day with half media changes 

of SCT with SM1. Synchronised differentiating cells were cultured over 8 weeks, monitored via 

phase image microscopy as above.  

2.1.2.4 Astrocyte differentiation 

Cryopreserved, 11-week-old iPSC-derived astrocytes (Ax0015; Axol Bioscience) from cord blood 

CD34+ of a healthy newborn male donor were fast-thawed in a 37°C water bath, resuspended in 

astrocyte media (AM) and centrifuged for 5 minutes at 400 x g. The cell pellet was resuspended 

in AM and a sample taken for haemocytometer counting. Cells were seeded at a density of 

12,000/cm2 onto pre-treated PORN-laminin culture plates and glass coverslips as described in 

2.1.1. Astrocyte cultures were fed with AM every other day, with a half media change and 

passaged as described for 2.1.2.2 (albeit at 400 x g centrifugation).  

For synchronised astrocyte studies, following passaging, astrocytes were recovered for 24 hours 

in AM, then treated with 10 µM cytosine arabinoside (AraC) for 24 hours, before recovery in 

AM. Astrocytes were then cultured for 4 weeks for experimental study. 

2.1.2.5 Co-cultures of neurons and astrocytes 

Ax0013 neurons and Ax0015 astrocytes were synchronised using 10 µM DAPT and AraC, 

respectively, as described in 2.1.2.3/4.   

Final ratios of neurons to astrocytes were 20:1, respectively. Cultures were matured for 10 

weeks following astrocyte addition (co-cultured astrocytes final age 21 weeks).  

Table 2.1 describes the protocol for co-culturing synchronised neurons and astrocytes for co-

culture studies. 
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Table 2.1: Process of co-culturing neurons and astrocytes together, including media requirements and seeding densities.

Day Neurons procedure Astrocytes procedure 

0 Passage Ax0013 NPCs and plate at 100,000/cm2  

1 Recovery  

2 Sync SCT media with 10 µM DAPT  

3   

4 Sync SCT media with 10 µM DAPT Plate Ax0015 astrocytes at 12,000/cm2 

5   

6 Sync SCT media with 10 µM DAPT Astrocyte media 

7   

8 Sync SCT media with 10 µM DAPT Astrocyte media 

9 Remove DAPT. Sync SCT media. Passage Ax0015 astrocytes 

10  Recovery 

11 Sync SCT media Inhibit astrocytes with 10 μM AraC 

12  Recovery 

13  Passage astrocytes onto neurons 5,000/cm2 

14 Recovery 

15 Recovery 

16+ SCT + SM1 feed every 2-3 days 
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2.1.2.6 Co-cultures with interneurons 

Co-cultures of Ax0013 NPC’s and Ax0015 astrocytes were synchronised and differentiated as 

described in 2.1.2.5, with the addition of Ax0665 interneurons (Axol Biosciences, Cambridge, 

UK). Cryopreserved interneurons were fast-thawed in a 37°C water bath, resuspended in Axol 

media and centrifuged for 5 minutes at 200 x g. The cell pellet was resuspended in Axol and a 

sample taken for haemocytometer counting. A seeding density of 16,000 interneurons/cm2 

were added to the co-cultures at Day 9 (prior to the addition of astrocytes). 

2.2 Immunofluorescent staining 

Incubation periods for immunofluorescent staining were all performed at room temperature. 

2.2.1 General staining method 

Cultured cells for immunocytochemistry studies were fixed in an equal volume of culture media 

and 4% (v/v) paraformaldehyde (PFA) in PBS for 5 minutes at room temperature. The solution 

was removed, and cells were treated with PFA only for 5 minutes, then washed twice in PBS and 

incubated for 5 minutes in permeabilisation buffer (PBS with 0.2% (v/v) Triton X-100), then 

permeabilised again for 5 minutes. Cells were then blocked for 1 hour in block buffer (BB) (PBS 

with 0.2% (v/v) Triton X-100 and 2% (w/v) bovine serum albumin) on a stationary rocker at low 

speed. Cells were either single-stained or co-stained with a maximum of two primary antibodies 

dissolved in BB for 1 hour (see Table 2.2). Cells were washed 3 x 5 minutes in BB to remove 

excess antibody. For secondary antibody staining, coverslips were protected from light and 

secondary antibody dissolved in BB (1:500) was added for 1 hour (Table 2.2). The BB wash steps 

were repeated and the cells rinsed in dH20 before being inverted onto a droplet of mountant 

containing the nuclear stain DAPI (Vectashield, UK) on glass microslides. Coverslips were 

protected from light and allowed to dry overnight, for storage at 4°C.  
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2.2.2 Synaptic staining method 

For staining of sensitive synapses, an amended protocol was used. Cells were fixed as described 

in 2.2.1. To quench auto-fluorescence, fixed cells were rinsed three times and incubated for 5 

minutes in 50 mM ammonium chloride in PBS. Cells were then incubated for 10 minutes in 

synaptic permeabilisation buffer (0.1% (w/v) saponin in PBS), followed by 30 minutes in synaptic 

block buffer (SBB) (0.1% (w/v) saponin, 3% bovine serum albumin in PBS). Primary antibodies 

(Table 2.2) were dissolved in SBB and the cells incubated for 1 hour, under gentle agitation. Cells 

were then rinsed twice and incubated for 10 minutes in SBB. Secondary antibodies were 

dissolved in SBB and incubated for 1 hour, followed by two rinses in SBB, two PBS washes and a 

rinse with dH2O. Cells were mounted and stored as described in 2.2.1.  

Table 2.2: Primary and secondary antibodies used for ICC experiments. Antibodies frequently 
co-stained are indicated by matching colours.  

 

 

 

Antibody Expression Dilution Species Secondary (all used 1:500) 

Pax6  
(Biolegend, 901301) 

Neural 
progenitors 

1:300 Rabbit 
Goat Anti-Rabbit FITC 
(green) (Jackson 
ImmunoResearch, 127016) 

Sox2  
(R&D systems, 
MAB2018) 

Pluripotency 
marker 

1:100 Mouse 
Donkey Anti-Mouse 
Rhodamine (red) (Jackson 
ImmunoResearch, 112581) 

S100β  
(Dako, GA504) 

Mature 
astrocytes 

Pre-
made 
solution 

Rabbit Goat Anti-Rabbit 

Tuj1  
(Abcam, ab7751) 

Neuron-specific 
tubulin 

1:500 Mouse Donkey Anti-Mouse 

Tbr1 
(Abcam, ab18465) 

Lower layer 
cortical neurons 

1:200 Rabbit Goat Anti-Rabbit 

Satb2  
(Abcam, ab51502) 

Upper layer 
cortical neurons 

1:25 Mouse Donkey Anti-Mouse 

VGlut1 
(Synaptic systems, 
135303) 

Glutamatergic 
neurons 

1:1000 Rabbit Goat Anti-Rabbit 

GAD67 
(Abcam, ab26116) 

GABAergic 
neurons 

1:2000 Mouse Donkey Anti-Mouse 

Ki67 
(Abcam, ab15580) 

Cell 
proliferation 

1:500 Rabbit Goat Anti-Rabbit 
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2.2.3 Fluorescent microscopy acquisition and quantification 

Immunofluorescently-labelled cells were imaged using a Zeiss Axiovert 200M epifluorescent 

microscope using Leica Application Suite Advanced Fluorescence (LASAF) microscopy software 

(Leica Microsystems, Milton Keynes, UK). Filter cubes optimised for the excitation and emission 

spectra of each fluorophore were used, alongside a 20x objective (Nikon) for cell staining and 

63x oil-immersion objective (Nikon) for synaptic staining. Filter sets were as follows for all 

fluorescently imaged figures in the thesis:  

Green FITC:     excitation λ of 495 nm, emission λ of 519 nm,  
Blue:                 excitation λ of 345 nm, emission λ of 455 nm,  
Red DsRed:     excitation λ of 588 nm, emission λ of 649 nm. 
 
 
Several images were modified from green to grey post-acquisition to account for the author 

being colour vision-impaired and hence, unable to differentiate between pre-set colours.  

For quantitative image analysis (Ki67 proliferation studies), each coverslip was imaged in three 

random areas, creating an overlay of each fluorophore and the nuclear stain. Images were 

separated and imported into ImageJ (Fiji, NIH). An automatic cell counting macro, developed in-

house by Dr. Rachael Wood was used and optimised for cell sizes. Cell somas were automatically 

counted and the readout was extracted to Microsoft Excel (Microsoft, Redmond, USA). Averages 

of the three random regions were taken for each image. DAPI-positive cells were regarded as 

total cell number, and subsequent marker-positive data presented as a percentage of total cells.  

2.3 Cell Viability Studies – MTT assay 

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was diluted in sterile 

PBS to a stock of 2.5 mg/mL.  

Ax0015 astrocytes were seeded at a density of 3000 cells/well in 96-well plates (2.1) and treated 

with serial dilutions of AraC in astrocyte medium in triplicate and returned to the incubator for 

24 hours. Media was aspirated, and the cells washed in PBS. MTT stock was diluted in AM to a 
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working concentration of 0.5 mg/mL and added to the cells and control wells, before incubation 

for 2 hours.  

MTT was then aspirated and 50 μL dimethylsulfoxide (DMSO) added per well to permeabilise 

formazan crystals. DMSO was triturated and shaken at 500 rpm for 30 seconds, using a Stuart 

SSL3 gyro-rocker (Cole-Parmer, Staffordshire, UK), then returned to the incubator for a further 

15 minutes. Absorbance values were then measured at 590/690 nm using a Multiskan-EX 

spectrophotometer (Thermo).  

2.4 Gene expression analysis 

All reagents and kits were purchased from PrimerDesign (Hampshire, UK) unless otherwise 

stated.  

2.4.1 RNA extraction 

RNA was isolated from spontaneously differentiated cultures and co-cultures at various 

timepoints. RNA was extracted and purified in accordance with the manufacturer’s instructions 

from the Qiagen RNeasy mini kit (Qiagen, Manchester, UK; 74104). An additional DNAse 

treatment was also performed, to reduce the potential of detection of contaminating genomic 

DNA (Qiagen, 79254). Quantification was performed using the Nanodrop 1000 (Thermo). If qPCR 

was not to be performed immediately, samples were stored at -80 °C until needed.  

2.4.2 cDNA synthesis 

Isolated RNA was thawed on ice and 100 ng total RNA made up to 9 µL in sterile DNA/RNAse-

free water. 1 µL Oligo-dT primers were added to the RNA template.  

The mixture was then annealed at 65 °C for 5 minutes using a Thermocycler PCR machine (Bio 

Techne, Abingdon, UK) and immediately cooled on ice. 10 μL of reverse transcription mastermix 

(containing deoxynucleoside triphosphates (dNTP’s), reverse transcriptase, buffer and 

RNA/DNAse-free water) was added and the sample reverse transcribed using the Thermocycler 

with the following conditions: 20 minutes at 42 °C, 10 minutes at 75 °C and held at 4 °C. 
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2.4.3 qPCR  

Qualitative PCR was performed according to manufacturer’s instructions. Briefly, SYBR® green 

was added to cDNA samples alongside RNA/DNAse-free water to pre-validated primers for Pax6, 

Sox2, TUBB3, S100β and vGAT. The housekeeping genes GAPDH, ACTB, YWHAZ and 18S were 

assayed under the same conditions as for experimental primers. Samples were added to PCR 

plates with an optical film seal and spun in a plate spinner (Thermo) for 30 seconds to ensure 

the sample was sufficiently mixed. Plates were loaded into a Lightcycler (Thermo) and cycled as 

shown in Table 2.3.  

Table 2.3: qPCR protocol including steps involved, temperature, duration and number of 
cycles for reaction.  

Steps Temperature Time Cycles 

Initial Denaturation 95 °C 10 minutes 1 

Denaturation 95 °C 15 seconds 
40 

Annealing/Extension 60 °C 1 minute 

 

2.4.3.1 qPCR analysis 

Analysis of qPCR data was performed using Microsoft Excel and the ΔΔCt method. Both control 

samples (Week 0) and experimental samples were normalised to endogenous controls 

(Appendix Figure A9A) and ΔCt was calculated from the difference in CT value between the 

target gene and the endogenous control, by subtracting the average control CT value from each 

replicate.  

ΔΔCt was then calculated via ΔCt (experimental) – ΔCt (average control) and these values were 

used for statistical analysis (described in text). To generate a fold change in experimental gene 

expression relative to Time Week 0, 2-ΔΔCt was computed and this value was represented in the 

figures throughout the thesis. In-text values refer to the ΔΔCt values from which statistical 

analysis was performed. 
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2.5 Fluorescent calcium imaging 

2.5.1 Acquisition 

Acquisition of calcium-mediated activity was achieved using a single-wavelength calcium 

sensitive dye and fluorescence imaging. Calcium signals were recorded under baseline 

(spontaneous) conditions, and evoked ionic and pharmacological conditions. 5 µM membrane-

permeable Fluo4- acetoxymethyl ester (Fluo4-AM) (Molecular Probes, Eugene, Oregon, USA) 

dissolved in either Axol or SCT was added to the cells for 30 minutes and incubated at 37°C, 

followed by a recovery phase of media only, for 10 minutes. During incubation, respective media 

and artificial cerebrospinal fluid (aCSF) (containing, in mM: 126 NaCl, 26 NaHCO3, 2.5 KCl, 1.25 

KH2PO4, 10 MgSO4, 2 CaCl2, and 10 glucose) was heated to 37°C and bubbled with carbogen gas 

(95% O2, 5% CO2) to maintain pH.  

Cells were imaged at a rate of 0.33 - 1 Hz over 5-40 minutes using a submersible 20X lens (Nikon, 

UK) and filter cube for Fluo4 (Chroma VT, USA). An Orca CCD camera (Hamamatsu, Japan) was 

used to acquire the images, allowing for the shutter to be controlled without the need to 

manually handle the microscope. A 65 ms exposure time and a bin value of 2 was used for 

experiments. Excitation of the fluorophore was done at 470 nm using an automated OptoLED 

power supply LED (Cairn, UK) and Optomorph software (Molecular Devices, US) was used for 

image acquisition of changes in intracellular calcium. Cells were mounted and perfused with 

either Axol, SCT or standard aCSF for several minutes before beginning the recording to allow 

the cultures to recover from any disturbances. 

2.5.2 Evoked responses 

After recording baseline activity for each coverslip, cells were subjected to a series of 

pharmacological and ionic manipulations (Table 2.4). Ionic manipulations involved modification 

of the standard aCSF recipe from 2.5.1. Drugs were dissolved in aCSF and continuously perfused 
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on to cultures at a low rate of 1 mL/min, avoiding the need for the recording to be paused or 

interrupted and limiting disruption.  

Table 2.4: Variety of pharmacological and ionic manipulations used throughout the thesis.  

Treatment Class Concentration used 

Glutamate Excitatory neurotransmitter 100 µM 

Tetrodotoxin Sodium channel blocker 1 µM 

4-aminopyridine Potassium channel blocker 100 µM 

Picrotoxin GABAA antagonist 100 µM 

Valproate Anticonvulsant 2 mM 

Magnesium-free aCSF Excitatory perfusate 0 mM MgSO4 

High potassium aCSF Excitatory perfusate 7.5 mM KCl 

 

2.5.3 Calcium Analysis 

2.5.3.1 Video preparation and region of interest determination 

Images were stacked, aligned and processed into video files using ImageJ. Continuous imaging 

over several minutes led to minor frameshift in some recordings, therefore stacks were aligned 

using the plugin: template matching - align slices in stack. Brightness and contrast were adjusted 

and videos were imported into Matlab software (Mathworks, 2018b), running NETCAL© 

network analysis software (www.itsnetcal.com, ©Javier Orlandi, 2017). Regions of interest (ROI) 

were automatically detected and manually reviewed, and from each ROI a fluorescence trace 

was generated. The data from each trace was exported to Microsoft Excel and GraphPad Prism 

(Version 8) to determine active cells, number of calcium events and bursting frequencies.  

2.5.3.2 Active cell and calcium event classification 

The size of a calcium event was calculated via:  
𝛥𝐹

𝐹
=

𝐹−𝐹0

𝐹0
  where F0 is the first frame in a video 

file. A cell was identified as being active if the ΔF/F peak value was greater than three times the 

standard deviation of the baseline noise, which was manually determined for each cell. These 

were regarded as spontaneous events. For synchronised events, cells were regarded as 

synchronous if their initiation was within 1 frame of another spontaneous event within the 
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video. Most recordings were acquired at 0.33 Hz, meaning a gap of one frame is equal to three 

seconds.  

2.5.3.3 Experimental calculations 

To calculate peaks per cell, burst frequency and active cells, each individual trace was manually 

reviewed and the peak values including number of peaks per cell, time of peaks and peaks per 

minute recorded using Microsoft Excel.  

In order to quantify synchrony between cells of the population, the percentage of synchronised 

cells was calculated between active cells. To reduce the possibility of false positive reporting, 

events in which only two neurons were synchronised were dismissed, meaning a minimum of 

three neurons had to display the same response to be described as synchronised (Pirttimaki et 

al., 2017). Additionally, Pearson’s correlation was performed on all individual active cell traces, 

compared to an average population trace (Cornelissen et al., 2013; Kuijlaars et al., 2016).  

2.6 Multi-electrode array (MEA) 

2.6.1 MEA acquisition  

Planar MEA chips were prepared and cells seeded as described in sections 2.1 and 2.2. Cultures 

on MEA chips were recorded on a heated stage (Alpha Med Scientific, Osaka, Japan) whilst in a 

37°C humidified incubator, with 5% CO2, as extracellular MEA activity is sensitive to pH levels 

(maintained by CO2 concentration). Extracellular signals were recorded in all 64 electrodes 

simultaneously at 1 kHz acquisition using MED64 Mobius Toolkit software (Alpha Med Scientific) 

using a ‘basic-recording’ template. Recordings typically lasted for 10 minutes, following a few 

minutes unrecorded initial measurement, to allow cells to recover. Signals detected were 

amplified using an Amadeus 64-channel amplifier (Alpha Med Scientific). Signals were low-pass 

filtered at 100 Hz and sampled at 20 kHz/channel (Odawara et al., 2016b). 

 

2.6.2 MEA analysis 
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For MEA analysis, recordings obtained were ran through Mobius spike detection software 

(Alpha Med Scientific). Thresholds were set at 500 % standard deviation from baseline to ensure 

spikes were detected and not background noise. Extracted spike data was assessed visually for 

each 64 channels to determine whether the recorded data was in fact spike activity, and not 

noise. Once confirmed, frequency analyses, number of spikes/burst and burst duration were 

calculated using Mobius software.  

Parameter values for analysis were set using an active MEA example as a basis for (Table 2.5).  

 Table 2.5: Burst detection parameters for MEA analysis 

 

 

2.7 Statistical analysis 

All statistical analyses were performed using GraphPad Prism Version 8; the author is grateful 

to Professor Alan Nevill (Wolverhampton University, UK) for his advice whilst using this package. 

Bars on graphs and descriptions in-text represent mean values and error bars indicate ± 

standard error of the mean (SEM). For many graphs, box plots were selected to show the 

distribution of data.  

Data-sets were considered un-paired and the Shapiro-Wilk normality test was performed to 

assess the distribution of data, followed by the appropriate statistical test: 1-way and 2-way 

analysis of variance (ANOVA) or student’s T-test, with Tukey’s post hoc test for multiple 

comparisons. The test used is indicated in-text.  

Parameter Value 

Max Interval to start burst (ms) 300 

Max interval to end burst (ms) 350 

Min number of spikes in a burst 3 

Min duration of a burst (ms) 50 

Min interval between bursts (ms) 100 
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Statistical analysis was complicated for percentage of active cell datasets in Figure 3.11 and 

Figure A3, due to an array of unequal sample sizes, combined with the data not satisfying 

Gaussian distribution, even after log transformation. As a result, individual one-way ANOVAs 

were performed (Appendix A3) and non-parametric t-tests of individual timepoints (Figure 

3.11). 

For non-normally distributed data undergoing 2-way ANOVA, the data was first log transformed 

to satisfy the requirements of normality. Datasets which underwent transformations are 

indicated in text.  

For quantitative synchronised calcium-mediated activity, a Pearson’s correlation was performed 

as described in 2.4.3. However, to generate an average R value for each experiment, a Fisher’s 

z-transformation was applied to each individual R value. The mean of the z values was then 

calculated and this number back-transformed using Fisher’s back-transformation. This provided 

an average R value for the experiment.  

N numbers reported in figure legends refer to the number of biological differentiations, whereas 

those in text refer to the total number of technical repeats from all biological differentiations.  

Statistical significance depicted in figures was reported as: *p < 0.05, **p <0.01, ***p <0.001, 

****p < 0.0001. 
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Chapter 3 

3: MORPHOLOGICAL AND FUNCTIONAL CHARACTERISATION OF 

SPONTANEOUSLY DIFFERENTIATED NEURAL CULTURES 

3.1 Introduction 

The human brain is a bewilderingly complex structure, comprised of a remarkable number of 

two principle cell types: neurons and glia. The cerebral cortex is the executive computational 

centre of the mammalian CNS, containing dozens of neuronal subtypes (Anderson & 

Vanderhaeghen, 2014). Neurons are electrically excitable cells, arranged in the cortex in six 

distinct layers and their extensive interconnectivity provides the processing capability that 

governs all physiological and psychological processes that we experience. Of particular 

relevance to this thesis is a basic feature of the cerebral cortex, which is how it is prone to 

generating synchronous, large bursts of activity which facilitates seizurogenesis (Bromfield et 

al., 2006). The role of glia and their various subtypes (namely astrocytes) has been markedly 

under-investigated, despite the brain being unable to function without both cell types. This 

forms the basis of the investigation in this Chapter.  

3.1.1 In vitro and in vivo neurogenesis 

An incredible and unique quality of iPSCs is their ability to form human neural cells in a relatively 

efficient and non-invasive manner (Takahashi & Yamanaka, 2006). The process of converting 

iPSCs to neural precursor stem cells (NPCs) is referred to as ‘neuralisation’. Several neural 

differentiation protocols exist, which ultimately enables the production of neural subtypes 

(Chambers et al., 2009; Shi et al., 2012a;2012b). Each method has subtle differences, but largely 

the same outcome: functional, morphological human neural subtypes.   

For an iPSC-derived model to fully recapitulate in vivo neurogenesis, there must be a degree of 

similarity and developmental processes in the in vitro environment. Shi et al., (2012a) 
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demonstrated that iPSCs follow an extended period of cortical neurogenesis (lasting several 

weeks) – that is more representative of the human in vivo environment cf rodent neurogenesis, 

which occurs over a matter of days.  For example, during human development, neurulation 

involves the formation of the neural tube, which develops in utero into the brain and spinal cord 

(Sadler, 2005). The development of radially organised columnar epithelial cells in vitro gives rise 

to the characteristic cortical neural rosettes, which mirrors this neurulation process (Elkabetz & 

Studer, 2008).   

In addition to distinctive morphology, cells undergoing in vitro cortical neurogenesis should 

contain markers for neural progenitor transcription factors (Shi et al., 2012a) and the generation 

of cortical neuronal layers (Pasca et al., 2015). Upper and lower cortical layer transcription 

factors have been identified during in vitro development, with the emergence of lower layer 

neurons occurring first and the layers developing in an ‘inside-out’ manner (Anderson & 

Vanderrhaeghen, 2014). This correlates with mammalian neocortical development, wherein 

NPCs sequentially give rise to lower layer and upper layer neurons during embryonic stages 

(Bansod et al., 2017). 

Further characterisation of the temporal development of neural subtypes can also be 

monitored, particularly as radial glia form quite readily, followed by neuronal subtypes, before 

a switch from neurogenesis to gliogenesis. In vivo, the switch from neurogenesis to gliogenesis 

occurs at the perinatal states, and a delayed arrival of astrocytes is also observed in vitro (Shi et 

al., 2012a; Bansod et al., 2017). Consequently, the late arrival of astrocytes after neurons is a 

reliable indicator of cortical differentiation. As mentioned above, in vivo neural activity is 

dependent upon both neurons and astrocytes. However, protocols exist for the generation of 

individual neural subtypes, including neurons and astrocytes. Shaltouki et al, (2013) showed the 

exclusive generation of iPSCs into matured astrocytes using a defined media formulation.  
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3.1.2 Functional considerations 

Whilst monitoring the emergence of and assessing for the presence of neural subtypes during 

cortical differentiation is an invaluable tool, these results alone are of little or no indication of 

cell function. Many cells in culture may morphologically resemble cells in vivo, but that is not an 

accurate assessment of their identity. As neurons are electrically excitable cells and indeed, 

astrocytes are capable of functional activity, the best assessment of a successful neural 

differentiation is to verify the functional capability of the cells.  

In vivo, neurons are active cells, firing AP and eliciting neurotransmission. This functionality 

arises due to a difference in ionic potential that exists between the intracellular and extracellular 

spaces. To replicate in vivo activity, human iPSC-derived cultures should be able to generate AP 

in vitro and respond to neurotransmitters, as happens in the intact brain. 

3.1.3 Growth medium considerations 

The first stage of any project intended to develop a reliable protocol for applying iPSCs to use in 

neural models, is to optimise the basic conditions for growth and differentiation, as these 

conditions can influence the above structural and functional endpoints. Growth media is the 

most important determinant of these outcomes, as culture conditions for stem cell-derived 

neurons do not necessarily mirror those observed in vivo (Rocktäschel et al., 2019). Evidently, 

as the cell culture itself should be as representative of the in vivo state as possible, all integrated 

factors such as the media should also aim to mimic in vivo compositions. Multiple companies 

and institutions are now producing their own media formulations and whilst often based on 

neurobasal/DMEM recipes, the added supplements and factors has led to great variation within 

the field.  

Interestingly, very high concentrations of glucose (up to 25 mM) are commonly observed in 

culture media compositions, where this value should be closer to 5 mM to be physiologically 

relevant and promote translatability of stem cell models (Rocktäschel et al., 2019). A specialised 
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neuronal medium was developed in 2015 which serves to mimic human in vivo compositions as 

closely as possible (Bardy et al., 2015). Indeed, they recognised the hyperglycaemic condition of 

many neurobasal/DMEM recipes and amended theirs to prevent abnormal glucose homeostasis 

affecting the cultures, as has been shown with several brain disorders (Mergenthaler et al., 

2013). Moreover, It has been shown that concentrations of salts (in particular, NaCl) and the 

presence of serum may directly influence certain electrical activity (Bardy et al., 2015), which 

creates another issue for functional studies, as groups are testing their cells using different fluid 

compositions. In addition to glucose, salts and osmolarity, the neuronal supplements used for 

growth media have also been assessed (Sünwoldt et al., 2017). Commonly used supplements 

including B27 and N2 were found to elicit variable effects on neuronal cultures and negatively 

alter glucose metabolism, respectively. B27 is serum-free and highly dense in nutrients and 

hormones, ranging from insulin to progesterone. B27 in many cases is neuroprotective, 

contributing to neuronal growth and neurite extension (Chen et al., 2008). However, the advent 

of serum-free media compositions intended to reduce the variability which can occur from 

serum-containing solutions and indeed, modifications to B27 recipes have resulted in an 

optimised, more physiological supplement (NS21) (Chen et al., 2008). N2 supplement is a 

widely-used, chemically defined serum-free supplement recommended for growth of post-

mitotic neurons; however, the modern alternative (GS21) was found to positively affect energy 

metabolism in neuronal cultures (Sunwoldt et al., 2017).  

Artificial cerebrospinal fluid (aCSF) is a mimic of the fluid surrounding the brain in vivo and whilst 

devoid of neuromodulators found in human CSF, it contains the necessary salts and pH to 

function as a perfusate and bathing solution (Wickham et al., 2020). Indeed, aCSF is widely used 

for ex vivo slice assays and primary cultures and for inducing and assessing epileptiform activity. 

Due to the range of medium available for iPSC culture, it may be that a defined aCSF formulation 

should be used for functional studies to create a standard protocol for iPSC-derived neural 

toxicity testing. Despite its widespread use as a perfusate in rodent in vivo, in vitro and human 
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in vitro models, aCSF does not promote neuronal survival for longer than a few days and hence, 

is an unsuitable medium for maintaining cells long-term (Bardy et al., 2015).  

As the role of growth medium is so influential, the effects of two different commercially 

available growth media (Axol Biosciences: Axol Neural Maintenance medium; Shi et al., 2012b 

and StemCell Technologies: BrainPhys™; Bardy et al., 2015) have been compared in this chapter, 

to assess the differences in their ability to generate morphologically and functionally matured 

neural cultures. 

 

The aims of this Chapter are to: 

1) Assess the morphological expression of spontaneously differentiated neural cultures 

via cell specific biomarkers of: neural progenitors, cortical layers, excitatory and 

inhibitory neurons and glia; using fluorescence microscopy 

2) Determine the functional capability of spontaneously differentiated cultures, 

including the ability to fire action potentials and respond to neurotransmitters, using 

fluorescent calcium imaging and multi-electrode array recordings 

3) Compare the effects of Axol and SCT media on their respective abilities to generate 

functionally and morphologically matured neural cultures 
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3.2 Results 

3.2.1 Characterisation of spontaneous differentiation 

Human iPSC-derived NPCs were spontaneously differentiated in Axol and SCT over 18 weeks in 

vitro (WIV). In order to determine whether neural cultures can generate expected neural 

subtypes, immunocytochemistry (ICC) and qualitative polymerase chain reaction (qPCR) were 

performed over 18 WIV.  18 WIV was designated as a cut-off point, as the viability of SCT cells 

post W18 were severely impacted. Indeed, widespread detachment of fasciculated neurons was 

observed in all W18 SCT cultures (Appendix Figure A1). Whilst cells were cultured past 21 WIV, 

experimentation became highly problematic, with large reductions in activity and very poor 

resolution from microscopy. 

Cells in both media conditions produced morphologically distinctive neural cortical rosettes by 

1 WIV, positive for both Pax6 and Sox2 neural progenitor markers, which were distributed in a 

radial fashion (Figure 3.1, n=9 coverslips (cs)). Pax6 and Sox2 gene expression was assessed 

using qPCR. Results indicate that Pax6 expression was significantly upregulated in Axol media at 

4 WIV (p= 0.046, Figure 3.2A). Whilst SCT observed a difference in values of Pax6 expression, 

relative to control, these did not attain statistical significance. The expression of Sox2 was 

significantly downregulated in SCT media at W4 and W8 compared to control (p<0.0001, Figure 

3.2B) but Sox2 was significantly upregulated at W12, compared with earlier experimental 

timepoints (ΔΔCt W12: 1.87 ± 0.64; W4: 5.31 ± 0.47, p= 0.0008, W8: 4.20 ± 0.19, p= 0.0278). 

To monitor the emergence of distinct neural subtypes, neuron-specific class III β-tubulin (Tuj1) 

and calcium-binding protein S100β were used to stain neurons and astrocytes, respectively. At 

4 WIV, both conditions were negative for S100β staining (Figure 3.3B), however, both displayed 

an interconnected array of Tuj1+ neurons, developing by 8 WIV to aggregated clusters of 

neuronal cell bodies (Figure 3.3C, n=9 cs). By 8 WIV, both Axol and SCT displayed S100β+ staining, 

however, the staining was localised to the soma, correlating with the DAPI+ nuclei also observed 

(Figure 3.3A,B).  
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Figure 3.1: Spontaneously differentiated neural precursor cells (NPC’s) form cortical 

rosettes in Axol and SCT media. iPSC-derived neural precursors were differentiated in Axol 

or SCT media over 1 week and immunocytochemistry was performed to assess the presence 

of neural progenitor markers. (A) Nuclei stained with DAPI (Blue, excitation λ 345 nm, 

emission λ 455 nm). (B) Pax6 neural progenitor staining (Grey, excitation λ 495 nm, emission 

λ 519 nm). (C) Sox2 neural progenitor staining (Red, excitation λ 588 nm, emission λ 648 nm). 

(D) Merged images of A,B,C. N=3. Scale bar: 100 μm.  
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At 12 WIV, morphologically distinct S100β+ astrocytes were observed in both conditions (Figure 

3.4C, n=9 cs. In addition, by 12 WIV, the staining appeared to show an even distribution of 

astrocytes and neurons, closely intertwined in both media conditions, with more astrocytes 

visible by 18 WIV (Figure 3.4). Furthermore, the size of astrocytes in the Axol cultured cells’ field 

of view at 18 WIV were more comparable to those of the SCT astrocytes. The discrepancy 

between sizes of astrocytes was observed in both media conditions at 12 and 18 WIV, showing 

that different types and sizes of astrocytes were generated throughout the spontaneous 

differentiation (n=9 cs). In addition, there were several regions of each W18 coverslip where the 

cultures appeared entirely astrocytic (Appendix Figure A2).

A 

B 

Figure 3.2: Spontaneously differentiated NPCs express Pax6 and Sox2 progenitor genes in 

Axol and SCT media. iPSC-derived neural precursors were differentiated in Axol or SCT media 

over 12 weeks and qPCR was performed to assess the expression of genes associated with 

neural progenitors. (A) Fold change in Pax6 expression over 12 WIV relative to control 

expression at W0 (not indicated on graph). (B) Fold change in Sox2 expression over 12 WIV. 

Data is displayed as mean ± SEM. N=3 separate biological differentiations. *p< 0.05, 2-way 

ANOVA with Tukey’s multiple comparisons test. 
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Figure 3.3: Astrocytes emerge following 8 WIV spontaneous differentiation of human iPSC-derived neural precursors. Neural cultures were 

differentiated in either Axol legacy or SCT BrainPhys media over 8 weeks and immunocytochemistry was performed to assess the emergence of 

neurons (Tuj1) and astrocytes (S100β). (A) Nuclei stained with DAPI (Blue, excitation λ 345 nm, emission λ 455 nm). (B) S100β astrocytic staining 

(Grey, excitation λ 495 nm, emission λ 519 nm). (C) Tuj1 neuronal staining (Red, excitation λ 588 nm, emission λ 649 nm). (D) Merged image of 

A,B,C. N=3. Scale bar: 100 μm. 
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Figure 3.4: Human iPSC-derived NPCs form neurons and morphologically distinct astrocytes by 12 WIV.  Neural cultures were differentiated in 

either Axol legacy or SCT BrainPhys media over 18 weeks and immunocytochemistry was performed to assess the emergence of neurons (Tuj1) and 

astrocytes (S100β). (A) Nuclei stained with DAPI (Blue, excitation λ 345 nm, emission λ 455 nm). (B) S100β astrocytic staining (Grey, excitation λ 495 

nm, emission λ 519 nm). (C) Tuj1 neuronal staining (Red, excitation λ 588 nm, emission λ 649 nm). (D) Merged image of A,B,C. N=3. Scale bar: 100 

μm. 
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There was no significant difference in TUBB3 expression (gene encoding Tuj1) at any timepoint 

in both Axol and SCT media compared to control (Figure 3.5A). In contrast, at W4 fold S100β 

expression in both Axol and SCT was significantly increased cf control (Axol: p= 0.0192, SCT: p= 

0.0193, Figure 3.5B). 

Roughly 80% of the mammalian cerebral cortex is comprised of excitatory neurons (Marik et al., 

2010). The presence of excitatory vesicles (VGlut1) was therefore of great importance. Figure 

3.6 shows that both Axol and SCT at 4 WIV generated characteristic punctate synaptic staining.  

B 

Figure 3.5: Spontaneously differentiated NPCs express TUBB3 and S100β over 12 WIV in 

Axol and SCT media. iPSC-derived neural precursors were differentiated in Axol or SCT media 

over 12 weeks and qPCR performed to assess the expression of genes associated with 

neurons (TUBB3) and astrocytes (S100β). (A) Fold change in TUBB3 expression over 12 WIV 

relative to control expression at W0 (not indicated on graph). B) Fold change in S100β 

expression over 12 WIV. Data is displayed as mean ± SEM. N=3. *p< 0.05, 2-way ANOVA with 

Tukey’s multiple comparisons test. 
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The absence of DAPI+ cells (Figure 3.6A,E) is due to the magnification used. Using the 63x 

objective, DAPI+ nuclei covered most of the field of view, therefore a region of interest was 

selected where no DAPI signal was obtained. Vesicular glutamate transporter-1 (VGlut1) is 

associated with membranes of synaptic vesicles and preferentially transports glutamate. VGlut1 

is often used to indicate the presence of excitatory neurons (Wojcik et al., 2004).  
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Figure 3.6: Spontaneously differentiated NPCs form excitatory, but not inhibitory synapses 

in Axol and SCT media. iPSC-derived NPCs were differentiated over 4 weeks and 

immunocytochemistry performed to assess excitatory and inhibitory synapse formation. (A-D) 

Cultures differentiated in Axol media. (E-H) Cultures differentiated in SCT media. (A,E) Nuclei 

stained with DAPI (Blue, excitation λ 345 nm, emission λ 455 nm). (B,F) VGlut1 excitatory vesicle 

staining (Grey, excitation λ 495 nm, emission λ 519 nm). (C,G) GAD67 inhibitory staining (Red, 

excitation λ 588 nm, emission λ 649 nm). (D,H) Merged images. N=3. Scale bar: 25 μm 
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In contrast, glutamic acid decarboxylase 67 kDa (GAD67) is an enzyme catalysing the 

decarboxylation of glutamate to GABA, widely expressed in GABAergic neuronal populations 

(Rudy et al., 2011). GAD67 was therefore used as a marker for inhibitory neuronal populations.  

Figure 3.6C,G shows a complete absence of GAD67+ staining at 4 WIV. Staining for GAD67 was 

also performed at W8, W12 and W18 and GAD67+ staining was consistently absent in both 

conditions (data not shown). As synaptic vesicular staining is a sensitive process, the ICC results 

of GAD67 were supplemented with qPCR analysis of a secondary gene (SLC32A1) encoding the 

vesicular inhibitory amino acid transporter vGAT, which is highly concentrated in the nerve 

terminals of GABAergic neurons (Chaudhry et al., 1998). Figure 3.7 shows a significant increase 

in fold vGAT expression at 4 and 12 WIV in Axol cf control (W4: p= 0.0043, W12: p= 0.0267). 

There was no significant change in expression of vGAT at any point in time during differentiation 

in SCT media. 

Figure 3.7: Spontaneously differentiated NPCs express vGAT over 12 WIV in Axol and SCT 

media. iPSC-derived neural precursors were differentiated in Axol or SCT media over 12 

weeks and qPCR performed to assess the expression of inhibitory amino acid transporter 

vGAT. Fold change in vGAT expression over 12 WIV relative to control expression at W0 (not 

indicated on graph).. Data is displayed as mean ± SEM. N=3. *p< 0.05, **p< 0.01, 2-way 

ANOVA with Tukey’s multiple comparisons test. 
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Figure 3.8: Human iPSC-derived NPCs form upper and lower cortical neurons when spontaneously differentiated after 4 weeks.  Neural cultures 

were differentiated in either Axol legacy or SCT BrainPhys media over 8 weeks and immunocytochemistry was performed to assess the emergence 

of lower layer cortical neurons (Tbr1) and upper layer cortical neurons (SatB2). (A) Nuclei stained with DAPI (Blue, excitation λ 345 nm, emission λ 

455 nm). (B) Lower layer cortical neurons (Grey, excitation λ 495 nm, emission λ 519 nm). (C) Upper layer cortical neurons (Red, excitation λ 588 

nm, emission λ 649 nm). (D) Merged image of A,B,C. N=3. Scale bar: 100 μm. 
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Alongside neurons and astrocytes, the intention for spontaneous differentiation was to commit 

to cortical neurogenesis. To test this, immunocytochemistry (ICC) was done to assess for the 

emergence of cortical layer markers. Transcription factors T-box brain-1 (Tbr1) and special AT-

rich sequence-binding protein-2 (SatB2) encode lower and upper layer cortical neurons, 

respectively. In both conditions, the level of Tbr1 expression appeared constant at all 

timepoints. Images from W4 and W8 are displayed, as the resolution of W12 onwards decreased 

considerably as the density of cultures increased. W4 Axol appears to show a greater proportion 

of SatB2+ cells, compared to W4 SCT (Figure 3.8). In addition, SatB2 expression between W4 and 

W8 Axol appears the same, whereas there appears to be an increase in SatB2 expression 

between W4 and W8 SCT (n=9 cs). 

3.2.2 Functional calcium activity in spontaneously differentiated cultures 

Having performed experiments to assess the presence of morphologically relevant neural 

subtypes and cortical markers, the next important question was whether the cells could display 

functional activity and basic drug responses. This question was addressed via single-wavelength 

fluorescent calcium imaging using Fluo4-AM and multi-electrode array (MEA) analysis. 

Spontaneous cultures were cultured as described (Chapter 2) for the above ICC/qPCR studies 

and assessed at the same timepoints for their functional properties.  

A standard principle in electrophysiology is the use of artificial cerebrospinal fluid for functional 

studies. However, as Bardy et al., (2015) claim their media is superior for functional studies, the 

effect of each respective media as a perfusate on electrical activity was considered (Figure 3.9). 

There was no significant difference between the use of Axol and SCT media as perfusates (n=5/6 

cs, p= 0.99). However, the use of both medias induced a significantly lower percentage of active 

cells compared with the same cultures perfused with aCSF (Axol Media: 4.08 ± 1.75%, n=6 cs, 

Axol aCSF: 11.77 ± 1.60%, n=9 cs, p= 0.03; SCT Media: 3.86 ± 1.18%, n=5 cs, SCT aCSF: 14.48 ± 

2.00%, n=9 cs, p= 0.003).  
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Following the assessment of perfusates, aCSF was selected to continue functional studies. The 

responses of W8 cultures to 1 µM tetrodotoxin (TTX) and 100 µM glutamate are shown in Figure 

3.10 and Video 3.1. In both instances, the cultures were spontaneously active in all randomly 

selected example cells. The addition of TTX is an established method for blocking Na+ channels 

and preventing the subsequent sodium-mediated depolarisations necessary for action potential 

generation (Wasserstrom & Salata, 1988). In both cultures, TTX addition inactivated the baseline 

spontaneous calcium responses. This spontaneous calcium activity was then recovered by the 

addition of the excitatory neurotransmitter glutamate, with representative cells responding 

with large amplitude fluorescence increases of ≥0.5 ΔF/F in 8/10 traces for SCT and 7/10 traces 

for Axol. In all experiments, spontaneously active cells were inactivated by the addition of TTX 

and excited by glutamate (n=9 cs). In the representative example in Figure 3.10, the average 

Figure: 3.9 Artificial cerebrospinal fluid is the optimal perfusate for fluorescent (Fluo4-AM) 

calcium imaging of neural cultures. Human iPSC-derived neural cultures were spontaneously 

differentiated over 8 weeks in either Axol or SCT media. Cultures were then fluorescently 

calcium imaged in respective growth media and in artificial cerebrospinal fluid. The percentage 

of active cells calculated as those with ≥ one peak of calcium activity. Data is displayed as mean 

± SEM. N=3. *p< 0.05, **p< 0.01, ANOVA with Tukey’s multiple comparisons test.  
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change in fluorescence during spontaneous recordings were 107.95 ΔF/F and 125.29 ΔF/F for 

Axol and SCT, respectively.  

 

Treatment with TTX reduced the average fluorescence amplitude values of Axol to 90.77 ΔF/F 

and SCT to 121.24 ΔF/F, with glutamate causing large increases in fluorescence value to 140.24 

ΔF/F and 155.11 ΔF/F, respectively.  

Following initial investigation of functional calcium activity/responses, spontaneously 

differentiated cultures were assessed at each timepoint for baseline calcium activity. SCT had 

no significant effect on the percentage of active neurons at any timepoint (p= 0.1016, Appendix 

Figure A3). In contrast, Axol cells were significantly more active at 18 WIV compared with every 

other timepoint (W4: 3.40 ± 0.58%, n=18 cs,  p< 0.0001; W8: 14.57 ± 1.77%, n=27, p= 0.0013; 

W12: 7.59 ± 0.75%, n=36 cs, p< 0.0001; W18: 26.76 ± 4.93%, n=18, Appendix Figure A3). At 4 

WIV, cultures differentiated in SCT displayed significantly more active cells than Axol cultures 

(Axol: 3.399 ± 0.58%, SCT: 11.22 ± 1.27%, n=18 cs, p< 0.0001, Figure 3.11A). However, at 8 WIV, 

there was no significant difference observed between media groups (n=27 cs, p=0.36, Figure 

Figure 3.10: Responses of Axol and SCT spontaneously differentiated cultures to 1 μM 

tetrodotoxin (TTX) and 100 μM glutamate. Human iPSC-derived neural cultures were 

spontaneously differentiated over 8 weeks in either Axol (Blue; left) or SCT (Red; right) media. 

Cultures were then fluorescently calcium imaged using Fluo4-AM in aCSF to record baseline 

activity, then treated with TTX and glutamate. N= ≥6 coverslips from ≥2 biological 

differentiations. Solid black bar indicates the addition of respective condition.  
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3.11B). Figure 3.11C shows that SCT was significantly more active than Axol at W12 (Axol: 7.59 

± 0.75%, n=36 cs, p< 0.0001). In contrast, W18 displayed no significant difference between 

either media condition (n=18 cs, p= 0.4619, Figure 3.11).  
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Figure: 3.11 Comparisons of spontaneously differentiated cultures over 18 WIV. Human iPSC-

derived spontaneous neural cultures were differentiated over 12 weeks. Cultures were then 

fluorescently calcium imaged in aCSF to record baseline activity. Active cells were determined 

as those with a minimum of one peak of calcium-mediated activity (peak > 3x s.d baseline 

noise). (A) W4 Axol and SCT. (B) W8 Axol and SCT. (C) W12 Axol and SCT. (D) W18 Axol and SCT. 

Data is displayed as mean ± SEM. N=3. ****p< 0.0001, unpaired, Mann-Whitney.  
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3.2.3 Multi-electrode array recordings 

Whilst fluorescent calcium imaging is an invaluable optical method for monitoring cellular 

activity and responses to drug treatments, multi-electrode arrays (MEA) are a non-invasive, real-

time, multi-point measurement of putative action potentials and moreover, they yield an 

impression of network activity. Combined with calcium imaging, this gives a strong indication of 

the true responses of cultured cells. Spontaneous cultures were plated onto MEAs and their 

adherence monitored over time.  

Cells detached at various timepoints in every repeat (n=>40 MEA chips), with cells forming 

aggregates and fasciculation of neurites over extended periods in culture. Interestingly, the cells 

appeared to migrate back over the electrodes at some timepoints after initially detaching; 

however, there was a marked reduction in the number of electrodes underneath cultured 

neurons. Figure 3.12 shows that at 2 WIV, all 64 electrodes were covered, reducing to 21 

electrodes by 4 WIV. By 8 WIV this number had increased to 53 electrodes, however by 12 WIV, 

the entire culture had detached, with 0 electrodes covered. To combat the issue of adherence, 

two different MEA chips were purchased: carbon-based and platinum-based. 

In addition, MEAs were coated with several biological substrates: polyethyleneimine (PEI), poly-

d-L-ornithine (PDLO) and poly-L-ornithine (PORN) (Amin et al., 2016), on both chip types. Cells 

were seeded and differentiated over time. PORN on carbon-based MEA chips was found to be 

the most adherent coating substrate and this was used for all future experiments (data not 

shown). Despite the adherent properties of PORN cf PEI and PDLO, cell activity could only be 

assessed at W4 and W8 for 1 successful repeat (Figure 3.13). 
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Figure 3.12: Spontaneously differentiated NPCs over 12 WIV on planar MEA chips. 

Representative phase contrast images display the same cultured 64 carbon-coated 

electrodes over 12 weeks. WIV refers to number of weeks in vitro differentiation. N=10. Scale 

bar: 200 μm. 
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Figure 3.13: Spontaneous multi-electrode array responses of Axol and SCT- cultured cells at 

4 and 8 WIV. Cells were seeded and differentiated on carbon MEA chips over 8 weeks and 

baseline activity assessed using MEA analysis. (A) Traces of spiking activity, -0.015 mV was the 

minimum potential to denote action potential activity, whilst red lines above/below show 5 x 

standard deviation threshold. (B) Clustered activity relating to traces in A. (Left: Axol, Right: 

SCT). (C) Number of active electrodes where spikes recorded. (D) Average number of bursts 

per active electrode. (E) Duration of burst in each electrode. F) Average number of 

spikes/burst. N=1 in each condition.  
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3.3 Discussion 

In this Chapter, the morphological and functional characterisation of iPSC-derived 

spontaneously differentiated cultures has been achieved through ICC, qPCR, fluorescent calcium 

imaging and MEA analysis.  

Spontaneously differentiated cultures generate neurons, astrocytes, cortical cells and 
excitatory synapses 

The decision to present only qualitative ICC data arose from the realisation that as cultures 

matured, they became extremely dense. This culminated in the formation of large 3-

dimensional aggregates which were impossible to image using available fluorescent and 

confocal imaging (Appendix Figure A4). This is a common theme within this field and throughout 

our laboratory (Personal communication, Dr. Eric Hill). Only qualitative results for iPSC neuronal 

differentiations are usually presented (Odawara et al., 2014). Quantitation was possible for 

some early timepoints with some staining, but the results from one timepoint were of very little 

value, as comparisons with later timepoints was not possible. To maintain consistency 

throughout ICC experiments, a qualitative, rather than quantitative approach was preferred.  

The formation of distinctive neural rosettes in Axol and SCT media shows the potential of each 

media for neural differentiation and serves as a reliable indicator that cells have committed to 

a cortical, neuronal lineage (Shi et al., 2012a). Pax6 controls cortical development and is a 

reliable marker of cortical neurogenesis (Manuel et al., 2015), whereas Sox2 regulates iPSCs 

neural commitment and is highly expressed in proliferating neural progenitor cells (Zhang, 

2014). Whilst the ICC results show the relatively equal staining of both neural progenitors, 

differences were observed in the expression of Pax6 at W4, with Axol expressing significantly 

increased levels cf control, using qPCR. The expression of Sox2 decreased over 8 WIV compared 

to control in both conditions, consistent with the expectation that as cultures mature and cells 

terminally differentiate, the pool of progenitor stem cells should reduce from the earliest 

timepoints. Indeed, it has been demonstrated that constitutive expression of Sox2 results in the 
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maintenance of progenitor characteristics and inhibits neuronal differentiation (Graham et al., 

2003; Packard et al., 2016). An increase in Sox2 expression was observed with both growth 

medium at W12, which is likely due to the presence of matured astrocytes, as astrocytes are 

known to express Sox2 (Niu et al., 2015). There also exists the possibility that Pax6 expression 

in SCT was lower only at the timepoints recorded; Pax6 expression could have been higher 

between W0-W4, then reduced before levels were measured at W4. In either scenario, the 

expression of progenitors in both conditions, coupled with the positive ICC markers and cortical 

rosette formation, are strong indicators of a cortical neural differentiation.  

Cortical fate was confirmed with ICC of cortical layer markers. The presence of both Tbr1+ and 

SatB2+ cells complemented the results seen for early cortical neurogenesis. Whilst the 

qualitative results appear to show an increase in SatB2 expression for SCT, by W8, both cultures 

appear to have a similar expression of cortical layers. This suggests that both conditions can 

generate distinctive cortical cells as seen in vivo and agrees with the timeframes reported in 

vitro (Kuijlaars et al., 2016; Shi et al., 2012a) 

Despite the differences in neural progenitor expression in both media, it appears to have no 

effect on neuronal differentiation. Both media generated Tuj1+ neurons by 4 WIV, irrespective 

of their progenitor expression. qPCR indicates a reduction over time in TUBB3 expression, which 

could correlate with the emergence of neurons early in development. In both instances, Tuj1+ 

cells were observed from W4 throughout, displaying characteristic connective arrangements. 

Whilst DAPI+ nuclei can be observed throughout the culture, they occupy a very small area of 

the field of view, compared with the neurite extensions. It was not possible to assign a neural 

process to a cell body, particularly as the interconnectivity displayed made it impractical to 

distinguish between neurites of different cells.  

It is understood that gliogenesis occurs following neurogenesis in vivo (Tchieu et al., 2019) and 

this has been recapitulated in vitro (Shi et al., 2012a). For this reason, it was expected that the 
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emergence of S100β+ astrocytes would occur later than neurons. S100β expression is associated 

with a matured developmental stage in astrocyte development (Raponi et al., 2007), which is 

desirable in these cultures, as the endpoint is a mature neural culture. The results demonstrate 

an absence of astrocytes at W4, with the emergence of immature astrocytes at W8. The 

immaturity was confirmed by a lack of characteristic astrocytic morphology. Astrocytes are large 

cells, with distinctive processes, however, prior to W12, all S100β+ staining was localised to the 

nucleus, with no processes visible. By 12 WIV, both cultures were generating morphologically 

matured S100β+ astrocytes, which agrees with the results reported for spontaneous neural 

differentiations (Gunhanlar et al., 2017; Kuijlaars et al., 2016; Shi et al., 2012a). A significant 

increase in both Axol and SCT at 4 WIV for S100β expression could be suggestive of the cultures 

preparing for gliogenesis. This could also explain why the values decrease by W8, when 

immature astrocytes are beginning to be expressed. It was concluded that prior to W8, the 

cultures were morphologically immature as only neurons were present. 

Both cultures formed VGlut1+ excitatory synaptic vesicles within 4 weeks and continued to do 

so over the timepoints tested. It is understood that inhibitory GABAergic and glycinergic 

synaptogenesis precedes excitatory synaptogenesis in vivo (Soto et al., 2011) and GAD67 and 

vGAT were used to determine whether cultures expressed inhibitory cell types. Interneurons 

have been reported in spontaneously differentiated cortical cultures, albeit in small amounts 

(Gunhanlar et al., 2017; Kirwan et al., 2015; Shi et al., 2012a). The presence of interneurons in 

this instance is a paradoxical result, as interneurons do not develop in the cortex in vivo, but 

rather migrate in from the medial ganglionic eminence during neural development (Martini et 

al., 2009). As the 2D culture environment lacks any external brain region input, the presence of 

representative quantities of GABAergic cell types was not anticipated. In this instance, cultures 

were GAD67 negative for ICC at all timepoints, however, the qPCR expression data does suggest 

the presence of inhibitory subtypes, with statistical significance, which could be accounted for 

by the cellular system preparing for inhibitory synaptogenesis and the fact that excitatory 
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neurons can still express functional GABA receptors (Kirwan et al., 2015). It has been shown that 

if interneurons are present following spontaneous differentiation, they develop following 

excitatory neurons (Gunhanlar et al., 2017). However, interneurons may typically develop 

during extended periods of culture, or arrive and die out in the intermediate timepoints 

between the experiments in this Chapter. Indeed, increases in vGAT expression over time were 

observed and in addition, supplementary experiments were performed at 18 WIV, with only one 

repeat, due to apparatus failure. These preliminary expression results of Axol W18 were >5-fold 

higher than all other timepoints (Appendix Figure A5), suggesting the development of 

interneurons occurs at later timepoints in culture.   

A key parameter for assessing which media is superior was the emergence of different neural 

development markers, particularly matured astrocytes, as these appear at later stages of 

differentiation in vivo. However, the data conclusively shows that both Axol and SCT media 

differentiate cells into all expected cell subtypes at the same timepoints and that the absence 

of astrocytes in these cultures would constitute an immature system, prior to 8 WIV. Whilst ICC 

can qualitatively suggest the presence and morphology of cell types, it offers no consideration 

of functionality. Development of this assay requires cells which not only resemble their in vivo 

counterparts, but demonstrate functional activity and drug responses also. 

Both Axol and SCT media produced functionally active cultures 

Calcium imaging and MEA analysis were used to assess functional responses. Both conditions 

displayed more spontaneous activity when perfused with aCSF, therefore aCSF was chosen as 

the perfusate for all subsequent calcium imaging studies. These results disagree with those 

reported by Bardy et al., (2015), and further reflects the differences between cells in different 

culture systems. Whilst cells appeared responsive, eliciting asynchronous calcium-mediated 

activity, there was no evidence that the activity was electrical. In order to test this, TTX was 

added to the cultures, resulting in the immediate cessation of spontaneous activity.  
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Collectively, these results suggest that the activity observed which was blocked by TTX is a 

secondary effect of sodium-dependent action potentials, and confirms the cells are functionally 

active (Hill et al., 2012). Whilst these results give insight into the electrical ability of the cells, 

they provide no information on the receptors which the cultures may be expressing. Glutamate 

is the principal excitatory neurotransmitter in the mammalian CNS, with a wide range of 

ionotropic and metabotropic targets (Goodwani et al., 2017). Application of glutamate resulted 

in large fluorescence increases, indicating that the cultures became excited in response and 

hence, they express functional glutamatergic receptors. It was beyond the scope of this 

investigation to determine precisely which receptors were expressed.  

Having established that both cell conditions respond to different classes of pharmacological 

agent, the assessment of spontaneous activity over W4 to W18 was initiated, to determine if 

this identified an optimal differentiation medium. SCT-differentiated cultures were found to be 

significantly more active at W4 and W12, indicating a potential for SCT to be the better choice 

of growth medium.  

Optimisation of MEA experiments was a challenge, with different electrodes and coating 

reagents tested. Unfortunately, in every condition, the cells detached and recordings were not 

possible after early timepoints. As laminin is a component of the extracellular matrix and is 

necessary for cell adhesion and differentiation (Baur et al., 1995), various concentrations of 

laminin were also tested to see if adherence could be improved. Preliminary studies assessed 

functional responses when cultures were dense (WIV 1-3), although, as expected there was a 

lack of activity, probably due to cell immaturity (data not shown).  

The single successful recordings completed at W4 and W8 showed a lack of activity with Axol 

and low activity with SCT, even at W8, which is not in agreement with the literature. Odawara 

et al., (2014) showed that responses of iPSC-derived neurons increased from 3 WIV, with robust 

activity observed from 4 WIV. However, as only one repeat was successful, this was very 
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preliminary. It is important to clarify that MEA experiments were not performed in aCSF, but 

rather, in the respective growth medium. In contrast to calcium imaging experiments, for MEA 

studies, the same chips can be assessed over time, as the recordings are made in the incubator, 

in a sterile atmosphere and the technique is completely non-invasive. As the cells were still 

differentiating and MEA recordings were done at multiple timepoints, the sterile growth 

medium was chosen to study activity, rather than aCSF, which would have required filter 

sterilisation and would have posed a risk to culture sterility. Bardy et al., (2015) showed that 

SCT media was superior to standard media recipes for functional analyses, potentially due to 

physiologically-relevant concentrations of salts and factors as discussed above. Their work 

suggested neurobasal and DMEM recipes did not have representative concentrations of such 

components, and hence, produced weaker functional responses. Whilst the data generated 

here is very preliminary, it could be inferred that SCT might hold more promise than Axol 

medium for MEA recordings.  

PORN was found to be the ideal coating reagent for adherence and differentiation of iPSC-

derived NPCs. It was also preferable to use the same coating conditions as were used for calcium 

imaging, for consistency. As there was no issue with detachment of cells on glass coverslips, or 

on culture ware, it was concluded that the issue with MEA adherence was highly likely to be due 

to the MEA chips themselves. Indeed, a supplementary experiment was performed wherein 

MEA chips for a different MEA system were obtained and cultures were more adherent in this 

instance. These results differ to those of Amin et al., (2016), who found PDLO was the ideal 

substrate for MEA adherence. However, the results agree with the observation that PORN 

results in aggregation and fasciculation of neural cells over time (Amin et al., 2016).  

As the difference in medium was only presented following measurements of functionality, it 

was decided that the data required to determine a better medium needed to be more robust 

than just the morphological and basic functional results generated in this Chapter. Although SCT 
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MEA measurements appeared superior, only one experiment could be conducted. For these 

reasons, it could not be concluded with confidence which medium was better for spontaneous 

neural differentiation. In Chapter 4, a side-by-side comparison was performed to determine 

which condition led to more responsive cultures, and hence, which media would be an ideal 

option for development of the assay.  

The results of this chapter indicate that two leading growth media can successful generate 

excitatory cortical culture cells over 12 WIV differentiation. Moreover, as both conditions 

elicited action potential-dependent activity and excitatory neurotransmission, they were both 

assessed for their ability to generate seizure-like activity in Chapter 4.  
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Chapter 4 

4. INVESTIGATING THE ABILITY OF SPONTANEOUSLY DIFFERENTIATED 

iPSC-DERIVED NEURAL CULTURES TO GENERATE EPILEPTIFORM ACTIVITY 

4.1 Introduction 

Existing assays used to study epileptiform activity and seizure-like events (SLE) manipulate 

cellular processes in otherwise healthy tissue, in order to initiate seizurogenesis and generate 

SLE (Chapter 1.5). The induction of SLE is well-established in primary rodent in vitro models and 

brain slice assays, using agents which alter ion flux, neurotransmission and affect the whole 

electrical network (Accardi et al., 2018; Debanne et al., 2006; Easter et al., 2007; Gabriel et al., 

2004; Gonzalez-Sulser et al., 2011; Igelström et al., 2011; Pena & Tapia, 2000; Yaari et al., 1983, 

1986). In order to generate SLE, the system must form receptors/drug targets for the pro-

ictogenic conditions to exert their effects. In this Chapter, responses to a variety of ionic and 

pharmacological manipulations frequently used in rodent in vitro epilepsy studies were used to 

assess whether the system could respond to these conditions, as well as displaying ‘normal’ 

baseline activity.  

4.1.1 Manipulating cell excitability via ion flux  

Neuronal excitability is controlled by ion gradients (Chapter 1). The manipulation of ion levels in 

neurons can result in increased activity, leading to SLE. Changes to potassium (K+) and 

magnesium (Mg2+) levels are typically achieved by modulation of the bathing solution used to 

perfuse the cell/tissue for the experiment. In these studies, aCSF was the most appropriate 

perfusate for all conditions (Chapter 3).  

Elevated extracellular potassium concentrations ([K+]e) can lead to depolarisation, increased 

firing and burst-firing, all of which facilitate seizurogenesis. Furthermore, during seizure, [K+]e 

increases and extracellular sodium and calcium ([Na+]e/[Ca2+]e) decreases, due to neuronal 
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release and uptake, respectively (Raimondo et al., 2015). This can create a cycle of 

depolarisation, promoting further action potential discharge. Increasing potassium levels is an 

established method for generating SLE in vitro (Traynelis & Dingledine, 1988; Yaari et al., 1986). 

In addition, it has been demonstrated that iPSC-derived neurons can respond to high potassium 

solutions, with increased calcium-mediated activity (Tukker et al., 2016).  

Lowering the concentration of Mg2+ can affect the system at the network level, leading to 

recurrent SLE (Igelström et al., 2011; Pacico & Meur, 2014). ‘Normal’ matured activity is 

asynchronous, so for seizures to occur, multiple neurons need to be recruited in an unusually 

hypersynchronous manner (Jiruska et al., 2013; Vaughan & Delanty, 2003). Bursts are generated 

by sustained recurrent excitation, elicited by clusters of glutamatergic pyramidal neurons in the 

cortex, and followed by a period of hyperpolarisation. Recurrent excitation via NMDA and non-

NMDA glutamatergic receptor activation can further recruit and synchronise neurons into the 

seizurogenic activity (Debanne et al., 2006; McCormick & Contreras, 2001). This sequence of 

events is termed the paroxysmal depolarising shift (PDS). Normally, Mg2+ blocks the pore of the 

NMDA receptor. During the PDS, the membrane becomes depolarised to the point where the 

voltage-dependent Mg2+ block of NMDA receptors is released. When Mg2+ is lowered, NMDA 

receptors become permeable to Ca2+ which, alongside voltage-gated Na+ activation, induces 

long-lasting potentiation of glutamatergic transmission at pyramidal cell synapses (Staley & 

Dudek, 2006). Activation of multiple NMDA receptors further depolarises the cell and promotes 

increased Ca2+ influx (Vaughan & Delanty, 2003). Indeed, NMDA and AMPA receptor antagonists 

are known to suppress seizurogenesis (Rogawski, 1992). In this Chapter, magnesium was 

removed from the aCSF to attempt to induce increases in activity, via NMDA-receptor mediated 

excitation.  
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4.1.2 Pharmacological induction of SLE  

SLE can also be induced pharmacologically in rodent seizure models, with chemical and 

biological agents promoting increased bursts of activity from release of excitatory and inhibitory 

neurotransmitters, as discussed in Chapter 1.  

4.1.2.1  4-aminopyridine 

An agent now used in the therapy of multiple sclerosis, 4-aminopyridine (4-AP), is also an 

experimental compound widely used to induce SLE and increase neuronal activity in rodent 

models, however the mechanism of action is not entirely understood (Accardi et al., 2018; 

Bradley et al., 2018; Easter et al., 2007; Gonzalez-Sulser et al., 2011; Hongo et al., 2015; Kreir et 

al., 2018; Pena & Tapia, 2000). In addition, 4-AP has been shown to elicit recurrent 

depolarisations in human iPSC-derived networks (Matsuda et al., 2018; Pruunsild et al., 2017).  

Proposed mechanisms of 4-AP are all based on the evidence that it blocks transient K+ currents 

via antagonism of potassium channels. More specifically, 4-AP enters the Shaker family of 

potassium channels and will then only exit when the activation gate is open (Loboda & 

Armstrong, 2001). However, when 4-AP is inside the channel, its primary effect is to bias the 

activation gate towards the closed conformation, thus blocking the movement of K+ currents 

and prolonging action potentials by inhibiting repolarisation. The consequence of this is 

increased release of glutamate from nerve endings, causing overactivation of glutamate 

receptors. Paradoxically, under these conditions, GABA-mediated transmission may increase 

excitation and consequently, generate epileptiform activity (Pena & Tapia, 2000)  

This mechanism can also affect interneuronal populations. The K+-interneuron accumulation 

hypothesis (Perreault & Avoli, 1991) suggests that the firing of interneurons transiently 

increases the [K+]e, via K+ repolarising conductances. However, this extracellular change will 

cause other interneurons to fire AP, with increased K+
e accumulation enhancing the excitability 
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of neighbouring interneurons. This promotes a cycle of positive feedback, the result of which is 

increased neuronal discharges (González et al., 2018).  

4.1.2.2 Picrotoxin 

GABA antagonism is a major mechanism of seizurogenesis, as the inhibition of GABA’s inhibitory 

mode of action results in increased excitation (Olsen & DeLorey, 2012). A variety of GABAA 

receptor antagonists can be selected to cause SLE. Commonly used are: gabazine, picrotoxin 

(PTX), bicuculline and pentylenetetrazol (Bradley et al., 2018; Easter et al., 2007; Fan et al., 2019; 

Hongo et al., 2015). Although mainly used to induce SLE in vivo, pentylenetetrazol is also used 

in vitro (Easter et al., 2009). Gabazine is a competitive antagonist of GABA receptors (Ueno et 

al., 1997) and has also been used in iPSC-derived neural cultures to assess network activity 

(Kuijlaars et al., 2016) and to generate epileptiform activity (Ishii et al., 2017). Although several 

GABA antagonists with pro-ictogenic effects exist, not all mechanisms are understood. In this 

study, PTX was selected for GABA antagonism, as it has a well-understood mode of action: non-

competitive GABAA receptor chloride antagonism, binding preferentially to an agonist bound 

state (open/closed or both conformations) (Newland & Cull‐Candy, 1992). In addition, PTX has 

been shown to elicit increased activity in iPSC cultures (Kuijlaars et al., 2016; Tukker et al., 2018; 

Verheyen et al., 2015; Zhang et al., 2016) and as such, provided an ideal antagonist for 

comparison in the iPSC-derived cultures in this thesis.    

4.1.3 Proposal for a panel of agents for seizure-liability testing  

As the fundamental aim of iPSC-derived seizure liability models (including the work of this 

thesis), is to provide a suitable addition to pre-clinical toxicity testing, a validatory panel of 

agents, which should be considered for all methods attempting to test seizure-liability, is 

proposed (Table 4.1). This panel is based on previous neurotoxicity screening studies performed 

on rodent cultures (Bradley et al., 2018; Easter et al., 2007, 2009; Fan et al., 2019; Mack et al., 

2014).  
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The panel chosen reflects commonly used compounds for inducing SLE and to the author’s  

knowledge, no iPSC-derived models have been tested and have responded to all of these 

conditions. It would also be advantageous to determine the effects of ionic manipulation on 

cultures, particularly as these are widely used for in vitro seizure studies, however, these are 

not routinely used in drug screening.  

In support of the inclusion of human models in the battery of pre-clinical safety pharmacology 

tests, all models should be able to generate epileptiform activity in response to these drugs as 

a minimum attribute, as has been shown reproducibly in several validated rodent systems.  

Table 4.1: Proposed panel of seizurogenic drugs for validation of iPSC-derived seizure-liability 
testing platforms. VG = voltage-gated. The exact mechanism of action of PTZ is unknown, 
however it has been shown to act upon GABA receptors (Bradley et al., 2018). 

Condition Class Target References 

4-aminopyridine 
(4-AP) 

VG-Potassium channel 
blocker 

Potassium channels 
Easter et al., 2007/9;  
Bradley et al., 2018; 

Fan et al., 2019 

Picrotoxin 
(PTX) 

GABA A antagonist 
(non-competitive) 

GABA A Receptor 

Easter et al., 2007; 
Mack et al., 2014; 

Bradley et al., 2018; 
Fan et al., 2019 

Pentylenetetrazol 
(PTZ) 

Convulsant 
GABA receptor 

(expected) 

Easter et al., 2007/9;  
Bradley et al., 2018; 

Fan et al., 2019 

Bicuculline 
GABA antagonist 

(competitive) 
GABA A receptor 

Mack et al., 2014; 
Bradley et al., 2018; 

Fan et al., 2019 

 

The aims of this Chapter are to: 

1)  Assess whether iPSC-derived spontaneously differentiated neural cultures respond to 

4-aminopyridine, picrotoxin and zero magnesium/high potassium aCSF with increased 

and synchronised activity, using fluorescent calcium imaging. 

2) Determine to what extent different growth medium (Axol and SCT) influences the 

above outcomes. 
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4.2 Results 

The results of Chapter 3 indicate that spontaneously differentiated human iPSC-derived neural 

cultures in Axol and SCT media are capable of generating various neural subtypes, which elicit 

basic functional responses to the excitatory neurotransmitter glutamate and also display action 

potential-dependent activity, as demonstrated by TTX addition. In order to determine whether 

these cultures were capable of epileptiform activity, cells were spontaneously differentiated 

over 18 weeks in vitro (WIV) and assessed periodically at the same timepoints as Chapter 3, as 

the results of Chapter 3 indicated cultures differentiated in both Axol and SCT media generated 

excitatory synapses and displayed functional calcium-mediated activity by 4 WIV. Fluorescent 

calcium imaging was chosen as the technique of assessing seizure induction, as far as can be 

determined, this is a novel approach to testing seizure-like activity in human iPSC-derived 

cultures.   

At each time point, cultures were perfused with different pro-ictogenic conditions of diverse 

mechanisms of action (as per Chapter 4.1). For all timepoints and drug conditions, the data is 

displayed in the same way, comprising a representative fluorescently-stained snapshot of the 

cultures with associated regions of interest (ROI), example traces from the ROI, raster plots of 

example spike data and various other parameters of epileptiform activity.   

4.2.1 4 WIV Testing 

Cells cultured in Axol medium did not respond significantly to 100 µM 4-aminopyridine (4-AP) 

in percentage active cells, peaks per cell, burst frequency, percentage synchronised elevations 

or R value (Figure 4.1). However, the percentage of responding cells of SCT-differentiated 

cultures to 100 µM 4-AP was significantly increased (Control: 14.17 ± 1.61%, 4-AP: 23.85 ± 

4.29%, n=9 coverslips from 3 differentiations (cs), p= 0.0395). In addition, there was an increase 

in R value observed for SCT (Control: -1.20 ± 0.02, 4-AP: -0.47 ± 0.26, n=9 cs, p= 0.0178, Figure 

4.1H).  
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Figure 4.1: Fluorescent calcium imaging responses of spontaneously differentiated human 

iPSC-derived neural cultures to 4-aminopyridine at 4 WIV. (A) Cells cultured in either Axol 

(upper, blue throughout) or SCT (lower, red throughout) media were loaded with 5 µM Fluo4-

AM for imaging. (B) Time-lapse videos were recorded at 0.33 Hz, with representative figures 

showing 10 example, random fluorescent traces related to yellow regions of interest in (A). (C) 

Representative Raster plot. Spikes were identified manually and plotted over time to identify 

synchronised events. (D) Responding cells were determined as those with ≥ one peak of calcium 

activity. (E) Calcium peaks per active cell. (F) Frequency of calcium events per minute. (G-H) 

Quantitative measures of synchrony. (G) % synchronised cells relating to (C). (H) Average R value 

was calculated by performing a Pearson’s correlation of the spike data generated for (C), then 

performing a Fisher’s z-transformation. Data in D-H is displayed as mean ± SEM from N=3 

separate neural differentiations. *p< 0.05, 2-way ANOVA with Tukey’s multiple comparisons 

test. Scale bar: 5 µm. Solid black bar in B-C indicates addition of 100 µM 4-AP. 
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Figure 4.2: Fluorescent calcium imaging responses of spontaneously differentiated human 

iPSC-derived neural cultures to zero-magnesium aCSF perfusion at 4 WIV. (A) Cells cultured 

in either Axol (upper) or SCT (lower) media were loaded with 5 µM Fluo4-AM for imaging. (B) 

Time-lapse videos were recorded at 0.33 Hz, with representative figures showing 10 example, 

random fluorescent traces related to yellow regions of interest in (A). (C) Representative 

Raster plot. Spikes were identified manually and plotted over time to identify synchronised 

events. (D) Responding cells were determined as those with ≥ one peak of calcium activity. (E) 

Calcium peaks per active cell. (F) Frequency of calcium events per minute. (G-H) Quantitative 

measures of synchrony. (G) % synchronised cells relating to (C). (H) Average R value of the 

spike data generated for (C). Data in D-H is displayed as mean ± SEM. N=3. *p< 0.05, ****p< 

0.0001, 2-way ANOVA with Tukey’s multiple comparisons test. Scale bar: 5 µm. Solid black bar 

in B-C indicates addition of 0 Mg
2+

 aCSF. 



101 
 

Indeed, the percentage of responding cells in SCT was statistically greater than that of cells 

cultured in Axol media (Axol: 3.07 ± 0.98%; SCT: 14.17 ± 1.61%, n=9 cs, p= 0.0145, Figure 4.1D). 

Moreover, whilst largely statistically insignificant, the average responses of Axol and SCT to 4-

AP increased in every instance, with the exception of burst frequency, where a non-significant 

decrease was observed in both conditions (Figure 4.1F). The control values for each parameter 

were consistently higher in SCT than that of Axol and in addition, the response to drug was 

higher in SCT than that of Axol (Figure 4.1D-H).  

Axol and SCT cultures displayed a significant increase in percentage of responding cells to zero-

magnesium aCSF perfusion (0 Mg) (Axol Control: 3.73 ± 0.68, 0 Mg: 11.27 ± 2.56, n=9 cs, p= 

0.0459; SCT Control: 8.26 ±1.44, 0 Mg: 17.18 ± 2.46, n=9 cs, p= 0.0138, Figure 4.2D). 0 Mg aCSF 

perfusion also significantly increased the number of peaks per cell for SCT at 4 WIV (Control: 

1.43 ± 0.13, 0Mg: 2.39 ± 0.33, n=9 cs, p= 0.0063, Figure 4.2E) and both conditions presented a 

highly significant reduction in burst frequency, despite the increase in other markers of activity 

(Axol Control: 0.23 ± 0.01, 0 Mg: 0.11 ± 0.01, n=9 cs, p = <0.0001; SCT Control: 0.30 ± 0.02, 0 Mg:  

0.16 ± 0.02, n=9 cs, p< 0.0001, Figure 4.2F).  

4.2.2 8 WIV Testing 

Similarly to 4 WIV, at 8 WIV Axol cultures did not present any significant response to 4-AP, 

despite increases compared with control in all metrics of activity except burst frequency, which 

again decreased (Figure 4.3D-H). In contrast, SCT cultures displayed a significant increase in 

number of peaks per cell (Control: 1.61 ± 0.16, 4-AP: 2.86 ± 0.42, n=9 cs, p= 0.005, Figure 4.3E).  

SCT culture responses to 0 Mg also resulted in significant increases in the percentage of 

responding cells (Control: 17.00 ± 4.14, 0Mg: 34.04 ± 2.58, n=9 cs, p= 0.004, Figure 4.4D) and 

peaks per cell (Control: 1.55 ± 0.16, 0Mg: 2.81 ± 0.38, n=9 cs, p= 0.002, Figure 4.4E).  
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Figure 4.3: Fluorescent calcium imaging responses of spontaneously differentiated human 

iPSC-derived neural cultures to 4-aminopyridine perfusion at 8 WIV. (A) Cells cultured in 

either Axol (upper) or SCT (lower) media were loaded with Fluo4-AM for imaging. (B) Time-

lapse videos were recorded at 0.33 Hz, with representative figures showing 10 example, 

random fluorescent traces related to yellow regions of interest in (A). (C) Representative 

Raster plot. Spikes were identified manually and plotted over time to identify synchronised 

events. (D) Responding cells were determined as those with ≥ one peak of calcium activity. 

(E) Calcium peaks per active cell. (F) Frequency of calcium events per minute. (G-H) 

Quantitative measures of synchrony. (G) % synchronised cells relating to (C). (H) Average R 

value of the spike data generated for (C). Data in D-H is displayed as mean ± SEM. N=3. **p< 

0.01, 2-way ANOVA with Tukey’s multiple comparisons test. Scale bar: 5 µm. Solid black bar 

in B-C indicates addition of 100 µM 4-AP.  
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Figure 4.4: Fluorescent calcium imaging responses of spontaneously differentiated human 

iPSC-derived neural cultures to zero-magnesium aCSF perfusion at 8 WIV. (A) Cells cultured 

in either Axol (upper) or SCT (lower) media were loaded with 5 µM Fluo4-AM for imaging. (B) 

Time-lapse videos were recorded at 0.33 Hz, with representative figures showing 10 example, 

random fluorescent traces related to yellow regions of interest in (A). (C) Representative 

Raster plot. Spikes were identified manually and plotted over time to identify synchronised 

events. (D) Responding cells were determined as those with ≥ one peak of calcium activity. (E) 

Calcium peaks per active cell. (F) Frequency of calcium events per minute. (G-H) Quantitative 

measures of synchrony. (G) % synchronised cells relating to (C). (H) Average R value of the 

spike data generated for (C). Data in D-H is displayed as mean ± SEM. N=3. **p< 0.01, 2-way 

ANOVA with Tukey’s multiple comparisons test. Scale bar: 5 µm. Solid black bar in B-C indicates 

addition of 0 Mg
2+

 aCSF. 
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Figure 4.5: Fluorescent calcium imaging responses of spontaneously differentiated human 

iPSC-derived neural cultures to picrotoxin at 8 WIV. (A) Cells cultured in either Axol (upper) 

or SCT (lower) media were loaded with 5 µM Fluo4-AM for imaging. (B) Time-lapse videos were 

recorded at 0.33 Hz, with representative figures showing 10 example, random fluorescent 

traces related to yellow regions of interest in (A). (C) Representative Raster plot. Spikes were 

identified manually and plotted over time to identify synchronised events. (D) Responding cells 

were determined as those with ≥ one peak of calcium activity. (E) Calcium peaks per active 

cell. (F) Frequency of calcium events per minute. (G-H) Quantitative measures of synchrony. 

(G) % synchronised cells relating to (C). (H) Average R value of the spike data generated for (C). 

Data in D-H is displayed as mean ± SEM. N=3. *p< 0.05, **p< 0.01, 2-way ANOVA with Tukey’s 

multiple comparisons test. Scale bar: 5 µm. Solid black bar in B-C indicates addition of 100 µM 

PTX. 
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The addition of 100 μM picrotoxin (PTX) at 8 WIV increased the number of peaks per cell in both 

conditions (Axol control: 0.01 ± 0.02, PTX: 0.29 ± 0.02, n=9 cs, p= 0.005; SCT control: 0.21 ± 0.04, 

PTX: 0.41 ± 0.06, n=9 cs, p= 0.0034, Figure 4.5E). Additionally, SCT control displayed a significant 

increase in burst frequency compared to Axol control (Axol: 0.25 ± 0.01, SCT: 0.33 ± 0.03, n=9 

cs, p= 0.043, Figure 4.5F).  

Neither condition significantly increased synchronised activity in any ictogenic conditions tested 

at 8 WIV (Figures 4.3-5). R values for all Axol control and 4-AP repeats were zero (Figure 4.3H). 

In addition, the burst frequency response for all conditions at 8 WIV was not statistically 

different (Figures 4.3/4/5H). 

4.2.3 12 WIV Testing 

4-AP treatment at 12 WIV resulted in an increase in peaks per cell for SCT (Control: 1.61 ± 0.19, 

4-AP: 2.75 ± 0.46, n=9 cs, p= 0.017, Figure 4.6E), whereas the only significant effect on Axol 

cultures was the reduction in burst frequency compared wth control (Control: -0.67 ± 0.02, 4-

AP: -0.86 ± 0.03, n=9 cs, p= 0.024, Figure 4.6F).  

Axol cultures responded significantly to 0 Mg aCSF with an increase in percentage of responding 

cells (Control: 0.93 ± 0.09%, 0Mg: 1.29 ± 0.11%, n=9 cs, p= 0.05, Figure 4.7D). Neither culture 

displayed significant increases in percentage of synchronised elevations (Figure 4.7G), however 

SCT produced a significant increase in log R value (Control: -1.35 ± 0.05, 0Mg: -0.32 ± 0.13, n=9 

cs, p= 0.001, Figure 4.7H).  

PTX elicited a significant response in percentage of responding cells from Axol (Control: 6.83 ± 

1.31%, PTX: 18.19 ± 2.21%, n=9 cs, p= 0.01, Figure 4.8D). In contrast, SCT showed no significant 

response to PTX, with the exception of a signficant reduction in burst frequency (Control: 0.29 

± 0.03, PTX: 0.17 ± 0.02, n=9 cs, p= 0.002, Figure 4.8F). 

High potassium aCSF perfusion (>K+) was chosen as an additional test for 12 WIV, intended to 

excite the morphologically matured system, as Chapter 3 indicated all cellular subtypes were 
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present by this stage. Whilst the only statistically significant result from >K+ perfusion was the 

percentage of responding cells in Axol (Control: 0.89 ± 0.10%, >K+: 1.37 ± 0.03%, n=9 cs, p= 

0.0014, Figure 4.9D), >K+ resulted in the greatest percentage of synchronised cells and peaks 

per cell values seen throughout W12 testing (Figures 4.6-9). Of particular importance is the 

distribution of data observed throughout Figure 4.9D-H for SCT cultures. For all studies, 

(excluding log-tranformed data in E), the distribution shows an isolated ‘anomalous’ value 

higher than the normal distribution. This is discussed in section 4.2.5.  

Continuing the trend of W4 and W8, SCT controls were higher than those of Axol controls 

throughout all W12 treatments, with the sole exception of the R values generated in >K+ (Figure 

4.9H). Importantly, all of these comparisons again were not statistically significant.  
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Figure 4.6: Fluorescent calcium imaging responses of spontaneously differentiated human 

iPSC-derived neural cultures to 4-aminopyridine at 12 WIV. (A) Cells cultured in either Axol 

(upper) or SCT (lower) media were loaded with 5 µM Fluo4-AM for imaging. (B) Time-lapse 

videos were recorded at 0.33 Hz, with representative figures showing 10 example, random 

fluorescent traces related to yellow regions of interest in (A). (C) Representative Raster plot. 

Spikes were identified manually and plotted over time to identify synchronised events. (D) 

Responding cells were determined as those with ≥ one peak of calcium activity. (E) Calcium 

peaks per active cell. (F) Frequency of calcium events per minute. (G-H) Quantitative 

measures of synchrony. (G) % synchronised cells relating to (C). (H) Average R value of the 

spike data generated for (C). Data in D-H is displayed as mean ± SEM. N=3.*p< 0.05, 2-way 

ANOVA with Tukey’s multiple comparisons test. Scale bar: 5 µm. Solid black bar in B-C 

indicates addition of 100 µM 4-AP. 



108 
 

 

Figure 4.7: Fluorescent calcium imaging responses of spontaneously differentiated human 

iPSC-derived neural cultures to zero-magnesium aCSF perfusion at 12 WIV. (A) Cells cultured 

in either Axol (upper) or SCT (lower) media were loaded with Fluo4-AM for imaging. (B) Time-

lapse videos were recorded at 0.33 Hz, with representative figures showing 10 example, 

random fluorescent traces related to yellow regions of interest in (A). (C) Representative 

Raster plot. Spikes were identified manually and plotted over time to identify synchronised 

events. (D) Responding cells were determined as those with ≥ one peak of calcium activity. (E) 

Calcium peaks per active cell. (F) Frequency of calcium events per minute. (G-H) Quantitative 

measures of synchrony. (G) % synchronised cells relating to (C). (H) Average R value of the 

spike data generated for (C). Data in D-H is displayed as mean ± SEM. N=3. *p< 0.05, **p  

<0.01, ***p< 0.001, 2-way ANOVA with Tukey’s multiple comparisons test. Scale bar: 5 µm. 

Solid black bar in B-C indicates addition of 0 Mg
2+

 aCSF. 
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Figure 4.8: Fluorescent calcium imaging responses of spontaneously differentiated human 

iPSC-derived neural cultures to picrotoxin at 12 WIV. (A) Cells cultured in either Axol 

(upper) or SCT (lower) media were loaded with 5 µM Fluo4-AM for imaging. (B) Time-lapse 

videos were recorded at 0.33 Hz, with representative figures showing 10 example, random 

fluorescent traces related to yellow regions of interest in (A). (C) Representative Raster plot. 

Spikes were identified manually and plotted over time to identify synchronised events. (D) 

Responding cells were determined as those with ≥ one peak of calcium activity. (E) Calcium 

peaks per active cell. (F) Frequency of calcium events per minute. (G-H) Quantitative 

measures of synchrony. (G) % synchronised cells relating to (C). (H) Average R value was of 

the spike data generated for (C). N=3. **p< 0.01, 2-way ANOVA with Tukey’s multiple 

comparisons test. Scale bar: 5 µm. Solid black bar in B-C indicates addition of 100 µM PTX. 
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Figure 4.9: Fluorescent calcium imaging responses of spontaneously differentiated human 

iPSC-derived neural cultures to high potassium (>K
+
) aCSF perfusion at 12 WIV. (A) Cells 

cultured in either Axol (upper) or SCT (lower) media were loaded with 5 µM Fluo4-AM for 

imaging. (B) Time-lapse videos were recorded at 0.33 Hz, with representative figures showing 

10 example, random fluorescent traces related to yellow regions of interest in (A). (C) 

Representative Raster plot. Spikes were identified manually and plotted over time to identify 

synchronised events. (D) Responding cells were determined as those with ≥ one peak of 

calcium activity. (E) Calcium peaks per active cell. (F) Frequency of calcium events per minute. 

(G-H) Quantitative measures of synchrony. (G) % synchronised cells relating to (C). (H) Average 

R value was calculated by performing a Pearson’s correlation of the spike data generated for 

(C). Data in D-H is displayed as mean ± SEM. N=3. **p< 0.01, 2-way ANOVA with Tukey’s 

multiple comparisons test. Scale bar: 5 µm. Solid black bar in B-C indicates addition of elevated 

potassium aCSF. 
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4.2.4 18 WIV Testing 

18 WIV cultures did not display statistically significant responses to 4-AP, however in both media 

conditions, a significant decrease in burst frequency was observed (Axol control: 0.29 ± 0.03, 4-

AP: 0.16 ± 0.02, n=9 cs, p= 0.0007; SCT control: 0.27 ± 0.02, n=9 cs, 4-AP: 0.16 ± 0.02, n=9 cs, p= 

0.0041, Figure 4.10F). Interestingly, the SCT culture control values were all lower cf Axol culture 

control values, except for R value (Figure 4.10D-H), which was different to all previous 

experiments.  

0 Mg elicited significant responses in percentage responding cells (Control: 14.69 ± 3.5%, 0Mg: 

32.08 ± 5.85%, n=6 cs, p= 0.037, Figure 4.11D) and peaks per cell (Control: 1.23 ± 0.08, 0Mg: 

1.75 ± 0.9, n=6 cs, p= 0.032, Figure 4.11E) for Axol cultures, whilst SCT did not display any 

significant increases. Interestingly, both cultures significantly decreased bursting frequency 

whilst in drug (Axol Control: 0.25 ± 0.02, 0Mg: 0.15 ± 0.02, n=6 cs, p= 0.03; SCT Control: 0.3 ± 

0.03, 0Mg: 0.14 ± 0.02, n=6 cs, p= 0.0006, Figure 4.11F). 

When PTX was perfused to W18 cultures, peaks per cell were significantly increased for SCT 

cultures (Control: 1.4 ± 0.17, PTX: 2.21 ± 0.26, n=6 cs, p= 0.001, Figure 4.12E), and significant 

decreases observed for burst frequency in Axol (Control: 0.23 ± 0.01, PTX: 0.12 ± 0.01, n=6 cs, 

p= 0.03, Figure 4.12F). Both cultures displayed a lack of synchronised activity. Axol control and 

PTX R values were all zero (Figure 4.12H). 
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Figure 4.10: Fluorescent calcium imaging responses of spontaneously differentiated human 

iPSC-derived neural cultures to 4-aminopyridine perfusion at 18 WIV. (A) Cells cultured in 

either Axol (upper) or SCT (lower) media were loaded with 5 µM Fluo4-AM for imaging. (B) 

Time-lapse videos were recorded at 0.33 Hz, with representative figures showing 10 example, 

random fluorescent traces related to yellow regions of interest in (A). (C) Representative 

Raster plot. Spikes were identified manually and plotted over time to identify synchronised 

events. (D) Responding cells were determined as those with ≥ one peak of calcium activity. (E) 

Calcium peaks per active cell. (F) Frequency of calcium events per minute. (G-H) Quantitative 

measures of synchrony. (G) % synchronised cells relating to (C). (H) Average R value of the 

spike data generated for (C). Data in D-H is displayed as mean ± SEM from N=2 separate neural 

differentiations. **p< 0.01, ***p< 0.001, 2-way ANOVA with Tukey’s multiple comparisons 

test. Scale bar: 5 µm. Solid black bar in B-C indicates addition of 100 µM 4-AP. 
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Figure 4.11: Fluorescent calcium imaging responses of spontaneously differentiated 

human iPSC-derived neural cultures to zero-magnesium aCSF perfusion at 18 WIV. (A) Cells 

cultured in either Axol (upper) or SCT (lower) media were loaded with 5 µM Fluo4-AM for 

imaging. (B) Time-lapse videos were recorded at 0.33 Hz, with representative figures 

showing 10 example, random fluorescent traces related to yellow regions of interest in (A). 

(C) Representative Raster plot. Spikes were identified manually and plotted over time to 

identify synchronised events. (D) Responding cells were determined as those with ≥ one 

peak of calcium activity. (E) Calcium peaks per active cell. (F) Frequency of calcium events 

per minute. (G-H) Quantitative measures of synchrony. (G) % synchronised cells relating to 

(C). (H) Average R value of the spike data generated for (C). Data in D-H is displayed as mean 

± SEM. N=2. *p< 0.05, ***p< 0.001, 2-way ANOVA with Tukey’s multiple comparisons test. 

Scale bar: 5 µm. Solid black bar in B-C indicates addition of 0 Mg
2+ 

aCSF. 
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Figure 4.12: Fluorescent calcium imaging responses of spontaneously differentiated 

human iPSC-derived neural cultures to picrotoxin at 18 WIV. (A) Cells cultured in either 

Axol (upper) or SCT (lower) media were loaded with 5 µM Fluo4-AM for imaging. (B) Time-

lapse videos were recorded at 0.33 Hz, with representative figures showing 10 example, 

random fluorescent traces related to yellow regions of interest in (A). (C) Representative 

Raster plot. Spikes were identified manually and plotted over time to identify synchronised 

events. (D) Responding cells were determined as those with ≥ one peak of calcium activity. 

(E) Calcium peaks per active cell. (F) Frequency of calcium events per minute. (G-H) 

Quantitative measures of synchrony. (G) % synchronised cells relating to (C). (H) Average R 

value of the spike data generated for (C). Data in D-H is displayed as mean ± SEM. N=2. *p< 

0.05, **p< 0.01, 2-way ANOVA with Tukey’s multiple comparisons test. Scale bar: 5 µm. Solid 

black bar in B-C indicates addition of 100 µM PTX. 
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4.2.5 ‘Anomalous’ result from 12 WIV elevated potassium 

As mentioned previously, a particular culture appeared to display a greater response in activity 

than the others tested. This result warranted an individual presentation of analysis, due to its 

obvious highly active, synchronised response to >K+ aCSF. As this was an isolated culture, 

statistical analysis was not possible, however, due to the nature of the activity, a plethora of 

additional analyses fitting of epileptiform activity could be performed (Hongo et al., 2015). This 

culture can be found as ‘Video 4.1’ in the supplementary video files. 

Figure 4.13B shows a clear increase in activity, with each randomly sampled ROI displaying 

elevations >1ΔF/F. The spike raster plot in Figure 4.13C also indicates a clear synchronisation 

amongst the cells in culture. Sparse activity is observed prior to >K+ perfusion, then all cells 

display synchronised activity, depicted by the solid vertical lines.  

In contrast to every other culture and condition, every single parameter saw an increased 

response from this culture. Of particular note is the burst frequency (Figure 4.13F), which 

displayed a 2.6-fold increase, which was not observed in any other culture tested. 94% of cells 

responded to the drug (Figure 4.13D), with 98% of these cells in the field of view displaying 

highly synchronised activity; further confirmed by an R value of 1.0 (Figure 4.13G-H).  

More complex analysis was possible for this culture, given the magnitude of the responses. The 

area calcium events occupied and their amplitudes were both increased over 3-fold and 11-fold 

from control, respectively (Figure 4.13I-J). Moreover, duration of bursts decreased in the 

presence of >K+ and the inter-burst-interval (IBI) ie, the time between events, was also 

decreased 1.6-fold in the presence of >K+ (Figure 4.13K-L). 
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Figure 4.13 – Epileptiform response of SCT-cultured cells to >K
+
 perfusion at 12 WIV. (A) Cells 

were cultured in SCT media for 12 weeks and loaded with 5 μM Fluo4-AM for fluorescent 

calcium imaging. (B) Time-lapse videos were recorded at 0.33 Hz, with representative figures 

showing 10 example, random fluorescent traces related to yellow regions of interest in (A). (C) 

Representative Raster plot. Spikes were identified manually and plotted over time to identify 

synchronised events. (D) Responding cells were determined as those with ≥ one peak of 

calcium activity. (E) Calcium peaks per active cell. (F) Frequency of calcium events per minute. 

(G-H) Quantitative measures of synchrony. (G) % synchronised cells relating to (C). (H) Average 

R Value. (I) Area calcium event occupied. (J) Amplitude of calcium events. (K) Duration of 

calcium events. (L) Time between calcium events. N=1. Scale bar: 5 μm. Solid black bar in B-C 

indicates addition of elevated potassium aCSF.   
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4.3 Discussion 

The aim of this chapter was to determine whether spontaneously differentiated human neural 

precursor stem cells were capable of responding to pro-ictogenic conditions. The endpoints of 

the study assessed hyperexcitability, hypersynchrony and bursting: the hallmarks of 

epileptiform activity (Avoli & Jefferys, 2016). The use of fluorescent calcium imaging to test this 

presented an added benefit of enabling the visualisation of potential synchronised responses 

and interconnectivity of neural networks. 

Cultures were tested from 4 to 18 WIV, as iPSC-derived cultures can fire AP as early as 3 WIV 

(Odawara et al., 2014) and indeed, functional calcium-mediated activity was observed in these 

cultures at 4 WIV (Chapter 3). For this reason, cultures and their responses to seizurogenic 

treatments were assessed from 4 WIV. From the outset, it was suspected that the responses 

would not be significant, due to an immature neuronal culture (Amin et al., 2016). Particularly 

for Axol cells, as 4 WIV was found to have significantly lower levels of activity cf later timepoints 

(Appendix Figure A3). Despite those suspicions, SCT cultured cells did display significant 

responses to both 4-AP and 0 Mg, albeit only in one parameter. As the criteria determined for 

epileptiform responses were both increased activity and synchrony, these responses were not, 

therefore, categorised as ictal.  

Picrotoxin was not selected for experiments at 4 WIV. This decision was based on results of 

Chapter 3 indicating the total absence of GAD67+ interneurons and the results of Gunhanlar et 

al., (2017), who reported the generation of GAD67+ synapses from their spontaneous 

differentiation, but not until 6-8 WIV. This means that even if the spontaneous cultures did 

generate interneuronal populations, as has been reported in several instances (Gunhanlar et al., 

2017; Kirwan et al., 2015; Shi et al., 2012a), 4 WIV would be too soon to see a response. Indeed, 

PTX did not generate epileptiform activity at any timepoint in either condition, which is likely 

due to the absence of GABAergic interneurons and inhibitory circuits; the primary target of PTX 

(Avoli & Jeffreys, 2016). 
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4-AP was selected for study due to its use as an epileptic agent (Avoli & Jeffreys, 2016). As the 

target of 4-AP is neuronal potassium channels, testing 4-AP from 4 WIV was decided, as 

theoretically, the cellular targets should have been present with the emergence of neurons. 

Over the 18 weeks, several isolated significant increases in parameters were observed,  but no 

timepoint or media produced significant responses across the panel of endpoints. In fact, the 

only culture which appeared to respond with increased synchrony and increased activity metrics 

to 4-AP was 4 WIV SCT cultures. However, the number of peaks per cell and percentage of 

synchronised cells were not found to be significant, which would be expected from a highly 

active, synchronous culture displaying epileptiform activity. The slight discrepancy in values 

could be explained by the fact that more cells became active in the presence of 4-AP, but only 

displayed a single or very few peaks. This could account for the number of peaks not significantly 

increasing. Furthermore, the significance reported in R values could be an increase in synchrony 

between these few new peaks in the presence of drug. The absence of significant increases in 

percentage synchronised cells suggests that the newly active cells were displaying peaks 

randomly, not typical of epileptiform activity. Of interest was that the bursting frequency was 

reduced, which would not be expected in an epileptiform culture, as the bursts should be more 

frequent compared with control. Taken together, these results do confirm that SCT at 4 WIV 

responds to 4-AP, but not with epileptiform activity. This is most likely due to the immaturity of 

the culture and lack of refined synaptic circuits, which is a pre-requisite for synchronised 

epileptiform activity (Ishii et al., 2017).  

0 Mg aCSF was selected as a pro-ictogenic condition, owed to its role in NMDA receptor-

mediated excitation of cultures (Isaev et al., 2012). Similarly to 4-AP, some cultures and 

timepoints responded significantly to 0 Mg perfusion, but significant increases were not 

observed in all assessment endpoints in any experiment. Again, only one condition produced 

significant responses in activity and synchrony, which was Axol W18. Despite significant 

increases observed in peaks per cell, percentage responding cells and R value, the burst 
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frequency was significantly decreased, suggesting that whilst a response to 0 Mg was observed, 

epileptiform activity was not. 0 Mg acts on NMDA receptors, which are integral in functional 

excitatory synaptic transmission (Lutzu & Castillo, 2020). In human in vivo studies, synapse 

formation is believed to commence around week 9 (de Graaf-Peters & Hadders-Algra, 2006) and 

as NMDA receptor-mediated transmission is essential for the 0 Mg model, these results could 

suggest undeveloped synapses. This also explains why the condition which did respond to 0 Mg 

with increased activity and synchrony was 18 WIV. 

The lack of epileptiform responses at W4 and W8 in particular, is potentially due to the absence 

of astrocytes in culture, as confirmed by immunostaining in Chapter 3. Astrocyte dysfunction is 

observed in epilepsy and seizure activity, the non-appearance of which prior to 8 WIV could 

provide an explanation as to why widespread synchrony was not observed (Tian et al., 2005; 

Wetherington et al., 2008). Furthermore, astrocytes are involved in establishment of neural 

circuitry and synaptogenesis (Christopherson et al., 2005). The lack of formation of a complete 

synaptically-connected network may explain the inability to form synchronous responses.  

Interestingly, despite the conditions where significant responses in activity and synchrony were 

observed, for 11/12 experiments, the bursting frequency was lower in drug treatment cf 

controls, suggesting non-epileptiform activity. Furthermore, the reduction in burst frequency of 

7 of these 11 conditions was significant. This is not consistent with epileptiform activity; bursting 

should actually increase as this is a characteristic response (Bradley et al., 2018). These results 

strengthen the argument that despite some experiments displaying increased activity and 

synchrony, this fundamental parameter indicates that activity in those responsive cultures was 

not epileptiform.  

In addition, neither media at any timepoint or drug treatment elicited significant increases in 

the percentage of synchronised cells. This would be expected for ictal activity, as seizures 

synchronise populations of cells (Badea et al., 2001).   
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Whilst responses for many experiments were not statistically significant, the cultures did appear 

to respond to the various seizurogenic conditions, suggested by the mean drug response values 

increasing in almost every condition. It could be argued that more repeats could determine 

whether a significant response occurs, yet, the experimental design involved three repeats 

performed for three separate biological differentiations (total of 9 coverslips). However, the 

experimental design and sample size provided a reasonable opportunity for the cultures to 

display epileptiform activity and largely, they did not. The experimental design was applied 

consistently and results obtained at W4, W8 and W12 were considered indicative of the 

capability of the cultures. However, due to an equipment failure outside of the author’s control, 

final biological repeats at W18 were lost, hence only 2 biological differentiations were perfomed 

(total of 6 coverslips). Therefore, 18 WIV experiments would benefit from an increased sample 

size. For this reason, the results at 18 WIV were not considered conclusive.  

As the literature suggested 12 WIV is the point at which spontaneous cultures can display 

matured activity, high potassium aCSF perfusion (>K+) was selected as an additional test for 12 

WIV (Gunhanlar et al., 2017; Kirwan et al., 2015; Odawara et al., 2014, 2016b; Shi et al., 2012). 

Several repeats were also performed at week 18 (data not shown) with >K+ aCSF, but due to 

time constraints and apparatus failure, insufficient repeats for statistical anaysis were obtained, 

and consequently, week 12 was preferentially chosen to ensure all repeats with >K+ could be 

generated.  

The single example presented shows that spontaneously differentiated cultures do possess the 

capacity to respond in a hypersynchronous and hyperexcited manner. As a result this culture 

was defined as having displayed epileptiform activity in response to >K+ perfusion. However, 

this is isolated and hence, not robust or reliable. An R value of 1 indicates complete correlation 

and this was observed, alongside obvious increases in all other parameters of activity and 

synchrony. Whilst it can be concluded that spontaneously differentiated cultures can, therefore, 
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elicit epileptiform activity, 1 repeat of 18 different >K+ aCSF experiments is not a clear indication 

that the cultures can respond in this way routinely and is not statistically significant. The ability 

for one culture to respond likely arises from the differences in cell densities and subtypes when 

cultures are allowed to differentiate spontaneously and without control. Despite careful seeding 

densities, cultures did vary coverslip to coverslip and batch to batch. It is this variation which 

probably precluded any successful and sustained observation of spontaneously differentiated 

cultures displaying repetitive seizure-like activity. This is also supported by the decision to 

present individual datapoints; which highlighted the large variance in the distribution of data, 

further confirming that spontaneous differentiation is unreliable as a method for generating 

consistent drug response data. 

In conclusion, the experiments in this chapter support the contention that whilst spontaneously 

differentiated neural cultures in Axol and SCT media have the potential to respond to >K+ aCSF 

perfusion with large increases in activity, synchrony and bursting, this is not a reliable or 

reproducible method for generating such activity. Furthermore, no epileptiform response was 

observed with 4-AP, PTX or 0 Mg aCSF– all of which routinely generate seizure-like events in 

rodent in vivo and in vitro models. The results suggest either an absence of relevant 

receptors/cell types or an immature neural network formation.  

Regarding the question posed in Chapter 3, that was which growth medium (Axol or SCT) was 

more suitable to eliciting functional responses to these conditions, SCT appeared to create the 

superior culture conditions, due to significantly higher control percentages in several conditions, 

combined with the results of Chapter 3. This decision was strengthened  by the observation that 

the only culture appearing to respond in an epileptiform manner was cultured in SCT medium.  

The revelation that spontaneous differentiation is not suitable for seizure-liability led to the 

development of alternate culture models in the following chapters. Additionally, as SCT proved 

a superior growth medium, it was chosen for the proceeding investigations.   
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Chapter 5 

 

5: OPTIMISATION OF HUMAN IPSC-DERIVED NEURONS AND ASTROCYTES 

IN A CO-CULTURE MODEL 

5.1 Introduction  

To the author’s knowledge, no study has attempted to use spontaneous differentiation as a 

method for generating neural cultures for the express purposes of seizure-liability testing; as 

was demonstrated in Chapter 4. The results from Chapter 4, coupled with consideration of two 

commercially available growth media are suggestive of an immature neural network function, 

with limited ability to respond to pro-ictogenic pharmacological and ionic manipulations. A 

major limitation of spontaneous differentiation is the time taken for cultures to mature, both in 

terms of morphology (with emergence of astrocytes not occurring until 8 WIV) and functionality 

(Chapter 4.2, Shi et al., 2012a). Indeed, electrophysiological studies of spontaneously 

differentiated cultures suggest that neurons may take up to 23 WIV to reach maturity (Amin et 

al., 2016; Kirwan et al., 2015). In addition, variation was observed between cultures, with 

astrocytic overgrowth and high-density aggregation observed throughout in both growth media 

(Chapter 4.2, Appendix Figures A2/4). 

5.1.1 Co-cultures of neurons and astrocytes 

In contrast to a spontaneous differentiation protocol, many protocols exist for the co-culturing 

of rodent neurons with other cell types; predominantly astrocytes (Aebersold et al., 2018; El et 

al., 2018; Herzog et al., 2011; Jones et al., 2012). There have also been recent investigations 

which have attempted the seeding of human neurons and astrocytes together, in a neural ‘co-

culture’. Initial co-culture models seeded human iPSC-derived neurons with rodent astrocytes, 

or rodent astrocyte-conditioned media (Odawara et al., 2014, 2016a; Tang et al., 2013). 
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Odawara et al., (2014) showed that the co-culturing of human iPSC-derived neurons with rodent 

astrocytes results in greater, more rapid, functional and morphological maturity cf cultures 

without astrocytes. In an attempt to move to a more human-relevant system, with no inter-

species extrapolation, an increasing number of studies have seeded iPSC-derived neurons with 

human iPSC-derived astrocytes in both short-term (de Rus Jacquet, 2019; Kayama et al., 2018; 

Matsuda et al., 2018; Tukker et al., 2016, 2018, 2019) and long-term cultures (Odawara et al., 

2016b) and iPSC-derived neurons with primary human astrocytes (Kuijlaars et al., 2016).  

Amongst their many functions, astrocytes are highly involved in the formation and maturation 

of excitatory and inhibitory synapses in the CNS, and also their degradation and removal to 

refine neural circuits  (Nguyen et al., 2011). For example, rodent retinal ganglion cells form very 

few synapses when cultured alone, but the number is increased tenfold in the presence of 

astrocytes or astrocyte-conditioned media (ACM) (Pfrieger & Barres, 1997). The differences 

between rodent and human astrocytes are quite considerable, ranging from their size and 

function, to the presence of morphologically distinct astrocyte subtypes within the human brain 

and the cerebral cortex in particular (Oberheim et al., 2009). Despite these interspecies 

differences, studies using human iPSC-neurons and rodent astrocytes highlighted the 

importance of including astrocytes in culture. Human-neuronal and rodent-astrocytic co-

cultures demonstrated enhanced and more rapid functional maturation, spiking activity and 

maintenance of long-term electrical activity cf neurons alone (Lischka et al., 2018; Odawara et 

al., 2014; Tang et al., 2013).  

In addition, several recent studies have used co-culture protocols with a specific focus on 

seizure-liability testing (Ishii et al., 2017; Odawara et al., 2018; Tukker et al., 2019). These studies 

have shown that iPSC-derived neural co-cultures are capable of generating epileptiform activity 

in response to convulsants. This activity was achieved in 8 weeks, facilitated by the inclusion of 

iPSC-derived astrocytes, which is a far more rapid and practical developmental timeframe than 
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observed with spontaneously differentiated models, both in the literature (Gunhanlar et al., 

2017; Kirwan et al., 2015; Shi, et al., 2012b) and in Chapters 3 and 4 of this thesis. An added 

benefit of the co-culture method cf spontaneous differentiation is that the seeding densities of 

each cell type can be precisely controlled, to promote the generation of a heterogenous neural 

model, with reduced variation between cultures.  

Despite the obvious advantage of controlling cell ratios and the commercial availability of cells 

which have already been differentiated and karyotyped, a particular issue in the field is the 

tendancy for each group to use their own protocol, which differs widely with other literature. 

As such, there is no ‘standard’ as there is for rodent in vitro studies. Furthermore, commercial 

intellectual property issues prevent disclosure of precise media formulations and hence, neural 

induction methods used in the generation of the cells, and donors of the parent iPSC can be 

from a wide variety of patients. The methods used to generate iPSC derived co-cultures are 

diverse (Table 5.1). Differences in the supply of cells, ratios of subtypes, growth medium and 

surface coating reagent are considerable. 

5.1.2 Monocultures of neurons and astrocytes 

In order to generate a co-culture protocol, monocultures of neurons and astrocytes first had to 

be developed. In addition, the author is unaware of any group who have attempted seizure-

liability studies on iPSC-derived astrocyte monocultures.  

To generate neuronal monocultures, the small molecule DAPT was used. DAPT is an inhibitor of 

the γ-secretase complex, which is a key target of Notch (Nelson et al., 2007). Notch signalling 

plays a key role in neural connectivity, axon migration, synapse formation and synaptic 

maturation (Giniger, 2012) and maintains the progenitor pool in differentiating neural cultures; 

hence its inhibition leads to the progenitor pool exiting the cell cycle simultaneously. Indeed, 

DAPT has been used previously in iPSC-derived cultures to synchronise the differentiation of 

NPCs to generate enriched neuronal monocultures (Elkabetz & Studer, 2008; Kuijlaars et al., 
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2016; Rhee et al., 2019; Wong et al., 2017), albeit at different concentrations and durations of 

treatment.  

As discussed above, astrocytes are an integral component of neural cultures and indeed,  

experiments with stem cell-derived astrocytes have demonstrated that these cells are capable 

of exhibiting many of the functions of human in vivo astrocytes. These include: facilitating 

synaptic maturation, gliotransmission, protection of neurons from excitotoxicity and stress and 

astrocytic calcium activity (Hill et al., 2016). The recent emergence of this co-culture method 

was largely due to the advent of protocols for the exclusive generation of astrocytes from 

human iPSCs (Perriot et al., 2018; Serio et al., 2013; Shaltouki et al., 2013; Soubannier et al., 

2019; TCW et al., 2017) and the recent commercial availability of iPSC-derived astrocytes.  

The first efficient, relatively rapid protocol for astrocyte generation from iPSC was reported by 

Shaltouki et al., (2013). Astrocyte development can occur via two lineage pathways: via an 

intermediate precursor which expresses CD44 and an indirect pathway involving glial precursors 

which differentiate exclusively into astrocytes and oligodendrocytes (Shaltouki et al., 2013). 

Astrocytes can be generated from iPSC-derived NPCs, via the use of a defined differentiation 

medium. In this instance, treatment with the growth factors BMP2 and ciliary neurotrophic 

factor (CNTF) directs differentiation of NPCs to astrocytes (Shaltouki et al., 2013). BMPs can 

cause selective astroglial lineage from progenitor cells (Gross et al., 1996) and activation of the 

CNTF receptor has been shown to promote differentiation of cortical precursors into astrocytes 

and prevents cells committing to a neuronal lineage (Bonni et al., 1997). However, it was the 

inclusion of a splice variant of neuregulin known as ‘heregulin’ which was found to promote the 

highest efficiency of astrocyte differentiation. Neuregulins are cell adhesion molecules which 

act on the epidermal growth factor (EGFR) family of receptor tyrosine kinases to promote neural 

development. Heregulin has been shown to act in both paracrine and autocrine fashion, 

stimulating EGFR to activate downstream signalling pathways including the phosphatidylinositol 
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3-kinase/AKT pathway, important in regulating cell cycle and, involved with differentiation of

stem cells to neurons and astrocytes (Otaegi et al., 2006). Astrocytes used in this Chapter have 

been differentiated using this method of defined differentiation medium (Shaltouki et al., 2013). 

The aim of this Chapter was to compare different co-culture and monoculture methods using 

human iPSC-derived neurons and astrocytes, on their ability to respond to seizurogenic 

conditions with epileptiform activity.. The methods in this Chapter are represented in Figure 

5.0. 

Figure 5.0: Representation of culture methods tested in Chapter 5. The monocultures and 

co-cultures highlighted in red text indicate those to be tested in this Chapter. 
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Table 5.1: Co-culture models of human iPSC-derived neural cells. Including seeding ratios of neurons to astrocytes, growth medium and method of co-
culturing.

Neurons Astrocytes Ratio Coating 
Reagent 

Co-culture method Culture Medium Reference 

Cellectis & Sigma 
DAPT treated 

Primary 
Human 

4:1 PORN-laminin Together N2/B27 with cAMP, BDNF, GDNF 
Kuijlaars et al., 

2016 

iCell® iCell 3:1 PORN-laminin 
Neurons for 40 
minutes, then 

astrocytes on top 
iCell maintenance Tukker et al., 2016 

iCell® glutaneurons/ 
iCell® neurons 

iCell 1:1 PEI-laminin Together SCT BrainPhys™ Tukker et al., 2018 

iCell®/Synfire® iCell 6:1 PEI-laminin Together 
SCT BrainPhys™ 

Neuro.4U® 
Tukker et al., 2019 

Cellular Dynamics 
Cellular 

Dynamics 
3:1 PEI-laminin Together 

iCell neuron maintenance and 
ScienCell astrocyte 

Ishii et al., 2017 

XCell Science cortical XCell Science 10:1 PEI-laminin 
Neurons for 8 days, 

then astrocytes 

SCT BrainPhys™, removing 
BDNF/GDNF after astrocyte 

addition 
Kayama et al., 2018 

XCell Science cortical XCell Science 10:1 PEI-laminin 
Neurons for 8 days, 

then astrocytes 
XCell neural maturation with SCT 

SM1 supplement 
Odawara et al., 

2018 

XCell Science cortical 
Axol Bioscience Ax0019 

XCell Science 
Axol Ax0084 

16:1 
Surebond-

Readyset (Axol) 
Neurons for 8 days, 

then astrocytes 

SCT BrainPhys™, removing 
BDNF/GDNF after astrocyte 

addition 

Matsuda et al., 
2018 
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The aims of this chapter are to: 

1) Establish a suitable method for DAPT-synchronisation of iPSC-derived neurons using 

fluorescence microscopy 

2) Assess the ability for cultures of astrocytes-only and neurons-only to form respective 

subtypes via immunostaining 

3) Determine whether cultures of neurons and astrocytes-only can display epileptiform 

responses to 4-aminopyridine, picrotoxin and zero-magnesium aCSF, using 

fluorescent calcium imaging 

4) Compare different co-culture methods to produce functional, robust cultures 

5) Determine the ability for different co-culture methods to produce functional synapses 

and respond to zero-magnesium aCSF perfusion using fluorescent calcium imaging  
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5.2 Results 

5.2.1 Neuron and Astrocyte Monocultures 

In order to determine the optimal method of synchronising human iPSC-derived neural stem 

cells (NPCs) to produce a pure neuronal population, NPCs were treated with the Notch signalling 

inhibitor DAPT over 7 days and the percentage of proliferating cells assessed via 

immunocytochemistry (ICC) using Ki67 – a nuclear protein necessary for and indicative of, 

cellular proliferation (Sun & Kaufman, 2018). This was supplemented in SCT medium, as 

previous results had shown SCT more effective for NPC differentiation than Axol neural 

maintenance medium (Chapters 3/4).   

At all timepoints tested, DAPT-treated cells had a significantly lower percentage of Ki67-positive 

nuclei cf untreated cells: (D5: Control: 69.74 ± 6.46%, DAPT: 8.23 ± 4.25%, p= 0.0001; D6: 

Control: 63.21 ± 6.28%, DAPT: 7.97 ± 3.18%, p= 0.0003; D7: Control: 66.44 ± 9.20%, DAPT: 9.34 

± 4.90%, p= 0.0002, all n=9). The difference between DAPT treatments at Days 5-7 were not 

significant, with the largest difference being 1.37% between D5-D7. Whilst D7 had the highest 

percentage of Ki67+ cells in DAPT, it did not have the highest number of proliferating cells in 

total (66.44%) which was lower than that of D5 (69.74%) (Figure 5.1A).  

Alongside the duration of DAPT treatment, the initial seeding density was considered. 

Spontaneously differentiating cells in Chapter 3 were seeded at a density of 50,000 cells/cm2, 

which was a sufficient protocol for spontaneous differentiation. However, as the proliferation 

of NPCs in DAPT-treated cultures were expected to be inhibited, a higher initial seeding density 

was selected to account for the reduction in cell proliferation (Figure 5.1B).  
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Despite a 1.5-fold increase in cells cf spontaneous, a seeding density of 75,000 cells/cm2 

produced sparse cultures with poor viability; these showed extensive fasciculation of neurites 

and detachment from the culture surface by D7 (Figure 5.1B, n=3). The seeding density was 

subsequently increased to 100,000 cells/cm2 and cells adopted an adhered, 2-dimensional 

orientation, with neurite extensions visible and reduced cell death (Figure 5.1C). 100,000 

A 

B C 

Figure 5.1: Determining optimal time course and seeding density for DAPT treatment of NPCs. 

Human iPSC-derived neural precursor stem cells were plated and allowed to recover for 24 

hours, before being treated with 10 µM DAPT. (A) Cells were differentiated over 7 days with or 

without DAPT supplementation. Immunocytochemistry was performed and cells were stained 

for the cell proliferation marker Ki67. The percentage of Ki67+ cells was determined from the 

total DAPI stained cells. (B-C) Representative phase contrast images of Day 7 DAPT seeding 

densities of 75,000 and 100,000 cells/cm2, respectively. N=3. ***p< 0.001, 2-way ANOVA with 

Tukey’s test. Scale bar: 100 µm. 



131 
 

cells/cm2 was selected as the optimal seeding density for cultures containing synchronised 

neurons.  

Following establishment of an optimised synchronisation protocol, human iPSC-derived neurons 

and 11 WIV astrocytes were differentiated over 4 weeks and their morphology characterised via 

ICC (Figure 5.2-3). As per Chapter 3, neuron-specific class III β-tubulin (Tuj1) and calcium-binding 

protein S100β were used to label neurons and astrocytes, respectively. Results in this Chapter 

indicated that synchronised NPCs formed neural rosettes at 1 WIV, as with spontaneous 

differentiations (Figure 5.2, n=6 cs). Moreover, sync-neuron cultures generated Tuj1+ neurons 

and were S100β negative (Figure 5.3, n=6 cs). In addition, the neurons presented a low degree 

of fasciculation, which remained constant throughout phase contrast monitoring (data not 

shown).  

Figure 5.2: DAPT-synchronised NPCs form cortical rosettes at 1 WIV. iPSC-derived neural 

precursors were treated for 7 days with 10 µM DAPT and immunocytochemistry performed to 

assess the presence of neural progenitor markers. (A) Nuclei stained with DAPI (Blue, excitation 

λ 345 nm, emission λ 455 nm). (B) Pax6 neural progenitor staining (Green, excitation λ 495 nm, 

emission λ 519 nm). (C) Sox2 neural progenitor staining (Red, excitation λ 588 nm, emission λ 

649 nm). (D) Merged images of A,B,C. N=3. Scale bar: 100 µm. 
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Figure 5.3: DAPT-treated NPCs do not generate S100β+ astrocytes and iPSC-derived astrocytes 

alone do not contain Tuj1+ neurons. iPSC-derived neural precursors were synchronously 

differentiated in SCT media with 10 µM DAPT (Left column) and 11-week old cryostored iPSC-

derived astrocytes were cultured in ScienCell™ astrocyte media over 4 weeks. 

Immunocytochemistry performed to assess the presence of neuronal and astrocytic markers. 

(A) Nuclei stained with DAPI (Blue, excitation λ 345 nm, emission λ 455 nm). (B) S100β astrocytic 

staining (Grey, excitation λ 495 nm, emission λ 519 nm). (C) Tuj1 neuronal staining (Red, 

excitation λ 588 nm, emission λ 649 nm). (D) Merged image of A,B,C. N=3. Scale bar: 100 μm.  
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Sync-neuron cultures did not survive past ~7 WIV in any biological differentiation (Appendix 

Figure A6). In contrast, astrocyte-only cultures were S100β+ by 4 WIV (Figure 5.3B, n=6 cs) and 

did not contain Tuj1+ cells (n=6 cs). The relative size of the human iPSC-derived astrocytes were 

approximately 50-fold that of the neuronal cells (~100 µm versus ~2 µm).  

5.2.2 Induction of epileptiform activity in monocultures 

Having established a suitable synchronisation protocol and characterised the morphology of 

different culture types, respective cultures were perfused with a series of pro-ictogenic 

conditions as described in Chapter 4.  Synchronised-neuronal monocultures at 4 WIV and 15 

WIV astrocyte monocultures displayed no significant response in activity to 4-AP, 0 Mg2+ aCSF 

or PTX perfusion (Figures 5.4-6). 

The peaks per cell values increased in all pro-ictogenic treatment (Figure 5.4-6F), however, this 

did not attain statistical significance. As with peaks per cell values, sync neurons exhibited higher 

control values cf astrocytes. For all treatments, the representative Fluo4-AM-loaded images 

supported the results of ICC in Figure 5.3, showing large (>100 µm) astrocytes and considerably 

smaller neurons (~2  µm) (5.4-6A,B). 

Alongside metrics for activity, measures of synchrony were used to determine whether cultures 

of neurons and astrocytes alone could produce this characteristic epileptiform response. 

Neither neuron or astrocyte monocultures presented a significant response in terms of the  

percentage of synchronised cells (Figure 5.6G-I). However, in every instance, neuronal cultures 

showed an increase in percentage of synchronised elevations. Whilst astrocyte cultures also 

showed increases in synchronised elevations with 4-AP and 0 Mg perfusion, no synchronised 

events were detected in PTX (Figure 5.7I). Moreover, the R values reported for astrocyte 

cultures were all zero (Figure 5.7J-L). R values for neuronal cultures were also zero in each 

treatment, with the exception of a single repeat in 4-AP and 0 Mg (Figure 5.7J,K).  
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Figure 5.4: Human iPSC-derived astrocyte and neuron monocultures do not respond to 4-

aminopyridine perfusion. (A,B) Astrocyte cultures (A) and neuronal cultures (B) were loaded 

with 5 µM Fluo4-AM for fluorescent calcium imaging, with time lapse videos recorded at 0.33 

Hz. (C-D) Representative figures showing 10 example, random fluorescent traces related to 

yellow regions of interest in (A,B). (E) Responding cells were determined as those with ≥ one 

peak of calcium activity. (F) Calcium peaks per active cell. (G) Frequency of calcium events per 

minute. Data in E-G is displayed as mean ± SEM from N=3 separate differentiations. 2-way 

ANOVA with Tukey’s multiple comparisons test. Scale bar: 5 µm. Solid black bar in C-D refers 

to addition of 100 µM 4-aminopyridine.  
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Figure 5.5: Human iPSC-derived astrocyte and neuron monocultures do not respond to zero-

magnesium aCSF perfusion. (A,B) Astrocyte cultures (A) and neuronal cultures (B) were loaded 

with 5 µM Fluo4-AM for fluorescent calcium imaging, with time lapse videos recorded at 0.33 

Hz. (C-D) Representative figures showing 10 example, random fluorescent traces related to 

yellow regions of interest in (A,B). (E) Responding cells were determined as those with ≥ one 

peak of calcium activity. (F) Calcium peaks per active cell. (G) Frequency of calcium events per 

minute. Data in E-G is displayed as mean ± SEM. N=3. 2-way ANOVA with Tukey’s multiple 

comparisons test. Scale bar: 5 µm. Solid black bar in C-D refers to addition of magnesium-free 

aCSF.  
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Figure 5.6: Human iPSC-derived astrocyte and neuron monocultures do not respond to 

picrotoxin perfusion. (A,B) Astrocyte cultures (A) and neuronal cultures (B) were loaded with 

5 µM Fluo4-AM for fluorescent calcium imaging, with time lapse videos recorded at 0.33 Hz. 

(C-D) Representative figures showing 10 example, random fluorescent traces related to yellow 

regions of interest in (A,B). (E) Responding cells were determined as those with ≥ one peak of 

calcium activity. (F) Calcium peaks per active cell. (G) Frequency of calcium events per minute. 

Data in E-G is displayed as mean ± SEM. N=3. 2-way ANOVA with Tukey’s multiple comparisons 

test. Scale bar: 5 µm. Solid black bar in C-D refers to addition of 100 µM picrotoxin.  
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Figure 5.7: Astrocyte and neuron monocultures do not display synchronous activity in 

response to pro-ictal conditions. (A-C) Representative raster plots of astrocytic-only cultures 

in response to pro-ictal conditions. Spikes were manually identified and plotted over time to 

identify synchronised events. (D-F) Representative raster plots of neuron-only cultures. A,D: 

response to 100 µM 4-aminopyridine, B,E: zero-magnesium aCSF perfusion, C,F: 100 µM 

picrotoxin. (G-I) % synchronised cells of total active cells, relating to (A-F). (J-L) Average R value 

was calculated by performing a Pearson’s correlation of the spike data generated for (G-I), 

then performing a Fishers-z transformation. Data in G-L is displayed as mean ± SEM. N=3. 2-

way ANOVA with Tukey’s multiple comparisons test. Solid black bar in A-F refers to addition 

of pro-ictal condition.  
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5.2.3 Co-culturing human iPSC-derived neurons and astrocytes together 

Following studies with isolated cultures of neurons and astrocytes, the potential of co-cultured 

cells to display epileptiform responses when cultured together was attempted, as has been 

reported with other co-culture systems (Ishii et al., 2017; Matsuda et al., 2018; Odawara et al., 

2018; Tukker et al., 2019). Initial co-culture experiments were performed using 0 Mg-aCSF 

perfusion, to assess whether synapse maturation and network functionality occurred more 

rapidly than spontaneously differentiated cultures. In order to determine this, several co-culture 

methods were assessed. Co-cultures were designated ‘spontaneous’ or ‘synchronised’, referring 

to the methods applied in the co-culture generation. Spontaneous co-cultures (Spon CC) 

comprised iPSC-derived NPCs and iPSC-derived astrocytes and synchronised co-cultures (Sync 

CC) comprised DAPT-synchronised iPSC-derived NPCs and iPSC-derived astrocytes (Figure 5.0).  

Figure 5.8 shows that in both co-culture conditions, cells did not display significant increases in 

synchrony or activity when perfused with 0 Mg aCSF. Example traces from Spon CC indicate 

increased activity, with large fluorescence amplitude increases, compared with Sync CC (Figure 

5.8B). The control values for percentage responding cells in Spon CC were higher than those for 

Sync CC, albeit not significantly (Spon CC: 15.47 ± 6.01, Sync CC: 10.54 ± 2.70; n=6 cs, p= 0.99). 

This was also true for peaks per cell, burst frequency and percentage of synchronised elevations, 

where the control values for Spon CC were not significantly higher than those for Sync CC.  

Whilst Spon CC presented an increased response in responding cells and peaks, (Figure 5.8D,E), 

burst frequency and synchronised elevations decreased (Figure 5.8F,G), however none of these 

values attained statistical significance. 
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Figure 5.8: Spontaneous and synchronous co-cultures responses to zero-magnesium aCSF 

perfusion. (A) Upper: Spontaneously differentiated iPSC-derived neurons were cultured with 

iPSC-derived astrocytes over 8 weeks. Lower: Synchronously differentiated iPSC-derived 

neurons were cultured with iPSC-derived astrocytes over 8 weeks. Cultures were loaded with 

5 µM Fluo4-AM for fluorescent calcium imaging. (B) Time-lapse videos were recorded at 0.33 

Hz. Representative figures show 10 example, random fluorescent traces related to yellow 

regions of interest in (A). (C) Representative Raster plot. Spikes were identified manually and 

plotted over time to identify synchronised events. (D) Responding cells were determined as 

those with ≥ one peak of calcium activity. (E) Calcium peaks per active cell. (F) Frequency of 

calcium events. (G-H) Quantitative measures of synchrony. (G) % synchronised cells relating 

to (C). (H) Average R value was calculated by performing a Pearson’s correlation of the spike 

data generated for (C), then performing a Fishers-z transformation. Data in D-H is displayed 

as mean ± SEM from N=3 separate co-cultures. 2-way ANOVA with Tukey’s multiple 

comparisons test. Scale bar: 5 µm. Solid black bar in B-C indicates addition of zero-magnesium 

aCSF. 
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In addition, in each assessment parameter, one Spon CC experiment skewed the distribution of 

data, with values considerably higher than others presented. This datapoint was analysed 

individually and is presented in Figure 5.10. 

The responses of co-cultures to 0 Mg was also assessed at 18 WIV (Appendix Figure A7). Neither 

co-culture method displayed significantly increased responses to 0 Mg in any parameter. 

Furthermore, the values for responding cells and peaks per cell in both CC were lower at W18 

than W8. In each parameter, the response to 0 Mg did not significantly increase, except for burst 

frequency, which displayed a significant decrease in value in Spon CC (Control: -0.38 ± 0.13, 0 

Mg: -0.99 ± 0.02; n=3, p= 0.005). In addition, the morphology of both Spon CC and Sync CC at 

W18 appeared astrocytic, with approximately 5-fold increased soma diameter than other cells 

in culture (Appendix Figure A8). 

Despite a lack of consistent response in spontaneously differentiated cultures in Chapter 3, MEA 

analysis was attempted for co-culture models, as the literature showed various groups had 

achieved adherent and active iPSC-derived co-cultures on MEAs (Ishii et al., 2017; Kayama et al., 

2018; Matsuda et al., 2018; Odawara et al., 2018; Tukker et al., 2016, 2018, 2019). In contrast 

to the issues presented in Chapter 3, widespread detachment of cultures from MEAs was not 

observed in either co-culture model. Despite this, no activity was recorded in any of 9 MEA chips 

at W4, W12 and W18 for Spon CC cultures. At 8 WIV, a single MEA displayed activity in Sync CC, 

shown in Figure 5.9. As with previous MEA findings, statistical analysis was not possible as only 

one MEA of 9 showed electrophysiological activity. Again, although successful in adherence and 

recording activity, only 33 of 64 electrodes recorded signals which satisfied the minimum action 

potential classification of -0.015 mV potential (Figure 5.9B,C). The number of bursts per 

electrode was 1, with these lasting 351 ms on average and comprised of 44.36 spikes (Figure 

5.9D-F). 
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Figure 5.9: Multi-electrode array responses from spontaneous and synchronous co-culture 

models at 8 WIV. Co-cultures were differentiated on carbon MEA chips over 8 weeks and 

baseline activity assessed using MEA analysis. (A) Example snapshot of spiking activity, -

0.015 mV was the minimum potential to denote action potential activity, whilst white lines 

above and below illustrate the standard deviation threshold. Vertical red lines which cross 

the threshold are detected signals. (B) Clustered spike analysis of all signals which reached 

the minimum potential for action potential classification, relating to the spikes from A. (C) 

Number of active electrodes where spikes were recorded. (D) Average number of bursts per 

active electrode. (E) Duration of bursts detected. (F) Average number of spikes/burst. N=1.  
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5.2.4 Individual datapoint from Spon CC 

As presented above, the distribution of data for Spon CC was skewed by a single experiment 

(Figure 5.8). As seen with a previous isolated culture in Chapter 4, observation of this culture 

warranted an individual presentation of data alongside additional epileptiform analysis metrics 

(Hongo et al., 2015). This culture is represented as supplementary video file ‘Video 5.1’.  

Figure 5.10 shows the effects of 0 Mg perfusion on a Spon CC. Figure 5.10A shows that whilst 

many cells are visible in the field of view, cells are not overly dense and no aggregation can be 

seen. The example traces all show highly synchronised and increased activity when perfused 

with 0 Mg aCSF, each random trace displaying fluorescence amplitude increases of over 0.5ΔF/F 

compared with baseline (Figure 5.10B).  

The percentage of responding cells increased over 4-fold in 0 Mg, from 24.39% to 100% of cells 

responding in the field of view (Figure 5.10D). Alongside this measurement of activity, peaks per 

cell increased 10-fold to 24.87 peaks per cell and the frequency of bursts was twice that of 

baseline (Control: 0.9 bursts per min, 0 Mg: 1.99 bursts per min) (Figure 5.10E,F). 

The raster plot in Figure 5.10C very clearly shows the extent of synchronisation during perfusion 

with 0 Mg aCSF, beginning with asynchronous baseline activity. Indeed, the values of 

synchronised elevations indicate that 93.3% of cells in the field of view were synchronised in 0 

Mg, compared to 0% at baseline (Figure 5.10G) and the R value of these active cells was 1 (Figure 

5.10H).  

Additional analyses of epileptiform activity revealed the amplitude and duration of bursts 

increased in 0 Mg, with the time between bursts of activity reduced cf baseline (Figure 5.10I-K).  
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Figure 5.10 – Epileptiform response of spontaneous co-culture to zero-magnesium 

perfusion at 7 WIV. (A) Cultures were loaded with 5 μM Fluo4-AM for fluorescent calcium 

imaging. (B) Time-lapse videos were recorded at 1 Hz, with representative figures showing 

10 example, random fluorescent traces related to yellow regions of interest in (A). (C) 

Representative Raster plot. Spikes were identified manually and plotted over time to identify 

synchronised events. (D) Responding cells were determined as those with ≥ one peak of 

calcium activity. (E) Calcium peaks per active cell. (F) Frequency of calcium events per minute. 

(G-H) Quantitative measures of synchrony. (G) % synchronised cells relating to (C). (H) 

Average R Value. (I) Amplitude of calcium events. (J) Duration of calcium events. (K) Time 

between calcium events. (L) Area calcium event occupied. N=1. Scale bar: 5 μm. Solid black 

bar in B-C indicates addition of zero-magnesium aCSF.  
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5.3 Discussion 

As mentioned in 5.1, various methods exist for the co-culturing of neurons and astrocytes and 

this chapter sought to identify a standard method for producing co-cultures with this particular 

cellular system. It is important to note that there is a lack of literature agreement in terms of 

successful protocols for particular cell lines, so standardisation in human iPSC-derived models 

can be particularly difficult to achieve.  

Monocultures do not display epileptiform activity 

Firstly, individual cultures of the components which comprise mature co-culture systems were 

attempted (Chapter 5.2.1). As described in Chapters 3 and 4, spontaneous differentiation of 

NPCs generates co-cultures of both neurons and astrocytes over 8 WIV. However, overgrowth 

and extensive aggregation of cells was observed throughout spontaneous differentiation, 

alongside considerably more S100β+ astrocytes present over time (Appendix Figure A2, Chapter 

3). For this reason, to generate neuronal monocultures, DAPT-synchronisation was utilised to 

force progenitors to exit the cell cycle simultaneously and differentiate solely into neurons. 

However, there is great variation in the application of DAPT for the purposes of neuronal 

synchronisation (Jun Rhee et al., 2019; Kuijlaars et al, 2016). As such, the densities of cells and 

concentration of DAPT used was carefully considered, to determine the most suitable conditions 

to generate pure neurons using this system.  

Whilst the percentage of proliferating cells were lowest at 6 days in vitro (DIV), 7 DIV DAPT 

treatment was selected as the optimal method for use in co-cultures. In addition, the 

percentage of proliferating cells in the control condition at D7 indicated that by this point cells 

had begun to differentiate, as the value was lower than that of D6. As cells were already 

beginning their differentiation process, cells were treated with DAPT for the full duration of 7 

days. Importantly, it has been observed in this cellular system and those within our laboratory 

(personal communications: Miss Marianne King, Mr James Crowe) that DAPT-synchronisation 

(and mitotic inhibition in general) does not target 100% of the cell population. As the emergence 
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of neurites was visible at D7, this suggests that DAPT had inhibited a significant proportion of 

the culture and that those cells had ceased proliferation and committed to a neural 

differentiation. Therefore, by treating the cells with DAPT as long as possible, it was assumed 

that this would target a higher percentage of total cells in culture, thereby producing the 

greatest response to Notch signalling inhibition. 

It was tentatively assumed that as a result of NPCs exiting the progenitor pool and 

differentiating early in culture, maturity would occur more rapidly than seen for spontaneously 

differentiated cultures. However, the key morphological developmental timepoints were the 

same as seen in spontaneous differentiation (cortical rosettes present by 1 WIV, Tuj1+ neurons 

present by 4 WIV), and the appearance of the neurons themselves was similar, with a low degree 

of fasciculation at 4 WIV. As expected, neuron-only cultures did not form astrocytes, due to the 

pool of progenitors being synchronised for terminal neuronal differentiation. Interestingly, low 

fasciculation of neurites continued throughout the following weeks, which was opposite to the 

aggregation observed in spontaneously differentiated cultures as they developed. It is likely, 

therefore, that the pool of progenitors at different stages of the cell cycle is likely the causative 

factor in fasciculation, aggregation and detachment observed previously (Chapter 3).  

The proposed experimental protocol aimed to differentiate the neuronal monocultures over 8 

weeks, to provide a secondary timepoint for comparison with the results of spontaneous 

differentiation in Chapters 3 and 4. This was achieved for astrocyte-only cultures, which were 

already 11 WIV at the time of initial seeding. The cells were GFAP and S100β+ with characteristic 

astrocyte morphology by 4 WIV (personal communication; Marianne King, James Crowe). In 

addition, ICC data indicates that the control cultures were exclusively comprised of respective 

neural subtypes, with neuronal cultures S100β negative and astrocyte cultures Tuj1 negative 

throughout (Figure 5.3). Due to time constraints, qPCR was not performed on monocultures, 
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however, these cells were tested within the laboratory and expressed appropriate neuronal 

(TUBB3) and astrocytic markers (GFAP, S100β, ALDH) (personal communication, Marianne King).  

Whilst monocultures of astrocytes survived indefinitely, this did not occur for neuronal 

monocultures, as complete detachment and cell death was observed around 7 WIV in all repeats 

(Appendix Figure A6, n=3). This is likely due to the absence of astrocytes and the protective 

functions they impart, including the prevention of neuronal cell death following insults including 

excitotoxicity and oxidative stress (Dhandapani et al., 2003). Whilst SCT medium was used to 

culture the cells, this media contained trophic factors BDNF and GDNF, which are secreted by 

astrocytes (Toyomoto et al., 2005; Wu et al., 2008). These results suggest that despite the 

growth medium containing astrocytic factors such as GDNF, the physical presence of astrocytes 

may be necessary to maintain neuronal viability. Indeed, it has been shown that physical contact 

between neurons and astrocytes is necessary for extended culture periods and that lack of 

physical contact between these cell types results in poor neuronal viability over time (Odawara 

et al., 2014). As the release of neurotrophic factors from astrocytes exerts protective effects on 

neurons in a paracrine fashion (Liu et al., 2017), the results in this chapter support those 

previously reported, i.e. that physical contact and paracrine signalling is necessary for neuronal 

viability, rather than solely the presence of growth factors.  

From a morphological perspective, the emergence of neuronal markers was not affected by the 

absence of astrocytes in culture. In terms of functionality, neuronal monocultures displayed 

lower baseline activity than that of spontaneously differentiated cultures and furthermore, no 

significant responses were observed following treatment with pro-ictogenic conditions. This 

finding is supported by Odawara et al., (2014), who concluded that the presence of astrocytes 

in culture (whether human or rodent) is necessary for functional maturation of neurons. This is 

also further supported by numerous studies, which reported that neuronal monocultures are 
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an inferior model system for functional activity to those in contact with astrocytes (Ishii et al., 

2017; Kuijlaars et al., 2016).  

It is established that astrocytes, whilst not electrically excitable cells, communicate via 

intracellular calcium release and show both spontaneous and synchronous calcium-mediated 

activity (Carmignoto & Haydon, 2012; Parri & Crunelli, 2003; Pirttimaki et al., 2017; Volterra et 

al., 2014). In addition, no significant response was observed to any pro-ictogenic condition in 

astrocyte monocultures. These cultures also lacked synchronous activity. Interestingly, baseline 

activity of responding astrocytes was higher than that of neuronal monocultures, however this 

did not attain statistical significance. These results confirm the requirement of co-culture 

methods for long-term culture (Odawara et al., 2016a)  

To the author’s knowledge, this is the first study that has assessed the ability of monocultures 

of human iPSC-derived astrocytes to generate seizure-like activity in vitro. The data in this 

chapter confirms that separate cultures of neurons and astrocytes are much less robust models 

than those derived from spontaneous differentiation and fundamentally, they are an 

inappropriate model for seizure-liability testing.  

Co-culturing neurons and astrocytes can produce epileptiform activity 

Having established that monocultures are unsuitable models, initial co-culture models were 

attempted using methods reported in the literature, to assess whether this model system can 

be induced to generate seizure-like activity (Table 5.1). In comparison to monocultures, co-

culturing of human iPSC-derived neurons and astrocytes produces viable, adherent cultures 

over time, as previously reported (Kayama et al., 2018; Kuijlaars et al., 2016; Matsuda et al., 

2018; Odawara et al., 2016b; Tukker et al., 2016) and importantly, they possess the capability 

of epileptiform responses (Ishii et al., 2017; Odawara et al., 2018; Tukker et al., 2018, 2019). 

The co-culture methods employed in this chapter were based on those previously described 

(Ishii et al., 2017; Matsuda et al., 2018), which assessed seizure-liability of co-cultures, wherein 
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both cell types were seeded simultaneously. Neither spontaneous or synchronised co-cultures 

showed significant responses to 0 Mg aCSF perfusion at timepoints tested. However, one 

spontaneous co-culture displayed a hypersynchronous and hyperexcitable response to 0 Mg. As 

with spontaneous differentiation in Chapter 4, the epileptiform response was an isolated non-

repeatable experiment. As previously discussed, the high heterogeneity of response seen in 

spontaneously differentiating cultures could provide an explanation for this culture type being 

the responsive model out of the two tested.  

Astrocytic overgrowth in long-term co-cultures 

Calcium imaging results at W18 demonstrated very large cells, with typical astrocytic 

morphologies. Several video snapshots from each co-culture method displayed what appeared 

to be astrocytes throughout the entire culture (Appendix Figure A8). Whilst it is not possible to 

determine the cell type retrospectively, the low control calcium-mediated activity in these 

particular examples, coupled with visual identification of many cells with astrocytic appearance 

is suggestive of a large prepondrance of astrocytes observed in these cultures over time. This is 

despite the initial seeding ratio of neurons to astrocytes being in favour of neurons. As such, 

there exists the possibility that the pool of progenitors could be influenced by the higher initial 

number of astrocytes present from Day 1 with co-culture models, thus influencing the 

progenitor cell fate. Indeed, the fate of NPCs has been shown to be influenced by cytokine 

release from astrocytes (Gonzalez-Perez et al., 2012; Wang et al., 2011).  

To further compare the co-culture methods, MEA recordings were attempted, as the cultures 

appeared considerably more adherent on MEAs than previously observed with spontaneous 

cultures (Figure 5.9). This could be due to astrocytes preferentially adhering to the culture 

surface as opposed to neurons. Indeed, studies using primary rodent models typically seed 

neurons on top of a layer of matured astrocytes to promote survival and adherence (Lange et 

al., 2012). Despite the adherence of the cultures, only one MEA recording displayed measurable 

spiking activity. The absence of activity could be explained by multiple reasons: firstly, astrocytes 
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themselves would not be detected by MEAs as they do not fire action potentials and secondly, 

even if neurons were present, by seeding simultaneously, there was an equal likelihood of 

astrocytes adhering on the recording electrodes, hence blocking signals from firing neurons. 

Indeed, when considering the development of astrocytes over time (Chapter 3), at earlier 

timepoints when MEA activity was successfully recorded in a synchronised co-culture, the 

astrocytes would not have overtaken neuronal proliferation to the same extent as they would 

have at 18 WIV. The increased astrocyte densities at 18 WIV compared to 8 WIV could explain 

the absence of detectable electrical activity over time.   

Astrocyte proliferation in co-cultures 

In collaboration with James Crowe (Parri Group, Aston University), it was shown that 

synchronous co-culture methods produced more active cells by 10 WIV when neuronal cells 

were seeded prior to astrocytes (Kayama et al,, 2018;  Matsuda et al., 2018; Odawara et al., 

2018) In this chapter, synchronised neurons and astrocytes were simultaneously seeded to 

generate co-cultures, as literature assessing seizure-liability of iPSC-derived co-cultures used 

this approach (Ishii et al., 2017; Kuijlaars et al., 2016; Tukker et al., 2016, 2019). Moreover, the 

astrocytes used in the co-culture tested by James Crowe were more matured than those in 

previous studies (Table 5.1). This approach was based on the evidence that mature astrocytes 

better support neuronal maturation (Hedegaard, 2019). As the differentiation process is very 

time-consuming, the use of matured astrocytes to hasten neuronal maturation is beneficial, 

both in terms of time and cost.  

As seen in Chapter 3, astrocytic overgrowth was observed in each co-culture method in this 

chapter, and methods attempted by other members of the group (personal communication, 

James Crowe). The conclusions drawn from this chapter regarding the overgrowth of NPCs and 

astrocytes suggest that further refinement of the protocol was required. As such, the co-culture 

method selected for the final experimental chapter was based on the co-culture of 
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synchronously differentiated neurons and matured astrocytes, with careful consideration of the 

astrocytic component.  
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Chapter 6 

6: INDUCTION OF EPILEPTIFORM ACTIVITY IN CO-CULTURES OF IPSC-

DERIVED SYNCHRONISED NEURONS AND ASTROCYTES 

6.1 Introduction 

Results presented in Chapter 5, demonstrated that an increase in initial cell seeding density of 

NPCs and co-culturing with astrocytes was required to generate consistently functional cultures. 

Furthermore, the proliferative potential of NPCs and astrocytes was highlighted and suggested 

the need for further refinement of culture conditions to manage astrocytic overgrowth, 

especially as uncommitted cells can be influenced by the cell types in their surroundings 

(Gonzalez-Perez et al., 2012; Wang et al., 2011). Overgrowth of astrocytes in culture was 

observed for spontaneous differentiation (Chapter 3/4) and synchronous/spontaneous co-

culture protocols (Chapter 5) and as such, methods to inhibit the proliferation of astrocytes 

were a focus of this chapter.  

Cytosine arabinoside (AraC) has been previously used to control cellular proliferation of both 

neuronal and non-neuronal iPSC-derived and other human cells (Table 6.1). AraC incorporates 

into DNA, forming cleavage complexes and inhibiting replication. The formation of cleavage 

complexes results in DNA fragmentation and furthermore, AraC inhibits DNA polymerase, 

further decreasing DNA replication and repair of fragmentation (Sampath et al., 2006). AraC-

induced mitotic inhibition has been found to be toxic to post-mitotic neurons (Martin et al., 

1990). Hence, whilst AraC treatment would be unnecessarily toxic towards neurons, it was likely 

to be more effective than Notch signalling inhibition in potentially containing the growth of the 

highly proliferative astrocytes, although DAPT has also been used to inhibit proliferation of glial 

populations (Ma et al., 2019; Nagao et al., 2007). 
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There is no standard protocol for the use of AraC to inhibit astrocyte proliferation (Table 6.1). 

In agreement, De Rus Jacquet (2019) also stated that effective AraC treatment should be 

optimised for each cell line. 

Table 6.1: Overview of human iPSC-derived and human primary cell types inhibited with AraC 
from recent literature.  

Human Cell Type Targeted [AraC, µM] 
Duration 

AraC (days) 
Reference 

NPCs – Neurons 5 2 (Cheng et al., 2017) 

Induced neurons 2 >10 (Pak et al., 2018) 

NPCs – Glia 4 1 
(Schwartzentruber et al., 

2017) 

Schwann Cells – Fibroblasts 5-10 Undisclosed (Clark et al., 2017) 

NPCs – Glia 5-8 1 (de Rus Jacquet, 2019) 

Foetal brain tissue -  
all dividing cells 

10 10 (Jana et al., 2007) 

 

 
6.1.1 Interneurons 

The co-culturing of neurons and astrocytes has been widely reported in in vitro primary and 

iPSC-derived models (Chapter 1/5). Whilst many of these cultures consist of excitatory neurons 

and astrocytes, the inclusion of inhibitory neuronal populations was less common (Tukker et al., 

2016, 2018, 2019). Interneurons are essential for forming a complete neural network and play 

an integral role in seizure activity (Magloire et al., 2019). Immunostaining results from 

spontaneous differentiation (Chapter 3-4) were GAD67- at all timepoints and no significant 

response to the GABA-antagonist picrotoxin was observed. However, significant levels of vGAT 

expression were observed – consistent with the notion that interneurons may indeed be 

present, but in low numbers (Gunhanlar et al., 2017; Kirwan et al., 2015). 

As previously discussed, there are several protocols for the generation of interneurons from 

iPSC (Chapter 1.3.6). Initially, the work of Shi et al., (2012a) demonstrated the presence of 

ventrally and caudally expressed transcription factors associated with the development of 
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GABAergic interneurons (GIN), which was confirmed with immunostaining of GAD67 inhibitory 

synapses. This was demonstrated only in the presence of the ‘Sonic Hedgehog’ (SHH) agonist 

purmorphamine (Shi et al., 2012b). SHH is a morphogen, critical in development of distinct brain 

regions (Rash & Grove, 2007) and mediates differentiation and maintenance of ventral GIN 

during neurogenesis (Xu et al., 2005, 2010).  

Liu et al., (2013) then published a protocol for the direct differentiation of pure (~90%) 

populations of GIN, again using purmorphamine. They also found that early treatment with 

purmorphamine increased the efficiency of GIN induction (Liu et al., 2013). Subsequent 

protocols also used agonism of SHH signalling for GIN generation (Maroof et al., 2013; Nicholas 

et al., 2013; Tyson et al., 2015).  

Despite several protocols for the generation of GIN, at the time of writing, the author was 

unaware of any group generating their own interneurons from iPSC/NPC to co-culture and for 

seizure-liability testing. Moreover, as several commercially available products have become 

available including excitatory and inhibitory neurons, at ratios representative of the in vivo 

environment, the need for generating components individually and ‘assembling’ the cultures, 

was apparently reduced. Most importantly, the addition of an inhibitory neuronal component 

to the system generates a heterogenous culture, wherein all main neural subtypes are present, 

thus generating a culture reflective of the intact cerebral cortex (Azzarelli et al., 2015). The 

generation of such a platform provides the potential for assessing seizure-liability of existing 

and novel compounds and also delivers a system for assessing existing and novel anti-epileptic 

agents to subdue such activity. 
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6.1.2 Sodium Valproate as an anti-epileptic 

As outlined in Chapter 1, many anti-epileptic compounds exist with diverse mechanisms of 

action (Shih et al., 2013). Of these, one of the most widely prescribed anti-epileptic treatments 

is sodium valproate (VPA) (Chang et al., 2012). VPA is a preferential treatment in paediatric 

epilepsy, owing to its acceptable safety profile and broad mechanism of action (Ghodke-Puranik 

et al., 2013).  

6.1.2.1 Effect of VPA on GABA and Neurotransmission 

As discussed in Chapter 1, the synthesis and degradation of GABA is a multi-step process 

involving several enzymes. VPA has been shown to inhibit several enzymes involved in the 

degradation of GABA: GABA transaminase, succinic semialdehyde dehydrogenase and α-

ketoglutarate dehydrogenase (Johannessen & Johannessen, 2003) and enhancement of those 

synthesising GABA such as GABA decarboxylase (Löscher, 1981). As a result, the levels of GABA 

in the brain increase and inhibition of activity is promoted.  

6.1.2.2 Effect of VPA on Ion Channels 

The blockade of ion channels prevents the hyperexcitability of neurons observed in seizures. 

Valproate is reported to block sodium channels (Englund et al., 2011; Rogawski et al., 2016), 

reducing the inward flow of Na+ and preventing repetitive action potential firing. More recent 

evidence suggests it can also play a role in inhibiting low-threshold T-type calcium channels, 

inhibiting Ca2+ entry into the cell and hence, reducing neurotransmission (Broicher et al., 2007; 

Löscher, 2002). There is also evidence for VPA acting on potassium channels to reduce K+ 

conductance and excitability, albeit only at higher drug concentrations than those used 

therapeutically (Franceschetti et al., 1986; Johannessen & Johannessen, 2003). 

6.1.2.3 Effect of VPA on Histone deacetylases (HDACs) 

In order for exceptionally long sequences of eukaryotic DNA to fit into the relatively small 

nucleus, the DNA structure has to be tightly packaged around histone proteins to form a 

structure called the nucleosome – the fundamental subunit of chromatin. Histone deacetylases 
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are a class of enzymes responsible for the regulation of gene expression via hydrolysis of 

acetylated lysines in the histone proteins which surround DNA. Histone modification is 

considered a major epigenetic mechanism for remodelling the chromatin structure – leading to 

alterations in gene expression, without direct modification to the genetic sequence (Xu et al., 

2007). VPA has been identified as a class I HDAC inhibitor (Göttlicher et al., 2001) and with 

particular relevance to seizurogenesis, upregulation of BDNF and GDNF (which exerts 

neuroprotective effects) has been observed with VPA addition (Chen et al., 2006).  

6.1.2.4 Effect of VPA on Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) 

PIP3 is formed as a result of tyrosine kinase signalling and PIP3 kinase phosphorylation. PIP3 

functions as a second messenger to activate AKT to induce cellular proliferation and apoptosis 

(Wolff et al., 2014). With respect to neurons, PIP3 regulates synaptic transmission (Chang et al., 

2014) and the PIP3/AKT pathway is implicated in seizure generation and epilepsy (Schick et al., 

2006; Zhang & Wong, 2012). Depletion of PIP3 occurs during seizure, and can generate a positive 

feedback loop, promoting further seizure-like activity (Chang et al, 2014). VPA has been shown 

to reverse depletion of PIP3 following seizure, exerting a therapeutic effect (Chang et al., 2014).  

The exact mechanism of action of VPA is still unclear, although several hypotheses have been 

published on the possible multi-factorial pharmacodynamics of VPA. This, alongside its use as a 

frontline treatment and its previous use in iPSC-derived neuronal cultures (Darville et al., 2016) 

prompted its use to determine its effect on potential seizure-like activity in this Chapter. 
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The aims of this chapter are to: 

1) Identify the optimal concentration of cytosine arabinoside for synchronisation of 

astrocytes, via the MTT cytotoxicity assay and measurements of cellular proliferation 

2) Assess the ability for co-cultures of synchronised neurons and astrocytes to display 

epileptiform responses to 4-aminopyridine, high potassium aCSF and zero-magnesium 

aCSF conditions using fluorescent calcium imaging 

3) Perform provisional experiments to determine whether the inclusion of commercially 

available iPSC-derived interneurons influences the ability of co-cultures to respond to 

the above manipulations, alongside picrotoxin 
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6.2 Results 

6.2.1 Synchronisation and Characterisation of co-cultures 

The conclusions drawn from Chapter 5 indicated that astrocytic overgrowth exerted undesirable 

effects on the viability and function of neuronal co-cultures. Therefore, the first stage of this 

Chapter was to establish a suitable protocol for the mitotic inhibition of astrocytes. Cytosine 

arabinoside (AraC) was used for its ability to arrest growth of proliferating cells in iPSC-derived 

systems. Serial dilutions of AraC were tested for their effects on proliferation and cell viability. 

At each concentration tested, the percentage of Ki67+ cells significantly decreased, with 10 µM 

AraC reducing proliferation furthest (Control: 32.26 ± 8.96%, 10 µM: 3.50 ± 1.42%, n=4, p= 

0.0056, Figure 6.1). AraC did not significantly affect cell viability at any concentration tested 

(Figure 6.1B).  

Following the establishment of protocols for the synchronisation of NPCs (Chapter 5) and 

astrocytes (Figure 6.1), these cells were co-cultured and differentiated over 10 weeks. Their 

morphology was characterised by ICC (Figure 6.2). Tuj1+ neurons were observed in all cultures, 

with a low degree of fasciculation and aggregation compared with spontaneous differentiation 

(Figure 3.3/4, n=12 cs). Astrocytes in co-cultures displayed typical morphology and were S100β+ 

throughout (n=12 cs). Importantly, the ratios of cell types appeared consistent throughout 

differentiation.  

qPCR was used to assess the expression of neuronal-associated genes with cultures (Appendix 

Figure A9). There was no significant difference in the expression of neuronal TUBB3 and vGAT, 

when compared to control values of NPCs at Day 0. Expression of astrocytic S100β was 

significantly increased cf control (Control: 0.0004 ± 0.05; S100β: 1.71 ± 0.29, n=3, p= 0.046).  

In addition, the baseline activity of this co-culture method was compared to previous models 

throughout this thesis. In every instance, this co-culture protocol elicited significantly increased 

values in percentage of active cells cf every other protocol (Appendix Figure A12).  
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Figure 6.1: Mitotic inhibition of human astrocytes using AraC. Human iPSC-derived astrocytes 

were plated and incubated for 24 hours, before being treated with 1.25, 2.5, 5 and 10 µM 

cytosine arabinoside (AraC) for 24 hours. (A) Immunocytochemistry was performed to assess 

for the presence of proliferating astrocytes, using the cell proliferation marker Ki67. (B) MTT 

assay for cell survival to assess the effects of mitotic inhibition on cell survival. N=4. *p< 0.05, 

**p< 0.01, 1-way ANOVA with Dunnett’s multiple comparisons.  

A 
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6.2.2 Network connectivity 

A prerequisite of in vivo neural activity is the formation of a synaptically-matured neural 

network (Hill et al., 2012) and indeed, this is especially important for synchronising and eliciting 

bursts of action potentials in epileptiform activity (Abarbanel, et al., 1996). To this end, the 

formation of a network using this co-culture method was assessed via the use of 0 Mg and >K+ 

aCSF. The rapid propagation of calcium activity was observed in both conditions, in every 

coverslip tested (Figure 6.3/4, n=24). The representative examples presented clearly indicate an 

origin wherein the calcium signals propagated throughout the culture, stimulating distant cells 

in both conditions (Supplementary Video files 6.1/6.2).  
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Figure 6.2: Synchronously differentiated co-cultures form morphologically matured 

astrocytes and neurons. iPSC-derived NPCs were differentiated in SCT media with 10 µM DAPT 

and co-cultured with AraC-synchronised astrocytes over 10 weeks. Cells were fixed and 

immunocytochemistry was performed to assess the presence of neural markers. (A) Nuclei 

stained with DAPI (Blue, excitation λ 345 nm, emission λ 455 nm). (B) S100β astrocytic staining 

(Grey, excitation λ 495 nm, emission λ 519 nm). (C) Tuj1 neuronal staining (Red, excitation λ 

588 nm, emission λ 649 nm). (D) Merged image of A,B,C. N=24. Scale bar: 100 μm. 20x 

magnification. 
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Figure 6.3: Representative example of rapid propagation of calcium waves throughout network during zero-magnesium aCSF perfusion. (A) Large image 

shows fluorescently stained neural cultures, with 4 example somas labelled numerically in yellow at baseline (no calcium activity). (B) Calcium waves 

propagate in sequence from cell 1 through cell 4, shown in 10 second intervals. (C) Fluorescence over time traces from each circled cell. Scale bar: 100 µm.  
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Figure 6.4: Representative example of rapid propagation of calcium waves throughout network during high potassium aCSF perfusion. (A) Large image 

shows fluorescently stained neural cultures, with 4 example somas labelled numerically in yellow at baseline (no calcium activity). (B) Calcium waves 

propagate in sequence from cell 1 through cell 4, shown in 10 second intervals. (C) Fluorescence over time traces from each circled cell. Scale bar: 100 µm.  
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6.2.3 Induction of epileptiform activity in co-cultures 

Having determined that spontaneously differentiated cultures and spontaneous co-cultures can 

produce epileptiform responses (albeit, not reproducibly) to >K+ and 0 Mg aCSF perfusion 

respectively, these ionic manipulations were selected as the basis for epileptiform experiments. 

Previously attempted spontaneous and co-culture methods did not elicit epileptiform responses 

to 4-AP (Chapter 4,5). Furthermore, due to the absence of inhibitory cells, PTX was not tested. 

In this Chapter, ionic manipulation, followed by the addition of 4-AP was used. This combined 

method has previously been reported for epileptiform studies (Hongo et al., 2015; Ross et al., 

1998, 2000).   

The addition of 0 Mg appeared to cause oscillatory activity in some cells within cultures, with 

large calcium elevations occurring in regular intervals (representative Figure 6.5B). Moreover, 

perfusion of 0 Mg generated a significant increase in the percentage of active cells (Control: 

47.35 ± 9.38%, 0 Mg: 78.25 ± 6.13%, n=12 cs, p= 0.0085, Figure 6.5D), with a further slightly 

increased response when both 0 Mg aCSF and 100 µM 4-AP were added, compared to control 

(79.74 ± 3.89%, p= 0.0057, Figure 6.5D). The perfusion of 0 Mg aCSF with 100 µM 4-AP also 

significantly increased the number of peaks per cell (Control: 1.81 ± 0.27, 0 Mg-4-AP: 2.90 ± 

0.25, n=12 cs, p= 0.0072, Figure 6.5E) and R value (Control: 0.24 ± 0.11, 0 Mg-4-AP: 0.59 ± 0.09, 

n=12 cs, p= 0.0461, Figure 6.5H) However, burst frequency and percentage of synchronised 

elevations did not increase significantly (Figures 6.5F/G).  
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+ 4-AP 
+ 0 Mg + 4-AP 

Figure 6.5: Fluorescent calcium imaging responses of co-cultures of human iPSC-derived 

neurons and astrocytes to zero-magnesium aCSF and 4-aminopyridine perfusion. Neurons and 

astrocytes were synchronised and cultured independently, before co-culturing at 13 DIV, 

followed by 10 weeks differentiation. (A) Co-cultures were loaded with 5 μM Fluo4-AM for 

imaging. (B) Time-lapse videos were recorded at 0.33 Hz, with representative figures showing 

10 example, random fluorescent traces related to yellow regions of interest in (A). (C) 

Representative Raster plot. Spikes were identified manually and plotted over time to identify 

synchronised events. (D) Responding cells were determined as those with ≥ one peak of calcium 

activity. (E) Calcium peaks per active cell. (F) Frequency of calcium events per minute. (G-H) 

Quantitative measures of synchrony. (G) % synchronised cells relating to (C). (H) Average R value. 

(I) Amplitude of calcium events. (J) Duration of calcium events. (K) Time between calcium events. 

N=3.*p< 0.05, **p< 0.01, ANOVA with Tukey’s multiple comparisons test. Scale bar: 5 μm. Solid 

black bars in B-C indicate addition of 0 Mg
2+ 

aCSF and 100 µM 4-AP.  
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+ 4-AP + 4-AP 

Figure 6.6: Fluorescent calcium imaging responses of co-cultures of human iPSC-derived 
neurons and astrocytes to elevated potassium aCSF and 4-aminopyridine perfusion. 
Neurons and astrocytes were synchronised and cultured independently, before co-culturing 
at 13 DIV, followed by 10 weeks differentiation. (A) Co-cultures were loaded with 5 μM Fluo4-
AM for imaging. (B) Time-lapse videos were recorded at 0.33 Hz, with representative figures 
showing 10 example, random fluorescent traces related to yellow regions of interest in (A). 
(C) Representative Raster plot. Spikes were identified manually and plotted over time to 
identify synchronised events. (D) Responding cells were determined as those with ≥ one peak 
of calcium activity. (E) Calcium peaks per active cell. (F) Frequency of calcium events per 
minute. (G-H) Quantitative measures of synchrony. (G) % synchronised cells relating to (C). 
(H) Average R value. (I) Amplitude of calcium events. (J) Duration of calcium events. (K) Time 
between calcium events. N=3. *p< 0.05, **p< 0.01, ***p< 0.001, ANOVA with Tukey’s 

multiple comparisons test. Scale bar: 5 μm. Solid black bars in B-C indicate addition of >K
+
 

aCSF and 100 µM 4-AP.  
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The increased cellular and network activity observed from the recordings satisfied the 

requirements for expanding the range of analyses that could be performed. Burst analysis 

metrics were all non-significant, however, the duration of a burst and the inter-burst-interval 

values indicated that perfusion of both manipulations did increase bursting activity to a greater 

extent that 0 Mg alone (Figures 6.5J-K).  

Representative traces from perfusion with high potassium aCSF did not appear to generate 

oscillatory activity as was seen with perfusion of 0 Mg (Figure 6.6.B). Cellular activity increased 

in 8/10 traces to produce fluorescence amplitude responses of >0.5ΔF/F and increased spiking 

activity was also observed (representative, Figure 6.6C). >K+ aCSF significantly increased the 

percentage of active cells (Control: 49.95 ± 8.35%, >K+: 76.36 ± 4.83%, n=12 cs, p= 0.0077, Figure 

6.6.D) and peaks per cell (Control: 1.72 ± 0.26, >K+: 2.74 ± 0.29, n=12 cs, p= 0.0343, Figure 6.6.E). 

The addition of 100 µM 4-AP elicited significant responses in percentage of responding cells 

(>K+-4-AP: 83.31 ± 2.73%, n=12 cs, p= 0.0008), peaks per cell (>K+-4-AP: 3.24 ± 0.28, n=12 cs, p= 

0.0012) and R value (>K+-4-AP: 0.56 ± 0.11, n=12 cs, p= 0.039). However, there was no significant 

increase in bursting.  

6.2.4 Astrocytic or neuronal calcium activity? 

As the co-cultures contained two principal cell types which can both display calcium signalling, 

further experiments were performed to determine which cell type was responsible for the 

activity observed. Tetrodotoxin (TTX) was applied to several cultures and its effects are shown 

in Figure 6.7. TTX significantly reduced the percentage of active cells in all manipulations cf 

baseline control activity (Table 6.2/Figure 6.6B). The peaks per cell values were significantly 

reduced also (Table 6.6/Figure 6.6C). However, the frequency of bursts did not significantly 

decrease. Indeed, no significant effects of TTX on burst activity, bursting amplitude and inter-

burst-interval (IBI) were observed (Appendix Figure A10).  
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Table 6.2: Overview of statistical results from one-way ANOVA comparing the effects of TTX 

addition on percentage of responding cells. ns = not significant. N=7 coverslips from 3 

differentiations, Tukey’s. 

 

  

 

 

 

 

 

Table 6.3: Overview of statistical results from one-way ANOVA comparing the effects of TTX 

addition on peaks per cell. ns = not significant. N=7 coverslips from 3 differentiations. 

 

Alongside TTX studies, the addition of VPA was hypothesised to reduce levels of activity, whilst 

also giving an indication of the mechanism by which the cultures were eliciting this increased 

activity. VPA did not produce significant reductions in activity in any metric (Figure 6.8), despite 

a decrease in percentage of responding cells, peaks per cell and burst frequency, compared with 

experimental manipulations. Additionally, no significant effect of VPA on burst activity was 

observed, although a reduction in burst amplitude, increased IBI and decreased burst duration 

were all observed (Appendix Figure 11A).  

 

 

Condition Mean ±  Std. Error P value 
0 Mg Control 44.22 ± 14.09 Ns 

0 Mg 82.29 ± 8.18 0.015 

0 Mg-4-AP 77.75 ± 6.03 0.033 

0 Mg-4-AP-TTX 39.62 ± 5.80 - 

>K+ Control 59.60 ± 7.33 Ns 

>K+ 82.11 ± 4.67 0.028 

>K+-4-AP 80.22 ± 3.78 0.034 

>K+-4-AP-TTX 56.09 ± 8.43 - 

Condition Mean ±  Std. Error P value Post hoc Test 

0 Mg Control 1.67 ± 0.26 ns 

Dunn’s 
0 Mg 2.29 ± 0.21 ns 

0 Mg-4-AP 2.86 ± 0.35 0.0049 

0 Mg-4-AP-TTX 1.38 ± 0.11 - 

>K+ Control 1.57 ± 0.13 ns 

Tukey’s 
>K+ 3.06 ± 0.31 0.0029 

>K+-4-AP 3.45 ± 0.38 0.0002 

>K+-4-AP-TTX 1.56 ± 0.16 - 
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Figure 6.7: Effects of tetrodotoxin perfusion on fluorescent calcium activity of co-cultures of 

neurons and astrocytes exposed to different pro-ictogenic conditions. Human iPSC-derived 

neuronal and astrocytic co-cultures were cultured over 10 WIV and treated with various pro-

ictogenic perfusions to elicit increased activity, followed by tetrodotoxin (TTX). (A) Time-lapse 

videos were recorded at 0.33 Hz, with representative figures showing 15 example, random 

fluorescent traces. (B) Responding cells were determined as those with ≥ one peak of calcium 

activity. (C) Calcium peaks per active cell. (D) Frequency of calcium events per minute. N=3. *p< 

0.05, **p< 0.01, ***p< 0.001, ANOVA with Tukey’s multiple comparisons test. Scale bar: 5 μm. 

Solid black bars in A indicate addition of zero magnesium/high potassium aCSF, 100 µM 4-AP 

and 1 µM TTX.  
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Figure 6.8: Sodium valproate perfusion does not reduce fluorescent calcium activity of co-

cultures of neurons and astrocytes exposed to different pro-ictogenic conditions. Human 

iPSC-derived neuronal and astrocytic co-cultures were cultured over 10 WIV and treated with 

various pro-ictogenic perfusions to elicit increased activity, followed by valproate (VPA). (A) 

Time-lapse videos were recorded at 0.33 Hz, with representative figures showing 15 example, 

random fluorescent traces. (B) Responding cells were determined as those with ≥ one peak 

of calcium activity. (C) Calcium peaks per active cell. (D) Frequency of calcium events per 

minute. N=3. ANOVA with Tukey’s multiple comparisons test. Scale bar: 5 μm. Solid black bars 

in A indicate addition of zero magnesium/high potassium aCSF, 100 µM 4-AP and 2 mM VPA.  
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6.2.5 Preliminary characterisation of co-cultures with interneurons 

The final series of experiments in this thesis included the addition of human iPSC-derived 

interneurons to the established co-cultures described (Chapter 6.2). To ensure the survival and 

incorporation of interneurons into the network, ICC was performed at 10 WIV to assess for the 

presence of excitatory and inhibitory synapses following seeding of cells. Figure 6.9 shows 

synaptic puncta of both an excitatory and inhibitory nature (Figure 6.9) which was observed in 

all three repeats (n=3 coverslips, 1 biological differentiation).  

6.2.6 Induction of epileptiform activity in interneuron co-cultures 

As the inclusion of interneurons was a final series of experiments, there was unfortunately 

insufficient time and resources to perform the studies with enough repeats for statistical 

analysis and to optimise the culture system. As the target of PTX is often interneurons, the 

cultures were perfused with PTX to observe any effects. PTX appeared to increase the 

percentage of responding cells, peaks per cell, percentage of synchronised elevations and R 

value (Figure 6.10). Interestingly, the addition of VPA following PTX perfusion appeared to 

decrease all measures of activity and synchrony, whilst extending the interval between bursting.  

Similar to experiments performed on co-cultures earlier in Section 6.2.3, ionic and 

pharmacological manipulation was used simultaneously on interneuron co-cultures. 0 Mg and 

0 Mg-4-AP both increased every single parameter for activity and synchrony, whilst reducing 

the IBI (Figure 6.11). In addition, VPA had no effect on percentage of active cells, but did reduce 

the peaks per cell, bursting frequency and percentage of synchronised elevations. 

Finally, perfusion with >K+ and 4-AP also increased percentage of responding cells, peaks per 

cell and decreased the IBI (Figure 6.12). However, little change was observed for burst 

frequency, percentage of synchronised elevations or R value.  
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Figure 6.9: Interneuron co-cultures demonstrate the presence of inhibitory synapses. iPSC-

derived neural precursors were differentiated in SCT media with 10 µM DAPT and cocultured 

with AraC-synchronised astrocytes and iPSC-derived interneurons over 10 weeks and 

immunocytochemistry performed to assess the presence of excitatory and inhibitory synapses. 

(A) Excitatory synapses stained with VGlut1 (Grey, excitation λ 495 nm, emission λ 519 nm). 

(B) Inhibitory synapses stained with GAD67 (Red, excitation λ 588 nm, emission λ 649 nm). (C) 

Merged image of A,B. N=1. Scale bar: 100 μm. 63x magnification. 
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Figure 6.10: Fluorescent calcium imaging responses of co-cultures of human iPSC-derived 

neurons, astrocytes and interneurons to picrotoxin perfusion. Neurons and astrocytes were 

synchronised and cultured independently, before co-culturing at 13 DIV alongside addition of 

interneurons, followed by 10 weeks differentiation. (A) Co-cultures were loaded with 5 μM 

Fluo4-AM for imaging. (B) Time-lapse videos were recorded at 0.33 Hz, with representative 

figures showing 10 example, random fluorescent traces related to yellow regions of interest 

in (A). (C) Representative Raster plot. Spikes were identified manually and plotted over time 

to identify synchronised events. (D) Responding cells were determined as those with ≥ one 

peak of calcium activity. (E) Calcium peaks per active cell. (F) Frequency of calcium events per 

minute. (G-H) Quantitative measures of synchrony. (G) % synchronised cells relating to (C). 

(H) Average R value. (I) Amplitude of calcium events. (J) Duration of calcium events. (K) Time 

between calcium events. N=1. Scale bar: 5 μm. Solid black bars in B-C indicate addition of 100 

µM PTX and 2 mM sodium valproate.  
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Figure 6.11: Fluorescent calcium imaging responses of co-cultures of human iPSC-derived 

neurons, astrocytes and interneurons to zero magnesium aCSF and 4-aminopyridine 

perfusion. Neurons and astrocytes were synchronised and cultured independently, before 

co-culturing at 13 DIV alongside addition of interneurons, followed by 10 weeks 

differentiation. (A) Co-cultures were loaded with 5 μM Fluo4-AM for imaging. (B) Time-lapse 

videos were recorded at 0.33 Hz, with representative figures showing 10 example, random 

fluorescent traces related to yellow regions of interest in (A). (C) Representative Raster plot. 

Spikes were identified manually and plotted over time to identify synchronised events. (D) 

Responding cells were determined as those with ≥ one peak of calcium activity. (E) Calcium 

peaks per active cell. (F) Frequency of calcium events per minute. (G-H) Quantitative 

measures of synchrony. (G) % synchronised cells relating to (C). (H) Average R value. (I) 

Amplitude of calcium events. (J) Duration of calcium events. (K) Time between calcium 

events. N=1. Scale bar: 5 μm. Solid black bars in B-C indicate addition of zero magnesium 

aCSF, 100 µM 4-AP and 2 mM sodium valproate.  
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Figure 6.12: Fluorescent calcium imaging responses of co-cultures of human iPSC-derived 

neurons, astrocytes and interneurons to elevated potassium aCSF and 4-aminopyridine 

perfusion. Neurons and astrocytes were synchronised and cultured independently, before co-

culturing at 13 DIV alongside addition of interneurons, followed by 10 weeks differentiation. (A) 

Co-cultures were loaded with 5 μM Fluo4-AM for imaging. (B) Time-lapse videos were recorded at 

0.33 Hz, with representative figures showing 10 example, random fluorescent traces related to 

yellow regions of interest in (A). (C) Representative Raster plot. Spikes were identified manually 

and plotted over time to identify synchronised events. (D) Responding cells were determined as 

those with ≥ one peak of calcium activity. (E) Calcium peaks per active cell. (F) Frequency of 

calcium events per minute. (G-H) Quantitative measures of synchrony. (G) % synchronised cells 

relating to (C). (H) Average R value. (I) Amplitude of calcium events. (J) Duration of calcium events. 

(K) Time between calcium events. N=1. Scale bar: 5 μm. Solid black bars in B-C indicate addition of 

high potassium aCSF, 100 µM 4-AP and 2 mM sodium valproate.  
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6.3 Discussion 

In this final experimental chapter, a robust co-culture method has been developed, which 

responds with increased activity and synchrony to different pro-ictogenic conditions within 10 

weeks.  Importantly, the baseline percentage of active cells observed from these co-cultures 

was significantly higher than previously tested models in Chapters 3-5 (Appendix Figure A12).  

AraC is an effective mitotic inhibitor for iPSC-derived astrocytes 

The results from Chapters 3-5 suggested that the proliferative ability of astrocytes in co-culture 

models needed to be inhibited. To this end, the mitotic inhibitor AraC was used to synchronise 

astrocyte cultures and arrest their proliferation (de Rus Jaquet, 2019). As AraC is commonly used 

as a chemotherapeutic drug (Vincelette & Yun, 2014), and considered a potent anti-proliferative 

agent, the effect on cell viability was also considered. As it was anticipated that mitotic inhibition 

could have potentially cytotoxic effects and reduce viability of the astrocytes, a balance had to 

be struck so that the astrocytic growth was contained, with minimal cytotoxicity. The results 

indicated that AraC treatment at 10 µM could be applied to cultures of astrocytes to produce 

the desired effect of containing their growth, as evidence by reduced Ki67 immunostaining, 

without excessive cell attrition. 

Immunostaining was performed throughout differentiation, as for previous Chapters. The 

consistency of astrocytes and neurons throughout differentiation remained constant, which 

gives a further, strong indication that the inhibition was successful. As for ICC results in Chapter 

3.2, quantitation was not possible. Gene expression analysis performed at 10 WIV showed a 

significant increase in S100β expression compared with Week 0, which could suggest an increase 

in numbers of astrocytes themselves, however qualitative visualisation did not indicate that 

astrocytes had overgrown the culture.  

Importantly, an issue observed in spontaneous differentiation, particularly on PORN-laminin 

was the large degree of fasciculation and the tendency for clusters of somas to form ‘hubs’ 
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throughout the culture (Amin et al., 2016). This was not observed using this co-culture model 

and is further evidence that the inhibition of both cell types was effective. Of particular 

significance is that aggregation of previous cultures often resulted in detachment from the 

culture surface and the ultimate loss of cells. Cultures were successfully differentiated over 10 

weeks, demonstrating that co-culturing promotes a more adherent, robust culture, as 

previously reported (Kuijlaars et al., 2016).   

This synchronised co-culture method promotes network formation 

Neural networks are essential for seizure generation and are highly suggestive of a matured, 

connected culture (Spencer, 2002). It has been shown that stored and intracellular calcium are 

involved in neural network activities such as propagation of calcium waves and that these can 

increase the rapidity of the spread of calcium via calcium-induced calcium release (Neymotin et 

al., 2015). As such, calcium imaging was used to determine whether waves of calcium signals 

were evident and whether they could spread throughout the culture. Both ionically manipulated 

perfusate condition elicited large waves of calcium activity, which propagated distally from an 

origin. This provides evidence that the cells in culture had formed an interconnected neural 

network, as opposed to isolated neurons. The reason behind the formation of reproducible 

networks is likely due to the inclusion of matured astrocytes in this co-culture model (Halassa & 

Haydon, 2010). These results agree with those of Kuijlaars et al., (2016) who found co-culture 

of DAPT-synchronised NPCs with primary human astrocytes promotes neural network 

formation. However, this group also use synchronised baseline activity as a metric for networks, 

as it has been demonstrated that developing neural networks exhibit periods of synchronised 

bursts, mediated by excitatory neurons in iPSC-derived systems which lack a physiologically-

relevant interneuronal component (Kirwan et al., 2015). It is important to note, however, that 

Kuijlaars et al., (2016) demonstrated ‘synchronised network activity’ at baseline, yet their aCSF 

recipe did not contain magnesium. This suggests that the activity observed was a result of 

excitatory ionic manipulation and not of true control (i.e. no manipulation) calcium activity. For 
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this reason, the propagation of calcium waves was used to determine network connectivity and 

not synchronised burst activity during development.  

Are calcium signals neuronal or astrocytic? 

As discussed previously, astrocytes display spontaneous and synchronised calcium activity 

(Klapper et al., 2019; Pirttimaki et al., 2017). Due to the co-cultures containing both neurons 

and matured astrocytes, this presented a possibility that the signals observed from calcium 

imaging could be from astrocytes in culture, as opposed to neurons. Indeed, one could make 

the link between astrocytic calcium signals and absence of ‘typical’ electrical activity on MEA 

recordings both in this Chapter and previous Chapters. Indeed, some cultures displayed what 

appeared to be oscillatory activity, but with considerably longer times between the oscillations 

than the wave propagations observed previously. Astrocytes can oscillate and can also influence 

neuronal oscillations in culture systems, often at a slower pace than that of neurons (Pasti et 

al., 2001; James Crowe, unpublished data). 

In order to distinguish between the two cell types, experiments were performed using 

tetrodotoxin (TTX), with the aim to inhibit neuronal action potential-mediated activity, which 

incidentally, provides another metric for assessing network function in vitro (Hill et al., 2012; 

Kasteel & Westerink, 2017). As a result, any signals still observed during TTX application were 

assumed to be astrocyte-mediated. This method contrasts with those used previously, wherein 

glutamate was used to distinguish between neuronal and astrocytic cell types (Pickering et al., 

2008), however as both cell types in culture can respond to glutamate with increased 

intracellular calcium activity, this method is ineffective (Bezzi et al., 1998).  

The application of an action-potential blocker such as TTX should result in a reduction in 

neuronal cell and burst activity, with the exception of IBI, which should increase as the cells 

should fire less often (if at all) (Abe & Terasawa, 2005). It appears that TTX application reduced 

every parameter assessed, with statistically significant results for some assessments. As a result, 
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it is likely that most of the individual and network activity observed and reported is either 

neuronal or is mediated by sodium action potentials, as upon TTX application, propagating 

waves also ceased. With relevance to calcium waves, the synchronised co-culture platform 

demonstrated more rapid propagation than those observed in isolated human astrocytic 

networks (Hill et al., 2012), suggesting that the waves of calcium in this instance, were neuronal. 

In further support, collaboration with various current and former members of Dr. Rhein Parri’s 

lab group (Aston University, personal communications), patch clamp analysis on both 

spontaneously differentiated and synchronised co-cultures revealed the ability for neurons in 

culture to fire action potentials and exhibit electrical activity. The possibility still stands that the 

calcium activity observed could be astrocytic in nature, but this may be a result of neuronal 

firing and consequent neurotransmitter release stimulating astrocytes (Agulhon et al., 2008; 

Fiacco et al., 2007). The inability to effectively distinguish between cell types is a major limitation 

of this experimental design and is discussed in Chapter 7.  

Was activity observed epileptiform? 

The rationale behind combining ionic and pharmacological manipulation in this Chapter was 

that the tendency for previous cultures to appear as if they were reaching a threshold and 

required only a minor increase in stimulation to fire in a hyperexcitable and hypersynchronous 

manner was routinely observed. Despite observing increased activity and synchrony (with 

statistical significance) in each pro-ictogenic condition, a hypersynchronous, hyperactive culture 

like the isolated repeats in Chapters 4 and 5 was not observed with this model. It could be 

argued that this is due to the absence of interneurons and it underlines the significant role they 

play in seizure generation. Irrespective of this, the addition of ionic and pharmacological 

treatments in tandem often resulted in increased values cf ionic manipulation alone and 

significant increases in activity and synchrony cf control. Therefore, the conclusion from this 

method is that combination of pro-ictogenic conditions excites the system to a greater extent 

than individual treatments. Again, this is possibly because inhibitory circuits are not present and 
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thus cannot modulate or mediate the synchronisation typically observed in seizure-like events 

(Grasse et al., 2013). 

Alongside experiments with TTX to attempt to distinguish between neurons and astrocytes, 

sodium valproate (VPA) was also perfused on several cultures to monitor whether activity 

reduced. As reviewed in 6.1, VPA can exert effects on GABAergic neurotransmission and various 

ion channels. VPA appeared to slightly reduce activity, however no parameter assessed was 

statistically significant. The reason for this could be due to the mechanistic action of VPA: if the 

action of VPA is based predominantly on GABAergic transmission, the lack of inhibitory input in 

this system could explain the ineffectiveness of VPA treatment in this instance. 

Co-cultures with interneurons display increased activity 

The generous donation of commercially available interneurons (James Crowe) provided the 

basis for the final experiments in this thesis, however, due to time and cost constraints, no 

repeats could be performed and thus, no statistical analysis. Interneurons were added at a ratio 

of 1:4 with excitatory neurons, as this ratio has been reported in the human in vivo cortex 

(Sahara et al., 2012). Immunostaining of synapses revealed characteristic punctate VGlut1 

excitatory vesicles and GAD67+ inhibitory vesicles, not previously seen. These were localised to 

the soma and along the neurites as previously reported (Gunhanlar et al., 2017).  

Interneuronal co-cultures were perfused with PTX, as it was expected that the receptors and 

cellular targets were now present in the system. Indeed, measures of activity and synchrony 

were all increased in the presence of PTX, however the burst frequency remained unchanged 

and burst parameters indicated an unsuccessful epileptiform result. Interestingly, VPA perfusion 

decreased all measures of activity and synchrony and burst activity, whilst extending IBI, 

suggesting VPA was effective in reducing PTX-induced neuronal activity. This is possibly due to 

the effects of VPA on GABA transmission and interneuronal populations (Lauber et al., 2016; 

Winterer, 2003).  
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The provisional result with 0 Mg and 4-AP perfusion indicates a successful experiment, with 

substantially increased activity, synchrony, and burst measures. This combined with visual 

analysis, the derived traces and the Raster plot were all suggestive of epileptiform activity. 

Moreover, perfusion with VPA also decreased several parameters of activity, synchrony and 

burst characteristics. Whilst >K+ aCSF did increase activity, it displayed no effect on bursting and 

synchrony, indicating a lack of epileptiform activity. However, in this instance, VPA produced a 

decrease in every parameter and increased duration between bursts, suggesting it acted 

successfully upon the culture.  

Whilst the results from these preliminary interneuron co-cultures are very promising, there 

needs to be a significantly increased sample size and appropriate statistical analysis to confirm 

that interneuron inclusion is necessary for epileptiform activity in the human iPSC-derived 

neural cultures presented in this Chapter. Furthermore, there was considerable optimisation of 

ratios, seeding densities and maturation states of the individual cellular components involved 

in co-culturing methods throughout this thesis. Whilst the ratio of interneurons seeded was 

similar to that typically observed in vivo, further refinement and development of the inhibitory 

component of in vitro models will require lengthy and methodical investigation to generate the 

most consistent results.  
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Chapter 7 

7: GENERAL DISCUSSION AND FUTURE DIRECTIONS 

The main aim of this thesis was to develop and test human iPSC-derived models for preclinical 

seizure-liability testing and integrate this with a suitable, high-throughput analytical technique. 

There is a dearth of standard protocols to assemble these cellular platforms, including 

consideration of growth media, cellular ratios, cell subtypes, donor patients and methods of 

experimentation, making this aim problematic and challenging. This thesis has compared 

methods for generating iPSC-derived neural cultures for preclinical seizure-liability testing and 

has narrowed the choice towards a potentially exciting and productive human culture platform. 

The most common protocols reported in the literature have been considered and their ability 

to produce hypersynchronised and hyperactive responses to well-known seizurogenic 

treatments has been assessed. This Chapter will briefly summarise the experimental findings 

from previous Chapters, whilst providing a general discussion of the collective results. 

Limitations of this study, alongside future directions are also addressed.  

7.1 Summary of experimental findings 

In Chapter 3, it was intended to demonstrate the ability of commercially available neural 

precursor stem cells (NPCs) to differentiate into morphologically and functionally distinct neural 

subtypes over 18 weeks differentiation. The initial spontaneous differentiation protocol was 

based on that of the seminal work of Chambers et al., (2009) and Shi et al., (2012a,b) who 

demonstrated NPCs, in the presence of defined growth medium, could undergo both 

neurogenesis and gliogenesis. This allowed the formation of the key cellular components of the 

cortex, along with the ability to exhibit functional activity. In agreement with the scientific 

literature, spontaneously differentiated cultures displayed developmental markers at the same 

points in time, with the initial emergence of immunostained neural progenitors and cortical 

rosettes, radial glia, neurons by 4 WIV, cortical layer markers and astrocyte emergence around 
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8 WIV, with astrocyte maturation observed post 10 WIV. This was also confirmed by qPCR. These 

results correlate with the in vivo neural development timeline (Mertens et al., 2016), suggestive 

of a successful differentiation protocol. Furthermore, there was an absence of inhibitory 

interneuron immunostaining at all timepoints, despite significant increases in vGAT expression, 

which is further indication of a cortical differentiation.  

An important objective of Chapter 3 was to provide evidence of differences in neural growth 

media, to move closer to standardisation of iPSC protocols for safety pharmacology applications. 

In Chapter 3, two widely available commercial growth media were directly compared on their 

ability to influence cultures to generate the above cell types, the speed at which this could be 

achieved and their subsequent functional activity. The results of this chapter disagree with the 

scientific literature, where it was shown that SCT media was superior to the standard 

electrophysiology perfusate ‘artificial cerebrospinal fluid’ (Bardy et al., 2015). Instead, it was 

discovered that aCSF produces increased functional responses from cultures and hence, was a 

more appropriate perfusate for functional recordings. 

Chapter 4 sought to build on the findings of Chapter 3 and progress the platform development 

towards the possible induction of seizure-like activity in the spontaneously developed cultures, 

using experimental methods which are high-throughput and non-invasive; ideal for toxicity 

screening (Collins et al., 2017). A novel interrogation of spontaneously derived neural cultures 

over 18 weeks differentiation was presented, using fluorescent calcium imaging. At various 

timepoints correlating to key developmental stages (i.e. 4 WIV (arrival of neurons), 8 WIV 

(arrival of astrocytes), 12 WIV (matured astrocytes, matured culture) and 18 WIV (further 

maturation)) the ability for spontaneously differentiated cultures to respond to a panel of 

seizurogenic conditions was explored. Despite many experiments being conducted, in both 

media, the activity was not epileptiform, with the exception of a single SCT culture which 

displayed characteristic synchronised and hyperactive bursting calcium activity; indicative of 
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seizure-like events (Hongo et al., 2015; Pacico & Meur, 2014). However, the overall results of 

Chapters 3 and 4 suggested cells cultured in SCT media exhibited the greatest activity and 

responses to seizurogenic manipulations.  

Following the morphological and functional characterisation of spontaneous differentiation in 

two commercially available growth media, in Chapter 5, the ability of monocultures of neurons 

and astrocytes and co-culture models were investigated, in terms of their responses of 

characteristic epileptiform activity. An optimised protocol for the synchronisation of NPCs was 

developed in this thesis and following synchronisation, individual neuronal cultures were found 

to be relatively inactive. Further evidence strongly supported the requirement of astrocytes and 

neurons to exist in co-culture, in physical contact, as reported previously (Odawara et al., 2014). 

Neither monoculture platform displayed epileptiform activity and therefore, the co-culturing of 

both cell types was attempted using two different methods. Epileptiform activity was observed 

with a spontaneous co-culture model in Chapter 5, albeit not reproducibly; suggesting that co-

culture systems have the potential to be used in toxicity screening. A key observation was 

recorded at this point, with respect to the highly problematic potential for astrocytes to 

overgrow in late cultures, subsequently reducing activity and neuronal drug responses.   

In Chapter 6 methods were evaluated to control astrocyte proliferation and in collaboration 

with PhD students from the Coleman, Hill and Parri groups (Aston University), a refined co-

culture model was generated, based on previous literature (Kayama et al., 2018; Matsuda et al., 

2018; Odawara et al., 2018), wherein the ratios of neurons to astrocytes could be more strictly 

controlled than in previous co-culture models and spontaneously differentiated cultures 

(Chapters 3-5). The results were indicative of a functional, heterogeneous model system, 

although robust epileptiform activity was only episodically observed. Final experiments wherein 

GABAergic interneurons were added to the culture system, yielded a platform with the capacity 

to react to a wider range of compounds, some with elevated measures of synchrony, activity 
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and bursting. In this thesis, evidence for the requirement of astrocytes, neurons and GABAergic 

interneurons to physically co-exist in culture with consideration of subtype ratios is provided. 

7.2 General discussion 

7.2.1 Statistical analysis 

It is estimated that many biological publications contain errors in their statistical analysis 

(García-Berthou & Alcaraz, 2004), and thus, care was taken to consult biostatistics expertise to 

ensure accuracy and reliability. Statistical analysis in this thesis was performed with detailed 

consideration of several multi-factorial study designs. In many instances (particularly Chapter 3 

and 4), it was necessary to perform multiple comparisons, as the primary aim was to compare 

two growth media and their effect on different drug treatments. A 2-way ANOVA is a parametric 

test; appropriate for normally distributed data. Parametric tests have higher statistical power 

than their non-parametric equivalents (Kitchen, 2009), making this a desirable means of 

determining significant results. However, as biological data is seldom normally distributed, 2-

way ANOVA for multiple comparisons presented a challenge. To the author’s knowledge no 

appropriate non-parametric alternative to the 2-way ANOVA is available. The Scheirer-Ray-Hare 

test (Scheirer et al., 1976) has been used in some situations as a non-parametric alternative, 

however this test has low statistical power and if applied to the data in this thesis, there was 

potential to misinterpret the findings. Therefore, non-normally distributed data had to be 

transformed to enable statistical testing with greater statistical power. Transformations are 

commonly used in biology to normalise slightly skewed data, enabling scientists to then perform 

parametric testing (Garcia-Berthou & Alcaraz, 2004). In this thesis, data was transformed using 

logarithmic methods and this was kept constant for all transformations.  

Outliers can be removed from datasets, in the hope that this enables the data to follow a 

Gaussian (normal) distribution and indeed, this practice is commonly followed. However, 

particularly in Chapters 4,5 ‘outliers’ provided the most interesting results, demonstrating the 

cultures’ capability to generate hyperexcitable, hypersynchronous activity. In this instance, 
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removing the outliers would have prevented these important preliminary findings. As a result, 

it was decided to display all data obtained and then, if necessary, perform transformations to 

enable 2-way ANOVA. For datasets where the study design permitted 1-way ANOVA 

(particularly Chapter 6), a suitable non-parametric alternative is allowed, so this data was not 

adjusted in any way.  

7.2.2 What is the ideal culture system for seizure-liability testing? 

7.2.2.1 Spontaneous differentiation 

As previously stated, the main aim of this thesis was to build an optimal culture method for 

neurotoxicity testing. Several approaches were attempted, and all assessed using the same 

broad experimental approach. Spontaneous differentiation revealed the potential for cultures 

to respond in an epileptiform manner to seizurogenic conditions, however, the data indicated 

that this is not a reliable or reproducible method of generating this activity. There are several 

possible explanations for these results. Mature electrical circuits are necessary for normal, 

oscillatory and seizure activity and human cortical neurogenesis occurs over a period of roughly 

100 days (Rabinowicz et al., 1996). Ergo, the neuronal cells and circuits at weeks 4-12 may not 

be fully matured. Indeed, Amin et al., (2016) assessed their spontaneously differentiated 

cultures via patch clamp techniques and found that cells fired immature action potentials even 

at 12 WIV. This is supported by experiments suggesting that the matured network activity of 

spontaneously differentiated cultures occurs between 8-23 WIV (Kirwan et al., 2015). Due to 

time constraints of this project, 18 WIV differentiation was an attainable, but nevertheless long 

duration. However, these reports, combined with the results of Chapter 4, indicate that the 

activity of most of the cultures was still immature at this timepoint. Relating this to the aim of 

this thesis, a high-throughput neurotoxicity model which takes over 18 weeks to develop is 

simply an unrealistic approach (Verstraelen et al., 2014). In agreement, whilst those authors 

suggest embryoid body protocols generate heterogeneous models, this still takes an 
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impractically long amount of time (>12 WIV), so therefore, is unsuitable for the purpose of short 

timeframe toxicity testing (Gunhanlar et al., 2017).   

A recurrent theme throughout this thesis is the supportive, developmental and functional roles 

which astrocytes provide to neurons. In primary rodent cultures, the issue of astrocytic 

overgrowth is frequently observed over time (Foo, 2013) and the data indicated a similar 

process was occurring in iPSC-derived cultures, however this could only be observed visually and 

not quantified. Furthermore, it has been shown in in vitro studies that astrocytes tend to grow 

at the base of culture, invading the culture growth surface, forcing neurons to detach and die 

(Gilad & Gilad, 1987). In addition, throughout spontaneous cultures, a large degree of neuronal 

fasciculation was observed, to the point where cells detached from the culture surface and 

became unstable and ultimately died. In vivo developmental studies have confirmed that 

neuronal fasciculation is a necessary process for providing a scaffold and guide for the migration 

of developing neurons in the CNS (Bak & Fraser, 2003), hence, initial fasciculation of neurites 

was a positive result in terms of alignment with the in vivo environment. However, the extensive 

aggregation observed over time is indicative of an incomplete system, wherein the mechanisms 

behind fasciculation have been able to continue in an uncontrolled manner. It may be that the 

overgrowth of astrocytes led to this fasciculation, following neuronal detachment from the 

culture surface. 

Ultimately, the lack of responsiveness of spontaneously differentiated cultures may have been 

due to the variation in cell ratios and the unregulated cell aggregation and overgrowth, which 

hindered any practical method of determining exactly how many cells of which type were 

present in the cultures over time. For safety pharmacology applications, variation to this extent 

is unacceptable and ideally, a system should have physiological ratios of cell types, which do not 

uncontrollably proliferate or cause the death of neighbouring cells. In conclusion, the author 

contends that astrocytic overgrowth could explain the lack of reactivity to pro-ictogenic 
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conditions and relatively low baseline activity observed in later cultures. In addition, the fact 

that astrocytes do not appear in culture until post W8 differentiation could also provide a reason 

for this reduced activity, as neurons are less mature than if the physical presence of astrocytes 

had occurred from a similar time to the initial neuronal plating in vitro. 

 7.2.2.2 Co-culture differentiation 

Following from the variation observed from spontaneous differentiation, a more controlled 

series of methods were attempted, from individual cultures of cell types, to co-culture models. 

The results from Chapters 3 and 4 indicated that astrocyte overgrowth and neuronal immaturity 

were likely causative factors in the ineffectiveness of spontaneous differentiation to generate 

SLE. As such, co-culture methods were employed which seeded neurons and astrocytes 

together, to provide a supportive, developmental environment for neurons from the initial 

plating.  

To rectify some of the problems with spontaneous differentiation, a synchronisation protocol 

for neurons in this system was developed, wherein the number of neurons could be more 

stringently regulated and fewer NPCs would remain to develop into astrocytes. This provided 

two possibilities for culture systems: firstly, where a defined number of astrocytes would be 

added to these synchronised neurons and secondly, where a defined number of astrocytes 

would be added to spontaneously differentiating neurons. The theory behind both being that 

the presence of astrocytes throughout neuronal development may speed up the maturation 

process and offer tighter regulation of ratios of cell types, compared with that of spontaneous 

differentiation. Additionally, the necessity for astrocytes in culture for seizure activity has been 

reported (Klapper et al., 2019). 

Interestingly, the spontaneous co-culture model generated a large synchronised bursting 

response to >K+ aCSF conditions at 7 WIV, whilst no characteristic epileptiform activity was 

observed in the synchronised neuron – astrocyte co-cultures. Furthermore, the magnitude of 
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the seizure-like activity was far greater than that of the response observed for the epileptiform 

response in the spontaneously differentiated culture (Chapter 4). This suggests that the 

presence of astrocytes throughout neuronal development led to a more rapidly matured 

culture, capable of eliciting epileptiform activity and agrees with the scientific literature for 

rodent (Bradley et al., 2018; Fan et al., 2019) and human iPSC-derived (Ishii et al., 2017; Kuijlaars 

et al., 2016; Odawara et al., 2016a, 2016b; Tukker et al., 2016, 2018) platforms. However, again 

this was not reproducible, likely due to the variation previously observed with spontaneous 

differentiation.  

With regards to both co-culture systems from Chapter 5, astrocytic overgrowth was, again, 

apparent by the end of the differentiation period. Further observation confirmed that the 

cultures were highly astrocytic, presented as a widespread adherent monolayer. These data 

suggest that the cells seen over 18 weeks on the culture-ware and MEA chips were astrocytic 

and that the neurons had diminished to a number which was not compatible with a detectable 

response. This is supported by the absence of detectable MEA signals, despite a completely 

adherent monolayer and is reinforced by the appearance of large, astrocytic morphologies from 

W18 calcium imaging, which can produce calcium responses (Khakh & McCarthy, 2015). Indeed, 

the calcium responses observed in the cultures which appeared heavily astrocytic were slower 

and more repetitive than previously observed neuronal signals, which could provide further 

evidence that the cells being imaged were largely astrocytic; particularly as astrocytic calcium 

activity typically functions more like that of a pacemaker (Hill et al., 2012).  

The experiments with monocultures of neurons and astrocytes have further confirmed reports 

that neurons and astrocytes must co-exist for a heterogeneous, viable culture system (Odawara 

et al., 2014; Stogsdill et al., 2017; Taga et al., 2019), particularly as the absence of physical 

contact with astrocytes (despite neuroprotective growth factors), led to the death of 
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synchronised neuronal monocultures in all repeats. Astrocytic monocultures demonstrated 

sporadic calcium activity, but did survive alone essentially indefinitely.   

In conclusion, despite the co-cultures of astrocytes and neurons showing the ability to produce 

epileptiform activity, this method of culturing presents similar issues observed with 

spontaneous differentiation. This method is still superior to spontaneous differentiation, as 

epileptiform responses were observed at 7 WIV, far more rapidly than those of spontaneous 

differentiation. These results are highly indicative of astrocytes influencing the maturation of 

neurons more rapidly, however, their overgrowth and the continued variation in developing cell 

type ratios ultimately led to the finding that this culture method was not suitable for the purpose 

of this thesis. 

7.2.2.3 Synchronised astrocytes and neurons in co-culture 

The results from Chapters 3-5 indicated that spontaneously differentiating cells are 

unpredictable in their final culture composition and that at later timepoints, astrocytic 

overgrowth became a problematic issue. As such, a method for inhibiting astrocytic proliferation 

in this system was developed, using the chemotherapeutic agent cytosine arabinoside (AraC) 

(Cheng et al., 2017; de Rus Jacquet, 2019; Schwartzentruber et al., 2017). 

This method produced cultures which displayed network activity and significant increases in 

activity and synchrony to conditions tested. Furthermore, immunostaining and visual 

observation suggested that by inhibiting the ratios of cell types, this remained constant 

throughout the differentiation protocol.  

This protocol is an amendment of that published previously (Odawara et al., 2018), but with a 

novel contribution in the inhibition of astrocytes using AraC. Furthermore, the ratio of 

astrocytes finally chosen was optimised for this individual system, from collaboration with Mr 

James Crowe (Parri group, Aston University). In further support for this platform, the baseline 
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activity was significantly increased in synchronised astrocyte-neuronal co-cultures cf every 

preceding model assessed in this thesis (Appendix Figure A12). 

Despite generating a functional, integrated and responsive platform, a number of issues still 

remain. Firstly, the optimisation was performed for this specific cellular model and there is no 

guarantee that this is applicable more widely, as the data in this thesis has indicated. Secondly 

and perhaps most importantly, irrespective of the significant increases in epileptiform criteria, 

statistically significant bursting activity was not observed in this culture system. This is evocative 

of a missing component in the model to generate a truly controlled, reproducible system.  

7.2.3 GABAergic interneurons are vitally important 

The findings in this thesis strongly suggests that GABAergic interneurons are required for a 

heterogeneous, reproducible neural seizure-liability platform.  

As discussed in detail in Chapters 1 and 6, GABAergic interneurons (GIN) play critical roles in 

neural circuits and seizure induction (Sharfman, 2007). Spontaneous differentiation can 

intermittently produce GIN in monolayer systems (Kirwan, et al., 2015; Shi et al., 2012a) and 

embryoid body-based protocols (Gunhanlar et al., 2017), particularly in late timepoints in 

developing cultures. As discussed previously, interneurons do not develop in the cortex, but 

rather migrate in from the medial ganglionic eminence (Martini et al., 2009) and precise 

generation of interneurons from NPC involves the use of specific morphogens such as 

purmorphamine (Liu et al., 2013). As the embryoid-body protocol (Gunhanlar et al., 2017) 

includes no mention of morphogens, if this is routinely observed with this method, it would be 

interesting to determine which processes lead to interneuron generation in non-adherent 

cultures, but unpredictable interneuron generation in adherent cultures. Ultimately, from a 

toxicity screening standpoint, waiting several months for cultures to potentially display 

interneurons is not feasible and renders this differentiation model unsuitable regardless. Due 

to apparatus failure and time constraints, sufficient repeats of spontaneously differentiated 
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cultures at 18 WIV to perform statistical analysis were not possible. vGAT expression in Axol 

cells was considerably higher than control, which could have been indicative of interneuron 

emergence at this late point in development. 

The proportion of interneurons which develop randomly are likely due to spontaneous 

differentiation not being 100% efficient (Chambers et al., 2009; Shi et al., 2012b). As discussed 

above, this presents a problem with variations in cultures in terms of density and final ratios of 

cell types. The reports of the presence of GIN in spontaneously differentiating cultures, coupled 

with the variability of spontaneous cultures could explain why some cultures responded with 

epileptiform activity and most did not. Indeed, the co-culture method which produced a 

hypersynchronous and hyperexcitable response was developed from a spontaneously 

differentiating neuronal protocol. The irregular, uneven generation of interneurons is likely a 

causative factor in the inability for most cultures to produce seizure-like activity. With respect 

to the specific compounds tested, the target of picrotoxin is GABAA receptors on interneurons 

(Davidoff & Aprison, 1969), which explains the lack of response to PTX observed. However, there 

were statistically significant increases in activity in cultures maintained in Axol, in response to 

PTX, which could indicate the presence of GIN in culture, providing a target for the compound. 

With regards to 4-aminopyridine, as per Chapter 4, the mechanism of 4-AP seizure-induction 

includes potassium channel antagonism and interneuronal excitation, via the interneuron-

potassium hypothesis (Perreault & Avoli, 1991). These data show that the absence of seizure 

activity in the presence of 4-AP is also likely to be due to the absence of GIN in this system, and 

that even if they are present as some data suggests, they are not in sufficient concentration to 

be reminiscent of the in vivo cortical environment.  

Furthermore, when considering the bursting parameters for the synchronised astrocytic-

neuronal co-culture method, increases in burst activity did not achieve statistical significance. 

Interneurons are crucial for burst activity (Shin et al., 2010; Velazquez & Carlen, 1999) and their 
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non-appearance could explain why these metrics were not significantly increased. In conclusion, 

the unsuccessful generation of seizure-like activity in cultures from all methods is likely due to 

the absence of GABAergic interneurons, as increased measures of synchrony and activity were 

observed immediately from preliminary interneuron co-culture experiments. Whilst not 

conclusive and not statistically verified, the inclusion of interneurons in the established 

synchronised co-culture protocol in this thesis holds great promise for future seizure-liability 

testing with human iPSC-derived neural platforms.  

7.2.4 Don’t stand so close to me 

Upon closer inspection of the cultures that responded with epileptiform activity, it was revealed 

that these cultures were less dense and aggregated than other cultures (Figures 4.13A/5.10A). 

This was not intentional, and indeed it further highlights the variation in spontaneous culture 

method outcome. It would appear that this arrangement facilitated the widespread seizure-like 

activity. This finding prompted closer examination of other cultures and it was found that those 

with higher activity and drug response were, indeed, less clustered than relatively inactive 

cultures. The reason for this is unclear but may relate to astrocytic overgrowth as mentioned 

above. Nevertheless, the precise control of ratios and mitotic inhibition of components did 

result in less dense co-cultures of synchronised astrocytes and neurons and this discovery most 

certainly warrants further investigation.  

7.3 Limitations of this study and possible solutions  

7.3.1 Morphological characterisation 

As mentioned previously, quantitation from immunostaining is an imprecise method of 

obtaining data on ratios of cell types. In fact, this was a limitation of morphological 

characterisation in Chapters 3-5. The tendency for cultures to aggregate into large 3D hubs 

meant accurate imaging was very difficult. Arguably, 3-dimensional aggregates could be imaged 

using Laser confocal microscopy, to generate high resolution z-stacks and indeed, this was 

explored. Unfortunately, even this approach was found to be unreliable, as there was no 
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consistency to the degree of aggregation between coverslips, and between aggregates within 

the same coverslip. This meant that some aggregates were several times the size of others, and 

in order to generate a fair ratio of antibody-positive cells, each aggregate would have to be 

considered. For the magnitude of the study and the number of technical and biological repeats, 

this was unrealistic and not of significantly greater importance than the qualitative results. 

To supplement the qualitative immunostaining data and circumvent some of its limitations, 

qPCR was used to detect gene expression levels. Unfortunately, and due to time constraints, 18 

WIV qPCR could not be performed for spontaneous studies. As the trend for neuronal gene 

expression indicated a decrease over time, the pattern of S100β expression increased over time, 

after the initial highest timepoint. Perhaps performing additional experiments at W18 would 

confirm whether S100β expression is further increased, coinciding with the high density of 

astrocytes seen in final culture. In contrast, performing different experimental procedures, such 

as single nucleus RNASeq has been used to characterise changing astrocyte phenotypes in 

disease (Al-Dalahmah et al., 2020).  

7.3.2 Multi-electrode array 

Despite the prevalence of modern MEA-based methods for assessing neural activity (Hyvärinen 

et al., 2019; Kayama et al., 2018; Matsuda et al., 2018; Odawara et al., 2018; Taga et al., 2019; 

Tukker et al., 2016, 2018, 2019; Yokoi et al., 2019), there were several problems identified with 

the approach using this cellular system. An issue with the MED64 system is the planar MEA chips 

themselves are considered ‘consumables’ with limited uses. Initially planar chips coated with 

platinum were used, however, this has been demonstrated to be toxic to cells (Wissel et al., 

2018). In the case of the MEA, platinum coatings repel cells and were subsequently advised 

against using (personal communication, Alpha Med Scientific). Following this discovery, carbon-

coated electrodes were obtained which did increase cell adherence, however electrode 

degradation and complete destruction of several MEA chips was observed after multiple uses. 

This signals a product which is not applicable for high-throughput testing applications. Cultures 
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were also attempted on MEA chips from a competitor company and these were far more robust, 

with greater adherence noticed. Another limitation is the cost of the MEAs, which provides a 

significant barrier to the number of cultures that can be attempted before the chips degrade. 

The application of these chips in this context is, in the author’s judgement, not cost effective. 

There is no doubt that MEA analysis has gained popularity for iPSC-derived toxicity testing, 

however, significantly more optimisation was required for it to be a possibility for this type of 

project and due to time constraints, this was not possible. Whilst some experiments were 

successful and data was generated, a significant number of experiments failed, either from 

adherence issues, or a lack of activity reported from astrocytic overgrowth.  

Analysis of MEA data is possible using software packages from respective companies, however, 

as these are relatively recent, there is little guidance and no standardisation on analysis of 

acquired MEA data, meaning there are many subjective analyses published in the scientific 

literature. Despite the final synchronised co-culture method being successfully adhered in 

monolayer over 12 WIV, recordings were noisy and random, making analysis impossible. It was 

hoped that a more standard protocol like the burst analysis protocol developed by Matsuda et 

al., (2018) could be achieved in this thesis. Ultimately, the adherence issue was a huge limitation 

and future studies could attempt one of two improvements: firstly, a different MEA system 

could be used as it may be possible that this cellular system works better with a different 

experimental system and secondly, a more adherent substrate could be utilised to promote 

greater adherence. In this thesis, several surface-treatments were attempted as per Amin et al., 

(2016), however, the use of commercial products were not used, mainly due to the lack of 

transparency on their composition. A promising avenue is the use of a human laminin substrate 

‘laminin 521’ which was recently found to promote iPSC-derived neural differentiation, cortical 

integration and synchronisation of burst activity in developing cultures (Hyvärinen et al., 2019). 

This could bridge the gap between the culture system developed here and the experimental 

analysis process, to produce future successful recordings. 
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7.4 Future Directions  

Having established a suitable co-culture protocol for seizure-liability studies which can respond 

to diverse neuroactive conditions with increased synchrony and activity, there are several 

refinements and future directions to promote the eventual inclusion of this model in pre-clinical 

seizure-liability testing. 

7.4.1 Establishing optimal interneuron ratios 

The development of cultures in this thesis proved the necessity for controlling and optimising 

ratios of neural cell types for the final synchronised co-culture platform. As the interneuronal 

co-culture was preliminary work, the ratio of interneurons selected was 20% of the neuronal 

component, as the in vivo cortical arrangement suggests GABAergic interneurons account for 

20-25% of all cortical neurons (Riedemann, 2019). Extensive optimisation of astrocyte ratios was 

considered in this thesis (data not shown) and it is likely that the ratio of interneurons would 

need to be adjusted to produce the prime platform for the desired functional interrogation in 

future studies.   

7.4.2 Optogenetic methods 

In this thesis, a novel human iPSC-derived culture system has been developed for seizure-liability 

testing, using optical fluorescent calcium imaging. The benefits of calcium imaging are multiple, 

discussed throughout the thesis. Calcium imaging allows for the detection of simultaneous 

neuronal and astrocytic calcium activity across networks of cells and at the single cell resolution 

(Hill et al., 2012; Ikegaya et al., 2005). Furthermore, studies have confirmed that calcium imaging 

is a reliable proxy for seizure activity (Badea et al., 2001; Pacico & Meur, 2014; Smetters et al., 

1999). The ability for calcium imaging to detect both neuronal and astrocytic activity, whilst 

beneficial in many aspects, can also have its limitations. Indeed, the biggest limitation of this 

study was that the principal technique employed could not differentiate between neuronal 

calcium activity and astrocytic calcium activity.  
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Figure 7.1: Visual representation of future directions. After establishment of optimal 2D culture 
protocols, including ratios of neurons, astrocytes and interneurons, the cultures should then 
seek to encompass structural properties of the in vivo cortex. This may be achieved by 2 photon 
polymerisation/scaffolding to form 3D, interconnected cultures which are amenable to high-
throughput optogenetic and electrophysiological assessment. 

Despite experiments performed to selectively stain astrocytes with sulforhodamine, this was 

unsuccessful (data not shown). Sulforhodamine is a widely used astrocyte marker in microscopy 

owed to its low phototoxicity and relatively low cytotoxicity. Interestingly, it has recently been 

demonstrated that sulforhodamine can induce seizure-like events in cortical cultures and as 

such, even if this method had been successful, it may have negatively influenced the culture 

activity (Rasmussen et al., 2016). As previously discussed, some cultures displayed typical 

astrocytic morphology and slow calcium activity, but it is not possible to accurately determine 

whether that astrocyte is isolated, or whether processes surrounding the astrocyte and 
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displaying activity have arisen from associated neurons. Not only would being able to visualise 

each cell type independently show which cells were active and responsive, it would enable 

research into specific network and astrocyte dynamics within the seizure event.  

There now exist several methods to enable this isolation and generate such data. Recent 

advancements in the development of genetically encoded calcium indicators (GECIs) removes 

the need for existing fluorescent dye loading (Saber et al., 2018). GECIs, like their traditional 

counterparts, are non-invasive, but can be targeted to specific neurons or astrocytes, allowing 

longer duration imaging, without the risk of photo-toxicity (Mank & Griesbeck, 2008) or non-

specific cell staining (Rad et al., 2017). Other issues observed with fluorescent dyes such as 

background fluorescence and non-specific dye loading can be overcome with GECI technology 

(Mank & Griesbeck, 2008). In addition to GECI, genetically encoded voltage indicators (GEVI) 

have been in development for decades and allow the recording of membrane potentials and 

can transduce this voltage change to fluorescence intensity measurements. It is a highly 

sensitive technique and provides high resolution measurements of spike activity and synaptic 

communication. Current invasive measurements of membrane potential and voltage imaging 

are slow, limited to very few cells, technically demanding and incredibly sensitive to biochemical 

perturbations, which can be induced from photoexcitation using the technique itself (Bando et 

al., 2019). GEVIs can measure activity in large populations via protein engineering, which 

couples fluorescent proteins to voltage-sensitive domains (VSDs), microbial rhodopsins or 

chemogenetic probes. For example, the first use of a GEVI tethered a green fluorescent protein 

to the VSD of the voltage-gated Shaker potassium channel. As a result, any voltage-dependent 

alterations to the channel induces changes in the probe fluorescence and the signal amplified, 

providing significantly greater resolution and the ability to detect action potentials with 

standard microscopy equipment (Siegel & Isacoff, 1997). Combining these significant 

advancements in optogenetic methods with iPSC-derived models could provide a new 
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dimension to PSL and arguably increase the throughput and efficiency of this technique, whilst 

enabling visualisation of individual cell types in seizure-like activity.  

Despite the ionic manipulation of potassium and magnesium in the aCSF, the direct modification 

of calcium was not explored in this thesis. Lowering the extracellular concentration of Ca2+ can 

induce regular SLE, accompanied by transient decreases in Na+ and increases in K+ in the 

extracellular space (Yaari et al., 1983). Low [Ca2+]e enhances neuronal excitability and can induce 

spontaneous, synchronised bursts of activity, reminiscent of epileptiform discharges. Calcium 

influx occurs via voltage gated-calcium channels and N-methyl-D-aspartate (NMDA) receptors 

and during seizure, the [Ca2+]e decreases far lower than non-convulsing tissue (Blauwblomme et 

al., 2014; Simons, 1988; Somjen, 2002). This decrease is due to calcium influx into neurons 

undergoing the seizure activity, which impairs synaptic transmission as there is too little Ca2+
e 

to sustain the calcium influx. Higher Ca2+
e can enhance synaptic transmission as calcium is 

available to enter the cell, even though a higher [Ca2+]e reduces excitability (as the cell is not 

depolarised). However, this remains to be observed in iPSC-derived models. 

7.4.3 3D models and induced neural cells 

While human stem cell derived neurons can be routinely produced using well established 

methods (Chambers et al., 2009; Shi et al., 2012b) the reproducibility of these methods is 

variable (Hu et al., 2010). The neurons produced are often slow (2–3 months) to exhibit 

functional properties such as sustained action potential firing and synaptic plasticity. This 

represents a significant limitation in experimental models and screening platforms. Alternative 

approaches such as transdifferentiation allow the direct neuronal cell reprogramming to 

generate different neuronal lineages, termed “induced neurons” (iN; Vierbuchen et al., 2010)) 

or “induced astrocytes” (iA; Caiazzo et al., 2015). Such iN can be generated within 3–5 weeks 

after reprogramming and demonstrate physiological action potential firing (Vierbuchen et al., 

2010). Furthermore, iA can be produced within 2 weeks (Caiazzo et al., 2015). Whilst these 

approaches have reduced the time required to generate functional neuronal subtypes, the 
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efficiency of generating iN cells is often less than 10% (Yang et al., 2011), suggesting that far 

more development is required to produce a reproducible platform for testing.  

A criticism of the use of two-dimensional (2D) human cultures is that they do not reproduce the 

structure and hierarchical connectivity that is seen in three-dimensional (3D) tissue. An 

important route to obtain better structural and morphological relevance is to generate iPSC-

derived 3D co-cultures such as organoids and spheroids (Figure 7.2), which have been shown to 

recapitulate early development of the human cortex (Lancaster et al., 2013; Lancaster & 

Knoblich, 2014a, 2014b; Pasca et al., 2015). While these 3D cultures are useful models for early 

development and diseased states, they are less able to model complex, later stages of 

development and lack vasculature (Sun et al., 2018). The use of scaffolds to ‘train’ cultures to 

develop into defined structures is an exciting avenue for regenerative medicine and has very 

recently been demonstrated in our laboratory (Crowe et al., 2020). Overcoming these issues 

and applying this technology to seizure-liability testing could provide an insight into not only the 

mechanisms of seizure spread between layers of cortical cells, but possibly identify novel targets 

and pharmaceuticals. The advent of matured 3D structures would aim to generate layers of the 

cortex as seen in vivo and provide a robust and relevant platform that resembles a human 

cortex, in terms of both structure and functionality, adding an extra dimension and increased 

relevance for human seizure-liability testing. 
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Figure 7.2: 3D culture systems. (A) iPSCs can be spontaneously differentiated within 3D 
aggregates. (B) 3D aggregates can be further cultured in 3D to develop a neural/cerebral 
organoid. These organoids recapitulate the developmental processes and structural hierarchy 
seen in the developing brain. (C) Section of the laminated structure formed within the neural 
organoid (Grainger et al., 2018).  
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7.5 Commercial systems 

It could be posited that due to the commercial availability of neural cells from iPSC, the 

generation and co-culturing of individual cell types is redundant. Indeed, there are several 

benefits to using pre-differentiated neural cultures: these include heterogeneity, presence of all 

desired cell subtypes and strict quality controls and industrial standards applied. This obviously 

provides several benefits over the differentiation of cells and batch-to-batch variation that is 

unavoidable in a research setting, particularly a spontaneous differentiation. However, as these 

products are commercial outputs, companies are bound by confidentiality with their 

differentiation methods and methods of mitotic inhibition (if even used). Furthermore, the cost 

of these cultures is considerable, and quite often, the cells are only suitable for one passage, 

meaning expansion of cultures for high-throughput testing is incredibly expensive cf making 

ones own cultures. As several companies produce and sell these cultures, this sadly further 

decreases the likelihood of a ‘standard’ model system which can be used for screening.  
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7.6 Concluding remarks 

In this thesis, several different culture protocols of human iPSC-derived neurons and astrocytes 

have been compared, to provide an optimal method for pre-clinical seizure liability testing, 

which is amenable to high-throughput optical interrogation. It was found that spontaneous 

differentiation can produce cultures capable of eliciting hyperactive and hypersynchronous 

bursting activity, typical of seizure-like events, however this method is unreliable and not 

robust. It was also shown that monocultures of astrocytes and neurons are unsuitable as model 

systems, and that the interaction between both cell types is necessary for functional 

maturation, and the ability to respond to diverse neuroactive treatments.  

This thesis has provided evidence that co-culturing neurons and astrocytes without mitotic 

inhibition leads to an overgrowth of glial cells and consequent reductions in cell activity and 

response to drugs. Therefore, a co-culture model has been produced which controls ratios of 

neurons and astrocytes to ensure the developing cultures remain constant and responsive. 

These co-cultures displayed network connectivity and responded to known pro-convulsant 

conditions with increased activity and synchrony. Preliminary work highlighted the importance 

of GABAergic interneurons and their ability to form a complete and heterogenous system which 

can respond to several pro-ictogenic treatments and these are an absolute requirement for in 

vitro neuronal toxicity platforms.  
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 A2: Supplementary results 

This Appendix contains a series of supplementary figures and graphs which are referred to in 

the main text.  

 

 

 

Figure A1: Representative figures showing detachment of neurons in SCT media at 18 WIV. 

Cells cultured in SCT media formed extensive fasciculation of neurites and detached from 

the culture surface, with widespread death observed. N=3. Scale bar: 250 µM. 
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Figure A2: Spontaneously differentiated cultures at 18 WIV are heavily astrocytic. Neural 

cultures were differentiated in either Axol legacy or SCT BrainPhys media over 18 weeks and 

immunocytochemistry was performed to assess the relative quantities of neurons (Tuj1) and 

astrocytes (S100β in culture). (A) Nuclei stained with DAPI (Blue, excitation λ 345 nm, 

emission λ 455 nm). (B) Tuj1 neuronal staining (Red, excitation λ 588 nm, emission λ 649 

nm). (C) S100β astrocyte staining (Green, excitation λ 495 nm, emission λ 519 nm). (D) 

Merged image of A,B,C. N=3. Scale bar: 100 μm.  
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Figure A3: Activity over time of spontaneously differentiated cultures in Axol and SCT 

differentiation media. Neural cultures were differentiated in either Axol legacy or SCT 

BrainPhys media over 18 weeks and assessed intermittently for functional activity using 

fluorescent (Fluo4-AM) calcium imaging in aCSF perfusion. Active cells were determined as 

those with a minimum of one peak of calcium-mediated activity (peak > 3x s.d. baseline 

noise). (A) Axol-cultured cells over time (Blue). (B) SCT-cultured cells over time (Red). Data 

is displayed as mean ± SEM. N=3. *p < 0.05, **p< 0.01, ****p< 0.0001, one-way ANOVA with 

Tukey’s.  
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Figure A4: Spontaneously differentiated cultures at 18 WIV form large aggregates and 

clustering of cell bodies. Representative image of cultures differentiated over 18 WIV. 

Widespread clumping was observed in both Axol and SCT-cultured cells. N=3, both media 

conditions. Scale bar: 250 µM. 
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Figure A5: Spontaneously differentiated cultures in Axol express S100β and vGAT at 18 

WIV.  iPSC-derived neural precursors were differentiated in Axol or SCT media over 18 weeks 

and qPCR performed to assess the expression of neural progenitors Pax and Sox, neuronal 

cells (Tuj1), astrocytes (S100β) and inhibitory amino acid transporter vGAT. Fold change in 

expression is displayed as mean ± SEM. N=1. 
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Figure A6: Representative figures showing detachment of DAPT-synchronised neurons at 7 

WIV. NPCs cultured in sync media formed extensive fasciculation of neurites and detached 

from the culture surface, with widespread death observed. N=3. Scale bar: 250 µM. 
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Figure A7: Zero-magnesium aCSF has no effect on 18 WIV co-cultures. Cultures were loaded 

with 5 µM Fluo4-AM for fluorescent calcium imaging. (A) Responding cells were determined 

as those with ≥ one peak of calcium activity. (B) Calcium peaks per active cell. (C) Frequency 

of calcium events per minute. (D) Percentage of synchronised cells of total active cells. N=3. 

2-way ANOVA with Tukey’s multiple comparisons.  
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Figure A8: Example Synchronised and Spontaneous co-cultures show cells with astrocytic 

morphology. Spontaneous and synchronous co-cultures were differentiated over 18 WIV 

and fluorescent (Fluo4-AM) calcium imaging performed. Images were taken from the loaded 

cultures. (A) Synchronous co-cultures loaded with 5 µM Fluo4-AM appeared to display 

astrocytic processes and morphology. (B) Spontaneous co-cultures show large, characteristic 

astrocyte morphology. N=3. Scale bar: 10 µM. 
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Gene Mean S.D. 

GAPDH  18.74 2.114 

Act  16.61 1.110 

YWHAZ 18.73 1.122 

18S 16.05 2.402 

C B 

F E D 

Figure A9: Housekeeping genes for endogenous controls and gene expression analysis of 

synchronised neuronal and astrocytic co-cultures. Top: Four endogenous control genes were 

tested to determine a suitable control for all qPCR analysis within the thesis. (A) Average Ct 

value for each housekeeping gene, with its corresponding mean value and standard deviation. 

Bottom: Co-cultures of synchronised neurons and astrocytes were differentiated over 12 WIV 

and qPCR was performed to assess the expression of progenitor genes Pax6 (B) and Sox2 (C), 

neuronal TUBB3 (D), astrocytic S100β (E) and inhibitory neuronal marker vGAT (F). Data is 

displayed as mean ± SEM. N=3. **p< 0.01, T-test.  

A 
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A B C 

Figure A10: Tetrodotoxin perfusion effects on bursting activity in co-cultures of neurons and astrocytes exposed to different pro-ictogenic conditions. 

Human iPSC-derived neuronal and astrocytic co-cultures were cultured over 12 WIV and treated with various pro-ictogenic perfusions to elicit increased 

activity, followed by TTX. (A) Amplitude of calcium bursts. (B) Duration of calcium bursts. (C) Time between calcium bursts. N=3. 1-way ANOVA with Tukey’s 

multiple comparisons test.  
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Figure A11: Sodium valproate perfusion effects on bursting activity in co-cultures of neurons and astrocytes exposed to different pro-ictogenic conditions. 

Human iPSC-derived neuronal and astrocytic co-cultures were cultured over 12 WIV and treated with various pro-ictogenic perfusions to elicit increased 

activity, followed by VPA. (A) Amplitude of calcium events. (B) Duration of calcium bursts. (C) Time between calcium bursts. N=3. 1-way ANOVA with Tukey’s 

multiple comparisons. 

A B C 
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Culture Condition % Active Cells 
Mean ± SEM 

P-value from T-test 

Axol W4 Spon 3.4 ± 0.58 <0.0001 
SCT W4 Spon 11.22 ± 1.27 <0.0001 
Axol W8 Spon 14.57 ± 1.77 <0.0001 
SCT W8 Spon 18.25 ± 2.09 <0.0001 

Axol W12 Spon 7.59 ± 0.75 <0.0001 
SCT W12 Spon 18.50 ± 2.14 <0.0001 
Axol W18 Spon 26.76 ± 4.93 0.007 
SCT W18 Spon 20.47 ± 3.77 0.0001 

Astrocyte mono 16.45 ± 4.36 0.0001 
NPC mono 6.15 ± 0.94 <0.0001 

Spon CC 15.07 ±4.27 0.007 
Sync CC 14.19 ± 2.22 0.006 

Sync astrocytes and NPC CC 48.65 ± 6.14 - 
 

Figure 12A: Overall comparison. Percentage of active cells for every culture method tested in 

this thesis. Statistics in the lower table were calculated individually using t-test, purely to 

present the significantly increased activity observed in the co-culture method employed in 

Chapter 6. 




