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Abstract
The autonomous coordinated flying for groups of unmanned aerial vehicles that maximise network coverage to mobile
ground-based units by efficiently utilising the available on-board power is a complex problem. Their coordination involves
the fulfilment of multiple objectives that are directly dependent on dynamic, unpredictable and uncontrollable phenomena. In
this paper, two systems are presented and compared based on their ability to reposition fixed-wing unmanned aerial vehicles
to maintain a useful airborne wireless network topology. Genetic algorithms and non-cooperative games are employed
for the generation of optimal flying solutions. The two methods consider realistic kinematics for hydrocarbon-powered
medium-altitude, long-endurance aircrafts. Coupled with a communication model that addresses environmental conditions,
they optimise flying to maximising the number of supported ground-based units. Results of large-scale scenarios highlight the
ability of genetic algorithms to evolve flexible sets of manoeuvres that keep the flying vehicles separated and provide optimal
solutions over shorter settling times. In comparison, game theory is found to identify strategies of predefined manoeuvres that
maximise coverage but require more time to converge.

Keywords Genetic algorithms · Game theory · Unmanned aerial vehicles · Fixed wing · Wireless communication

1 Introduction

The provision of wide-area communication is typically
addressed using static land-based methods or satellites. The
use of unmanned aerial vehicles (UAVs) can provide a
dynamic mobile network, overcoming the problem of shad-
owing effects from obstructions or changes in demand, with
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the ability to reconfigure the equipment spatially.When com-
pared with satellite communication, the reduced slant range
of a UAV-based system offers improved round trip time sig-
nals and a 50–60 dB reduction in free space loss. It makes
possible a series of desirable performance advantages, such
as reducing power consumption, increasing bandwidth or
simplifying the antenna requirements.

This studydescribes, evaluates and compares twomethods
that allow a small group of hydrocarbon-powered medium-
altitude, long-endurance (MALE) UAVs to generate flying
manoeuvres autonomously to provide a communication net-
work backbone. Simulated scenarios using a large number
of ground-based mobile units (hereinafter referred to as
mobiles) are seen as metaphors for a disaster region in which
police, military and first aid units synchronously operate in
a coordinated way. The units need full-duplex communica-
tion links to arrange their tasks and to share data related to
their missions. The group of MALE UAVs autonomously
and dynamically relocate according to the movements of the
mobiles with the goal of maximising the coverage while tak-
ing into account the available power for the communication.

The autonomous, adaptive repositioning is generated
using two different methods. The first method is based on
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the use of genetic algorithms (GAs), which at regular inter-
vals select the best set of flying manoeuvres (i.e. one for each
UAV) based on a fitness function. The second employs game
theory, where the UAVs participate in a non-cooperative
game (NCG) whose outcome determines the their next flying
positions.

Both GAs and NCG provide the UAVs with the auton-
omy to decide where to fly next, given the current status of
the system, i.e. the positions and directions of the mobiles
and present positions of the UAVs. The approaches allow
fleet to adaptively adjust its location based on changes in
demand, removing the need for a planning function that gen-
erally comes with an undesired load to the communication
network. They offer an effectiveway to represent,manipulate
and ultimately generate efficient flying manoeuvres.

The contribution of this work is twofold. Firstly, unlike
relevant research that mainly deals with multi-UAV path
planning, i.e. finding optimal collision-free flying strate-
gies between two points, our work addresses the need to
efficiently utilise the limited power budget to facilitate an
airborne network infrastructure. Secondly, both presented
methods employ a kinematic model that factors the velocity
and turn radius of fixed-wing UAVs and considers uncon-
strained horizontal motion, with a regulatory limit on altitude
only.

Moreover, it deals with realistic flight paths of MALE
aircraft which are typically capable of 12–24-h flight. As
such, our results reflect the behaviours of real systems rather
than abstract models (e.g. simulated quadcopters of limited
flight duration). In a similar vein, the radio model employed
in this work also aims at realism; unlike most research that
considers the basic form of the Friis model with free space
path loss, the thermal noise to reflect the actual operating
environment is considered.

Results from a comparison in highly dynamic large-scale
environments and a qualitative discussion highlight the dif-
ferences, strengths and limitations of each methodological
approach. It is found that both GAs and NCG can fulfil
the coverage objective, with the GAs approach reaching an
optimal result, i.e. converging, faster than the NCG in all sce-
narios. The NCG method is found to be less robust due to
centralisation. Also, the results indicate that the flying strate-
gies produced by the GAs provide a collision-free relocation
mechanism for multiple UAVs that demonstrate agent spe-
cialisation.

The rest of the paper is structured as follows. Section 2 dis-
cusses relevant research works and Sect. 3 formally presents
the problem and describes the UAVs’ kinematic and com-
munication models, followed by the proposed approaches
to generate flying trajectories. Section 4 outlines the experi-
mental methodology and Sect. 5 presents the results of this
study. Finally, Sect. 6 summarises the findings and discusses
future work.

2 Background

Industry and research recognise that area coverage for com-
munication services is a promising application area for
UAVs (Zeng et al. 2016). The ability to rapidly reconfigure
multi-UAV networks is deemed an essential advantage over
terrestrial ones. This leads to exciting technical challenges
about how such networks need to be implemented and coor-
dinated (Gupta et al. 2016).

Research efforts exist that address the planning of efficient
paths rather than area coverage (Kim et al. 2011; Tsourdos
et al. 2011; Shiyou et al. 2012; Bortoff 2000; Leonard et al.
2012; Shin et al. 2012).While primarily addressing the prob-
lem of timeliness in providing coverage, it became apparent
that the multi-UAV coordination process requires some com-
munication between the participating UAVs.

In Holmberg and Olsson (2008), Burdakov et al. (2010)
the authors address the interconnection of UAVs operating
beyond the line of sight with a ground station. The critical
aspect of this research is the optimal positioning of the relay
UAVs. This range extensionmodel includes a single ormulti-
ple UAVs in the relay chain. More recently, research focuses
on path planning and networking of numerous UAVs pro-
viding area sensor coverage (Yanmaz et al. 2011; Yanmaz
2012).

Although a variety of approaches for the coordination of
the actions and paths of multiple UAVs are proposed, the
remainder of this section examines those based on the use of
GAs and game theory. A more comprehensive review of the
state of the art in motion planning algorithms and coordina-
tion of actions in UAVs is found in Goerzen et al. (2010),
Dadkhah and Mettler (2012).

2.1 Evolutionary algorithms

AGA-based global route planning system formultiple UAVs
is presented in Zhang and Duan (2015). The authors suggest
a differential evolution algorithm for flying solutions that
are designed to be short and at low altitude, also consider-
ing flying constraints such as the turning angle, maximum
climbing/descending slope and terrain abnormalities. The
presented results suggest that the system can obtain optimal
feasible paths during every run, and outperforms the state of
the art in convergence speed.

Çakıcı et al. (2016) present coordinated guidance for
multi-UAV systems using GAs. Desired points in a terrain
space, i.e. waypoints, under certain constraints, are deter-
mined by the evolution of chromosomes that encode heading
angles, velocities and altitude information. Simulated results
show that the UAVs when flying according to the evolved
solutions can reach the destination points while avoiding
restricted regions.
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Path planningmechanisms based onGAs have been devel-
oped to avoid obstacles (Rathbun et al. 2002) or to manage
application-related performance constraints (Jia and Vagn-
ers 2004). Roberge et al. (2013) compare GAs and particle
swarm optimisation and conclude that the former can out-
perform when planning the path of a single UAV. Their
analysis considers factors like fuel consumption and terrain
avoidance, demonstrating a new level of complexity in path
planning.

Carruthers et al. (2005) investigate a search method for
multi-UAV missions related to surveillance and searching in
unknown areas using GAs. Their work allows several UAVs
to dynamically fly through a search space and autonomously
navigate by avoiding obstacles, without a priori knowledge
of the environment. Although their system assumes perfect
communication and central control of UAVs from take-off
time to the end of the mission, the authors employ a genetic
algorithm to make an exhaustive search of the mission area
by generating the set of fittest next positions of the UAVs.

Finally, Agogino et al. (2012) look at the coordination of
multiple UAVs required to fly over a targeted area to provide
network communication to ground-based customers. Evo-
lutionary computation techniques are used in their study to
optimise network parameters such as power level and antenna
orientation to maximise area coverage and download effec-
tiveness to the end-users. While utilising the same type of
scenario, the work described in this current paper uses evolu-
tionary computation techniques differently. In Agogino et al.
(2012), the UAVmovements are generated with swarm intel-
ligence techniques, and the evolutionary algorithm optimises
network related parameters, whereas in our study, the GAs
generate the UAV trajectories.

2.2 Game theory

Yan et al. (2004) apply game theory methods to the problem
of route planning for teams of UAVs. After defining multiple
objectives and constraints that limit theUAVsflying capabili-
ties, a game is designed that involves several players (UAVs),
each seeking to optimise its behaviour concerning the pos-
sible actions of the other players. The UAV route planning
problem is solved looking for the Nash equilibrium (NE) of
the game. The results highlight the feasibility of generating
routes for teams of UAVs by using game theory methods.

Zong et al. (2012) recognise that UAV networks could
be coordinated using a game heuristic, noting that the action
set needed to be restricted to limit the computational effort.
Their work considered inflatable UAVs operating at a fixed
altitude of 20 km. This is much higher than a hydrocarbon-
powered, and winged UAV would operate. Furthermore, the
flight dynamics of inflatable and winged UAVs are very dif-
ferent. They had small footprints, totalling about 20% of
the scenario area so that their UAVs concentrated solely

on clusters of users, the aim being to maximise the data
rate available to those users rather than to maximise the
number of users that can be supported. The paper offers
an insight into how game theory could be applied to solve
the problem of UAV coordination. Note that since their
2012 article, little has been written concerning the appli-
cation of game theory to optimise the coverage of UAV
networks.

Sujit and Ghose (2004) address the problem of obtaining
optimal strategies for searching in unknown environments.
The environment is partitioned into a collection of identical
cells that can be navigated by twoUAVs. The resulting search
space is represented as an uncertainty map, where each cell
contains a value that represents a probabilistic interpretation
of the uncertainty of whether an undefined mass occupies
the cell location. The objective of the UAVs is to select
search routes that visit those cells with large uncertainty val-
ues. The authors assume that the UAVs can communicate
with each other and decide upon a beneficial global deci-
sion, leading to a cooperative solution. The results show
that several mixed-strategy NE can be identified and used
in the absence of a pure strategy NE. However, an increase
in the computational time is found when increasing the depth
of the exploratory search environment to obtain optimal
strategies, as well as when using more UAV in the search
space.

Park et al. (2018) designed a feedback-based forma-
tion control algorithm that allows a group of small abstract
quadcopter-like UAVs to form a wireless ad hoc network
around a ground control station (i.e. a gateway) in a 500 m
× 500 m area. Acting as access points, the UAVs regularly
broadcast topological information such as theirs as well as
any next hop positions, and number of connected devices.
The control algorithm then considers connectivity, the dis-
tance between UAVs (i.e. distribution of access points) and
congestion caused by the network traffic to fly the abstract
quadcopters.

Interestingly, the congestion parameter dictates every
UAV’s altitude change; the more congested the single
UAV-to-ground network is, the lower the UAV flies to
explicitly narrow the coverage space and reduce the con-
nections. The generated formations result in a NE. Each
UAV has a set of strategy profiles consisting of possible
movements in a period with a certain speed, and a pay-
off function calculating the network throughput difference
achieved by each movement. The system is found to dynam-
ically transform the network coverage of the infrastructure
leading to the enhancement of throughput as compared
to a static topology. Nevertheless, the work is not com-
parable to the one presented in this paper due to (i) the
need of a ground control station, (ii) the lack of realis-
tic UAV kinematic models, (iii) the small scale of terrain
and altitudes (starting at 60 m) and (iv) the lack of radio
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frequency (RF) power consideration to support multiple
mobiles.

Algorithms for autonomous UAV coordination, guid-
ance, and manoeuvrability is still a new research area.
The reviewed research suggests that both the GAs and
the game theory approaches can be effective in allow-
ing single or groups of UAVs to move in a mission
space autonomously. They are effective both in cases in
which the mission requires the generation and use of near-
optimal paths among fixed control points and in cases
where the vehicles are required to operate in unknown
terrain. In this study, the area of applicability of the
methods mentioned above is extended by showing that
both the GAs and game theory can be effectively used
for coordinating UAVs on communications area coverage
missions.

3 Flying coordination for multiple
communication UAVs

3.1 Problem description

Themajority of the research found in the literature deals with
the coordination ofmultipleUAVs froma path planning point
of view. In this paper, the coordination of network-enabled
UAVs that provide communication coverage to multiple
mobile users on the ground is addressed. Both proposed
systems utiliseMALE unmanned aerial vehicles, whose pay-
load and flight systems’ RF power budget are derived from
a generator driven by the motor shaft. There are limits to
the power rating of the payload power regulator and radio
amplifier. It is typical for these fixed-wing UAVs to generally
remain airborne for over 12 h and perform flying steps that
are recalculated within 3 min, over mobiles at high altitudes.
The footprints are typically 40–50 km in diameter. Given an
average speed of 30 miles per hour, i.e. 13 m per second,
mobiles will travel approximately 3 km within the 3-min
cycle. Although this renders the coverage less prone to signif-
icant changes for a few cycles, the autonomously generated
flying strategies need to consider up-to-date mobile’s posi-
tions to succeed. Consequently, the UAVsmay execute small
changes to their positions to include those mobiles closer to
the edge of their covered area.

The problem addressed in this paper is as follows. Let
U = {1, 2, . . . , u} be a set of UAVs and G = {1, 2, . . . , g}
be a set of mobiles in the scenario. Let C ⊆ G be a set of
mobiles, covered by u ∈ U . ∀g ∈ C , u is guaranteed to
spend power pug to support the communication link between
them. Finally, let Pu

max be the maximum power available for
communication for u. Both GAs and NCG are then designed
to optimise the following:

maximise f

⎛
⎝

n∈|U |∑
1

|C|
⎞
⎠

s.t.

C = { g | g ∈ G },
∀ C ∈ C | C ∩ C ′ = ∅,

∀ u ∈ U |
|C|∑
g=1

pug ≤ Pu
max (1)

Although minimising power consumption is not formally
expressed in Eq. 1, it is reflected by the mechanism responsi-
ble for populating everyC ∈ C, as described in later sections.
The average power budget of a typical MALE UAV to the
payload is approximately 500 W. Typically, this is divided
between the processors, antenna gimbals, inter UAV links,
positional broadcast and other systems. An estimate of 100
W is available for the power amplifier that with 50% ampli-
fier efficiency leads to an average of Pmax = 50 W of usable
radio frequency power. Note that the presentedwork does not
specify any particular protocol stack. The proposed models
provide solutions which regulate available bandwidth which
can be mapped on to any communication service.

3.2 Fixed-wing kinematics

The decision making for both GA-based and NCG-based
coordination systems considers simulated fixed-wing UAVs
modelled as points whose positions are defined by the lati-
tude (φ), the longitude (λ), and an altitude (h) in a geographic
coordinate system. Each point is associated with a direction
vector that corresponds to the vehicle heading (θ ). The kine-
matic model that describes the UAV movements is based on
a 6-DoF model in which a vehicle’s motion consists of unre-
lated turns of constant speed in the horizontal and vertical
planes. Giagkos et al. (2020) present a detailed description
of theMALEkinematicmodel. Notice thatUAVs can only fly
within a predefined altitude limit. This restriction is imple-
mented by forbidding altitude additions or subtractions in
cases where the maximum or minimum permitted values are
reached.

3.3 Communicationmodel

The UAVs are expected to fly continually over the scenario
area to provide network infrastructure for the mobilesṪhey
are equipped with two radio antennae: i) one isotropic able to
transmit between each other and ii) one horn-shaped able to
transfer data to the ground, where the mobiles are operating.
They have limited power for the communication, denoted
as Pmax with which they have to provide as many com-
munication links as possible with the ground. Note that
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all participating vehicles are expected to be equipped with
a Global Positioning System (GPS) and can periodically
broadcast information about their current positions.

A realistic model for the radio communications chan-
nel between UAVs and ground-based mobiles underpins this
research. Many authors choose the Friis model (Friis 1946),
which only considers the free space path loss between a
transmitter and a receiver and ignores the range limitations
imposed by channel noise. Yan et al. (2019) also produced a
useful review of channel models. The authors include a set of
guidelines for calculating link budgets over the air to surface
channels and advice on which models are most appropri-
ate for different environments. In this paper, a model that
includes free space path loss and thermal noise from the sky
and ground-based is adopted, as proposed in Maral et al.
(2020).

Within the communication network, links are treated inde-
pendently, and transmission is considered successful when a
UAV transmitter can feed its antenna with enough power
to satisfy the quality requirements. No matter which mod-
ulation and demodulation scheme is applied at the higher
protocol layers, a communication link is considered of good
quality if the ratio of the energy per bit of information Eb

to the thermal noise in 1 Hz bandwidth N0 is maintained.
The following equation expresses the transmitting power Pt
required to cover a mobile at slant range d.

Pt = p ×
(
d2Rb

Eb

N0

1

GrGt

(
4π f

c

)2

Tsys K
)

(2)

In Eq. 2, Rb = 2 Mbit/s is the desired data, Eb/N0 = 10
dB is the normalised signal to noise ratio, f = 5 GHz is
the frequency of operation and Gr = 1 is the gain of the
omnidirectional antenna of the receiver. Tsys is the equiv-
alent noise temperature of the receiver in Kelvin and K
is the Boltzmann’s constant (1.38 × 10−23 J · K−1). The
gain of the transmitter Gt , commonly given by the antenna
manufacturer, is calculated as per Eq. 3, with θ = 170◦
corresponding to the half power beam width angle of the
horn-shaped antenna and η = 0.95, the efficiency of its trans-
mission.

Gt = 2η

1 − cos
(

θ
2

) (3)

γ = sin−1 h

d
(4)

p =
{
1, α < θ

2 and γ ≥ ω

0, α ≥ θ
2 or γ < ω

(5)

The existence of obstacles in the terrain is introduced by
an elevation angle γ shown in Fig. 1 and calculated as per
Eq. 4 using h, the UAV’s altitude, and d, the slant range. A

Fig. 1 One UAV and one mobile positioned within the UAV’s conical
footprint. In this picture, d is the slant range; α the angle of the commu-
nication link; θ is the beam width angle of the horn-shaped antenna that
defines the areawithinwhich links are possible; γ is the elevation angle;
ω is the minimum elevation angle below which no communication link
can be established; and h is the UAV altitude

communication link is achieved when γ ≥ ω, with ω = 10◦.
Below this elevation angle, the ground noise component of
the receiver noise temperature rises rapidly from 10 to 50
Kelvin, adversely affecting the value of Tsys (Committee
1990). Subsequently, if γ < ω then the factor p in Eq. 5 is set
to 0, reflecting the fact that no power is dedicated to that spe-
cific link and thus the UAV does not cover the corresponding
mobile. Also, the communication link is ultimately consid-
ered achievable if and only if Pt is less than or equal to the
remaining Pmax, the maximum power available for commu-
nications each cycle. For further details on computing slant
range values, the reader is encouraged to consult (Giagkos
et al. 2020).

Figure 1 depicts a UAV that provides network coverage to
a mobile positioned within the conical footprint of its direc-
tional antennae. The higher the UAV flies, the greater its
altitude h, the wider its conical footprint on the ground, and
thus the greater the area covered. The longer the slant range
d between the transmitter and the receiver, the higher the sig-
nal power required to support the communication. The slant
angle α of the mobile for the UAV is calculated by applying
spherical trigonometry using the availableGPS data that each
network user is expected to broadcast at regular intervals. A
mobile needs to lie within the footprint of at least one UAV to
be part of the network. Coverage is granted only if the UAV
responsible for providing the network link has enough power
to maintain that link.

3.4 Comparison with terrestrial and satellite-based
systems

Table 1 summarises findings from comparing the employ-
ment of UAVs with other common methods to deliver area
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Table 1 Comparison of terrestrial, UAV and satellite-based systems

Mobile base
station

UAV footprint GEO spot beam LEO
footprint

GEO Earth
cover beam

Footprint diameter (km) 20–40 114 660 4500 15570

Density (mobile/km2) 1+ to 10−2 10−2 to 10−5 10−4 to 10−6 10−5 to 10−8 10−7 to 10−9

Free space path loss at edge (dB) 118 140 206 188 207

RTT edge of cover (ms) 0.14 0.40 500 80 560

Access times Continuous Flexible Continuous ≤ 8 min between
handoffs

Continuous

coverage, namely terrestrial base stations, LEO satellites and
GEO systems.

Given that a terrestrial base station has a typical cell diam-
eter of 20–40 km, the number of mobiles it can support
is limited by the available spectrum and power. This leads
to typical densities greater than 10−2 mobile/km2. Falling
below that level, commonly found in sparsely populated rural
areas, renders terrestrial infrastructure less economical.

A spot beam from a geostationary orbit (GEO) system’s
satellite can serve these areas quite well. A typical 2◦ spot
beam from a modern Ku- or Ka-band satellite tends to be
power limited, even when multiple channels are ‘stacked’ in
the same beam. Thus, the supported mobiles’ density tends
to be between 10−4 and 10−6 mobile/km2. Finally, the 17.4◦
Earth cover beam from a GEO system is best used to serve
very low mobile densities, namely between 10−7 and 10−9

mobile/km2.
Furthermore, the new generation of low Earth orbiting

(LEO) satellites is also deployed with a single wide foot-
print. Their lower altitudes provide smaller beams than GEO
Earth cover beams but larger than spot beams. LEO satellites
achieve better results than GEO technologies (i.e. 15–20dB
lower than GEO). Although this leads to stronger received
signals, the single wide beam limits the effective mobile den-
sity to between 10−5 and 10−8 mobile/km2.

With UAV-based communications, UAVs compare
favourably with terrestrial and satellite systems. The path
losses are typically 22 dB higher than terrestrial and between
50–67 dB better than satellite systems. The stronger signals
are spread over a smaller area than satellite beams, leading to
densities between 10−2 and 10−5 mobile/km2. This plugs a
gap between terrestrial systems,whichwould often be uneco-
nomical at these densities, and satellite systems that would
provide a weaker service in supported mobiles.

Round trip time (RTT) is another important aspect to
consider when comparing network coverage technologies,
particularly when employed network protocols use acknowl-
edgement packets. Note that telephony systems are also
vulnerable to echoes, with the ITU-T recommending an echo
delay of no more than 400 ms (ITU 2000). UAVs compare

very favourably with terrestrial systems and have a clear
advantage over satellite systems as shown in Table 1.

Finally, the availability of the communications service is
compared. Terrestrial and GEO systems are continuously
available within their footprints, except for occasional deep
rain fades in the higher satellite frequency bands. Their
orbital characteristics constrain LEO-based systems to give a
maximumof 8min before the satellitemoves out of range and
the connection is handed off to the next satellite. This hand-
off process has been the source of dropped or interrupted
connections on previous generations of LEO satellites. On
the contrary, UAV-based methods can offer a more flexible
service than satellite or terrestrial systems as UAVs can be
relocated to maximise its usefulness to supporting mobiles.

3.5 Proposed approaches to coordinate the UAV
movements

As stated previously, both approaches require that the UAVs
broadcast data about their location and the location of
mobiles within their footprint. By considering the data, the
UAVs can generate their next manoeuvres to maximise the
joint coverage of the group. With the GA, the system is
designed with a single master UAV that gathers the position
data, runs the GA and broadcasts the next moves to the other
UAVs. Note that due to the assumption that UAV-to-UAV
communication is not affected by the power consumption nor
the flying of the UAVs, a member of the group is arbitrarily
selected to act as themaster at the beginning of themission. In
reality, a selection protocol will need to be in place. However,
this is currently outside of the scope of the presented work.
Data updates are broadcast every 3 s, a sufficient interval
to facilitate data transfer in connection to the mobility pat-
terns of the mobiles and their speeds (Charlesworth 2015).
The broadcast data are used to predict the positions of all
vehicles (UAVs and mobiles) after the duration of a flying
path. The system tolerates the error in predicted positions,1

based not only on the effect of the delay in evolving solutions

1 Note that mobiles mostly change their position within footprints of
radii measured in km, unless they are close to the edges.
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but also on the realistic fact that the mobiles might change
direction unexpectedly. It is found that even when mobiles
move with high speeds, this method allows the UAVs to pace
their flying according to themobility pattern of the supported
mobiles (Giagkos et al. 2014). The NCG requires that all the
UAVs simultaneously decide on their next move by solving
the same game, and synchronously move to their respective
next locations corresponding to the unique NE of that game.

3.5.1 The genetic algorithm

In the absence of instructions generated by the GAs on the
master UAV, the flying vehicles perform clockwise turn cir-
cle manoeuvres with the maximum bank angle (48◦) to keep
the current position. Once the GAs have generated a new
set of manoeuvres (one for each UAV), the master UAV
broadcasts the solutions to the team using the network. Note
that in reality, various network phenomena can jeopardise
UAV-to-UAV communication such as the applicability and
effectiveness of the MAC and routing protocols, and poten-
tial bottlenecks. However, in the context of this work, it is
assumed that, during communication, there is no packet loss
and that a dynamic routing protocol allows flawless data to
relay within the topology. If there is a delay of the transmis-
sion of valuable information between the UAVs, the latter is
expected to keep flying in a circular motion, waiting longer
for a decision to be made. Nevertheless, due to the size of
UAVs and their footprints in this problem, the performance of
the system is less prone to packet loss (Charlesworth 2015).

A flying manoeuvre is described by a Dubins path of 3
segments (Dubins 1961). Each one is represented by a bank
angle and the duration of execution. Each part can be either a
straight line or a left/right turn, depending on the given bank
angle (see Fig. 2a). A Dubins path may request an alteration
to the UAVs’ altitude. Each part of the manoeuvre can vary
in duration, but the sum of the duration of the three parts

must be equal to a fixed time interval corresponding to the
time required to complete a circle with the maximum bank
angle. This time constraint ensures that whatever manoeuvre
is executed, the system remains synchronised, with UAVs
that start and finish their respective manoeuvres at the same
time. As the GAs have limited time to search and generate
the next flying manoeuvres, it must be shorter than the time
it takes to each UAV to perform two-turn circle manoeuvres
on their respective current positions.

Before the end of the second turn, the GAs are expected
to have found the new best positions, which are immediately
transmitted by the master UAV to the other UAVs. At the end
of the second turn, each UAV executes the flying manoeuvre
transmitted to it. During the execution of the latest generated
manoeuvres, each UAV gathers recent GPS data for each of
their respective mobiles, and transmit this data to the master.
Figure 3 depicts the internal mechanism of the master UAV.
Both a turn circle manoeuvre and a previous Dubins path are
performed in step intervals (1 s in simulation). Note that once
complete, the master UAV adopts any new evolved solution
and communicates it to the rest of the fleet. Concurrently,
the generation of the next solution is initialised, taking into
consideration any up-to-date GPS data collected. Figure 2b
describes this sequence of events which repeat until the end
of the mission.

Flying instructions are encoded into chromosomes as
shown in Table 2. There are 8 genes, 6 of them defin-
ing bank angle βi and duration δti of the manoeuvre i
with i ∈ {1, 2, 3}. The remaining two genes define varia-
tions to the altitude δh and whether that variation will be
applied within the duration of the Dubins path (i.e. within
the time interval corresponding to

∑3
i=1(δti ), for three path

segments). Bank angles, durations and altitude changes are
encoded with real-valued genes chosen uniformly random
from the range [0,1]. An exception to this is the gene arbi-

(a) (b)

Fig. 2 a GAs flying trajectories; b coordination plan
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Fig. 3 Flow of decision making and performing the next step at the master UAV’s level

Table 2 A chromosome encoding flying information for a single UAV.
The last two genes control the vertical movement

1 2 3 4 5 6 7 8

β1 δt1 β2 δt2 β3 δt3 b δh

trating an altitude change, which is represented by a binary
value b.

The GAs use the linear ranking to generate the flying
manoeuvres (Goldberg 1989). At generation 0, a popula-
tion composed of M × N random chromosomes are created,
with N corresponding to the number of UAVs in the group
and M = 100 indicating the number of groups or solu-
tions. A solution is made of H chromosomes. For each
new generation following the first one, the H chromosomes
corresponding to the best performing group/solution (i.e.
the elite) are retained unchanged and copied to the new
population. Each of the chromosomes for the remaining solu-
tions is formed by first selecting two old solutions using
roulette wheel selection. Two chromosomes, each randomly
selected from among the members of the chosen solutions
are recombined with a probability of 0.3 to reproduce one
new chromosome. After a single-point crossover operator is
applied for reproduction, each parameter of the new chro-
mosome is in turn mutated. Mutation entails that a random
Gaussian offset is applied to each real-valued gene, with a
probability of 0.05. The mean of the Gaussian is 0, and its
standard deviation is 0.1. During evolution, all real-valued
genes are constrained to remain within the range [0, 1]. For
binary genes, mutation corresponds to switching the state of
the gene.

The process is repeated to form M − 1 new solutions of
H chromosomes. The GAs run for 200 generations or until
an allowed computation time has elapsed. The use of time as
stopping criteria is an efficient way to avoid undesired effects
such as long delays in the execution of the UAV’s position
update phase. Note that beyond a certain size of UAV fleet, it

would be beneficial to allocate more time than the GAs can
currently use to find a solution. This is because with progres-
sively more UAVs, the search space becomes bigger and the
time to evaluate each solution increases. Nevertheless, the
search time allocated to the GAs has to remain shorter than
the time taken by UAVs to perform the turn circle manoeu-
vre. Thus, with a large fleet of UAVs, the entire system has
to be adjusted to allow the GAs enough time to find good
solutions.

The fitness of each group/solution is shared by all the chro-
mosomes forming the solution.Thegroupfitness is computed
by summing the number of uniquely supported mobiles per
UAV,with UAVs assumed to be positioned at their respective
next locations as per Eq. 6.

f =
∑|U |

n=1 |Cn|
|G| (6)

with U being a set of all UAVs in the system and Cn the
packing array of the nth UAV ∈ U , and |G| being the total
number of mobiles in the scenario. The packing array Cn

is populated using Algorithm 1. This algorithm ensures that
the number of mobiles assigned to each UAV is maximised
while the power consumption is minimised. Bearing in mind
that the speed at which mobiles move across a footprint is the
important factor, the packing algorithm favours the mobiles
that are close to the centre of the footprint. These require the
lowest power; hence, the UAV can support more mobiles by
finding clusters and keeping them close to the middle.

The algorithm starts by initialising empty packing arrays
for all UAVs of a scenario. These are used to accommodate
and assignmobiles to supportingUAV.An important compo-
nent for the algorithm is the sorted logical mapM. The map
consists of all UAVs and the mobiles that are found inside
their footprints, sorted by the required supporting power for
their slant range, in ascending order. Following that criteria,
the algorithm iterates all UAVs and populates their packing
arrays with mobiles from their footprints, making sure that
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there is enough power to maintain the UAV-to-mobile com-
munication links.

Algorithm 1 Packing algorithm
Require: A logical mapM of all mobiles in G, organised w.r.t. UAVs’

footprints, sorted by power in ascending order
Ensure: A set C of packing arrays
1: let packing arrays C[n] ← ∅ ∀ n ∈ U
2: while G is not empty of mobiles do
3: for each u in logical map M do � For every UAV in the map
4: let g be the first mobile found in u’s sorted list
5: let p be the power required to support g
6: if powerbudget(u) − p ≥ 0 then � Ensures that there is

enough power to maintain the link
7: C[u] ← g
8: powerbudget(u) = powerbudget(u) − p

9: remove remaining instances of g from G

10: return C

The algorithm terminates when all mobiles are consid-
ered, ensuring that the resulting packing arrays will contain
as many of the mobiles as possible, prioritising those that
require less power to be supported. Mobiles that are pre-
dicted to be positioned within the footprint of more than one
UAV are assigned to the UAVwith the smallest slant range if
that UAV has enough power to provide coverage. Otherwise,
they are assigned to other UAVs. It is important to notice that
artificial evolution uses information retrieved from frequent
broadcastmessages sent by all the vehicles. To ensure that the
manoeuvres are generated according to valuable positional
information, distances between antennae and in-turn power
estimation are calculated based on predicted positions.

At the end of each evolutionary process, manoeuvres cor-
responding to the best solution of the last generation are
communicated to the respective team members for imple-
mentation along with the mobile-to-UAV allocation table.
Each UAV executes the received flying instructions and
serves those mobiles that are supposed to be served based on
their predicted position. The larger the number of mobiles
covered, the fitter that particular solution is when the UAVs
execute the manoeuvres. This logic allows the GAs to gen-
erate team solutions that maximise the network coverage by
assigningmobiles to UAVs that can spend less power to serve
them.

3.5.2 The non-cooperative game

A non-cooperative game (NCG) is used to coordinate the
movements of a group of simulated UAVs. Non-cooperative
games are games in which the players have a common objec-
tive but do not form teams or coalitions to achieve that
objective. In our system, each player (i.e. UAV) has a set
of possible next locations A and a pay-off set C containing
the number of mobiles that are supported within that UAV’s

1

2
3

4
5

6

7

UAV Track

Possible  
Tracks

15

16
17

18
19

20

21

8

9
10

11
12

13

14

Current Altitude

Altiitude after 
climbing

Altiitude after 
descending

Fig. 4 Game strategies for a single UAV. The dotted circles refer to the
possible tracks. Continuous line circles refer to the current track

constrained payload power for each next location. Thus, each
action a ∈ A results in a pay-off defined as a coverage c ∈ C .
An action a∗ is then defined as per Eq. 7.

a∗ ∈ argmaxa∈A c(a) (7)

Note that A can be a discrete set of actions or a continu-
ous set. The strategy adopted by all players is a probability
distribution across A. TheNCGgenerates a UAV’s next loca-
tion based on the anticipated status of the system at the end
of its current manoeuvre. Each UAV then selects an action
that maximises its pay-off, given the actions chosen by other
UAVs.This set of optimal actions by eachof theUAVsdefines
the best response by each UAV to every other UAV and is
consequently an equilibrium state, i.e. the Nash equilibrium
(NE).

The airspace over the mission area is configured as a pat-
tern of hexagonal cells, as shown in Fig. 4. At the start of
each run of the game, each UAV is circling in cell 1. In the
simplest case of maintaining a constant altitude, each UAV
has the following choices: either it can move in circles in cell
1, or it can relocate to circle in the adjacent cells 2–7. It could
also choose to climb at its maximum climb rate and circle
in cells 8–14, or descend to circle in cells 15–21. That gives
each UAV a set of 21 actions that can be adopted. Generally
speaking, if each of the u UAVs has k possible strategies, the
number of combinations of strategies increases as ku . The
size of the pay-off matrix must also increase as ku .

The cellular pattern has symmetry about the current loca-
tion that allows all potential locations to be reached at the
same time. The time allocated to complete the manoeuvre is
sufficient for the UAV to complete one circle at its current
altitude, move to the next cell and complete one circle at its
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Table 3 Table of parameters and configuration settings

Simulation parameters

Terrain size 100 km × 100 km

Duration 6 h of flying

Unmanned aerial vehicles

Number of UAVs 2 and 3

Initial altitude 15000 feet

Initial latitude, longitude and heading #1 52.8636, −2.6373 and 270°

#2 52.0512, −1.4219 and 270°

#3 52.8605, −1.4219 and 270°

Cruising speed 75 knots

Default flying limits (min/max altitudes) and maximum bank angle 500–22,000 feet and 48°

Pmax 50 W

Ground-based vehicles

Number of units 20, 100, 150 and 200

Mobility model, pause time and speed Random WayPoint, 120 s and 30 mph

Communication

Desired data Rb and Eb/N0 and frequency f 2 Mbit/s and 10 dB and 5 GHz

Horn-shaped antenna’s half power beam width angle and efficiency η 170° and 0.95

Elevation angle ω 10

Interval of GPS data broadcast 3 s

new altitude. The small difference in path length between
level flight, climbing and descent are absorbed in the com-
pletion of two circuits, giving a manoeuvre time of about 5
min. This ensures that all UAVs have settled into their new
altitude before planning the next manoeuvre, and allows the
decisions of all UAVs to be synchronised.

The pay-off matrix of the NCG contains the coverage of
all UAVs for all combinations of actions. In other words,
the pay-off matrix is populated by calculating the number of
vehicles that can be supported by each UAV for all ku com-
bination of strategies. The vehicle-to-UAV allocation is done
following the criteria detailed in Algorithm 1. The single NE,
usually a mixed-strategy Nash equilibrium2 (MSNE), of the
game is used to define the strategy that should be adopted by
every single UAV. Chatterjee’s method (Chatterjee 2009) is
used to solve the game and thus identify the best NE out of
all those that can exist. The method starts by assuming a ran-
dom solution, then progressively refines that solution until
the error between successive iterations is less than a given
threshold.

Contrary to the GAs approach, the NCG the system is
fully distributed as all UAVswould generate identical pay-off
matrices from identical location data. Thus they are expected
to reach an identical NE solution (see also (Charlesworth

2 A mixed-strategy Nash equilibrium is where at least one player in
the game has a probability distribution across its action set. Hence, an
action can be chosen by randomising over some or all of their actions
with weighting given to those actions with a higher probability.

2013) for further details). Both the GAs and the NCG
approach require each UAV to access information concern-
ing the positions of all UAVs and the position/direction of
motion of all vehicles. The systems required global informa-
tion sharing.

4 Experimental methodology and
evaluationmetrics

To thoroughly examine theperformanceof the twoapproaches,
a series of experiments are conducted. They are designed
to evaluate not only the ability of the coordination systems
to provide coverage by balancing the power consumption
in large-scale scenarios, but also to investigate the flying
behaviours that emerge.

Table 3 provides a summary of the parameters used
throughout the experiments. It is assumed that the mobiles
utilise low-cost omnidirectional antennas and the data rate
between mobiles and UAVs is fixed at 2 Mbit/s—a commu-
nication rate that is considered high enough to support stream
video, emails with attachments, and transmission of images
between mobiles.

Coverage is defined as the number of vehicles uniquely
supported by aUAV.This concept of ‘uniqueness’ indicates a
one-to-one mapping between pairs of communicating UAVs
andmobiles. Providing unique coveragemaximises the num-
ber of mobiles that can be supported. The cost of this strategy
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Fig. 5 Indicative graph of total coverage against time

is reflected by a slight increase in the complexity of the pay-
load packing algorithm and handoff delays, in case the path
between the mobile and UAV becomes unavailable. In prac-
tice, these disadvantages are found to be insignificant.

Figure 5 shows the typical shape of a coverage graph.
Coverage starts at some arbitrary level depending entirely on
the initial conditions of the experiment and settles towards
a mean coverage μ with an associated standard deviation σ .
The first metric, the settling time Tset, is the time that each
method takes to reach a value within 3σ of the mean.

The value of coverage that needs to be exceeded,Cset, can
be defined as Cset = μ − 3σ . The other two metrics are the
mean and standard deviation of the steady-state coverage.
The mean, μ, indicates the effectiveness of the method in
achieving coverage while the standard deviation σ shows
how consistently that level of coverage is supported.

The initial conditions of all the simulations ensure consis-
tency when measuring the settling time (defined in the next
section). Selected results from varying the number of UAVs
(groups of 2 and 3 UAVs) and the number of mobiles (sce-
narios with 20, 100, 150 and 200 mobiles) are presented to
highlight performance, scalability and convergence strengths
and limitations. The mobiles, randomly distributed in the
100 km × 100 km simulation area, employ a random way-
point mobility model by which each vehicle pauses for 120
s before it randomly selects a direction to move at 30 mph.
Using the same scenarios with identical initial conditions
gives an insight into how the UAVs behave as a group. For
every approach, each scenario is simulated ten times, and
average results are presented in the next section.

5 Results and discussion

Results showing a comparison of the two coordination
approaches are presented in this section. The similarities

as well as the differences between the proposed GAs and
NCGapproaches are discussed alongwith an analysis of their
emergent flying behaviours and their optimisation capabili-
ties.

5.1 Coverage for different number of mobiles

To understand the associations between coverage and power
consumption, experimental results from flying 2 UAVs over
20 mobiles are depicted in Fig. 6. The 20 mobiles repre-
sent a sparsely distributed group within a large terrain size
requiring higher flights and in turn more power to be spent
in maintaining links.

Figure 6a and b shows that both approaches satisfy
the undemanding challenge of supporting all mobiles but
demonstrate significant differences in their approaches. The
GAs exhibit some imbalance between the 2 UAVs with one
supporting 12 and the other supporting 8 mobiles. The con-
sistency shown over the 10 runs provides an indication that
theGA-based approach, evaluating the fitness at a group level
rather than the individuals, allows specialisation in flying to
emerge. TheNCG-based approach balances the load between
the 2 UAVs with each supporting 10 mobiles for the majority
of the flight.

Figure 6c and d shows that the RF power required to sup-
port the 20 mobiles varies between 60 and 75W for the GAs,
and between 40 and 70 W for the NCG. These findings cou-
pled with the coverage results suggest that the specific power
for the GAs is just over 3 W per vehicle, and for the NCG
is just under 3 W per vehicle. The main factor that affects
specific power is the slant range, dictated primarily by the
position of a UAV relative to the mobiles that it supports.
The indications from the sparse scenario with 20 mobiles are
that the NCG ismarginally better than the GAs at positioning
the UAVs closer to mobiles.

Figure 8 shows the coverage results for both approaches
using 2 UAVs covering 100 and 200 mobiles. The differ-
ences between the two can now be clearly seen. The GAs
quickly achieve and maintain a steady value of total cov-
erage demonstrating signs of specialisation between the 2
UAVs with UAV1 providing consistently higher coverage
than UAV2. The NCG demonstrate less consistent coverage,
with the total coverage taking some time to settle within a
constant range. Visual inspection indicates that the coverage
of the NCG is higher than the GAs.

By analysing the power data, a value of between 0.7 and
1.3 W per mobile covered is found. This suggests that the
total coverage of 2 UAV payloads of 50W should be enough
to cover 140 mobiles. When 200 UAVs are available, only
one of the proposed approaches, NCG achieves coverage of
140mobiles. TheGAs are found to be less adept at exploiting
clusters, as indicated by the relatively flat curves in Fig. 8a
and c.
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(a) GAs - Coverage with 20 mobiles.
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(b) NCG - Coverage with 20 mobiles.
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(c) GAs - RF Power for 20 mobiles.
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(d) NCG - RF Power for 20 mobiles.

Fig. 6 Coverage and power versus time for GAs and NCG decision approaches of 2 UAVs supporting 20 mobiles

The geometry of the scenario and distribution of the
mobiles explain this observation. Recall that the scenario is
a 100 km× 100 km square and the UAV footprints are circu-
lar. Given a random and uniform distribution of the mobiles
within the terrain, total coverage can only be achieved when
all themobiles liewithin the circular footprints. This can only
occur if the latter completely encompass the terrain, implying
that the UAVs cruise at extremely high altitudes. However,
such altitudes increase the slant range to the mobiles and
demand more power, negatively affecting the number of
mobiles which can be supported.

In practice, the mobiles are not uniformly distributed
across the scenario but, because of their mobility, they tend
to form clusters that slowly form and disperse. A method for
relocating the UAVs is likely to be more effective if it can

react to the formation of clusters and reposition the flying
agents closer to the centre of the clusters.

When a third UAV is introduced the total RF power and
area of the footprints increases, allowing more mobiles to
be supported. Figure 7 depicts that, in all cases, the total
coverage increases. It is clear that the GAs still provide con-
sistent cover, and the addition of the third member of the
flying group seems to make any specialisation unnecessary.
TheNCGmanages to achieve better coverage results as com-
pared to the GAs, with its variability of coverage being still
apparent.

A more detailed analysis of the coverage metrics for these
results can be seen in Table 4, where the statistical signifi-
cance of the results is depicted. Remember that Cset, defined
as μ − 3σ , is the coverage threshold and Tset is the settling
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(a) GAs - Coverage with 100 mobiles.
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(b) NCG - Coverage with 100 mobiles.
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(c) GAs - Coverage with 200 mobiles.
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(d) NCG - Coverage with 200 mobiles.

Fig. 7 Coverage versus time for GAs and NCG decision approaches of 3 UAVs supporting 100–200 mobiles

Table 4 Coverage metrics for
GAs and NCG decision
approach of 2 and 3 UAVs
supporting 100–200 mobiles

GAs NCG
UAV mobiles μ σ Cset Tset μ σ Cset Tset

2 100 79.7 1.2 76.1 80 82.3 3.5 71.8 103

2 150 96.3 1.2 92.7 91 111.3 4.6 97.5 338

2 200 113.9 2.3 107.0 107 152.2 3.4 142.0 2415

3 100 99.4 0.4 98.2 98 97.8 1.6 93.0 92

3 150 136.8 1.5 132.3 132 138.4 3.8 127.9 324

3 200 164.2 2.1 157.8 157 178.9 3.8 167.5 654
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(a) GAs - Coverage with 100 mobiles.
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(b) NCG - Coverage with 100 mobiles.
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(c) GAs - Coverage with 200 mobiles.
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(d) NCG - Coverage with 200 mobiles.

Fig. 8 Coverage versus time for GAs and NCG decision approaches of 2 UAVs supporting 100–200 mobiles

time. This table includes the results of experiments with dif-
ferent number of mobiles to provide a better understanding
of how the two approaches operate in terms of scalability.
The mean coverage for the NCG is higher than the GAs for
all instances except 3 UAVs and 100 mobiles. Analysis of
variance (ANOVA) on the two datasets, the distributions of
10 runs for each approach, shows that the coverage data for
100 mobiles is similar for both approaches (p = 0.05). The
results of covering 150 mobiles show a definite difference
from 2 UAVs but no significant difference for 3. When there
are 200 mobiles, there is a definite improvement in coverage
when the NCG is used. The standard deviations for the NCG
approach are more significant than the GAs, as indicated by

Figs. 7 and 8. The GAs approach is providing a constant,
reliable service.

The settling time for the GAs is consistently fast and
increases with the number of mobiles whereas there is no
clear pattern for settling time for the NCG. When 3 UAVs
provide coverage for 100 mobiles, the NCG is marginally
faster than the GAs, but in all other cases, it is significantly
longer. This anomalous case can be explained by comparing
the values ofCset for theGAs and theNCG; the largeσ for the
NCG generates a lower value ofCset and hence a shorter Tset.
The behaviour is also explained by the tendency of the NCG-
based approach to find and exploit clusters of mobiles. The
time taken to locate clusters and reposition UAVs is entirely
dependent on the initial conditions. This is a weakness in
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(a) (b)

(c) (d)

Fig. 9 Altitude versus time for GAs and NCG decision approach of 2 UAVs supporting 20 mobiles

this approach as it could take a long time to settle whereas,
in identical initial conditions, the GAs are found to be much
faster.

5.2 Flying behaviours when supporting different
numbers of mobiles

The flight paths of the UAVs, defined in terms of their lat-
itude, longitude and altitude, offer some insight into the
relative performance of the two approaches. Examples runs
of the experiments are selected to demonstrate their associ-
ated behaviours.

Figure 9 presents exemplar flying trajectories for 2 UAVs
supporting 20 mobiles. Power is not a significant limitation
for this example, but due to the sparse distribution of the
mobiles it is necessary for theUAVs to increase their footprint

area by climbing. Thus both approaches require the UAVs to
climb to an altitude, where their footprints are sufficiently
large to permit visibility of all the mobiles.

The flexible flying provided by the GAs makes the UAVs
fly higher and reach the maximum altitude of 22000 ft in
an attempt to maximise their footprint areas. In this particu-
lar example, UAV1 moves towards the centre of the terrain
while UAV2 demonstrates little change in either latitude or
longitude. These emergent flying strategies allow the group
to successfully achieve a joint coverage of all the mobiles
with UAV1 covering more than UAV2, as seen in Fig. 6a.
The different behaviours and coverage values suggest some
degree of agent specialisation between the 2 UAVs an effect
of altruism that results from the group evaluation.

The conservativeflying approach takenby theNCGcauses
both UAVs to move towards the scenario centre, as shown
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(a) (b)

(c) (d)

Fig. 10 Flight path for GAs and NCG decision approach of 2 UAVs supporting 100–200 mobiles

in Fig. 9d, and fly at a lower altitude of around 18000 ft.
The 2D flight trajectories such as in Fig. 9c demonstrate the
frequent repositioning of the UAVs and their manoeuvres’
complexity. Their almost symmetric locations and limited
movements suggest that each has achieved stable coverage
and has no further need to relocate. This is supported by
Fig. 6a which depicts each UAV supporting approximately
half the mobiles.

The flying behaviours produced by both approaches differ
when more mobiles seek coverage (see Fig. 10). Observing
Fig. 10a, it is seen that the GAs move both UAVs towards the
centre of the scenario’s terrain and, for the remainder of the
time, they execute small location changes in a clearly defined
area. As the number of mobiles increases to 200, the area
within which the UAVs manoeuvre also increases, as seen
in Fig. 10c. This is expected behaviour as the higher spatial
density of the mobiles the lower the UAVs will select to
fly, as shown in Fig. 11. Subsequently, the smaller footprints

encourage the UAVs to make small responses to marginal
changes in coverage.

The horizontal movement of the UAVs using the NCG
demonstrate an interesting pattern. When there are only
100 mobiles the 2 flying agents demonstrate a competing
behaviour. Their flight paths overlap slightly as they move
around the centre of the scenario trying to find marginal
improvements to their coverage. As the number of the
mobiles increases to 200, the overlap reduces; there are plenty
of mobiles to be found without the necessity to compete too
aggressively.

Adding a thirdUAV increases both the available RF power
by a third and the combined area of the footprints. It can be
expected that coverage will increase and that the 3 UAVswill
be less constrained when finding optimal solutions. The ver-
tical movement of the UAVs controlled by the GAs is shown
in the altitude Fig. 12a and c. The mobile spatial density is
lowestwith 100mobiles; therefore, theGAs encourage flying
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(a) (b)

(c) (d)

Fig. 11 Altitude versus time for GAs and NCG decision approaches of 2 UAVs supporting 100–200 mobiles

higher, pushing UAVs to climb to increase their footprints.
Interestingly, with 200 mobiles available all 3 UAVs start
by descending. However, UAV3 has some difficulty main-
taining its coverage and responds by climbing to increase its
footprint size.

The GAs show evident and consistent behaviour with 3
UAVs. Figure 13a and c show all flying agents initially mov-
ing towards the scenario centre. Once their coverage has
reached a practical maximum, they make marginal location
changes in response tomovement of themobiles,maintaining
a clear separation between each UAV and its neighbours. In
this way, theymaximise their coverage. Game theory demon-
strates clear evidence of competition when looking at the
NCG results. Figures 12b and 13b depict UAV2 descending

and thus constraining its flight path to the southeast quad-
rant. This indicates that it has established control over a set of
mobiles without competition. Meanwhile, UAV1 and UAV3
climb and demonstrate overlapping flight paths in the north-
ern half of the scenario, as a result of competing with each
other vigorously. With 200 mobiles in Figs. 12d and 13d,
there is less need for the UAVs to compete as there are suf-
ficient mobiles for them to support. Changes in altitude are
less extreme, and the flight paths seldom overlap.
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(a) (b)

(c) (d)

Fig. 12 Altitude versus time for GAs and NCG decision approach of 3 UAVs supporting 100–200 mobiles

6 Conclusions and future work

Two approaches to autonomousMALEUAVflying to enable
the ground to ground communication over challenging ter-
rain are discussed and compared. The first approach applies
GAs whereas the second employs game theory to generate
flying solutions. Both approaches are designed to maximise
the coverage, that is the number of mobiles that can be sup-
ported during the mission, considering the limited available
power dedicated to communications. Notice that although
the problem is concerned with the ability of the systems
to increase the number of covered mobiles as well as the
efficiency in managing the power, it is treated as a single-
objective problem by both approaches. This is because the
operating packing mechanism (discussed in Sect. 3) encap-

sulates the concept of power management when allocating
mobiles to their supporting UAVs. Furthermore, the NCG is
not intended as an optimisation method; instead, its appli-
cation explores whether optimal solutions can be found if
agents are in competition.

Both approaches are capable of supporting more mobiles
than other satellite-based methods while achieving less
packet loss and significantly shorter round-trip times. This is
due to the constraints satellite approaches have, ranging from
shorter footprint diameters to restricted access times. The
two approaches are compared through a series of simulations
for large-scale scenarios. Coverage, power consumption and
scalability as well as flying behaviours are thoroughly inves-
tigated, highlighting the pros and cons of each approach.
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(a) (b)

(c) (d)

Fig. 13 Flight path for GAs and NCG decision approaches of 3 UAVs supporting 100–200 mobiles

An initial observation is that the GA-based approach
sought optimal solutions and sometimes allowed the UAVs
to specialise. The competitive nature of theNCG results in all
UAVs seeking marginal increases in coverage at the expense
of competitors. Both methods were found to fulfil the objec-
tive of providing adaptive communication coverage, with the
GAs being able to maintain a consistent result throughout the
mission. This is due to the flexibility of the flying behaviours
offered by the current design of chromosomes in the GAs.

The NCG achieves higher coverage than the GAs but with
more considerable variability due to its conservative, and
quantised, flying behaviour. For instance, with 2 UAVs and
200 mobile the NCG scores μ = 152 with σ = 3.4, whereas
the GAs achieve μ = 113 with σ = 2.3. Results are similar
when a third UAV is introduced; μ = 179 with σ = 3.9
and μ = 164 with σ = 2.1 for the NCG and the GAs,

respectively. It is suggested that smaller quantisation steps
might improve the variability of the coverage values, and
this could be an interesting question for future research.

In terms of quickly converging to a sufficient separation,
theGAs are found to require less time (i.e. settling time Tset =
107 compared to 2415 for the NCG) and be able to specialise
the resulting flying behaviours due to their flexibility. The
NCG is seen to require more time as the UAVs follow a
similar trend in traversing shorter distances per flying step
while making frequent altitude changes to manage power.

When small, thus sparse, groups of mobiles are concerned
(i.e. |G| = 20), the NCG is marginally better than the GAs
in power consumption as it requires less than 3W per mobile
with the GAs exceeding this consumption. However, as the
number of mobiles increases, it is found that the specific
power (i.e. the power required to support one mobile) tends
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to remain between 0.8WWatt and 1.3W per mobile for both
approaches.

As the number of mobiles and their supporting UAVs
increases, it is easier for both approaches to suggest locations
with low slant ranges, and hence lower values of specific
power. Under these conditions, both approaches tend to
reduce the operating altitude of all members of the flying
group. This mostly results from the increased spatial density
of the mobiles and the consequent ability of the UAVs to
satisfy their coverage demands from smaller footprints.

Results related to the flight paths of the UAVs show dif-
ferent behaviours from the two compared approaches. The
GAs tend tomaintain clear horizontal separation between the
UAVs. In contrast, the NCG sometimes allowed their flight
paths to overlap, a consequence of the competition between
UAV players in response to local increases in vehicle spa-
tial density. These results also indicate that flying strategies
produced by the GAs promise a collision-free relocation of
multiple UAVs.

The NCG assumes a distributed planning and decision
making, but still needs to share positional data betweenUAVs
over the same unreliable core network. All position-related
information is shared, but eachUAVdecides on its own about
what would be the next actions, by anticipating the action of
others. In the current form, the GAs use planning with the
need to collect data and distribute a plan over a network with
some probability of data loss or corruption but, with synchro-
nisation and common rules for genetic operators, it would be
possible to produce a distributed version. Finally, this paper
uses coverage as the primary criterion for evaluating mission
performance and also RF power as the primary constraint.
The consideration of other performance criteria and con-
straints as well as the incorporation of collision avoidance
and traffic-related performance metrics could improve the
realism of both approaches while establishing some exciting
possible directions for future research.
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