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Probabilistic Decentralised Control and Message
Passing Framework for Future Grid

Randa Herzallah , Yuyang Zhou

Abstract—In this paper, we propose a unified probabilistic
decentralised control and message passing framework for real
time control of the electrical grid which enables the development
of the future smart grid. The key elements of the proposed
framework are the design of local randomised controllers and
probabilistic message passing methodology which enables the
coordination between the designed local controllers to account
for optimisation considerations on the system operation. Within
the proposed framework, the electric grid is decomposed into
a number of control areas. Additionally, since the frequency is
the ubiquitous grid state variable, representing the balancing of
active power generation and consumption, the proposed frame-
work is demonstrated based on local Load Frequency Control
(LFC). Simulation studies involving a six-area power system and
three interconnection schemes are carried out to illustrate the
applicability and effectiveness of the proposed approach.

Index Terms—Fully Probabilistic Control, Stochastic systems
control, Decentralised control, Power systems, Probabilistic mes-
sage passing

I. INTRODUCTION

The current grid can be characterised as one large centrally
dispatched supply system cascading hierarchically to meet
consumer demand. This hierarchical transmission grid assumes
passive consumers, fixed local distribution, fixed microgrids,
and has large inertia. Despite being successful, recent devel-
opment engender a much more dynamic and uncertain grid:
intermittent supply of renewables, electrification of heat and
transport, deployment of smart meters, interconnectivity of
communication systems, a more distributive nature involving
active consumers, and particularly very low inertia. Addition-
ally, the legislative and political drivers that the governments
need to conform to international agreements, are also driving
the future grid to be more volatile, to have the need to deal
with uncertainties. This new future grid demands a new control
and communications methodology to deal with uncertainty,
volatility, robustness and responsiveness. In response to the
challenges posed by the most likely future power grid scenario,
this paper proposes a fully probabilistic decentralised control
and message passing framework to address many of the
confounding issues.

The proposed decentralised control framework decomposes
the control task of the grid network into smaller tasks where a
set of distributed generation units are grouped together to form
a mini or microgrid which is then integrated into the power
system or operated in an islanded mode. Each mini/micro
grid independently manages and controls the power flow in its
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area and possibly neighboring areas. This partitioning of the
grid network and the proposed communication and message
passing provide a coordinated system-wide service capability
that warrants the effective development of the future smart
grid. Since the frequency is the ubiquitous grid state variable,
representing the balancing of active power generation and
consumption, the proposed framework will be demonstrated
based on local Load Frequency Control (LFC) [1]–[3].

Up until now most of the literature on the control of
power systems have been limited to deterministic control.
Specifically, an extended linear quadratic regulator based de-
centralized algorithm for calculating the optimal control signal
for the automatic voltage regulator is developed in [4]. A
distributed predictive control architecture that also considers
the coordination of the renewable energy systems with the
electrical grid and loads is developed in [5]. An introduction
on the most challenging LFC problem in multi-area power
systems can be found in text books [6], [7] while compre-
hensive literature surveys on the topic are provided in [8],
[9]. However, the increase in integration of renewable and
distributed energy generators, the development of consumer
participation, new type of demand, as well as frequently
changing stakeholder, are driving this ever-growing grid to be
more volatile and inherently probabilistic. In this challenging
operational environment, it can be difficult to decide on the
most appropriate control action to take in order to efficiently
manage, optimise and control the grid and at the same time
avoid undesired effects due to the existence of stochastic
behaviour and uncertain information. To address the volatility
nature of the electric grid, recent advances have considered the
development of stochastic decentralised control methods [10]–
[13].

Nonetheless, most of the aforementioned methods are based
on the minimisation of a predefined expected cost function
which assumes certainty equivalence, therefore, it does not
generally yield a good performance. Additionally, most of
them consider dynamically decoupled subsystems which does
not represent the actual architecture of the emerging electrical
system. To design reliable and accurate control strategies for
the dynamically coupled, stochastic and uncertain electrical
systems, we will establish a unified decentralised probabilistic
control and message passing framework that is based on
the probabilistic state space representation of the electrical
areas of the grid network. The proposed framework will be
demonstrated on the LFC problem. First, we introduce the key
elements and their interactions in the proposed decentralised
probabilistic control architecture and discuss the design of the
decentralised randomised control strategies which are able to
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coordinate their actions to account for the overall objective of
the electrical grid system. To facilitate the understanding and
the analytical solution of the proposed framework we focus
on a specific thermal and hydroelectric generation system
which is then decomposed into multiple distinct dynamical
subsystems, referred to as control areas.

II. DECENTRALISED CONTROL ARCHITECTURE

Our proposed decentralised probabilistic control and mes-
sage passing framework provides an effective way for inte-
grating and coordinating heterogonous distributed generation
sources, including for example renewable energy sources,
electric vehicles, and combined heat and power systems.
What we propose will also be reliable, and designed to deal
with and exploit rather than ignore uncertain information. As
shown in Figure 1, the proposed decentralised framework
considers the decomposition of the electrical grid into N
control areas, {1, 2, . . . ,m, . . . , N}. The key elements of this
proposed architecture are the joint design of local randomised
controllers, c(uik−1

|zik−1
), i = 1, . . . N , and message passing,

Mi←−j{xjk −→ x̃ik} for coordination between the controllers
of the individual areas. This decomposition of the grid network
may be based on the physical structure of the electrical grid
network. Each control area may typically consist of conven-
tional generation sources, renewable energy generation sources
and loads. The areas are responsible for meeting the demand
of their own consumers and are physically interconnected with
each other through transmission power lines. Additional func-
tionality Physical connections between the different control
areas will also be taken into consideration for the purpose of
the design and coordination of the decentralised controllers.
This allows the mutual transmission and delivery of energy
from one control area to another. In particular, when the energy
generated in a control area is not enough to satisfy the total
power demands in that control area, the additional deficient
power may be obtained from neighbouring control areas. On
the other hand, when the energy generation in a control area
is sufficient and there is a surplus of energy, this area may
transmit energy to other neighbouring control areas.

The proposition is to design randomised control strategies,
c(uik−1

|zik−1
) for each control area that has the capability

to maintain the frequency of each area at its nominal value
through local load frequency control. Local controllers are not
only required to maintain the operation of their corresponding
areas at the nominal conditions and increase the quality of
the power delivered to consumers, but they also need to
harmonise their actions with the surrounding environment
including neighbouring areas. This will be achieved by the use
of uncertain information provided as external signals, x̃ik from
the neighbouring areas. Information diffusion will be achieved
through probabilistic message passing, Mi←−j{xjk −→ x̃ik}
in order to update the knowledge of the control areas about the
states of neighbouring areas which will be achieved by using
probabilistic inference methods. Thus, there is also a real-time
communication network integrated in the overall system shown
as dotted lines in Figure 1. The control areas communicate
via the real-time communication network at specific sampling

time instants. In Figure 1, the symbols xik and uik are used to
indicate the state and control input of control area i, and the
symbol x̃ik is used to indicate the state of neighbouring areas
received by area i through probabilistic message passing. The
state of each control area is charachterised by the probability
density function (pdf) of the internal state, s(xik |zik−1

) of
that area, and the pdf of the external state, s(x̃ik |x̃ik−1

)
received by that area from neighbouring areas. At sampling
instant k, control areas broadcast their state information as
probabilistic messages to neighbouring areas that they have
physical connections with, Mi←−j{xjk −→ x̃ik}. Based on
the local state information, xik of the control area and received
external state information, x̃ik from neighbouring areas, the
local controller in that control area calculates its own control
action. As will become clear from further development, the de-
signed probabilistic controllers are universal controllers which
not only estimate the control actions but also the uncertainty
around that estimation.

III. MATHEMATICAL MODEL OF MULTI-AREA POWER
SYSTEM

Assume that the electrical grid system is decomposed into
N control areas which also are sparsely coupled with each
other. The dynamic coupling between neighbouring areas also
indicates information exchange between the coupled control
areas as mentioned previously. Also, as discussed earlier,
within the proposed decentralised framework, each control
area may typically consists of conventional generation sources,
renewable energy generation sources and loads. However, to
concentrate on the understanding of the proposed probabilistic
decentralised control and message passing framework, the
power generation in the control areas in this work will be
limited to thermal and hydroelectric power stations.

As shown in Figure 2, at steady-state operation, the power
sharing through tie-line between two areas, i and j ∈ N ,
denoted by Ptie,ij is defined as follows,

Ptie,ij =
ViVj
Xij

sin(δi − δj), (1)

where Xij represents the reactance of the tie-line which
connects the two areas i and j, Vi and Vj stand for the voltages
at equivalent terminals of area i and j, respectively, and δi, δj
are the power angles of the equivalent machines of area i and
j, respectively.

For small deviations of the power angles, ∆δi,∆δj from
their equilibrium values, δ0i

, δ0j
, the power flow deviation

from its nominal value, ∆Ptie,ij over tie-line ij can be
described by the following equation,

∆Ptie,ij = Tij(∆δi −∆δj), (2)

where Tij denotes the synchronising torque coefficient and is
given by [14], [15],

Tij =
|Vi| |Vj |
Xij

cos(δ0i − δ0j ).

Taking the derivative of Equation (2) with respect to time
yields,

∆Ṗtie,ij = Ktie,ij(∆fi −∆fj) (3)
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Figure 1: The architecture of the proposed decentralised control framework and message passing for power systems. The set
of sensors in the top parallelogram shape measure the state of the variables, x̃ik that describe the dynamical behaviour of that
area. TD is the temporal delay line. The messages being passed depend on the architecture of other subsystems. In the figure
the outgoing messages from the control area are shown as a dark parallelogram shape while the incoming messages to the
control area are shown as a light gray parallelogram shape. The figure shows mainly three control areas 1, 2 and 3 along with
another control area which is shown to be further away with fading connection arrows to emphasise the existence of other
control areas in the electrical grid.

Figure 2: Tie-line interconnection of two areas system

where Ktie,ij = 2πTij represents the synchronisation coeffi-
cient between area i and j, and ∆fi and ∆fj stand for the
frequency deviation of each area from their common nominal
value, f0. Subsequently, the dynamic description of the total
power inflow to the i-th area from its neighbouring areas
j ∈ Ni is given by,

∆Ṗtie,i =
∑
j∈Ni

Ktie,ij(∆fi −∆fj), (4)

where ∆Ṗtie,i is the total power inflow to area i, and Ni

represents the set of all neighbouring areas to area i.

To obtain a complete mathematical description of the dy-
namics of area i, we consider the model shown in the block
diagram depicted in Figure 3 which is widely used in the liter-
ature [14]–[16]. From Figure 3, we can see that the total local

Figure 3: Single block model of the i-th subsystem.

control signal of the i-th area consists of two components;
∆PC,i which represents the Automatic Generation Control
(AGC) signal that needs to be designed, and ∆Pf,i = − 1

Ri
∆fi

which represents the primary frequency control action. Note
that ∆Pf,i is a fixed static control law performed by the
speed governor which is a regulating unit attached on the
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prime mover and will be considered as such in the current
paper. Additionally, Ri is a static gain referred to as speed
droop or speed regulation. Detailed description of this model
and speed drrop can be found in [14]–[16]. Furthermore, the
signal ∆utot,i is assumed to be subjected to a component-wise
saturation hard constraint with following form [14].

∆utot,i,min ≤ ∆utot,i ≤ ∆utot,i,max (5)

where ∆utot,i,max should be taken greater than the maximum
expected load deviation ∆PL,i,max, otherwise zero frequency
deviation error cannot be guaranteed. Negative values of
∆utot,i allow the handling of negative values of ∆PL,i under
load reduction situations. The rate of change of power gen-
eration due to the limitation of the thermal and mechanical
movements in the generating unit of each area, as well as the
speed governor dead band, are also important issues in power
system modelling [14]. The effect of these constraints will be
demonstrated in the simulation results section.

Based on Equation (4) and Figure 3, the state space repre-
sentation of each area can be described as follows, ∆ḟi

∆ṖG,i

∆Ṗtie,i


︸ ︷︷ ︸

˙̃xi

=

 − 1
Tp,i

Kp,i

Tp,i
−Kp,i

Tp,i

− Kt,i

RiTt,i
− 1

Tt,i
0

0 0 0


︸ ︷︷ ︸

Ãi

 ∆fi
∆PG,i

∆Ptie,i


︸ ︷︷ ︸

x̃i

+
∑
j∈Ni

 0 0 0
0 0 0

Ktie,ij 0 0


︸ ︷︷ ︸

Ẽij

( ∆fi
∆PG,i

∆Ptie,i

−
 ∆fj

∆PG,j

∆Ptie,j

)
︸ ︷︷ ︸

(x̃i−x̃j)

+

 0
Kt,i

Tt,i

0


︸ ︷︷ ︸

B̃u,i

∆PC,i︸ ︷︷ ︸
ui

+

 −Kp,i

Tp,i

0
0


︸ ︷︷ ︸

B̃ω,i

∆PL,i︸ ︷︷ ︸
wi

. (6)

The variable ∆PG,i in x̃i is the deviation from the equilibrium
value of the electrical power generated by the aggregate
generating units of each area, and is set to be equal to the
mechanical power produced in the output of the turbines. In
addition, the disturbance signal ∆PL,i represents the i−th
area consumers time-varying demand which is assumed to
be unknown, piece wise constant load deviation with known
upper and lower bounds, ∆PL,i,min and ∆PL,i,max respectively.

In order to guarantee zero steady-state error despite the
presence of step-disturbances, the system state given in Equa-
tion (6) needs to be augmented with an integrator state to
introduce integral action [14]. This is achieved by considering
a performance variable yi of the i−th area as follows,

yi = βi∆fi + ∆Ptie,i, (7)

where βi is a bias factor which is usually taken to be equal
to Di + 1

Ri
with Di being the load dependency factor and Ri

being the speed droop [14], [15]. According to Equation (7),
we can see that yi, which is also referred to as area control
error (ACE) [14], is the summation of the frequency deviation
∆fi multiplied by βi and the total tie-line power inflow
∆Ptie,i. Augmenting the state vector defined in Equation (6)

with the performance variable yi, yields the following state-
space representation,

ẋi =

[
Ãi 03×1

Cy,i 0

]
︸ ︷︷ ︸

Ā1,i

xi +
∑
j∈Ni

[
Ẽij 03×1

01×3 0

]
︸ ︷︷ ︸

Ā2,ij

(xi − xj)

+

[
B̃u,i

0

]
︸ ︷︷ ︸

B̄u,i

ui +

[
B̃ω,i

0

]
︸ ︷︷ ︸

B̄ω,i

ωi, (8)

where ẋi =
[

˙̃xTi yi
]T

is the augmented state vector. In
addition as can be deduced from Equation (7), Cy,i = [βi 0 1].

Discretising Equation (8) using uniform sampling with
sampling time h, gives,

xik = A1,ixik−1
+
∑
j∈Ni

A2,ijxjk−1
+Bu,iuik−1

+Bω,iωik−1
,

(9)

where A1,i = hĀ1,i +
∑

j∈Ni

hĀ2,ij + I , A2,i = −hĀ2,ij ,

Bu,i = hB̄u,i, and Bω,i = hB̄ω,i. In addition, since the
electrical system is subject to various sources of uncertainties
including for example frequency measurement uncertainties
[17], renewable generation uncertainties [18], and transmission
line noise [19], a noise term is added to the discretised
equation (9) to give,

xik = A1,ixik−1
+
∑
j∈Ni

A2,ijxjk−1
+Bu,iuik−1

+Bω,iωik−1

+ vik−1
, (10)

where vik−1
∼ N(0, Qi) stands for white Gaussian noise, and

Qi represents the covariance.
Given the augmented state space representation of control

area i defined in Equation (10), the objective then is to design
randomised local controllers that would lead automatically to
zero steady-state frequency and tie-line power inflow devi-
ations provided that these are driven by step disturbances,
ωik = ∆PL,i. This will be discussed in the next section.

IV. DECENTRALISED CONTROL AND MESSAGE PASSING
FRAMEWORK

As discussed earlier, the key elements of the proposed
framework are the design of local controllers and message
passing. Local controllers will be designed such that they
maintain the frequency and power inflow of their correspond-
ing areas at their nominal values while at the same time
coordinate and harmonise their actions with their neighbouring
areas in order to ensure that the frequency of the electrical
grid is maintained at the nominal value and the demand
requirements of their areas are met. The coordination between
the local controllers will be achieved through probabilistic
message passing where each control area needs to broadcast
its state information to its neighbouring areas. This broadcast
state enters the receiving area as external signal. In addition to
the coordination element between local controllers, the state of
neighbouring areas are coupled as can be seen from the second
term in Equation (10). Thus, before discussing the proposed



5

decentralised control and message passing framework we
rewrite Equation (10) as follows,

xik = A1,ixik−1
+A3,ix̃ik−1

+Bu,iuik−1
+Bω,iωik−1

+ vik−1
, (11)

where we have rewritten the coupling term in Equation (10)
in compact form to explicitly state that the states from neigh-
bouring control areas xjk−1

enter control area i as external
states, x̃ik−1

. Specifically, A3,i is a matrix whose elements are
A2,ij such that A3,i = [A2,ij ]j∈Ni,j 6=i and x̃ik−1

is a transpose
vector whose elements are the states of neighbouring control
areas such that x̃ik−1

= [xTjk−1
]Tj∈Ni,j 6=i. Each control area will

then build and identify its own predictive model to estimate
and predict the states of neighbouring areas in case it looses
communication with its neighbours. This is given by,

x̃ik = A4,ix̃ik−1
+ εik−1

, (12)

where εik−1
∼ N(0, Q̃i) is a white Gaussian noise with zero

mean and Q̃i covariance. The dependence of the external
state, x̃ik on the previous external state only stems from
our assumption that the inherent dynamics of these external
variables cannot be influenced by the inputs uik−1

, or internal
state xik−1

of the i-th local area. This is a logical assumption
since the states from neighbouring areas enter area i as external
signals with the aim of informing area i about their operational
states and allowing the local controllers to coordinate and
harmonise their actions.

A. Randomised controller design

As can be seen from Equation (11), the current value of the
state of control area i is driven by a noise term, vik−1

which
represents the various sources of uncertainties as explained
earlier. This means that complete information about the i−th
control area state can be only obtained using probability
density functions (pdfs). For the system given in Equation (11),
the pdf of the state conditioned on the previous input and state
values can be specified at each instant as,

s(xik | zik−1
, uik−1

) ∼ N(µik , Qi), (13)

where,

µik = A1,ixik−1
+A3,ix̃ik−1

+Bu,iuik−1
+Bω,iωik−1

,
(14)

Qi is the covariance of the noise vik−1
, and zik = [xTik , x̃

T
ik

]T .
Similarly, the pdf of the external state given in Equation (12)
can be specified at each instant as,

s(x̃ik | x̃ik−1
) ∼ N(µ̃ik , Q̃i), (15)

where,

µ̃ik = A4,ix̃ik−1
, (16)

and Q̃i is the covariance of the noise εik−1
. Conspicuously, the

state of control area i is determined by both Equations (13)
and (15).

For the LFC problem considered in this paper, the aim
is to design a control strategy that maintains the frequency

and power of local area i around their nominal values. Since
complete information about the state of local area i can
be only obtained using pdfs as specified in Equations (13)
and (15), the control law needs to be ideally derived using a
probabilistic framework. This can be achieved by defining the
performance measure to be optimised as the Kullback-Leibler
divergence (KLD) between the actual joint pdf of the closed
loop description of the dynamics of area i and a predefined
ideal joint pdf,

D(f
∥∥f I ) =

∫
f(F ) ln(

f(F )

f I(F )
)dF . (17)

where,

f(F ) =

H∏
k=1

s(xik , x̃ik , uik−1

∣∣zik−1
), (18)

is the joint distribution of the closed loop description of the
dynamics of area i. Based on the chain rule for pdfs [20], this
joint distribution can be factorised as follows,

s(xik , x̃ik , uik−1

∣∣zik−1
)

= s(xik | zik−1
, uik−1

)s(x̃ik | x̃ik−1
)c(uik−1

∣∣zik−1
). (19)

Additionally,

f I(F ) =

H∏
k=1

sI(xik , x̃ik , uik−1

∣∣xik−1
, x̃ik−1

), (20)

is the ideal joint distribution, which can be factorised as
follows,

sI(xik , x̃ik , uik−1

∣∣xik−1
, x̃ik−1

)

= sI(xik | zik−1
, uik−1

)s(x̃ik | x̃ik−1
)cI(uik−1

∣∣zik−1
),
(21)

and H represnts the control horizon. Also, note that since x̃ik
enters control area i as external signal, its corresponding ideal
pdf is taken to be equal to its actual pdf given in Equation (19).
Following the same procedure in [21] the minimum cost
function resulting from the minimisation of Equation (17) with
respect to the randomised controller c(uik−1

∣∣zik−1
) can then

be shown to be given by the following recurrence equation,

− ln(γ(zik−1
)) = min

c(uik−1 |zik−1
)

∫
s(xik

∣∣uik−1
, zik−1

)

× s(x̃ik
∣∣x̃ik−1

)c(uik−1

∣∣zik−1
)

×
[

ln

(
s(xik

∣∣uik−1
, zik−1

)c(uik−1

∣∣zik−1
)

sI(xik
∣∣uik−1

, zik−1
)cI(uik−1

∣∣zik−1
)

)
− ln(γ(zik))

]
d(xik , x̃ik , uik−1

), (22)

where − ln(γ(zik−1
)) is the minimum cost-to-go function.

Full derivation of Equation (22) is provided in our previous
publication [22].

Thus, the general solution for the optimal randomised
controller as can be obtained from the recurrence functional
equation (22), is given in the following proposition [22].

Proposition 1. Given the joint distribution of the dynamics
of control area i given in Equation (19) and its ideal joint
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distribution given in Equation (21) the optimal randomised
controller that minimises the cost-to-go function (22) is given
by,

c∗(uik−1

∣∣zik−1
) =

cI(uik−1

∣∣zik−1
) exp[−β(uik−1

, zik−1
)]

γ(zik−1
)

,

(23)

where,

γ(zik−1
) =

∫
cI(uik−1

∣∣zik−1
) exp[−β(uik−1

, zik−1
)]duik−1

,

β(uik−1
, zik−1

) =

∫
s(xik

∣∣uik−1
, zik−1

)

×
[

ln
s(xik

∣∣uik−1
, zik−1

)

sI(xik
∣∣uik−1

, zik−1
)
− ln(γ̃(xik , x̃ik))

]
dxik ,

ln(γ̃(xik , x̃ik)) =

∫
s(x̃ik

∣∣x̃ik−1
) ln γ(zik)dx̃ik . (24)

Full derivation of Equations (23)–(24) can be found in [21],
[23].

It is also worth mentioning that Equations (23)–(24) provide
the general solution of the decentralised fully probabilistic
control design method, which is not restricted by the pdf of the
system’s dynamics or its ideal distribution. The pdfs could be
any arbitrary pdfs. On the other hand, for the special case of
discrete time linear and Gaussian pdfs of the dynamics similar
to the one considered in this paper, an analytic solution of the
randomised controller has been obtained and demonstrated in
the literature. However, for the considered LFC problem in
this paper, we are encountered by two important challenges.
These are,
1) As can be seen from Equation (14) and the elements of
the matrices A1,i and Bu,i given earlier in Section III, the
pair (A1,i, Bu,i) has an uncontrollable mode at the origin.
To address this problem, for the purpose of designing the
randomised controller only, the matrices of the conditional
mean of the state space model given in Equation (14) are
reformulated following the perturbation procedure proposed
in [14]. Specifically, given the perturbation matrix E ,

E =


0 0 0 0
0 0 0 0
0 0 e ∗ h 0
0 0 0 0

 , (25)

with e < 0 and |e| is assumed to be sufficiently small, the
matrices of the conditional mean of the state space model
given in Equation (14) are reformulated as follows,

Ǎ1,i = A1,i + E ,

Ǎ2,ij = A2,ij −
1

ι
E ,

Ǎ3,i = [Ǎ2,ij ]j∈Ni,j 6=i (26)

where ι = dλmaxe, and λmax is the maximum eigenvalue of the
Laplacian matrix L that specifies the connections between the
individual areas. In addition d.e denotes the ceiling function
that maps λmax to the least integer, greater than or equal to
λmax. To reemphasise, this perturbation of the matrices A1,i

and A2,ij is required only for the design of the randomised
controller due to the existence of the uncontrollable mode at
the origin.
2) The mean of the conditional pdf of the state of the control
area given in Equation (14) has an extra term (corresponding
to the piece-wise constant disturbance that represents the
time-varying demand of the consumers of the i−th area)
as compared to the mean of the standard representation in
conventional fully probabilistic design control method, which
is given as follows,

µik = A1,ixik−1
+A3,ix̃ik−1

+Bu,iuik−1
. (27)

Therefore, due to the presence of this extra piece-wise con-
stant disturbance term in the control area conditional mean
equation (14), the standard analytical solution obtained in the
literature will not be optimal for the multi-area LFC problem
considered in this paper. In fact, as will be seen from further
development, the existence of this extra term will result into
different forms of the optimal cost-to-go function as well as
randomised controller. This will be derived based on (22) and
will be specified in the next theorem.
Based on the two remarks given above, the next theorem
states the analytical solution of the randomised controller
for the considered LFC problem. The analytical solution of
the randomised controller will be based on the following
definitions of ideal distributions of control area state and
controller,

sI(xik
∣∣uik−1

, zik−1
) ∼ N(0, Ri), (28)

cI(uik−1

∣∣zik−1
) ∼ N(0,Γi), (29)

where Ri represents the covariance of the ideal distribution
of the state of the control area, and Γi is the covariance
of the ideal distribution of the randomised controller which
indicates the admissible range of the optimal control input.
This definition of the ideal distributions is driven by the control
objective of the LFC problem, which is aiming at maintaining
the frequency and power deviations of the individual local
areas equal to zero. The ideal pdf of the external state is
taken to be equal to its corresponding actual pdf since as we
discussed earlier these signals are external signals and should
not be controlled or influenced by the local controller.

Theorem 1. The pdf of the optimal randomised controller
minimising the cost-to-go function (22) subject to the pdfs de-
scribing the dynamics of control area i given by Equations (13)
and (15), and ideal distributions of area i dynamics and
control input given by Equations (28) and (29) respectively, is
given by,

c(uik−1

∣∣zik−1
),∼ N(ūik−1

, Γ̄ik−1
), (30)

where,

ūik−1
= −Lik−1

zik−1
+ dik−1

,

Γ̄ik−1
= (Γ−1

i +BT
u,iMikBu,i)

−1,

Lik−1
= Γ̄−1

ik−1
BT

u,i

[
MikǍ1,i MikǍ3,i + Si,2k

A4,i

]
,

dik−1
= −Γ̄−1

ik−1
BT

u,i(MikBω,iωik−1
+ 0.5PT

i,1k
), (31)
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and where,

− ln(γ(zik−1)) = 0.5[zTik−1
Si,k−1zik−1

+ Pi,k−1zik−1
+ qik−1

],

(32)

is the quadratic cost function with,

Si,1k−1
= ǍT

1,iMikǍ1,i − ǍT
1,iMikBu,iΓ̄ik−1

BT
u,iMikǍ1,i,

Si,2k−1
= ǍT

1,iMikǍ3,i + ǍT
1,iSi,2k

A4,i − ǍT
1,iMikBu,i

× Γ̄ik−1
BT

u,i(MikǍ3i + Si,2k
A4,i),

Si,3k−1
= ǍT

3,iMikǍ3,i +AT
4,iSi,3k

A4,i + 2AT
4,iSi,2k

Ǎ3,i

− (BT
u,iMikǍ3,i +BT

u,iSi,2k
A4,i)

T

× Γ̄ik−1
(BT

u,iMikǍ3,i +BT
u,iSi,2k

A4,i),

Pi,1k−1
= Pi,1k

Ǎ1,i + 2ωT
ik−1

BT
ω,iMikǍ1,i

− 2ωT
ik−1

BT
ω,iMikBu,iΓ̄ik−1

BT
u,iMikǍ1,i

− Pi,1k
Bu,iΓ̄ik−1

BT
u,iMikǍ1,i,

Pi,2k−1
= Pi,2k

A4,i + 2ωT
ik−1

BT
ω,iMikǍ3,i + Pi,1k

Ǎ3,i

− 2ωT
ik−1

BT
ω,iMikBu,iΓ̄ik−1

× (BT
u,iMikǍ3,i +BT

u,iSi,2k
A4,i)− Pi,1k

Bu,iΓ̄ik−1

× (BT
u,iMikǍ3,i +BT

u,iSi,2k
A4,i)

+ 2ωT
ik−1

BT
ω,iSi,2k

A4,i,

qik−1
= −ωT

ik−1
BT

ω,iMikBu,iΓ̄ik−1
BT

u,iMik

×Bω,iωik−1
− 0.25Pi,1k

Bu,iΓ̄ik−1

×BT
u,iP

T
i,1k
− ωT

ik−1
BT

ω,iMikBu,iΓ̄ik−1

×BT
u,iP

T
i,1k

+ qik − tr((Q
−1
i −R

−1
i − Si,1k

)Qi)

+ tr(Si,3k
Q̃i) + ωT

ik−1
BT

ω,iMikBω,iωik−1

+ Pi,1k
Bω,iωik−1

,

Mik = R−1
i + Si,1k

. (33)

We have also introduced the following partitioning of

the matrices Si,k−1 =

[
Si,1k

Si,2k

ST
i,2k

Si,3k

]
, and Pi,k =[

Pi,1k
Pi,2k

]
. In addition, ūik−1

and Γ̄ik−1
are the mean

and covariance of the optimal randomised controller of control
area i respectively, Lik−1

is the controller feedback gain,
and dik−1

is a linear shift which manifests from the extra
piece-wise constant disturbance term in the control area state
equation. Furthermore, Si,k−1 represents the discrete Riccati
equation, Pi,k which also manifests from the extra disturbance
input, is referred to in this paper as the disturbance compen-
sation equation, and qik−1

is some positive constant that does
not depend on the system state.

Proof. The proof of this theorem can be obtained following
the same procedure in our previous publications [21].

As can be seen from Equation (31), only the two blocks,
Si,1k−1

and Si,2k−1
defined in Equation (33) of the full Riccati

matrix Si,k−1 need to be solved. The third block, Si,3k−1
of the

Riccati equation does not need to be solved. Similarly, only
Pi,1k−1

specified in Equation (33) needs to be solved. This
decreases the computational efforts in obtaining the optimal
randomised control law compared to the global solution

Remark 1. To re-emphasise, compared to the standard ran-
domised controller in FPD [21], [24] the optimal cost-to-
go function of the considered LFC multi-area problem has
additional linear in the state term, Pi,k−1 as can be seen
from Equation (32). Additionally, the mean of the derived
randomised controller is shifted by dik−1

as can be seen
from Equation (31). The manifestation of these terms in the
optimal cost-to-go function and randomised controller is the
consequence of the extra piece-wise constant disturbance term
in the control area state equation (14).

Based on the derived randomised controller (30) and the
probabilistic models of the control areas (13) and (15), the
details of the message passing methodology and how local
controllers harmonise their actions to contribute to the ob-
jective of maintaining the frequency of the grid network at
its nominal value and meeting demand requirements will be
introduced in the next section.

B. Probabilistic message passing

This subsection briefly discusses the probabilistic message
passing methodology. For more details and the general results
of the probabilistic message passing methodology, the readers
are referred to [24].

As discussed in previous sections, message passing is key
to the successful implementation of the proposed decentralised
control framework. Messages passed between the control
areas keep the local controllers informed about the states of
their neighbouring areas, thus allow them to make informed
decisions and harmonise their actions in order to maintain the
power and frequency deviations of the grid network at zero. To
be more specific, consider the complete description of the in-
teracting variables of control area j, s(xjk , x̃jk , ujk−1

∣∣zjk−1
).

This control area will then send a message to its neighbouring
control area i broadcasting the probabilistic description of
its own internal state, xjk . This probabilistic message from
control area j to control area i is obtained as follows,

Mi←jk =

∫
s(xjk , x̃jk , ujk−1

∣∣zjk−1
)dx̃jkdujk−1

=

∫
s(xjk | zjk−1

, ujk−1
)s(x̃jk | x̃jk−1

)

× c(ujk−1

∣∣zjk−1
)dx̃jkdujk−1

= N(µi←jk ,Σi←jk), (34)

where,

µi←jk = A1,jxjk−1
+A3,j x̃jk−1

+Bu,j ūjk−1
+Bω,jωjk−1

,

Σi←jk = Qj +Bu,jΓjk−1
BT

u,j . (35)

Notably we have integrated over all variables of control area
j except its internal state. This information about the internal
state of control area j is then passed to control area i and
fused with the prior information, that control area i retains,
in the form of external signals about the state of control area
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j. To clarify, Equations (34) and (15) are fused using Bayes’
rule by multiplying the two together, which gives,

s(x̃i;fk) = N(µi←jk ,Σi←jk)N(µ̃ik , Q̃i)

= N(µ̃i;fk , Σ̃i;fk),

(36)

where,

µ̃i;fk = µ̃ik +Kik(µi←jk − µ̃ik),

Σ̃i;fk = Q̃i −KikQ̃i. (37)

These equations can then be used to update the parameter A4,j

in Equation (16) using linear optimisation methods.

V. IMPLEMENTATION PROCEDURE OF THE PROPOSED
FRAMEWORK

To apply the optimal controller (30) to the considered
LFC problem of power system network, the solutions of the
Riccati and the disturbance compensation equations need to
be evaluated. For large control horizon H , the problem can be
considered as infinite horizon control problem which yields
steady state (SS) solutions of the Riccati and compensation
equations and a constant feedback gain control matrix. Here
we start by finding the SS solution of the first partition of the
Riccati equation, Si,1k

. One way to achieve this is to reverse
the direction of time. Using the definition of Si,1k

given in
Equation (33) and reversing the direction of time, Si,1k

can
be modified as follows,

Si,1k
= ǍT

1,iMik−1
Ǎ1,i − ǍT

1,iMik−1
Bu,i(Γ

−1

+BT
u,iMik−1

Bu,i)
−1BT

u,iMik−1
Ǎ1,i, (38)

where,

Mik−1
= R−1

i + Si,1k−1
.

To obtain the SS solution of Equation (38), we start by
initialising Si,10

randomly, then iterating until a SS solution,
Si,1 is attained. Using the obtained SS solution, Si,1, the
SS solution Mi can then be evaluated. Finally, using Mi in
Si,2k−1

, and Pi,1k−1
in Equation (33), the same time reversal

procedure can be applied to obtain the SS solutions Si,2 and
Pi,1. Specifically,

Si,2k
= ǍT

1,iMiǍ3,i + ǍT
1,iSi,2k−1

A4,i − ǍT
1,iMiBu,i(Γ

−1

+BT
u,iMiBu,i)

−1(BT
u,iMiǍ3i

+BT
u,iSi,2k−1

A4,i),
(39)

Pi,1k
= Pi,1k−1

Ǎ1,i + 2ωT
ik−1

BT
ω,iMiǍ1,i

− 2ωT
ik−1

BT
ω,iMiBu,i(Γ

−1 +BT
u,iMiBu,i)

−1BT
u,iMiǍ1,i

− Pi,1k−1
Bu,i(Γ

−1 +BT
u,iMiBu,i)

−1BT
u,iMiǍ1,i. (40)

The step by step implementation of the proposed proba-
bilistic decentralised control and message passing framework
to the considered power system network (11) is summarised as
pseudocode in Algorithm 1. This algorithm is provided to help
practitioners and industrial people to implement the algorithm
without having to go through the mathematical details.

Algorithm 1 Probabilistic Decentalised Control and Message
Passing Framework

1: Calculate Ǎ1,i, and Ǎ2,ij based on Equation (26) and
Formulate Ǎ3,i and A4,i, i = 1, . . . , N ;

2: Initialise: ui0 ← r, A4,i ← r , Si,10
← r, Si,20

← r,
and Pi,30

← r, i = 1, . . . , N , and r here denotes random
generation;

3: for k = 1 to H do
4: for i ∈ N do
5: Calculate the SS solution Si,1 following Equation

(38);
6: Mi ← R−1

i + Si,1

7: Γ̄i ← (Γ−1
i +BT

u,iMiBu,i)
−1

8: Use Mi and Γ̄i from steps 6-7 to calculate the SS
solutions Si,2, and Pi,1;

9: Use the SS values from step 6-8 to evaluate the SS
solutions Li and di, and calculate uik−1

;
10: Evaluate the distribution of the internal state,

s(xik
∣∣zik−1

, uik−1
), and the prior distribution of the

external state, s(x̃ik
∣∣x̃ik−1

) using the optimal control
input, uik−1

obtained from step 9;
11: for j ∈ Ni do
12: Evaluate Mi←jk using Equations (34) and (35);
13: Update the prior distribution of the external states

using Equation (37);
14: Update A4,i using linear optimisation;
15: end for
16: end for
17: end for

TABLE I: Parameters and power system terminology

Symbol and Parameter Value Units

f0i , Nominal Frequency 50 Hz
PB,i, Power Base 2000 MW

Di, Load Dependency Factor 16.66 MW/Hz
Ri, Speed Droop 1.2× 10−3 Hz/MW

Hi, Generator Inertia Gain 5 s
Kt,i, Turbine Static Gain, 1 MW/MW
Tt,i, Turbine Time Constant 0.3 s

Kp,i, Area Static Gain 0.06 Hz/MW
Tp,i, Area Time Constant 24 s
Ktie,i, Tie-line Coefficient 1090 MW/Hz

VI. SIMULATION STUDIES

In this section, the proposed algorithm is tested on two case
studies. In these studies, the electrical grid is considered to be
decomposed into six control areas. Each case study considers
three different topologies or interconnections between the con-
trol areas. The interconnection schemes of the three considered
topologies are shown in Figures 4-6. As discussed earlier, the
individual areas are described mathematically by the model
given in Equation (11). The six areas are considered to have
identical parameters which are shown in Table I. In particular,
the two considered case studies are:

• Using the proposed framework, dcentralised randomised
controllers are derived for each topology to achieve the
objective of the LFC problem discussed in this paper, by
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considering saturation hard constraint on the total input
signal of each area.

• The dcentralised randomised controllers are derived for
each topology under constraints on the rate of generation
as well as saturation hard constraint on the total input
signal of each area.

For the simulation purpose of the two considered case
studies, the sampling time h is taken to be equal to 0.02. Ad-
ditionally, the perturbation parameter e is taken to be equal to
−0.01 and ι = dλmax(L)e is calculated to be equal to 5. Also,
note that external state matrix, A4,i is initialised randomly at
the beginning and then updated according to the probabilistic
message passing discussed in Section V. Furthermore, in the
two case studies the areas are assumed to be subjected to
piece-wise constant disturbances which represent the power
load variations of the consumers of each area. The times
at which these disturbances affect the individual areas and
their corresponding values are given in Table II. Finally, the
covariance of the external state Q̃i is assumed to be equal to
0.0005 for all i. Besides, in both case studies, the stochastic
Gaussian noise vik of the internal state that describes the
dynamic of control area i is assumed to be vik ∼ N(0, 0.001).

TABLE II: Piece-wise Constant disturbances

Control area Disturbance value Effective disturbance
period, sec

1 200 0-140
2 -190 4-140
3 180 9-140
4 -170 15-140
5 160 18-140
6 -180 25-140

A. Case Study I

As discussed previously, the local randomised controllers
are designed such as to maintain the deviations of the fre-
quency and power in their corresponding areas at zero despite
the presence of step-disturbances given in table II. Follow-
ing the procedure stated in Algorithm 1, the frequency and
power deviations of the local areas are evaluated for each
of the considered topology. Here we consider −220MW ≤
∆utot,i ≤ 220MW, i = 1, ..., 6. The frequency, and total
power inflow deviation of the first topology is shown in Figure
7, (a), and (b) respectively. From this Figure, we can see that
despite the effect of the noises and power load disturbances,
the frequency and total power inflow deviation stay zero. This
emphasises that the designed local randomised controllers are
able to maintain the frequency and total power inflow at their
nominal operating conditions even when their corresponding
areas suffer from stochastic disturbances. Similarly , the results
of topology two are given in Figure 8, while the results of
topology three are provided in Figure 9. From these Figures,
we can see that the frequency and total power inflow deviations
of all six control areas of topology two and topology three are
fluctuating around zero even with the presence of the noise
and load step disturbances.

To reemphasise, as illustrated by the results from the three
considered topologies, it can be seen that the designed local
randomised controllers are capable of bringing the frequency
and total power inflow deviations back to the origin irrespec-
tive of the effect of the topology, noises and disturbances.

Figure 4: Interconnection scheme S1

Figure 5: Interconnection scheme S2

Figure 6: Interconnection scheme S3

B. Case Study II

In this experiment, the parameters and the disturbances are
taken to be the same as that for case study one while the linear
model of each area is augmented by saturation hard constraints
on the total control signal as well as generation rate constraint.

Here, the total control input is restricted to the following
range: −220MW ≤ ∆utot,i ≤ 220MW, i = 1, ..., 6. The
second constraint on the generation rate, ∆PG,i, i = 1, . . . , 6
is taken to be equal to 4.5MW/sec. The frequency, and total
power inflow deviation of the three considered topologies are
shown in Figures 10-12. As can be seen from these figures,
the designed local randomised controllers have successfully
controlled the frequency and power deviations and brought
them to zero. However, the transient response of the frequency
and power deviations in this case has become considerably
slower due to the added constraint on the control input and
generation rate. Despite the strong nonlinearities introduced by
the input and generation constraints, the designed randmised
controllers were able to maintain zero deviation from the
nominal power and frequency values.



10

(a)

(b)

Figure 7: Control results of case study I , topology 1 for all
six control areas: (a) ∆fi, (b) ∆Ptie,i.

VII. CONCLUSION

In response to the urgent and impending need to decentralise
the power grid network to accommodate the transition of
robust management and control from hundreds to thousands
of power generators at present towards tens of millions in
the near future, we proposed a unified probabilistic decen-
tralised control and message passing framework. The proposed
framework utilises the Kullback-Leibler divergence to derive
the optimal local randomised controllers and probabilistic
inference for the development of the probabilistic message
passing methodology. Within the proposed framework the grid
network is decomposed into a number of control areas, and
the framework is demonstrated based on local Load Frequency
Control (LFC). The proposed framework is shown to be com-
putationally feasible and easily implementable. It also enables
the development of the future smart Grid. Simulation studies
involving a six-area power system and three interconnection
schemes illustrated the applicability and effectiveness of the
proposed approach.

In the current paper the proposed framework is demon-
strated through the decomposition of the grid system into
N control areas. However further decomposition of the grid
network can also be performed, to facilitate larger integration
of distributed energy resources to the grid network. Within the
proposed decentralised control framework the integration of
distributed energy resources to the grid network is achieved
through active control as opposed to passive control in a
conventional centralised scheme. Here, a distributed gener-
ator performs appropriate control actions at their point of
connection, at either the distribution or transmission level, to

(a)

(b)

Figure 8: Control results of case study I , topology 2 for all
six control areas: (a) ∆fi, (b) ∆Ptie,i.

improve the overall network performance. Local controllers of
the distributed energy resources can then operate the intercon-
nection points to the main grid in the same way a primary
controller controls the power injection of the generating unit
in a single large conventional power plant. Thus, the local
controller of a distributed energy resource can be operated
as an isolated grid section independent from the main grid.
The key challenge here is the design of information sharing
and the design of local controllers. Within this architecture,
each local controller perceives its environment through low
bandwidth communication links and sensors. The message
passing algorithm, discussed in section IV-B in this paper,
is then utilised to facilitate the global information discovery.
Finally depending on the level at which the distributed energy
resource is connected to, control strategies can be applied
by the distribution system operators, transmission system
operators, or even at the peer-to-peer device-level. This will
be further discussed and demonstrated in our future work.
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Figure 12: Control results of case study II , topology 3 for all
six control areas: (a) ∆fi, (b) ∆Ptie,i.


