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ABSTRACT
Software is becoming more complex as it needs to deal with an
increasing number of aspects in volatile environments. This com-
plexity may cause behaviors that violate the imposed constraints.
A goal of runtime service monitoring is to determine whether the
service behaves as intended to potentially allow the correction of
the behavior. It may be set up in advance the infrastructure to allow
the detections of suspicious situations. However, there may also
be unexpected situations to look for as they only become evident
during data stream monitoring at runtime produced by te system.
The access to historic data may be key to detect relevant situations
in the monitoring infrastructure. Available technologies used for
monitoring offer different trade-offs, e.g. in cost and flexibility to
store historic information. For instance, Temporal Graphs (TGs) can
store the long-term history of an evolving system for future query-
ing, at the expense of disk space and processing time. In contrast,
Complex Event Processing (CEP) can quickly react to incoming
situations efficiently, as long as the appropriate event patterns have
been set up in advance. This paper presents an architecture that
integrates CEP and TGs for service monitoring through the data
stream produced at runtime by a system. The pros and cons of the
proposed architecture for extracting and treating the monitored
data are analyzed. The approach is applied on the monitoring of
Quality of Service (QoS) of a data-management network case study.
It is demonstrated how the architecture provides rapid detection
of issues, as well as the ability to access to historical data about
the state of the system to allow for a comprehensive monitoring
solution.

CCS CONCEPTS
• Software and its engineering → Maintaining software.
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1 INTRODUCTION
Software complexity is higher than ever: systems are highly dis-
tributed, concurrent, and with many deeply intertwined physical
and software components. This complexity and the ubiquitous na-
ture of software systemsmay cause unforeseen behaviors that could
violate the imposed constraints and may only emerge during run-
time. Engineers and maintenance personnel must always keep track
of a system’s behavior during operation and check the interactions
that occur between its components, as well as between the system
and its environment. This is commonly referred to as runtime mon-
itoring [30]. A goal of runtime service monitoring is to determine
whether the service behaves as intended [8] to potentially allow the
correction of the behavior if needed. However, service monitoring
comes at a cost of the impact on performance of the monitored
system. Therefore, it is important to deploy the right service of
monitoring at an appropriate time and location to achieve its ob-
jectives whilst minimizing negative impact [17] as well as their
complexity. As Rabiser et al. describe in [30], diverse runtime moni-
toring approaches have been developed in various domains and for
different purposes. Complex Event Processing (CEP) stands up as a
monitoring approach for timely processing and correlation of large
amounts of data from multiple data sources [35]. CEP can be used
for extracting valuable information from distributed message-based
systems. With CEP, users of a system can specify the information
that is of interest to them for posterior treatment [23]. Meaningful
situations (called complex events) can be specified by performing
stepwise correlation over streams of events [35]. However, CEP
does not keep track of past events, what means that by the time the
operators realize they need to get access to other historical data, it
will be too late if the patterns were not previously defined.
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In [12, 14] Garcia-Dominguez et al. proposed Temporal Graph
(TG) databases as a useful representation for the past behavior of a
system. Temporal graphs go beyond traditional event logs and time
series in their ability to track the appearance and disappearance of
entities and connections, and the capability to relate the changes
in several properties of an entity over time. Garcia-Dominguez et
al. introduced a temporal query language to support interactive
diagnosis, offering both forensic analysis and online monitoring.
These new capabilities imply some data storage and processing
costs, but these can be managed in various ways. To save space,
TGs can reuse unchanged nodes and use compression [16]. To save
time when querying long histories, the timeline can record when
specific events of interest happened [12], and queries can directly
look them up.

A complete monitoring solution would ideally have the rapid
response to events provided by CEP technology, and the ability
to flexibly access relevant linked historical data from TGs, while
maintaining the decoupling of different aspects and components
of the monitoring infrastructure. In this paper, a novel approach
towards an architecture for runtime data stream monitoring that
integrates CEP and TGs is presented. The capabilities of the pro-
posed architecture for extracting and handling monitored data are
analyzed, as well as the costs involved. The approach is applied to
monitor the Quality of Service (QoS) of a network management
case study.

The rest of the paper is structured as follows. Section 2 presents
the foundations that underlie the research, in terms of runtime
service monitoring through the monitoring of their data streams,
event-driven service-oriented architecture, CEP, and TGs. Section
3 illustrates the approach to enable comprehensive runtime service
monitoring. Section 4 describes the case study in which the proposal
is applied. Section 5 compares this work with other approaches.
Section 6 concludes and outlines future work.

2 BASELINE
2.1 Runtime Service Monitoring
The behavior of complex software systems usually fully emerges
during execution. Therefore, data streams need to be monitored at
runtime. Runtimemonitoring is executed in tandemwith the system
with the purpose of verifying the system’s execution [4]. Different
monitoring techniques and infrastructures exist [4, 8, 30]. Runtime
Monitoring involves both observing the internal operations of a
software system and the interactions with external entities, with
the aim of detecting whether the system adheres or violates its
requirements specification. As such, the monitor must be able to be
notified about relevant events occurring in the executing system,
to therefore support informed decision-making for the correction
of the behaviour based on the data it has collected.

In order to mitigate or fix unwanted behaviours, runtime moni-
tors should ideally be capable of making early detection of threat-
ening situations as it can be exploited by self-healing and runtime
adaptation [7]. However, a main disadvantage of runtime moni-
toring is the added overhead. Efforts have been made to minimize
this overhead by offering more efficient techniques [5, 34]. Further,
flexibility can also be introduced. For example, techniques based
on TGs [29] can store the long-term history of a running system to

support querying, at the expense of disk space and processing time.
Another technique that supports monitoring is CEP [22], which can
quickly react to incoming situations efficiently, if the appropriate
event patterns have been previously identified. These techniques
are further described in the rest of this section.

2.2 Service-Oriented Architecture and
Complex Event Processing

Service-Oriented Architecture (SOA) is a paradigm focused on
the design and implementation of loosely coupled distributed sys-
tems [28]. The fact that these architectures easily integrate third-
party systems in a flexible and loosely coupled way, permits the
developer to focus on the required business process themselves
rather than on the implementing technologies. Although there are
other alternatives, the communications traditionally used in SOAs
are synchronous, using the request/response protocol. This limi-
tation led to the evolution of the SOA into an alternative format
called Event-Driven SOA (a.k.a SOA 2.0) [2].

In a SOA 2.0, communication between users, applications and
services are expected to be led by events ocurring, rather than by
using remote procedure calls [22]. In such a scope it is necessary to
facilitate (i) the integration of several diverse heterogeneous data
sources, which provide events, and (ii) a mechanism to process such
events effectively and efficiently. In order to manage the events
reaching the system, message brokers are used. Message brokers
implement asynchronous communications so that source and tar-
get devices remain completely decoupled. The brokers may use
standard message queues or be combined with a publish/subscribe
mechanism, where messages are published according to a set of
topics and users subscribe to the topics of their interest according to
the need of the system in question. An example of a broker with the
pub/sub connectivity protocol is the Eclipse open source message
broker, Mosquitto [21]. This broker, which is part of the solution
presented in this paper, is widely used due to its implementation
of Message Queuing Telemetry Transport (MQTT) for lightweight
messaging.

Concerning the need of a mechanism to process events, and the
need to process big amounts of data in terms of events reaching
the message broker, data stream processing in real time is required.
CEP meets this requirement [22], allowing capture, analysis and
correlation of large amounts of data as events in real time with
the goal of detecting situations of interest [18]. These situations of
interest are specified as event patterns, which use a set of defined
conditions. Such patterns are deployed in a CEP engine, for the
events to be received and analyzed. Given a stream of events, and
once a condition is met (i.e. a pattern is matched), the system will
raise a complex event signaling that a situation of interest has been
detected and the interested parties will be notified accordingly.

2.3 Temporal Graphs
Conceptually, each attribute to be monitored in a running system
can be considered as a time series: a sequence of values along an
axis [10]. A time series may be enough for tracking the number of
visits to a website or the number of pending calls in a call center,
but it is not powerful enough to relate those to changes in the
website configuration or in the number of staff on call, respectively.
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On the other hand, an event log can capture these staffing and
configuration changes, but the events are usually disconnected
from each other and additional processing is needed to set up a “big
picture” for analysis.

In general, we want something that can track changes not only
in specific metrics, but that can also relate metrics of the same or
similar entities, and record the changes in the entities present in the
system and their connections. Graph databases such as Neo4j [31]
are designed specifically to represent complex networks of relation-
ships: their data is structured into nodes connected by edges. Nodes
and edges have a label (e.g. “sensor”) and a set of key/value pairs
(e.g. “lastReading”). Graph databases have been successfully used
for representing transport networks, social networks and other
similarly interconnected systems. However, they do not explicitly
model the time dimension.

Different extensions to graph databases exist to introduce the
time axis: these temporal graph (TG) databases record how nodes
and edges appear, disappear and change their key/value pairs over
time. Some of these proposals include Greycat [16] from Hartmann
et al. and Chronograph [15] from Haeusler et al. In particular, Gr-
eycat is an open-source solution which reuses several existing data-
base engines (e.g. the LevelDB key/value store) to implement a TG
data model. Nodes and edges in Greycat have a lifespan: they are
created at a certain timepoint, they may change in state over the
various timepoints, and they may be “ended” at another timepoint.
Greycat considers edges to be part of the state of their source and
target nodes. It also uses a copy-on-write mechanism to store only
the parts of a graph that changed at a certain timepoint, to therefore
save disk space.

Different from CEP engines, which focus on rapid response to
events and with low storage requirements, TGs are concerned with
efficient storage of the system’s evolution. The authors of Greycat
have aimed their solutions at the Machine Learning (ML) space,
with the idea to learn ML models from the collected information.
In this paper, the focus is to use TGs to add the ability to access
historical data when an unexpected situation happens, where a
CEP engine with no memory of past events will be less useful. The
costs involved in keeping this long-term memory up to date, and
how its post-hoc detection would compare against CEP patterns
will be analyzed.

In [9, 14] Garcia-Dominguez et al. presented a solution that
integrated a system with an indexing framework for transparent
forensic and for run-time analysis at expense of disk space and
processing time. The solution took raw JSON logs of the decision
process over time and shaped them into a sequence of trace models,
which were turned into a Greycat TG and exposed through a time-
aware query language. This framework is used as a base for the
work proposed in this paper aiming to provide a rapid detection of
issues.

3 PROPOSAL
This section presents the SOA 2.0-based architecture that inte-
grates CEP technology and temporal graphs to support runtime
data stream monitoring. As shown in Fig. 1, there are three layers:
producers, middleware and consumers.

Producers correspond with the data sources to be monitored. The
consumers correspond with entities interested in the values being
monitored. The middleware allows the communication between
producers and consumers. An advantage of the proposed architecture
is the decoupling of the processes that send and receive information.
Senders do not need to know who receives what data, or how
that happens. Likewise, receivers subscribe to updates without
contacting the source.

3.1 Producer layer
The producer layer is composed of one or more producers of data.
A data producer can be any type of system, user interface, service
or device that generates data to be processed. The producers collect
and expose the relevant data to be monitored, which is sent to the
middleware layer through a message broker.

Before the monitoring infrastructure is deployed, it needs to be
tested to check its ability to detect the situations of interest. This is
specially relevant for CEP-based systems. When testing, instead of
having a real systems acting as producers of events to be monitored,
simulators can be used (see Figure 1).

3.2 Consumer layer
The consumer layer provides data consumers, giving domain experts
the tools to achieve the monitoring objectives. These tools could
be in the form of consoles and dashboards to allow further data
analysis. The monitored data can be used for different purposes.
For example, to be stored in a database for future analysis, or to be
used as a data producer for pipelining processes.

To conduct local analysis, the architecture provides two specific
monitoring components: a QoS monitoring console and a QoS moni-
toring dashboard. Both components have the ability to subscribe to
the QoS events (i.e. query results and/or complex events) which can
then be evaluated by domain experts. The QoS monitoring console
allows end users to monitor such events in a simple textual way.
Further, the QoS monitoring dashboard can make the real-time
monitoring more user-friendly by providing domain experts with
access to a graphical interface.

3.3 Middleware layer
Themiddleware layer, the core of the architecture, is the decoupling
communication channel between producers and consumers. It al-
lows the transformation, processing, analysis and routing of data
between both ends of the architecture. This layer integrates TGs
and CEP engines to enhance runtime data stream monitoring. The
middleware layer is composed of the following five components.

The input message broker is responsible for receiving raw data
from producers, and the parser component transforms the received
raw data into the data formats required for both the TG and CEP
engine, i.e. object graphs and simple events, respectively.

The TG is updated from the object graphs produced by the parser
component, to create snapshots at the current points in time. The
TG answers queries about historical data (either periodically or on
demand), sending the results to the output message broker com-
ponent. The TG can be updated by directly handling its contents,
or by using a model indexer such as Hawk [14]. A model indexer
compares the object graph against the current version of the TG, to
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Figure 1: Our architecture proposal for integrating CEP and TG.

create a new version by applying the detected changes. The indexer
reduces the effort involved when integrating full-history TGs to
the creation of a single-snapshot object graph (i.e. the “model” to
be “indexed” into the temporal graph).

The CEP engine, as explained above, processes and correlates the
simple events received from the parser component with the aim
of detecting, in real time, the situations of interest for the applica-
tion domain. These situations of interest (known as event patterns)
are implemented and provided to the engine by developers. When
patterns are detected, the engine automatically generates complex
events that summarize the happened situations, to therefore send
the events to the output message broker component. A popular
example of a CEP engine is Esper [30], which is used in the imple-
mentation offered here.

The output message broker component, previously mentioned,
receives both the model indexer query results and the complex
events generated by the CEP engine into dedicated topics to which
consumers can subscribe.

It is important to note than in this architecture, the same events
are received by both the CEP engine and the temporal graph. Es-
sentially, CEP provides rapid response to known events, while the
temporal graph creates a longer-term memory. The TG has a more
explicit representation of the structure of the system, with evolving
links between entities, fewer restrictions on time windows (which
need to be explicitly sized in CEP), and the ability to jump back
and forth in time. The TG will usually store information for both
expected and unexpected queries, but the parser is still able to filter
the information before it goes into the TG. Alternatively, the CEP
engine itself could be used as a filter in front of the TG: this is
planned for future work.

Timeslice Action Monitored NFR Satisfaction SLA
0 MST MC 0.91 0.90
1 RT MC 0.80 0.90
2 RT MC 0.81 0.90
3 RT MC 0.84 0.90
4 RT MC 0.92 0.90

Table 1: Long Term Effects example

4 CASE STUDY
4.1 Remote Data Mirroring (RDM)
The Remote Data Mirroring (RDM) [20] is a self-adaptive system
(SAS) that has been used as case study in this paper. RDM is a data
protection technique that provides data availability and avoid data
loss by replicating (mirroring) data across servers. A main benefit
is fast disaster recovery. For the purposes of this paper, there are
considered two sorts of mirroring approaches based on the topolo-
gies:Minimum Spanning Tree (MST), and Redundant Topology (RT). Both
topologies provide their own levels of reliability, performance and
cost, which are taken into account in the trade-off to estimate the
levels of satisfaction of the non-functional requirements (NFRs)
of the application: Maximization of Reliability (MR), Maximization of
Performance (MP) and Minimization of Energy Consumption (MC). The
NFR of a system are also known as the quality properties of the
system. A RDM simulator [13] has been used as data producer.

Uncertainty exists due to different random situations such as
delayed or lost messages, noise in sensors, an network link failures.
Thus, there is the need of runtime monitoring to check that the
RDM adheres to its initial requirements. The trade-offs required
during the decision making of the RDM are specified according to
the information of Figure 2.

430



Key:

Goal Task Soft Goal 
(Non-functional
requirement)

Task
Decomposition

Means-end 
link

Contribution
links

RDM

Connect
Network

Select
Topology

Use MST
topology

Use RT
topology

Minimization
of cost

Maximization
of

performance

Maximization
of reliability

Measure
performanceMeasure costMeasure

reliability

help

hurt

help

hurt

help

hurt

Figure 2: Case study RDM Self-Adaptive System RDM-SAS

An interesting aspect to be monitored is the effect of the proac-
tive adaptation exposed by the RDM system [13]. An example is
when an apparent bad decision turns out to be a good one in the
long run. In that case, a decision may be, surprisingly and even
unexpectedly, considered non-ideal at first when the level of sat-
isfaction of an NFR is below the threshold defined in the Service
Level Agreements (SLAs) and the action suggested by the system
drives to a reduction on the level of satisfaction after the decision
made. Nonetheless, as the system continues under the same action
the level of satisfaction gradually increases until reaching or even
exceeds its threshold. These kind of events are called Long Term
Effects (LTEs) in the present work. Let’s consider the simplified
information of timeslices (ts) shown in Table 1: the NFRs are moni-
tored over time slices. The monitored NFR is Minimization of Cost
(MC).From ts 0 to 1, RDM decided to change (adapt) the topology
from MST to RT. It ended in a reduction of the level of satisfaction
of MC that drops below the threshold of the defined SLA, i.e. 0.8 <
0.9. At first this can be considered a “bad decision”. However, for
the following ts 2 to 4, the system kept the same topology (decided)
while the level of satisfaction of the NFR reached and even exceeded
its SLA, i.e. 0.92 > 0.9 shown in the last row. To test the proposed
approach, data streams produced by RDM were monitored looking
for LTEs situations. The aim of experiment was to successfully
detect these LTEs and keep the stakeholders informed of the other-
wise surprising behaviour. For this purpose, event patterns were
deployed in the CEP engine that will trigger a complex event if
a LTE situation is found. To validate the results, a query to the

temporal graph, using the temporal query language of [12], was
implemented.

4.2 RDM-SAS Runtime Monitoring:
Implementation

The implementation of the components of the architecture (Fig. 1)
are described next.

Producer layer: The RDM system was extended to produce an
execution trace of its behavior using timeslices in a data stream
with JSON format. Each trace contains the latest observations, the
current estimated levels of satisfaction of the NFRs, and the prefer-
ences applied in the decision process. An MQTT client based on
the Eclipse Paho MQTT library for C++ was added to RDM. The
client submits the raw JSON to a local Mosquitto broker so it can
be processed by the middleware and consumer layers.

Consumer layer: As specified in Section 3, the architecture
provides two monitoring components addressing the end user’s
needs. The QoS monitoring console, which is an MQTT Mosquitto
client which subscribes to and presents the publications from the
CEP engine component and the TGs component in a textual and
simple way. The QoS monitoring dashboard was developed using
JavaFX. It subscribes via Mosquitto to the same topics as the console,
showing graphical interactive components such as tables, charts
and controls (Fig. 3).

Middleware layer: Themodel indexerHawk and the CEP engine
Esper were selected as underlying technologies for processing. As
mentioned in Section 3, the middleware has five components:
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Figure 3: Graphical monitoring dashboard

• Inputmessage broker component: Receives the raw data
from the producer via its subscription to a specific topic of a
Mosquitto broker.

• Parser component: Both Hawk and Esper can accept dif-
ferent input formats: in this experiment JSON have been
chosen, as it is widely used. In the case of Esper, the pars-
ing is called creating the schema and is done by declaring
parameters and the input formats. The data of each timeslice
is sent to the CEP engine as a simple event. For TGs, the
JSON trace is reshaped into an object graph storing causal
links among decisions, observations and measurements. This
object graph is then given to the model indexer Hawk.

• Temporal graph component: Hawk indexes the object
graphs and provides a query language for the temporal graph.
The query for finding the LTEs is presented in [9]. Algorithm
1 describes the logic followed in the query, which was imple-
mented in the query language supported by the Hawk. The
query results are then sent to the output message broker.

• CEP engine component: Esper event patterns were de-
fined to detect LTEs. Due to the complexity of the event
to be detected, a complex event hierarchies approach with
three patterns was needed. The candidate pattern detects

Algorithm 1 Query to detect proactive adaptation: the long term
effects of immediate actions. 𝐿 is the current runtime log, 𝑇 the set
of timeslices in 𝐿, 𝑆NFR (𝑡) the level of satisfaction of the NFR at
timeslice 𝑡 , and 𝛼NFR the threshold for the NFR.
1: Result = {𝐿}
2: 𝑇𝐵 = {𝑡 ∈ 𝑇 |𝑆NFR (𝑡) < 𝛼NFR}
3: for each 𝑡𝑏 ∈ 𝑇𝐵 do
4: if 𝑆NFR (𝑡𝑏 + 1) < 𝑆NFR (𝑡𝑏 ) ∧

∃𝑛 ∈ N>0,∀𝑗 ∈ [1, 𝑛] |
𝑆NFR (𝑡𝑏 + 𝑗 + 1) > 𝑆NFR (𝑡𝑏 ) then

5: Add (𝑡𝑏 , 𝑛) to Result
6: end if
7: end for
8: Result: Sequences showing proactive adaptation.

potential "bad decisions", i.e. situations where decisions had
a temporary negative short-term impact such as reduction
of the level of satisfaction of the NFRs. The interval pat-
tern checks for a potential bad decision if it produces an
improvement in the following timeslices. The system must
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Listing 1: EPL pattern to collect the information of 𝐿𝑇𝐸𝑠

cases on RDM log using complex event hierarchies
@public @buseventtype @Name("InfoCollectionPattern")
insert into InfoCollectionPattern
select a2.takeWhile(i => i.id<=a3.idEndInterval) as intervalInfo,

a1.candidateInfo as candidateInfo
from pattern [every a1= CandidatePattern
−> a2= RDMLog until a3=IntervalPattern]
where a1.id= a3.idCandidate

keep performing the same action (e.g. RT) to be considered. If
any of these conditions is not met, the candidate is discarded.
The final info collection pattern aggregates information from
the detected intervals, revealing the LTE. Listing 1 shows
the InfoCollectionPattern, as implemented in the Esper Event
Processing Language (EPL). The pattern accumulates the in-
formation of the RDMLog in the time window starting from
every CandidatePattern until the upper limit defined by the
IntervalPattern.

• Outputmessage broker component:As in the case of the
input message component, the same MQTT Mosquitto bro-
ker is used. The TG query results and the complex events are
published into specific topics in the broker. The consumers
subscribe to these topics in the broker and the monitored
data is presented to the user.

4.3 Runtime Monitoring of RDM: Evaluation
The technical setup of the evaluation of the architecture is described
as follows. The data producer ran a 1000-timeslice simulation of
RDM with 1 second between timeslices. The middleware processes
the incoming data stream using Hawk and Esper in the background.
Finally, the monitoring results were displayed at the consumer layer
through the GUI. A Lenovo Thinkpad T480 with an Intel i7-8550U
CPU with 1.80GHz, running Ubuntu 18.04.2 LTS and Oracle Java
1.8.0_201 was used. The implemented tools and libraries were: the
RDM SAS simulator, Paho MQTT 1.2.2, Eclipse Hawk 2.0.0, and
Esper 8.0.0. The architecture evaluation was done based on the
following four criteria:

Pattern validation: The highlighted section in Figure 3 shows
an excerpt of the examples found by the pattern. Among the 1000-ts
simulation, 8 LTEs intervals were detected. One interval started at
timeslice 236, when RDM decided to use the MST topology instead
of RT and a reduction on the satisfaction level ofMC, the monitored
NFR, is observed: from 0.875758 (timeslice 235) to 0.866323 (times-
lice 236). Thus, the timeslice 236 represents a candidate complex
event. However, the satisfaction level grew up over the following
timeslices, until it exceeded the threshold (0.9) in timeslice 239.
Different situations can be observed such as the timeslice 443. This
shows the architecture was capable of finding the proactive behav-
ior at the monitored NFR.

Storage impact: There is a storage impact due to the historical
data management. For the 1000-timeslice simulation of RDM, the
temporal graph database grew up to 14MB, what can be considered
acceptable for this implementation.

Overhead impact: As the data producer only interacts with
the architecture by sending the logs to the middleware, the only
overhead to the system is added by the communication between
RDM and the MQTT broker. It takes 101ms to connect to the MQTT
broker, and on average it took 281𝜇s to publish a message. It added
an overhead to the simulation done of only 0.00128%. Regarding
the core components, it took 705ms for the CEP engine to report
the first LTE after its 5 timeslices happened. Building the temporal
graph took 11705ms over the whole history of the system, with an
average of 11.71ms per timeslice. Querying the temporal graph in
the server took 512ms.

Flexibility: CEP allows the implementation or extension of new
patterns at runtime, but these new introduced patterns would only
process the upcoming events since their implementation. The pro-
posed architecture provides, through the use of temporal graphs,
the flexibility for querying the system on demand without losing
information. A simple example of this could be the monitoring
of a different NFR i.e. Maximization of Reliability (MR). The query
would follow the same structure of Algorithm 1, with the NFR cor-
responding to MR. For finding these situations using only CEP, a
new simulation should be run and the pattern should be updated
accordingly.

In general, a main advantage of the presented approach is that
it provides to end users an infrastructure capable to react during
execution to defined patterns, and at the same time allowing them
to access historical data to analyze the system behavior over time.
With the evaluation, it has been demonstrated the feasibility to
meet the initial purposes of the approach, and analyze the costs
involved in its implementation.

5 RELATEDWORK
5.1 Event-driven approaches for runtime

monitoring
Next, some approaches based on event processing for runtime mon-
itoring will be described. Event Sourcing [11] provides traceability
for the changes over the time of application state as a sequence of
events. This data storage model keeps track of every data change
without removing earlier events [33]. The stored event streams can
be queried on demand for monitoring [27] or retroactive computing
purposes [26]. A problem with event sourcing is that keeping track
of not only the current state, but also every change leading up to
that state could be costly on terms of performance [27]. On the
contrary, the present paper describes an event-driven approach
with the use of CEP for efficient event streams monitoring and
deal with scalability problems through the use of temporal graphs
for historical data. Ashraf et al. [1] propose a collision prediction
approach for Unmanned Aerial Vehicles (UAVs) using CEP to moni-
tor UAVs in real time and predict runtime collisions efficiently. In
addition to predicting collisions, the system proactively looks for
the best ways to avoid planned collisions to ensure the safety of the
entire swarm. Inçki et al. [19] propose a non-intrusive solution for
runtime verification of IoT systems, assuming that such systems are
designed according to SOA principles. In particular, they propose a
CEP-based solution where each CoAP message is intercepted and
injected into the CEP engine as a simple event. The patterns which
permit the detection of failures in the system at runtime are then
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deployed in the CEP engine. Indeed, CEP is used in both proposals
for runtime monitoring, which is the most frequent case where
CEP is used. However, it is not used to monitor the Qos properties
(NFRs) of the system. It is neither used to access historical data
to analyze the system’s behavior over time for better proactive
reaction, which is one of this paper main goals.

5.2 CEP for service monitoring
Romano et al. [32] propose a QoS monitoring approach for cloud
computing platforms that makes use of CEP and Content Based
Routing (CBR) to detect contract violations. In their case study,
they implement remote monitoring of power consumption in a
smart grid environment. However, the proposed approach goes
one step further using TGs to store long-term history to therefore,
provide more accurate predictions and better understanding about
monitored variables and detected situations of interest to facili-
tate proactive adaptations. Moser et al. [24] use CEP to build a
flexible monitoring system to support temporal and causal depen-
dencies between messages for service composition infrastructures
in the context of WS-BPEL. They provide monitoring data that
might be relevant for composite service monitoring still they only
monitor SOAP messages in the context of BPEL processes, and do
not monitor NFRs of the system. Furthermore, Cicotti et al. [6]
present QoSMINaaS, a QoS monitoring facility for a new Cloud-
based Platform-as-a-Service based on cloud computing and CEP.
QoSMONaaS focuses on the performance delivered at the business
process level. First, the SLAs are analyzed to collect Key Perfor-
mance Indicators (KPIs) and a set of CEP rules are set. QoSMINaaS
attempts to prevent the violation condition by detecting when the
KPIs exceeds the set of thresholds, by using statistical and logi-
cal inference. The present work, however, does not focus on the
business process level, instead it focuses on the level of perfor-
mance of internal variables of the system, in order to improve its
performance.

5.3 Graphs for runtime monitoring
Mouline et al. propose the use of Greycat TGs to allow systems to
consider both measured and expected values when making adap-
tation decisions in the context of MAPE-K [25]. They applied this
approach to a elastic-cloud manager simulation, reducing the num-
ber of container start/stop actions by considering future expected
capacities and workloads. This approach was a single application,
rather than a distributed architecture in this paper, and it did not
integrate the rapid response to events offered by CEP. Haeusler et
al. [15] present ChronoSphere (CS), an alternative versioned graph
technology, applying it to an IT landscape case study. Their system
read data from an existing Configuration Management Databases
(CMDBs), and created a versioned graph that can be accessed over
time. Instead of the single element history common in CMDBs,
the versioned and branching graphs in CS allowed them to see the
entire IT landscape of the organisation at points in time, to create
what-if plans. Their case study required building the system around
CS from the ground up, whereas Hawk can be adopted for monitor-
ing without any required modification. Finally, Búr et al. [3] shows
an approach that maintains a distributed runtime model of the state
of a system, and presented a distributed graph query evaluation

algorithm for monitoring. Unlike the proposed approach, which
stores the temporal graph in a central location, this approach has
only an in-memory graph spread across nodes. This can scale out
as the nodes increase, yet the queries can require high amounts of
bandwidth, which can be hindered by latency.

6 CONCLUDING REMARKS AND FUTURE
WORK

This paper has presented an architecture for comprehensive data
streams runtime monitoring using the capabilities of both CEP and
TGs. While the architecture allows for the quick reaction to events
supported by CEP, it also exploits the capability of TGs to analyze
the historic behavior of the system. Based on the case study, it
has been demonstrated how the architecture can detect situations
where the system makes decisions with effects that may not be
appreciated in the short-term, e.g. a decision that has short-term
negative impact but with an overall positive long-term effect. This
kind of behavior is result of proactive adaptation shown by the
RDM decision-making algorithm (which bases its projections to
the future using Bayesian learning). The ability of detecting this
kind of behavior requires techniques that can use runtime data
and/or historic data to reason about the evolution over time, as our
architecture allows using CEP and TGs.

There are several avenues for future work. In terms of perfor-
mance and based on the evaluation, one potential constraint is the
impact on storage. If a producer generates huge amounts of data,
the size of the temporal graph and the query times would inevitably
increase. One possible solution for this issue is the use of sampling,
i.e. the update of the TG at a defined rate. Another alternative
solution could be using CEP to filter the data that builds the TG.
Another possibility could be to capture CEP event hierarchies into
a TG, where each complex event is a node, and events are linked if
they are interdependent.

Beyond these lines of work, a priority in the research road-map
is to provide feedback from consumers to producers in order to
improve the decision-making of the monitored system[13]. This
will require further real-world case studies in other domain prob-
lems, using new producers, consumers, and also other situations of
interest.
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