

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches
copyright, (either yours or that of a third party) or any other law, including but not limited to
those relating to patent, trademark, confidentiality, data protection, obscenity, defamation,
libel, then please read our Takedown policy and contact the service immediately
(openaccess@aston.ac.uk)

http://www.aston.ac.uk/library/additional-information-for/aston-authors/aston-research-explorer/takedown-policy/

Generic Autonomic Adapter
Architecture and Policy Model For

Semantic Socio-Cyber-Physical
Collaborative Network

Nazmul Hussain

Engineering and Applied Science
Aston University, Birmingham, UK

This dissertation is submitted for the degree of
Doctor of Philosophy

27 September 2020

This dissertation is affectionately dedicated to my lovely parents, who brought and grew me
up in this world and prayed for me every day, encouraged me to continue my studies and
helped me migrate to the UK. It is also dedicated to my beautiful little kids Tanzila Ziha

Dulari, Hafsa Hussain and Hamza Hussain and my brother Dr Akmol Hussain who
encouraged me and gave me financial support time to time as I needed.

Declaration

I hereby declare that this thesis presented for the degree of PhD has been composed solely by
myself, the contents are original of my research and that this work has not been submitted,
in whole or in part for any other degree or processional qualification except as specified in
the text and Acknowledgements.

Nazmul Hussain
27 September 2020

Acknowledgements

“Allahumdulillah!”, I am grateful to the most merciful and creator Almighty Allah (swt) for
all the things that He blessed me with throughout my whole PhD journey and without His
blessings, I would not be able to finish my PhD.

I would like to express my sincere gratitude to my supervisor, Dr Hai H. Wang for his
endless patience, great motivation, excellent guidance and a tremendous amount of support
throughout my PhD study. I am thankful to him for giving me the opportunity and freedom
to pursue a PhD and was able to finish it under his supervision.

I am also very grateful to my associate supervisor, Dr Christopher D. Buckingham who was
always more than generous with his expertise and time and helped me with his constructive
feedbacks to improve this work. I am greatly indebted to him for partial funding of my PhD
from the GRiST project and helping me to validate the work based on the GRiST case study.
I am also very grateful to the other GRiST project members for supporting this thesis.

I would like to thank my colleague Dr Muhudin A. Mohamed and Dar Sanobar for their
support and advice during the writing of this thesis.

Finally, and most importantly, I would like to thank my parents, brothers and sisters for
their unconditional love and encouragement. I owe everything that I have achieved to them.

This dissertation work is supported partially by the Institute of Innovation and Technology
(EIT) Health Knowledge Innovation Community (KIC) of GRiST project.

Abstract

The cyber-physical system aims to improve the quality of life of citizens by providing
intelligent and automated services in a wide variety of sectors like transportations, healthcare,
enterprises, self-driving cars, energy sectors and so forth. Recently, considerable amounts
of researches have focused on integrating cyber-physical systems in a social context. The
idea is to socially connect cyber-physical resources (i.e., physical devices, software elements,
networked components, digital contents, etc.) so that they can interact and collaborative
for autonomous decision making like humans social networking. However, several challenges
remain concerning the designing appropriate methodologies, frameworks and techniques for
supporting cyber-physical relation and collaboration within the social context. Most of the
existing social software modelling focuses on maintaining human-to-human or human-to-
object centric interaction only. Existing systems do not recognise how socio-cyber-physical
resources can maintain their social status, communicate and interact with both humans and
nonhuman entities. The reason may be the lack of understanding and limited approaches
or methodologies to semantically (a formal characterisation of the information) represent
the socio-cyber-physical resources relation and interactions in a collaborative network. This
limits data integration, interoperability, and knowledge discovery from its underlying data
sources. Semantic Web’s ontology with a software agent model can help to overcome this
limitation by describing and interconnecting socio-cyber-physical objects in a social space.
The software agents can act as a representative of these resources to track, manage and
update their collaborative activities in a social world.

Nevertheless, due to the exponential network growth and uncertainties, the states and
relations among socio-cyber-physical objects may keep changing when they are in different
situations. Therefore, it is an ardours task and error-prone for humans or traditional software
agents to keep track, manage and maintain the larger number of socio-cyber-physical resources
and their social dynamics. One potential and flexible solution to this problem is to leverage
the autonomic computing approach with social and adaptive goals to make the socio-cyber-
physical network self-managed and adaptive. Autonomic Computing (AC) approach has
laid the necessary foundation to tackle this challenge by developing policy-based Autonomic
Adapter (AA) model (e.g., autonomous agent). The AAs can continuously monitor socio-
cyber-physical resource status, analyse the situation and make a collaborative decision based
on the policy knowledge defined by the system administrator.

CHAPTER 0 : x

However, autonomic computing model must rely on input knowledge to decide self-
management operations such as “what”, “where” and “how” to perform the adaptation to the
system. Previously, adaptation approaches in a different context have been done in an ad-hoc
manner based on the algorithms to predict future circumstances and embed in the program
code. This approach is inflexible to dynamic and uncertain environments where system
configuration needs to adjust frequently. Defining a flexible policy model and integrating
policy into knowledge repository outside the code itself is the most appropriate to manage
the autonomic system behaviours during the run-time. Sadly, there has been relatively a
little work on developing appropriate policy model and specification language for domain
neutral autonomic system.

To fulfil the above gaps, our proposed solutions in this thesis has three core contribution
to the knowledge. First, we address the establishment of both socio-cyber-physical and human
relations and interactions within a social-collaborative network. To achieve this, we propose
a software agent-centric Semantic Social-Collaborative Network (SSCN) that provides the
functionality to represent and manage cyber-physical resources in a social network. We discuss
how nonhuman resources can be represented as socially connected nodes and manage by the
software agents. The SSCN is supported by an extended ontology model for semantically
describing the concept, properties and relations of human and nonhuman resources. A
Java-based software agent API has been implemented to demonstrate some actions performed
on behalf of the nonhuman resources in a real-world collaborative healthcare system called,
GRiST (www.egrist.org). Second, we propose a Generic Autonomic Social-Collaborative
Framework (GASCF) with a policy-based Autonomic Adapter (AA) architecture. The AAs
are capable of monitoring system resources, analysing context information, and act accordingly
using high-level policy. The AAs can also communicate and exchange data with other AAs
through a social network for collaborative decisions making like human social interaction.
Third, we propose Event-Condition-Action (ECA) rule-based policy model and specification
language for AA by defining Policy Schema Definition (PSD) and Policy Script Specification
(PSS) languages, modelled with XML syntax. Finally, we test and evaluate our approach by
implementing it to the extended GRiST socio-healthcare service context and eGRiST clinical
decision support system. We demonstrate and evaluate how socio-cyber-physical relation,
interaction and autonomous decision-making is achieved by integrating AAs and using policy
specification to manage AAs behaviour within socio-cyber-physical medical context.

https://www.egrist.org

Table of contents

List of figures xvii

List of tables xix

Listings xix

Definition of Terms xix

1 Introduction 1
1.1 Problem Definition . 2
1.2 Motivational Domain . 6
1.3 Aims, Research Questions and Contributions 8

1.3.1 Research Questions . 8
1.3.2 Specific Objectives . 8
1.3.3 Contributions to Knowledge . 9
1.3.4 Case Studies . 12

1.4 Thesis Structure . 14
1.5 Publications . 16

2 Background 17
2.1 Socio-Cyber-Physical Collaboration . 17

2.1.1 Social Computing and Networking . 17
2.1.2 Object-Centred Sociality . 18
2.1.3 General Social-Collaborative Aspects 18
2.1.4 Cyber-Physical Social System . 20
2.1.5 Agent-Centric Social Environment . 20

2.2 Semantic Social Network . 21
2.2.1 Semantic Knowledge Representation 22

2.2.1.1 XML and XML Schema . 22
2.2.1.2 RDF and RDF Schema . 23
2.2.1.3 DL and Ontology . 23

CHAPTER 0 : TABLE OF CONTENTS xii

2.2.2 Rules and Reasoning . 24
2.2.3 Existing Ontologies . 25

2.3 Autonomic Computing Concept . 26
2.3.1 AI and Machine Learning . 27
2.3.2 Self-Managed and Adaptive System 27
2.3.3 Autonomic Computing Properties . 28
2.3.4 Intelligent MAPE-K Loop . 29
2.3.5 Social Intelligence of Autonomic Agent 30
2.3.6 Autonomic Computing Knowledge Model 30

2.4 Policy-Based Autonomic System . 31
2.4.1 Policy Specification Approaches . 32
2.4.2 Policy or Rule Representation Languages 33
2.4.3 Autonomic System Evaluation . 33

2.5 Summary . 34

3 Related Work 35
3.1 Semantic Social-Collaborative Network . 35

3.1.1 Definition of Collaboration . 35
3.1.2 Social Computing for Collaboration 36

3.1.2.1 Context-Aware Social Framework 36
3.1.2.2 Object and Artifacts in Collaboration Task 37
3.1.2.3 Cyber-Physical Object Collaboration 38

3.1.3 Semantic Social Framework . 39
3.1.4 Agent-Based Social Framework . 40

3.2 Towards Autonomic Computing Approach . 41
3.2.1 Preliminary Autonomic Computing Research 41
3.2.2 Existing Autonomic System Model . 42
3.2.3 Social Autonomic System . 42
3.2.4 Cyber-Physical Autonomic System . 43

3.3 Knowledge-Driven Autonomic Computing . 44
3.3.1 Policies For Autonomic System Control 44
3.3.2 Policy Specification Approaches and Languages 45

3.4 Application of Autonomic Computing Approach 46
3.5 Summary . 47

4 Software Agent-Centric Semantic Social-Collaborative Network 49
4.1 Introduction . 50
4.2 The Proposed Agent-Centric Semantic Social-Collaborative Network 52

4.2.1 The Design of the SSCN Framework 53

CHAPTER 0 : TABLE OF CONTENTS xiii

4.2.2 Ontology Modelling . 55
4.2.2.1 Defining the UpperOnto Ontology 55
4.2.2.2 The Extended SocioCyberOnto Ontology 56

4.3 Case Study - GRiST Online Healthcare Service 56
4.3.1 Scenario A - Simple Social Networking 59
4.3.2 Scenario B - Cyber-Physical Object Sociality 59

4.4 Implementation . 60
4.4.1 Constructing the GRiST Domain Ontology 60
4.4.2 Software Agent API Design and Implementation 61

4.5 Evaluation . 64
4.5.1 Ontology Testing . 64
4.5.2 Experimental Dataset . 64
4.5.3 Performing Ontology Reasoning and Queries 65
4.5.4 Ontology Performance Metrics . 71
4.5.5 Comparison to Related Works . 72

4.6 Discussion . 72
4.7 Conclusion . 73

5 Generic Autonomic Social-Collaborative Framework (GASCF) and Auto-
nomic Adapter (AA) Architecture 75
5.1 Introduction . 76
5.2 High-Level Conceptual Model of the GASCF 79
5.3 Generic AA Architecture . 80

5.3.1 Process Flow of an Autonomic Adapter 83
5.3.1.1 Sensor Process. 83
5.3.1.2 Monitor Process. 83
5.3.1.3 Local RIE Process. 85
5.3.1.4 Global RIE Process. 85
5.3.1.5 Executor Process. 85

5.4 Policy Specification Language For Autonomic Adapter 87
5.4.1 PSL Syntax . 87

5.5 Case Study - GRiST Autonomic Socio-Healthcare System 88
5.5.1 GRiST Care Service Scenario . 88
5.5.2 Prototype Implementation . 89

5.5.2.1 AAs Policy Specification . 91
5.5.2.2 ECA Rule Pattern of AAs Policies 92
5.5.2.3 XML Configuration of AAs Policies 95

5.6 Discussion . 98
5.7 Conclusion . 100

CHAPTER 0 : TABLE OF CONTENTS xiv

6 Policy Model and Specification Language for AA 101
6.1 Introduction . 102
6.2 Policy Model And Specification Language . 103

6.2.1 Conceptual Model of ECA Policy Interaction 104
6.2.2 Entity Relationship Diagram of AA Policy Model 105
6.2.3 Policy Schema Definition (PSD) Language 106
6.2.4 Policy Specification Script (PSS) Syntax 116

6.3 Case Study - eGRiST Clinical Decision Support System 117
6.3.1 Limitation of eGRiST Actions . 118
6.3.2 eGRiST Risk Assessment Scenarios . 119
6.3.3 eGRiST Datasets . 122

6.4 Prototype Implementation . 123
6.4.1 Integrating AAs into eGRiST Domain 123
6.4.2 Policy Specifications for AAs . 123

6.4.2.1 XML Configuration of AAs Policies 128
6.5 Implementing AA Engine With JAVA . 131

6.5.1 AA Engine Design Pattern . 131
6.5.1.1 Constructing AA’s Intelligent Manager Abstract Classes . . 132
6.5.1.2 Constructing AA’s Sensor . 133
6.5.1.3 Constructing Managed Resource 135
6.5.1.4 Construction Global RIE Abstract Class 136
6.5.1.5 Creating PolicyElement Class. 136
6.5.1.6 Creating PolicyHandler Class. 137

6.6 Testing And Evaluation . 138
6.6.1 Creating AADepression Class and Sensor Instances 139
6.6.2 Creating AA1Monitor_Depression Class and Instances 140
6.6.3 Creating AA1LocalRIE_Depression Class and Instances 141
6.6.4 Creating Global RIE Class and Instances 142
6.6.5 Creating AA1Executor_Depression Class and Instances 143
6.6.6 Creating AAs Class Objects . 144
6.6.7 Program Output . 144

6.7 Conclusion . 147

7 Conclusion and Future Work 149
7.1 Contributions . 149
7.2 Future Work . 152

REFERENCES 153

CHAPTER 0 : TABLE OF CONTENTS xv

APPENDIX A AAs Policy Configuration for GRiST Socio-Healthcare Sys-
tem 173
A.1 AA1 Policy Script . 173
A.2 AA2 Policy Script . 174
A.3 AA3 Policy Script . 174
A.4 Global Policy Script . 175

APPENDIX B Policy Specification and Configuration of eGRiST CDSS 179
B.1 Policy Schema Definition . 179
B.2 AAs Policy Configuration . 186

List of figures

1.1 Thesis components and research workflow . 15

2.1 Alignments between SIOC, FOAF and SKOS [77] 26
2.2 IBM Autonomic Manager . 29

4.1 Semantic Social-Collaboration Network Framework 53
4.2 Upper Ontology Abstract Concepts . 55
4.3 Extended SocioCyberOnto Ontology . 57
4.4 GRiST Social-Collaborative Healthcare Network 58
4.5 GRiST Domain Ontology . 61
4.6 GRiST Ontology Class Hierarchy in Protégé 62
4.7 Software Agent API Class Diagram . 62
4.8 RDF Model of GRiST Data . 65
4.9 Ontology Classification Result Using FaCT++ Reasoner 66

5.1 High-level Architecture of GASCF . 79
5.2 Generic Autonomic Adapter Architecture . 81
5.3 GRiST Autonomic Socio-Healthcare System 90

6.1 Conceptual Model of ECA Rule Execution . 104
6.2 AA Policy Specification Model . 106
6.3 Hypothetical example of the galatean model’s classification of a patient

into suicide and no-suicide categories. CPs=conditional probabilities and
SAs=selective attentions [38]. 118

6.4 Assessment Answer Given for Depression Concept 120
6.5 Assessment Answer Given for Suicide Concept 121
6.6 Assessment Answer Given for Social Concept 122
6.7 UML Class Diagram of AA Engine . 132

List of tables

4.1 List of Patients Details from SPARQL Query 1 69
4.2 Patient-Doctor Relationships from SPARQL Query 2 69
4.3 Status of All Connected Sensors from SPARQL Query 3 70
4.4 Health Status Of A Patient from SPARQL Query 4 70
4.5 Health Assessment Of A Patient from SPARQL Query 5 70
4.6 Treatment Plan For A Patient from SPARQL Query 6 71
4.7 Ontology Performance Metrics . 71
4.8 Comparison metrics between the proposed SSCN and related work 72

5.1 Deployment of AAs into GRiST System . 91
5.2 GRiST Basic Policy Specification . 93

6.1 eGRiST Concept Nodes with Integrated AAs 123
6.2 AA1 Monitor Policy in ECA Rule Pattern . 124
6.3 AA1 Local RIE Policy in ECA Rule Pattern 125
6.4 AA1 Executor Policy in ECA Rule Pattern 125
6.5 AA2 Monitor Policy in ECA Rule Pattern . 126
6.6 AA2 Local RIE Policy in ECA Rule Pattern 126
6.7 AA2 Executor Policy in ECA Rule Pattern 127
6.8 AA3 Monitor Policy in ECA Rule Pattern . 127
6.9 AA3 Local RIE Policy in ECA Rule Pattern 127
6.10 AA3 Executor Policy in ECA Rule Pattern 128
6.11 Global RIE Policy in ECA Rule Pattern . 128

Listings

4.1 : Agent API implementation with Java. 63
4.2 : DL Syntax. 67
5.1 : AA1 policy script in XML format. 95
5.2 : AA2 policy script in XML format. 95
5.3 : AA3 policy script in XML format. 96
5.4 : Global policy script in XML format. 97
6.1 : XML Configuration for AA1’s event Policy. 128
6.2 : XML Configuration for AA1’s sensor Policy. 129
6.3 : XML Configuration for AA1’s Monitor Policy. 129
6.4 : XML Configuration of AA1’s Local RIE Policy. 130
6.5 : XML Configuration of Global RIE Policy. 130
6.6 : Intelligent Manager Abstract Classess. 133
6.7 : AA’ Sessor Interface and Class. 134
6.8 : MR Interface and Class. 135
6.9 : GlobalRIE Abstract Class. 136
6.10 : Defining Policy Element Class. 136
6.11 : Defining Policy Handler Class. 137
6.12 : AA1 Depression Class. 139
6.13 : AA1Monitor_Depression Class. 140
6.14 : AA1LocalRIE_Depression Class. 141
6.15 : Global RIE Class that map AA1’s triggered actions. 142
6.16 : AA1Executor_Depression Class. 143
6.17 : Creating AAs Object in AAEngine Class. 144
6.18 : AA1 Sensor Output. 144
6.19 : AA1 Monitor Output. 145
6.20 : AA1 Local RIE Output. 145
6.21 : Global RIE Output. 145
6.22 : AA1 Executor Output. 146
A.1 : AA1 policy script in XML format. 173
A.2 : AA2 policy script in XML format. 174

CHAPTER 0 : LISTINGS xxii

A.3 : AA3 policy script in XML format. 174
A.4 : Global policy script in XML format. 175

List of Abbreviations

AA Autonomic Adapter

AC Autonomic Computing

CDSS Clinical Decision Support Systems

CPS Cyber-Physical System

CPSS Cyber-Physical Social System

CSCW Computer-Supported Cooperative Work

CW Collaboration Workspace

CWS Collaborative Work Systems

DC Dublin Core

DTD Document Type Definition

ECA Event-Condition-Action

EIT European Institute of Innovation and Technology

ESCN Extended Social-Collaborative Network

FOAF Friend Of Friend

GRaCE Galatea Risk and Care Environment

GRiST Galatea Risk and Safety Tool

GASCF Generic Autonomic Social-Collaborative Framework

ICT Information and Communication Technology

IT Information Technology

IoT Internet of Things

KIC Knowledge Innovation Community

KR knowledge Representation

CHAPTER 0 : List of Abbreviations xxiv

MAPE-K Monitor-Analysis-Plan-Execute and Knowledge

NHS National Health Service

NFV Network Function Virtualisation

OSM Ontology Service Module

OWL Web Ontology Language

PSD Policy Schema Definition

PSL Policy Specification Language

PSS Policy Specification Script

RDF Resource Description Framework

RSS Really Simple Syndication

SC Social Computing

SCIMS Social Context Information Management System

SECO Software Ecosystem

SDN Software-Defined Networking

SGML Standard Generalized Markup Language

SN Social Network

SNA Social Network Analysis

SIOC Semantically Interlinked Online Communities

SSCN Semantic Social-Collaborative Network

SPARQL SPARQL Protocol and RDF Query Language

SW Semantic Web

SWT Semantic Web Technology

SWRL Semantic Web Rule Language

QoS Quality of Service

XML Extensive Markup Language

XSD XML Schema Definition

Definition of Terms

Autonomic Adapter An intelligent agent model that can monitor and manage
socio-cyber-physical resources using policy. They can also
cooperate and communicate with each other through a social
network and make collaborative decision and actions.

Autonomic Behaviour Autonomic behaviour is characterised by self-configuration
and self-healing capabilities, aimed at permitting the system
to manage the failure of one or more of its agents and ensure
continuous functioning.

Autonomic Computing Autonomic Computing (AC) is a generic concept introduced
by IBM inspiring from the human autonomic nervous system
that brings together many fields of computing. Autonomic
computing deal with complexity and uncertainties of the
IT system, and aims at realising computing systems and
applications capable of managing themselves without human
intervention.

Agent An agent is defined as an entity placed in an IT system,
senses different event parameters and reacts to the changes
in its environment based on reasoning process and apply the
changes through actuator.

Artificial Intelligence (AI) AI concerns the study and design of intelligent machines or
software that are capable of performing a similar task of using
computers to understand human intelligence.

Artifacts The artifacts in a wide sense, a broad class of instruments,
objects and tools that are used by agents in the distributed
environment to configure and facilitate group decision-making,
thinking and communication.

CHAPTER 0 : Definition of Terms xxvi

Cyber-Physical System Cyber-physical system (CPS) is a large-scale and networked
system, which consists of physical and computational ele-
ments.

Cyber-Physical-Social System Cyber-Physical-Social systems (CPSSs) are the extension of
Cyber-Physical systems (CPS), which seamlessly integrate
cyber space, physical space and social space.

Cyber-Physical-Social
Network

A third-generation social networks that take both the physical
context as well as the virtual context of users into account.

Description Logic Description logics (DL) is a knowledge representation lan-
guage to represent the knowledge of an application domain
in a structured and formally well-understood way. DLs dif-
fer from their predecessors, such as semantic networks and
frames, in that they are expressive and equipped with a
formal, logic-based semantics.

Data Integration Data integration is the combination of technical and business
processes used to combine data from disparate sources into
meaningful and valuable information.

ECA Rule The ECA (Event-Condition-Action) rule-based policy enforce-
ment dictates on an occurred event, if condition satisfied, then
perform action.

GRiST GRiST (Galatean Risk and Safety Technology) is a web-
based mental-health risk and safety management decision
support system, which was a project sponsored by the Euro-
pean Union within its European Institute of Innovation and
Technology Health Knowledge Innovation Community (EIT
Health), which is currently used within the English National
Health Service (NHS) and other organisations.

GASCF The Generic Autonomic Social-Collaborative Framework (GASCF)
is a high-level conceptual framework that is composed of mul-
tiple AAs that can collaborate and communicate through a
Social-Collaborative Network (SCN) for decision making and
intervention.

Knowledgebase A knowledge base is an organized, curated collection of in-
formation (structured and unstructured) about a particular
subject area — a way of making that information more ac-
cessible and usable.

CHAPTER 0 : Definition of Terms xxvii

Knowledge Graph The knowledge graph represents a collection of interlinked de-
scriptions of entities – objects, events or concepts. Knowledge
graphs put data in context via linking and semantic meta-
data and this way provide a framework for data integration,
unification, analytics and sharing.

Knowledge Representation Knowledge representation refers to the technical problem
of encoding human knowledge and reasoning (Automated
Reasoning) into a symbolic language that enables it to be
processed by information systems.

Linked Data The term Linked Data refers to a set of best practices for
publishing structured data on the Web. These principles
have been coined by Tim Berners-Lee in the design issue
note Linked Data. The principles are: Use URIs as names
for things; Use HTTP URIs so that people can look up
those names; When someone looks up a URI, provide useful
information; and Include links to other URIs so that they can
discover more things.

Machine Learning Machine Learning (ML) is a branch of Artificial Intelligence
(AI) that aims at enabling machines to learn by themselves
from the past experience or data and perform intellectual
tasks to solve specific problem that have been traditionally
difficult to solved by human beings.

MAPE-K loop General autonomic computing architecture designed to control
the functioning of computer applications and systems without
human intervention by using an intelligent control manager.
IBM coined this control loop as MAPE-K loop (Monitor,
Analysis, Plan and Execute using a shared Knowledge)).

Object-Cebtered Sociality Object-centred sociality concerned with connecting people
via social objects of interest related to their jobs, workplaces
and hobbies.

Ontology The general idea behind ontologies is to make knowledge ex-
plicit by expressing concepts and their relationships. In other
words ontologies define the common words and concepts used
to describe and represent an area of knowledge or collection
of information about data and how the data is related. On-
tologies are the core concept of Knowledge Representation in

CHAPTER 0 : Definition of Terms xxviii

the Semantic Web. RDFS and OWL are languages that can
produce such models.

Resource Description
Framework (RDF)

The data modelling language for the Semantic Web. All
Semantic Web information is stored and represented in the
RDF. RDF provides a flexible mechanism for describing Web
resources and their relationships in the form of triples, i.e.
subject, predicate and object expressions.

RDF Schema (RDF(S)) Describes the resources with classes, properties and values
that could be read and understood by computer applications.

Semantic Formalization The semantic formalization is often used to interpret complex
information which would make information meaningful and
accessible to machines. Meaningful and accessible mean that
it is possible to make queries based on the purpose of data.

Semantic Reasoning A semantic reasoner provides the functionality to detect in-
consistencies in the ontology model, classification as well as
infer new information out of the data.

Semantic Web The Semantic Web, also known as the Web 3.0, has been
described by Tim Berners-Lee as the Web in which computers
are capable of analysing all the data with its content, links
and transactions between people and computers.

Semantic Web Technology Semantic Web technologies aim to define and interconnect
data in a way similar to that in which traditional web tech-
nologies define and interconnect web pages. It enable people
to create data stores on the Web, build vocabularies, and
write rules for handling data.

Self-managed System A self-managed software architecture is one in which compo-
nents automatically configure their interaction in a way that
is compatible with an overall architectural specification and
achieves the goals of the system.

Self-configuration Autonomic systems will configure themselves automatically
in accordance with high-level policies - representing business-
level objectives, for example - that specify what is desired,
not how it is to be accomplished.

Self-healing Autonomic systems will detect, diagnose, and repair localized
problems resulting from bugs or failures in software and
hardware.

CHAPTER 0 : Definition of Terms xxix

Self-optimization Autonomic systems will continually seek ways to improve
their operation, identifying and seizing opportunities to make
themselves more efficient in performance or cost.

Self-protecting Autonomic systems will protest themselves from malicious
attacks and inadvertent cascading failures.

Social Agent The social intelligence of the agent is the ability to interact
with other agents (and possibly with humans) via cooperation,
coordination, and negotiation rules.

Social Computing Social Computing defined as the design and use of Information
and Communication Technologies (ICT) that consider the
social context.

SIoT Social IoT (SIoT) is an emerging paradigm of IoT in which
heterogeneous IoT devices not only connect and interact to-
gether but also socialize and collaborate to achieve a common
goal.

SPARQL (SPARQL Protocol
and RDF Query Language)

The query language of the Semantic Web. It is specifically
designed to query data across various systems. SPARQL is
the W3C standard for querying RDF data or linked open data
that has capabilities for querying required and optional graph
patterns along with their conjunctions and disjunctions.

SWRL SWRL (Semantic Web Rule Language) a high-level abstract
syntax for Horn-like rules that offers efficient reasoning sup-
port to ontologies with the benefit of added expressiveness.

Taxonomoy A taxonomy is a method to classify or categorize a set of
terms in a hierarchical structure. In general, it is the study of
the general principles of scientific classification. A taxonomy,
in general, is semantically weak, because it does not express
rich meaning and does not distinguish between aggregation
and generalization/specialization relations.

Social Ontology Social ontology is the study of different categories of social
entities and properties including social laws, social facts, social
groups, human kinds, social objects and social properties.

Web Ontology
Language(OWL)

The schema language, or knowledge representation (KR)
language, of the Semantic Web. OWL enables to define
concepts so that these concepts can be reused as much and
as often as possible. OWL is a knowledge representation

CHAPTER 0 : Definition of Terms xxx

language designed by the W3C Web Ontology Working Group
for use by applications that need to process Web content.

Web 3.0 The Web 3.0 is an extension to the existing Web and its
semantics are encoded into web pages which make them
transparent in normal use.

CHAPTER 1

Introduction

In the last few years, the convergence of Cyber-Physical System (CPS) and Social Computing
has become an active interdisciplinary research topic to implement smart communities. The
cyber-physical social system considers human-to-human, human-to-object, and object-to-
object interactions within the physical world, human society, as well as in the virtual world.
However, several challenges remain concerning appropriate methodologies, frameworks and
techniques for implementing socio-cyber-physical relation and interaction for collaborative
decision making. The lack of semantic representation of complex socio-cyber-physical relation
is one of the main issues for data exchange, accessibility and interoperability between resources.
Moreover, it is an ardours task and error-prone for human or traditional software agents
to keep track, manage and maintain the larger number of socio-cyber-physical resources
and their social dynamics. To resolve these issues, proper design and implementation of a
self-managed cyber-physical social system bring the attention of many research communities
from the areas of social computing, autonomic computing and Semantic Web technology.

Consequently, the overall aim of this thesis is to develop a semantic social and autonomic
framework with a flexible policy model and specification language to support a self-managed
and adaptive socio-cyber-physical collaboration and decision making system. The idea is
that heterogeneous cyber-physical resources will be represented and semantically connected
in a social network and infer information from the retrieved data by applying reasoning
rules. The system will also able to monitor and adapt itself according to the changes in the
environment and make the collaborative decision with the help of attached intelligent agent
called Autonomic Adapter (AA).

This chapter provides a statement of the problem and discusses the main motivation for
the research presented in this thesis. This chapter also describes the aims, research questions
and challenges with regards to establishing socio-cyber-physical relations, interactions and
autonomous decision-making function. It also outlines the significant contribution of this
thesis that tries to solve the research problems by developing and implementing the autonomic

CHAPTER 1 : Introduction 2

system within a real-world healthcare system. Finally, this introductory chapter closes with
the outlining the structure of this whole thesis.

1.1 Problem Definition

In the last decade, the Cyber-Physical System (CPS) research and its application have shown
an enormous societal impact and economic benefit in the many domains such as energy,
transportation, manufacturing, health, agriculture and many more. Previous model-based
system engineering solution helped overcome various challenges regarding the development
of conventional CPS but gaps remain with regards to the development of cyber-physical
collaborative system [239]. Cyber-physical collaboration defined as a coordinated process in
which objects mutually solve a problem or contribute to a result [92]. CPSs are gradually
becoming part of the social-technical society fabric instead of being only just technical systems
where human and technical parts are immensely intertwined [65]. With this notion, the
convergence of CPS and Social Computing (SC) known as a cyber-physical social system
(CPSS) has emerged. CPS defined as a large-scale networked system, which integrates
physical and computational components to implement a process in the real-world [262, 208].
On the other hand, social computing concerns the study of human social dynamics in the
design and use of Information Technologies (IT) that consider the social context [248]. This
emerging technology aims to serve as a base framework for the designing of complex systems
that involve a close collaboration between humans and CPS resources [259].

CPSS is a specialised subset of IoT that try to integrate social aspects to the heterogeneous
devices where they are socially connected and collaborate to achieve some specific task(s) [2].
In this scope, lots of interesting application domains have been explored ranging from
industrial automation to e-health to home automation and to(semi-)automated driving [68].
Particularly, CPS with IoT enabled healthcare applications facilitates remote monitoring
of patients health condition in real-time and deliver medication on the fly by sensing and
adjusting the actions of medical device [208]. The application of CPS within social context has
been exhaustively studied such as smart cities [46], social IoT applications [2], cyber-physical
systems convergence with social computing [256], cyber-physical-social convergence in Smart
Living [60], cyber-physical social sensing [203], etc. The limitation of these studies has
always conducted from a narrative point of view such as focused on the theoretical definition,
defined social characteristics, challenges and opportunities, and so forth. These studies
lack cyber-physical object-centric social context modelling (i.e., social relations, interactions
and communication between objects as well as human), and very limited applications and
validations within a real-world context.

The fundamental research challenge is how to represent and manage heterogeneous cyber-
physical resources relations and interactions in social-collaborative context. Existing social
computing approach provides functionality and features to foster collaboration between human

CHAPTER 1 : Introduction 3

participants only, who work across time, space, cultural and organisational boundaries [148].
A few studies focus on the social object’s relation with the human but do not recognise how
objects and artifacts themselves can establish and maintain their relationships within a social
network [174]. Therefore, it is difficult to create a socio-cyber-physical collaborative system
that can support both cyber-physical and social worlds to interact and exchange information
to solve problem autonomously.

Object-centred sociality [75] was discussed in a few literatures whereby social structures
formed between people as well as shared objects, or their interactions centred around ob-
jects [48, 158]. In another study in a Social IoT (SIoT) context indicated that relationships
between objects may be established whenever objects collaborate each other to deliver a
common services (i.e., emergency response, telemedicine, etc.) [17]. However, these ap-
proaches, framework, tools or methodology are not adequate to support socio-cyber-physical
collaboration. Therefore, it is necessary to develop a new social framework to overcome
the limitation by allowing cyber-physical collaboration and interaction in a social context.
Previously, social agent-based solutions [159] introduced for acting as a representative on
behalf of the user on social networking tasks, such as to handle digital traces of human
activities, to change users’ behaviour, produce content and create connections on behalf of
them [10]. But, these social agents are not capable to represent and act on behalf of the
objects or artifacts for managing and maintaining their social-collaboration task.

Moreover, the lack of semantic representation of socio-cyber-physical object-centric
collaborative network limits the data integration, exchange and interoperability between
resources. For instance, CPS involves the cooperation of a high number of physical components,
explicitly programming the relationships between the system components and considering
the number of interrelationships related to failures poses significant challenges [163]. To
cope with this situation, more intuitive methods are needed for representing and navigating
the heterogeneous information in the network [37]. The Semantic Web ontologies [30] can
provide such representation mechanisms by semantically describing these resources, properties
and their relationship in a social-collaborative network. Semantic Web technologies play a
primordial role by proposing a semantic representation of domain knowledge and by applying
a reasoning process to infer hidden knowledge [195]. The notion of ontologies has appeared in
Artificial Intelligence that represents knowledge with a collection of definitions of concepts and
the share understanding [19]. Consequently, our proposed solution to this problem is a new
software agent with an ontological knowledge model that can represent, manage and maintain
cyber-physical object’s relations and interactions in a social-collaborative network. Ontology-
based modelling involves specifying the domain concepts and properties and interrelationships
among users, resources and services in the environment [219]. Additional benefits include
applying reasoning and inference mechanism that can provide adequate and efficient data
integration and deduce new information (i.e., types, relationships, values) from the asserted
facts by applying rules [181].

CHAPTER 1 : Introduction 4

In general, having a large number of resources makes CPS unreliable such as the lack
of the abilities to change the system behaviour against unexpected changes in the external
environment and to adapt for the internal system failures [105]. Within social context, cyber-
physical objects relation may change when they are in different situations, and these changed
relations can impact on the state of the cyber-physical object [250]. Thus, manage and track
a larger number of cyber-physical resources status and their dynamic social interactions are
a complex task for human agents even with the help of traditional social agents. Thus, the
newly emerging research problem is how to manage and maintain these large number of
cyber-physical resources and their uncertain status within the social world.

Embedding socially intelligent agents into the system can enable sensing social context of
resources autonomously and support their collaboration activities by significantly enhancing
computation and communication [119]. Social intelligence is the ability to interact and
share knowledge with other agents (and possibly humans) via cooperation, coordination,
and negotiation [253, 67]. The limitation of existing social agent model is user-centric and
not autonomous, it means the owner should control any data stored in the agent, generated
through either interacting with other agents, devices or syncing with cloud-based services [10].

To cope with this problem, the combination of autonomic computing paradigm [106]
and social networking methodology can provide the solid foundation for building a new
socially intelligent autonomous agent with the abilities to manage IT system without human
intervention. Integration of social capability with an autonomic computing system to
monitor and manage socio-cyber-physical environment autonomously is relatively a new
interdisciplinary research area.

In general, autonomic computing borrows concepts and techniques from many fields of
Artificial Intelligent (AI) [125, 87] to develop systems that are self-configuring, self-optimising,
self-healing and self-protecting [56]. The fundamental idea was to build an intelligent and
self-managed system [266] in the same manner as the human nervous system regulates and
protects our body [231]. The primary function of an autonomic computing system is to
monitor and optimise resources through its sensors, analyses the situations, plan management
decisions based on high-level objectives defined in the knowledge and execute the plan
through its effectors [56, 98]. Later, the autonomic computing concept has been extended by
introducing self-adaptive capability based on context-awareness features that have a positive
effect of the system and network operations [215, 164]. The context-awareness idea was to
adjust various artifacts or attributes in response to changes and the context of the operating
environment at run-time [201].

Since the introduction of autonomic computing, the researcher focuses on addressing self-
management capabilities in the areas of software deployment, data storage, resource allocation,
communication, and query processing [5]. However, there is a lack of autonomic computing
methodology, architecture and framework for designing and developing self-management and
adaptive functionality in a socio-cyber-physical system. Despite the several architectural

CHAPTER 1 : Introduction 5

models and practical applications of autonomic computing, there are still many technical
challenges which need to be addressed for the successful implementation for self-managed
socio-cyber-physical collaboration and autonomous action intervention.

The complexity of managing a large system entails several different autonomic managers
that must cooperate to achieve the overall objectives set for the computing environment [168].
The autonomic system needs to be designed with a greater awareness of the fact that
the installed autonomic elements can communicate and interact cooperatively with other
autonomic elements [125]. Object-centric social networking design can play a vital role to
represent autonomic elements or managed resources as social network nodes, where are
attached with autonomic adapters can monitor and manage collaborative interaction and
communication on behalf of these autonomic elements.

The policy-based approach is arguably the most flexibility and general applicability among
the currently popular autonomic system approaches [12]. The common use of fixed and
hand-coded policies in a knowledge component is inadequate and inflexible when the system
is constantly changing and exhibits varying or uncertain information, which makes the system
management decision very difficult and inappropriate [26, 245]. The algorithmic approach
based on pre-defined rule sets often fails where the environment is uncertain, unmanageable
complexity, emerging behaviour and too complicated to predict [87]. Therefore, policies tend
to be developed as prescriptive and externally imposed rules whose enforcement is more flexible
for a predictable system behaviour at runtime [36]. There are many policy model have been
developed for autonomic computing, including if-then rule-based policy engine [199], policy
definition language [12], Event-Condition-Precondition-Action-Postcondition (ECPAP) [211],
and so on. Event-Condition-Action (ECA) rule [22] based policy enforcement (on an event, if
condition, then do action [43]) is a well-known approach for the high-level policy specification
of autonomic systems. Existing policy model for autonomic computing is general application-
specific and not able to control the behaviour of the system when integrated with social
context. Instead, the policy should be specified as externally-imposed rules whose enforcement
is for a predictable system behaviour [36] and to control the adaptation behaviour at run-time
in a more flexible way, outside the code itself.

Thus, the socio-cyber-physical autonomic system requires well-defined policies that will
be configured to specify decision-making criteria to accomplish certain tasks. However, there
is no in-depth discussion on fulfilling the gap of appropriate policy specification and execution
model for the existing autonomic system methodologies. Though, several researches proposed
policy specification languages in general [150, 59, 220] or for the domain-specific autonomic
system [199, 204, 21, 117], which are not appropriate for the self-managing socio-cyber-
physical system. Therefore, it is necessary to define a flexible policy model that should
consider the social-cyber-physical collaborative context regardless of the domain-centric policy
model.

CHAPTER 1 : Introduction 6

1.2 Motivational Domain

The primary motivation of this thesis is to develop an intelligent healthcare system, which
can support IoT enabled socio-cyber-physical medical collaboration and autonomous decision
making in real-time for supporting vulnerable patients. In general, health information systems
are mediated by spatially and functionally distributed resources such as physical devices,
software modules, and web resources [54]. For example, in remote healthcare, sensors are used
to measure the patient’s vital signs and then aggregate these data into the medical database,
which are accessed by healthcare professionals [52]. The health monitoring device can detect
patients health problem and send alert to emergency responders or family members [195].
Existing system design methodology perform the different healthcare task independently
with human support, they are not socially connected, nor capable of autonomous decision
making. Therefore, it is a very promising research direction to apply autonomic computing
and social computing paradigm together to enable monitoring of socio-cyber-physical medical
environment, manage resource collaboration and trigger intervention according to the high-
level policy.

Social computing methodology has been successfully implemented in many domains such
as scientific, enterprise, healthcare, etc. Particularly, in many areas of healthcare system
discussed the benefits of social networking application, such as creating collaborative health
awareness using social media [137], remote health monitoring using online social media [127],
social media for older adults [142], social networks for future health delivery [95], and many
other areas. Healthcare provision is a set of activities that demands collaboration between
physicians, nurses, managers, and patients [54] to improve health outcomes, motivate patients,
debate healthcare policy and practice issues, to educate and interact with patients, caregivers,
and colleagues [243]. In the last few years, the large scale deployment of CPS is becoming
research interest in academia, industry and government due to their significant impact on
developing socially connected healthcare system.

Additionally, the healthcare information system requires semantic interoperability of
health monitored devices to provide accurate and reliable transmission of data across medical
networks. The key idea behind using semantic description is to enable representation,
formalisation and enhanced interoperability of cyber-physical medical data. The ontology-
based modelling of the patient’s and physician’s context and the available medical devices can
provide intelligent alerting of the dedicated physician in case of an emergency through the
automatic reasoning of monitored data [108]. The additional benefits may include improved
recommendation of health product and services, the discovery of connection with people and
resources with similar interests as well as the semantic search of the medical information.
Several works such as Lasierra et al. [138] and Paganelli et al. [188] described an ontology-
driven solution for a wide range of services such as health status monitoring, real-time alerts
and assisting patients at home. Pasquale et al. [63] developed a multiagent system to support

CHAPTER 1 : Introduction 7

the delivery of remote healthcare and Farfan et al. [81] proposed “XOntoRank” system to
address the ontology-aware XML keyword search of electronic medical records and other
similar work discussed in the literature. Sadly, the agent-based semantic interoperability of the
medical connected cyber-physical objects and their data is still poorly represented in existing
healthcare system [195]. Therefore, the significant challenge is to connect these medical
resources semantically and socially to support cyber-physical healthcare data interoperability,
accessibility and autonomous decision making. Our proposed framework in Chapter (4) can
address this issue by supporting semantic social connection and collaboration between patient,
care communities, emergency departments as well as cyber-physical medical resources and
healthcare artifacts.

Recent developments of CPS, IoT medical devices and communication technologies have
revolutionised healthcare systems for the diagnosis and treatment of diseases, refereed as
“Medical Cyber-Physical System (MCPS)” [140]. For example, CPS has been successfully
applied in many healthcare applications for monitoring patient’s conditions continuously
and delivers medications on the fly [208]. MCPS is a critical integration of a network of
medical sensors and devices that gathers data from the patient’s for cost-effective health
decision-making [65]. A general Cyber-Physical Social System (CPSS) is used to collect data
from the activities of users on social networks, blogs, or e-commerce sites and then react in
some way to those data [261]. However, the limitation of the existing CPSSs [246, 175, 247]
are not capable to manage their resources autonomously and cannot adapt to uncertain
changes in environment and system failures [105]. Thus, it is a challenging task to implement
a healthcare system with self-adaptive goals and to support interactions between the physical
and cyber world in assisted-living homes [102]. To improve this situation in the medical
healthcare system, our proposed autonomic adapter in Chapter (5) can be embedded into
medical cyber-physical medical objects to monitor and retrieve their status, analyse the data
and deliver autonomous healthcare services to vulnerable patients or practitioners.

In the healthcare sector, the emerging computational intelligence methods have brought
new directions for the development of clinical decision support system (CDSS) to facilitate
advanced diagnosis and treatment of diseases [52]. Decision Support Systems (DSS) have
emerged on planning emergency response actions in a medical service environment [223].
Decision making is expected to be performed in an implicit and autonomic way rather than
the explicit and manual way. Therefore, developing an agent-based intelligent decision support
system is important within the medical service community to allow doctors and nurses to
gather information faster and processes it to make diagnosis and treatment plans [85]. For
example, when a patient is in stress, he or she wants to receive some guidelines before posing
a request manually. To fulfil this purpose, there is a great need to increase intelligence in
a CDSS, which can monitor and acquire context information and provide relevant services
actively to decision-makers or patients. Our autonomic framework with proposed policy
model and specification language in Chapter (6) would seem to be most suitable policy

CHAPTER 1 : Introduction 8

configuration approach for CDSS to trigger and execute action by the AA based on the
patients’ mental health conditions.

1.3 Aims, Research Questions and Contributions

The overall aim of this thesis is to develop a self-managed and adaptive socio-cyber-physical
collaborative framework where not only human but also non-human resources can interact,
communicate and make collaborative decision autonomously. To achieve this goal, first, we
investigate the fundamental theories, computational models, and technological solutions across
the semantic social network and autonomic computing paradigm in an interdisciplinary view
for socio-cyber-physical collaboration context. We incorporate social computing methodology
with ontology knowledge model to semantically represent concepts, properties and relations
of human and non-human resources. Second, autonomic computing architectural aspects are
studied for re-designing and developing the new socially intelligent agent (Autonomic Adapter)
that can be integrated into the socio-cyber-physical collaborative system for achieving self-
managed and adaptive functionality. Third, we discuss the existing policy model for the
autonomic system, their limitation and the approach to overcome this for managing autonomic
adapters behaviour. Finally, we test and evaluate the functionality and feasibility of our
proposed approach by implementing a smart healthcare decision support systems involving
human and cyber-physical medical resource collaboration with self-adaptive capability.

1.3.1 Research Questions

This study, under the overall aims of this thesis, attempts to address the following research
questions:

i) How to establish, manage and maintain heterogeneous socio-cyber-physical resources
relation, interactions and collaborations in a social context?

ii) How to semantically represent the relations between human, connected cyber-physical
objects and social artifacts and infer new information from the status of the resources?

iii) How to redesign a generic Autonomic Adapter (AA) architecture that can monitor and
manage resources and make a collaborative decision with socially aligned values?

iv) What is the best way to define a flexible and consistent policy model and specification
language to control AAs behaviour at runtime?

1.3.2 Specific Objectives

Based on the above problem statements, formulated research questions and motivation, this
thesis attempts to address the following core objectives:

CHAPTER 1 : Introduction 9

i) Conducting a literature review of social computing, autonomic computing, semantic
web approach, with an emphasis on the methodology, architectural design, modelling
and application within the context of the cyber-physical social system.

ii) Develop an agent-centric semantic social-collaborative framework where the software
agent will act on behalf of cyber-physical resources to manage and maintain their social
interaction, communication and collaboration.

iii) Develop an ontological knowledge model to semantically represent concepts, properties
and relations of cyber-physical objects as well as human entities and apply reasoning
rule to deduce information from the raw facts by the agents.

iv) Develop a generic autonomic system framework and autonomous adapter architecture
to monitor the socio-cyber-physical environment and its resources and perform a wide
range of actions according to the high-level policy.

v) Develop a flexible policy model and specification language for autonomic adapters that
can be used to define domain-level strategies for collaborative actions and interventions
to the environment or managed resources.

1.3.3 Contributions to Knowledge

The works presented in this thesis have made several original contributions to the knowledge
by answer the fundamental research questions and associated challenges formulated in this
chapter’s section (1.3.1). The novel ideas and contributions are briefly listed below and
details are discussed in Chapters (4, 5 and 6).

i) Software Agent-centric Semantic Social-Collaborative Network (Chapter 4)
This chapter proposes an Agent-centric Semantic Social-Collaborative Network (SSCN)
that is built on top of the existing social network. The significant advantage over
existing systems is that it allows social connections and collaborations not only between
humans but also among cyber-physical resources in a social space with the help of
software agent. An extended ontology model is introduced that semantically defines the
concepts, properties and complex social relations between human and cyber-physical
resources in the SSCN.

The proposed approach is implemented and validated by applying it to a large-scale
social-collaborative healthcare service called GRiST 1, used within the United Kingdom.
The case study demonstrates the online healthcare aspects to create and manage human
and nonhuman resources (i.e., patients, care workers, physical devices, etc.) using the
software agent. The domain ontology allows semantic interlinking of these resources and

1https://www.egrist.org

CHAPTER 1 : Introduction 10

the ability to infer when interventions and social collaborations are required to meet
healthcare needs. To test the ontology model, the domain ontology is populated with
synthesised data from GRiST care domain and perform automated and the Semantic
Web Rule Language (SWRL) 2 rule-based reasoning as well as SPARQL queries to test
the consistency, correct operation and performance of the ontology. To assess both
characteristics and capabilities of the proposed SSCN system, a systematic comparison
between SSCN and most recent related work of the area of study is also presented.
A Java-based Software Agent API is built that provides functionality to create and
manage nonhuman resources and evaluate the effectiveness of the proposed collaborative
network. Overall, the ontology testing shows the system is consistent and feasible with
regards to emergency notification service based on the data from the cyber-physical
medical device and their social context.

However, one of the key limitations of our approach is the inability to handle uncertainty
and social dynamics of cyber-physical data due to the complexity and constant changes
in resource status as the network grows. Managing and keeping track of these larger
numbers of resources is a complex task for human agents even with the help of traditional
software agents. Thus, the next research challenge is to design and develop a generic
autonomic framework with policy-based autonomic adapter model, which is introduced
in the Chapter (5).

ii) Generic Autonomic Social-Collaborative Framework (GASCF) and Auto-
nomic Adapter (AA) Architecture (Chapter 5) This chapter proposes a Generic
Autonomic Social-Collaborative Framework (GASCF) and Autonomic Adapter (AA)
architecture with their behaviour governed by ECA rule-based policy. The GASCF can
be used to implement a self-managed IT system such as socio-cyber-physical collabo-
rative system, where numerous AAs can be configured and deployed to manage the
environment resources. These AAs can autonomously monitor and analyse the incoming
event data and take decisions and actions to the environment based on the policy from
the knowledge repository. Our proposed AA architecture is unique compared to other
existing intelligent agent model because it is generic and socially intelligent as they can
cooperate and communicate with each other through a social network for collaborative
decision making when installing in the target IT system. The AAs cannot activate or
influence each other directly but should interact and communicate through a social-
collaborative network for performing a wide range of actions in a variety of situations.
These AAs uses centralised knowledge repository to decide and perform actions on the
environment to achieve a shared goal. Within the AA, its Local Rule Inference Engine
able to trigger actions based on the monitored data and execute some actions through
its Executor. In some cases, an action trigger by an AA may be insufficient to meet

2https://github.com/protegeproject/swrlapi/wiki/SWRLLanguageFAQ

CHAPTER 1 : Introduction 11

adaptation goal. Hence, the Global Rule Inference Engine resides outside but connected
with all AAs collate all actions triggered by the individual AA’s and then decides the
final intervention according to high-level strategy from the knowledge sources.

The cyber-physical health care system is one of the popular application which can greatly
benefit from the utilisation of our proposed GASCF and AA architecture. Thus, we
demonstrate and validate the proposed system by applying it to the extended GRiST3

autonomic socio-healthcare service scenarios with deployment of AAs and general
implementation of the policies in XML format. Finally, we discuss the uniqueness of
our autonomic framework in terms of its new architectural model and the benefits of
employing it to manage socio-cyber-physical environment and its resources.

However, the additional work is needed to test and validate the proposed autonomic
approach. Because the limitation of this approach is the unavailability and inappropriate
policy model and specification language and how the policies would need to be executed
by the AAs. This issue directed us to new research direction for developing a flexible
policy model and specification language for AA, which is necessary to operate the
system without human intervention, presented in the Chapter (6).

iii) Policy Model and Specification Language for AA (Chapter 6) This chapter
proposes a more comprehensive and flexible policy model and specification language for
AA, modelled in XML syntax that can be imposed into autonomic computing knowledge
repository. In the literature, several considerable efforts defined policy models and
accompanying specification languages based on rules and semantics for the autonomic
system [109, 41, 143, 20]. The limitation of these policy-based approaches is fixed
coded in general and not re-configurable because they are often very low-level and
domain-specific. In this chapter, first, we proposed an ECA rule-based policy execution
framework in the socio-cyber-physical environment. Afterwards, we describe an Entity
Relationship Diagram (ERD) to illustrate the interrelationship between AA, managed
resources and policy components with their associated attributes or properties. Then,
we define the Policy Schema Definition (PSD) language and Policy Specification Script
(PSS) in XML representation format, a formal way to specify the structure of the policy.
The PSD language is unique and the core to implement and validate the structure and
consistency of the domain-specific PSS for managing AAs behaviour within the system.
The advantage is that it would allow the system administrator to re-configure the policy
without modifying the code itself and disrupting the normal system operation. The PSS
is an XML instance document that describes the domain-specific policy configuration
in terms of PSD syntax and semantics. XML has many advantages to represent the
policy for its straightforward extensibility [36] and machine readability. These policies
can be deployed as an external script in the knowledge repository and translated as

3https://www.egrist.org/home

CHAPTER 1 : Introduction 12

rules, which can be shared by the AA’s intelligent manager components to perform
their operation.

We demonstrate and validate the proposed policy model by applying it to the eGRiST
CDSS 4 mental-health risk and safety management decision support system [71, 40, 38].
We collected the demo datasets from the eGRiST CDSS in XML format and synthesised
based on mental health risk question and assessment and then configured the policies
and stored into the knowledgebase accordingly to manage the AAs operation. Finally,
we implement a prototype Java console-based application of an autonomic computing
engine to test the feasibility of the system. We input the data into the AAs as
environmental events and observe the output actions triggered by the AAs according to
the rules. The output result shows that the system is feasible, consistent and valid on
given input variables that trigger and execute appropriate actions to the environment.

1.3.4 Case Studies

In this thesis, we describe three distinct case studies from a real-word healthcare domain,
namely GRiST5 domain to test and validate the applicability of our proposed system. GRiST
(Galatean Risk and Safety Technology) is a web-based CDSS, which was a project sponsored
by the European Union within its European Institute of Innovation and Technology Health
Knowledge Innovation Community (EIT Health) 6. GRiST has two independent versions
to deliver health services for patients. The initial version is GRiST older-adult care system
that provides expertise directly to older adults and their network of carer’s such as family,
friends, and clinical services to ensure they are safe, secure, and thriving [39]. In contrast,
eGRiST CDSS used for helping practitioners to assess and manage multiple risks associated
with mental health problems, including suicide, self-harm, harm to others, self-neglect and
vulnerability [260]. It was first introduced by Christopher Buckingham in 2002 [40, 38] and
collaboratively developed and maintained by Aston University 7 and Warwick University 8

in the UK. In this thesis, we implement and test our proposed system based on the three
different case settings and the datasets from both GRiST and eGRiST systems. These case
studies are briefly described below:

• Case Study 1: GRiST Online Socio-Healthcare Service (Chapter 4). The
first case study explores the potential application of our agent-centric SSCN framework,
proposed in Chapter 4. This case study also illustrates the benefits of the ontological
representation of healthcare domain knowledge with regards to socio-cyber-physical
healthcare resource relation and interoperability in a social space. Currently, within

4https://www.egrist.org/home
5https://www.egrist.org/home
6https://www.egrist.org/grace-age
7https://www2.aston.ac.uk/research
8https://warwick.ac.uk/research

CHAPTER 1 : Introduction 13

the GRiST network, human participants interact, communicate and collaborate with
each other in different ways to deliver care services to patients. However, the limitation
of GRiST and many other similar healthcare systems is that they do not have complete
control of social connectivity and activity of cyber-physical objects and they are not
semantically described. Thus, to demonstrate and validate the applicability of our
SSCN framework, first, we discuss social connectivity of human participant and non-
human medical objects (i.e., heart sensor, digital health record, documents, etc.). These
resources can be represented as social network nodes and managed by the software agent
in the GRiST healthcare network. Second, we discuss the semantic representation of the
socio-cyber-physical medical objects and their relation and interactions by constructing
an extended “GristOnto” domain ontology in section (4.4.1), which reuses concepts
and properties from “SocioCyberOnto” ontology modelled in section (4.2.2.2). Finally,
we implement a prototype software agent API with Java programming language that
provides the functionally to create and manage GRiST care resources in the network.

• Case Study 2: GRiST Autonomic Socio-Healthcare System (Chapter 5).
The second case study demonstrates the self-managed and adaptive function of the
extended GRiST healthcare system using our proposed approach. This case study
discusses real-world healthcare scenario and the intelligent health monitoring and
notification functionality of the system by utilising our GASCF and AA architecture,
introduced in section (5.2) and (5.3), respectively. The case study illustrates how
AAs are attached to the individual cyber-physical resources to continuously monitor
their status, analyse the contextual changes, and triggers and executes appropriate
actions based on the defined policy. For instance, one or more wearable devices are
attached to a patient’s body that records their heart-rate and physical activity level
and attached AAs monitor their events in real-time. If the threshold parameters coming
from the devices are out of range then the AAs trigger some actions based on defined
rules. Overall, we discussed the benefits of utilising of our proposed GASCF with AAs,
which can minimise the GRiST social care management complexity, reduce human
intervention and provide intelligent notification for delivering instant care and services
as appropriate.

• Case Study 3: eGRiST Clinical Decision Support System (CDSS) (Chap-
ter 6). The third case study illustrates the practical application and configuration of
our proposed policy model and specification language to manage AAs behaviour when
integrated into eGRiST CDSS. The eGRiST CDSS is designed based on a cognitive
model of human expertise manifested by a sophisticated hierarchical knowledge struc-
ture or tree for mental illness diagnosis. In eGRiST CDSS, risk classes are represented
by hierarchical knowledge structures or trees called galateas, which are used to rep-
resent mental-health expertise. The root node of the tree is the risk node, which is

CHAPTER 1 : Introduction 14

deconstructed into sub-nodes that are themselves trees until the leaf nodes are reached,
representing the input data. The data used for input to the tree can be any type, which
is then converted into a fuzzy-set membership grade, called Membership Grade (MG)
and the MG score is between 0 to 1 [40].

Currently, the system handles various action types using a static database design with
one-table-fits-all solutions, which is not convenient in many cases. The drawback is that
for every new action type that is added to the system, new tables, particular to that
action need to be added, which is very inefficient. Thus, it is crucial to improve the
reliability and performance of this system in terms of actions management by integrating
AAs into every assessment node (i.e., cues). Thus, this case study is appropriate to
illustrate AAs integration and autonomous actions and interventions using our policy
model for autonomous mental health risk assessment in eGRiST system. The events
triggered by the MG of a specific node can be handled and processed by AAs for
action intervention according to the policy specification. The overall benefit of using
our AA and policy model is to implement actions or interventions plan that will be
executed based on the mental health risk assessment answer submitted by patients or
practitioners in the eGRiST system.

1.4 Thesis Structure

The work produced in this thesis has been conducted in a sequential manner whereby solving
one problem led to the identification of another pressing research challenge. This consecutive
research workflow is translated to logical connections of the thesis components, summarised in
Figure 1.1, which shows how each part relates to another part. The peer-reviewed published
papers [114, 113, 112, 111] related to the thesis are listed in subsection (1.5). The structure
of the thesis is as follows:

• Chapter 2 presents a comprehensive background study of the social computing ap-
proach, opportunity and limitation for supporting cyber-physical object interactions
and collaboration. This chapter also reviews the Semantic Web technology and the
advantage of ontological knowledge model to semantically represent the cyber-physical
concept, properties and relation in a social context. This chapter also outlines the
background of the autonomic computing paradigms, different application areas and
current challenges in the existing architectural design. Finally, this chapter reviews the
policy-based management of the autonomic system and explains the issues with regards
to the existing policy model and specification languages for supporting self-managed
socio-cyber-physical collaboration.

• Chapter 3 discusses the state-of-the-art related work within the areas of the semantic
social network, cyber-physical social system and policy-based autonomic computing.

CHAPTER 1 : Introduction 15

Fig. 1.1 Thesis components and research workflow

This chapter particularly reviews the existing research work and their limitations with
regards to the developed methodologies, architectures, techniques and their applications
in many real-world aspects.

• Chapter 4 introduces a Software Agent-centric Semantic Social-Collaborative Network
(SSCN) model with an extended ontology model. This chapter discusses the implemen-
tation of a domain ontology and Agent API to represent and manage cyber-physical
resources relation and interaction in a social network environment. Finally, this chapter
illustrates the evaluation of the system by ontology testing in terms of syntax, semantics,
and rule-based reasoning within real-world GRiST healthcare scenarios.

• Chapter 5 presents a new Generic Autonomic Social-Collaborative Framework (GASCF)
and Autonomic Adapter (AA) architecture. This chapter also discusses self-managed
and adaptive functionality of GRiST healthcare system through the realistic implemen-
tation of the proposed GASCF and AA architecture with policy configuration.

• Chapter 6 proposes a flexible policy model and specification language for AA. This
chapter discusses the policy execution model, PSD language and PSS that provides the
syntax and structure of the policy definition and XML representation of the domain

CHAPTER 1 : Introduction 16

policy adheres to PSD. The real-world eGRiST CDSS case study is discussed to
demonstrate the practical implementation and configuration of the policy model for
mental health risk assessment and trigger appropriate actions by the AA. The system
is tested and evaluated by implementing Java-based AA engine and integrating it to
eGRiST CDSS and observes inputs and output actions by the system.

• Chapter 7 concludes the entire research work pursued. The main contributions of the
thesis are pointed out and directions for future research also discussed in this chapter.

1.5 Publications

The parts of the research work that has been done towards this thesis have been presented
and published in international peer-reviewed journals, conferences and workshops as listed
below:

• Hussain, N., Wang, H. H., Buckingham, C. D., & Zhang, X. (2020). Software Agent-
Centric Semantic Social Network for Cyber-Physical Interaction and Collaboration.
International Journal of Software Engineering and Knowledge Engineering. 30(06),
859-893.

• Hussain, N., Wang, H., & Buckingham, C. (2019). Artifact-Centric Semantic Social-
Collaboration Network in an Online Healthcare Context. In 17th International Confer-
ence on e-Society. IADIS, Utrecht, Netherlands.

• Hussain, N., Wang, H. H., & Buckingham, C. (2018, April). Policy based generic
autonomic adapter for a context-aware social-collaborative system. In 3rd International
Conference on Intelligent Systems and Computer Vision (ISCV) (pp. 1-9). IEEE
Digital Explore.

• Hussain, N. and Wang, H. (2014). Semantic Enabled Social-Collaborative Research
Framework for Proteomics Domain. In Third ASE International Conference on Social
Informatics. Harvard University, USA, December 14-16.

CHAPTER 2

Background

This chapter presents a comprehensive background study of the research presented in this
thesis. This chapter reviews the most relevant theories, model, architecture, application and
limitation of cyber-social computing, autonomic computing and Semantic Web technology
in a multidisciplinary view. We precisely discuss the research areas include the social net-
work for cyber-physical communication and collaboration, Semantic Web technologies to
semantically represent socio-cyber-physical relation and interactions, and policy-based auto-
nomic computing for developing self-managed and adaptive socio-cyber-physical collaborative
system.

2.1 Socio-Cyber-Physical Collaboration

2.1.1 Social Computing and Networking

Social Computing (SC) defined as the design and use of Information and Communication
Technologies (ICT) that consider the social context [248]. In the literature, social computing
or Web 2.0 was characterised as collaborative projects, blogs or microblogs, wikis, content
communities, social networking sites, and virtual worlds that are serving functions for
different purposes [57, 243]. Social networking system uses Web 2.0 technology [118, 144],
which allow quick, easy and wide communication between users for personal or professional
reasons [161, 90, 65].

A social network graph composed of individuals, organisations or social objects, called
nodes, which are interrelated or connected through common social relationships (i.e., friend-
ship, following, likes) either directly or indirectly called edges [161, 90]. According to
Arnaboldi et al. [15] and Tang et al. [234], a typical way of representing a social network as a
graph G = (V, E), where V is the set of vertices representing the users in the social network,
and E are the set of edges connecting users representing the social relationship. For example,
users can be represented as graphs with nodes or vertices, and their social links to friends or

CHAPTER 2 : Background 18

others can be represented as edges, and leverage their social links to share content, organize
events, and search for specific users or shared resources, communication, collaboration, or
even for virtual friendship [252, 145].

2.1.2 Object-Centred Sociality

At the beginning of social network study, interactions between humans have long been
considered an important part of social context. Later, a new dimension of social network
introduced as object-centred sociality in a few literatures, whereby social structure formed
between people and shared objects, or their interactions centred around objects [48, 158].
Object-centred sociality first introduced by Jyri Engeström [75] to examine how the inclusion
of shared objects can enhance online social networking between people and shared objects.
It describes the fact that strong social relationships are built mainly when individuals are
connected together through the objects they create and collaborate around a shared object
in online social networks [120, 174]. Individuals or groups can connect and engage with
objects, and receive a data stream of events that are deemed of collaborative importance
by the business and create focused conversations related to the object [126]. For instance,
a published paper is an object that connects the researchers that authored it electronically
using a word processor program, and if other people read the paper or download it, the
author will be notified. The research suggested that people may not only to connect each
other, but they also connect through shared objects or artifacts (i.e., documents, tasks, etc.),
which can be represented as graphs with nodes both for people, shared resources and work
artifacts [24]. For example, an early study of software engineering coordination showed that
developers can be connected to one another through their work artifacts [47].

Artifacts in a wide sense broad class of instruments, objects and tools that are used by
actors in the distributed task environment to configure and facilitate group decision-making,
thinking and communication [226]. When the artifacts, in general, are viewed from the
perspective of their use, they can both support communicative and instrumental activities,
and they can mediate our activity towards other humans or towards ‘objects’ [154]. Artifacts
are classified as physical artifacts that serve an important role in the sequencing, triggering,
closure of a task, whereas cognitive artifacts assist in representing task knowledge, procedures
and help transcend barriers to problem-solving and decision-making [226]. In contrast, social
artifacts defined as any form of online content (i.e., post, connect, recommend, tweet, tag,
and endorse) that are created in a Web 2.0 application [156].

2.1.3 General Social-Collaborative Aspects

Collaboration is defined as the process of working together between people, groups and
organisations in a sociable environment to systematically solve a problem that could not
be solved by an individual alone [28]. A collaborative network defined as a collection of

CHAPTER 2 : Background 19

businesses, individuals and other organizational entities that possess the capabilities, and
resources needed to achieve a specific outcome [214]. Collaboration environments typically
provide a range of benefits include the basic requirements of communication, coordination,
collaboration and various mechanisms for information provision and access [100]. In the
beginning, there was drawing attention on the expertise, social and computer scientists for
computer-supported cooperative work [94] and looked at how groups worked, and seek to
discover how technology can help them work together [73]. Thus, a new adequate Collaborative
Work System (CWS) had emerged [31] to facilitate individuals and organisations to manage,
communicate and work together across time and space barriers [83]. Groupware is a class of
Computer-Supported Cooperative Work (CSCW) that enables individuals to collaborate on
projects with a common goal from geographically dispersed locations through shared Internet
access as a means to communicate within the group [45].

Moreover, collaboration support is not only about providing technologies and tools but
also about shaping socio-technical systems [130]. Early research suggested that the technical
system and the social system have to be co-optimised for the whole system to be successful [82].
The technical system helps the people to communicate and collaborate with each other,
whereas the social system facilitate to building relationships between the group members
and their formal and informal social actions and interactions. The socio-technical network
gives a structure to represent the flow of information among actors through the exchange of
work artifacts [145]. The development of Web 2.0 technologies revolutionised the potential
to harness online collaboration more interactively by increasing easy communication, social
interactions and active engagement as well as reducing the cost, time and space barriers.
Web 2.0 also known as social software [210] refers to a collection of electronic, web-based,
community-centred applications and technologies [151] that facilitate interactive information
sharing, user-centred design and collaboration [225].

With the advent of Web 2.0, social computing has emerged to understand the collaboration
and interaction of human observed via socio-technical systems such as online social networks
and web-enabled applications. Social computing refers to the computational facilitation of
social studies and human social dynamics, as well as the the design and use of Information and
Communication Technologies (ICT) that consider the social context [248]. In the literature,
social computing tools characterised as collaborative projects, blogs or microblogs, wikis,
content communities, social networking sites, and virtual worlds that are serving functions
for different purposes [57, 243]. For example, most popular open social media applications
including Facebook, Twitter, LinkedIn, etc. built on Web 2.0 technologies, which enable and
encourage participation, collaboration, conversation, openness, creation and socialisation
among a community of users [88]. Social media users connect with others by sharing user-
generated content and information, following their updates, responding and commenting on
them in real time [116, 243, 186].

CHAPTER 2 : Background 20

2.1.4 Cyber-Physical Social System

Cyber-physical system (CPS) is a large-scale and networked system, which consists of physical
and computational elements and currently of interest in academia, industry and government
due to their potentially significant impact on society, environment, and economy [262]. CPS
are typically concerned with the sensing and control of physical phenomena through networks
of interconnected devices to achieve defined goals [62]. In recent years, CPS paradigm shifted
to Cyber-Physical Social Systems (CPSS) [46] that have become an active interdisciplinary
research topic to deliver services that are autonomous, intelligent, connected and collaborative.
Within the context of CPSS, the tight integration involve human-to-human, human-to-object,
and object-to-object interactions in the physical world, social world, as well as in the virtual
world [203]. In a collaborative cyber-physical systems resources can interact with each
other and form groups to achieve joint goals [239]. Using a social network, humans and
cyber-physical resources can jointly perform task that the resources itself are not able to do
it separately [224]. In this scope, lots of interesting application domains have been explored
ranging from industry automation to e-health to home automation and to(semi-) automated
driving [68], and indeed as part of smart infrastructures and cities [236] to improve the quality
of life of the smart city citizens by providing intelligent and personalised services in a wide
variety of aspects.

Cyber-physical collaboration is considered as the third generation of online social networks
that consider social relationship, interaction or connection among physical objects, includes
human being, smart items and general physical objects using the sociological point of
view [250]. As most CPS involve the cooperation of a high number of components, explicitly
programming the relationships between the system components and considering the quantity
of interrelationships related to failures poses significant challenges [163]. However, there is a
lack of discussion on how the social relationships should be established by cyber-physical
objects and does not propose any solution regarding the required architecture and protocols.
Due to the enormous amounts of devices interact with each other socially, currently used
approaches or architectures is not be sufficient to deal with the arising complexity such as
social relation, collaboration and autonomy. To fulfill their tasks, the CPS components rely
on semantic representation of their environment to enable the CPS components to agree
on the meaning of common concepts they use in an open environment, e.g., an ontology
describing the concepts and relations within the application domain [97, 93].

2.1.5 Agent-Centric Social Environment

Agents and artifacts meta-model are introduced in the context of agent-oriented software
engineering for modelling complex software systems [58]. The term ‘agent’, ‘software agent’
or ‘intelligent agent’ are often used interchangeably in the literature and defined as an
entity that reacts to changes in its environment through a reasoning process [155]. Social

CHAPTER 2 : Background 21

agents have been introduced in research to achieve automated or semi-automated social
interactions pervasive social networking. An agent can be a software (e.g., daemon security
agents), a hardware component (e.g., thermostat), or a combination of both (e.g., a robot),
whereas the IT system (i.e., traffic monitoring network) refers to the place where the agents
are attached [67]. Typically, agents are placed in an IT system that senses different event
parameters to make a decision based on the goal of the managed entity [218].

A social agent is described as an artificial agent with capabilities to change users’ behaviour,
produce content and create connections over existing social networks, and collaboration with
other agents [10]. A user’s surrogate agent provides a personalised interface between the user
and the environment, being knowledgeable both about the environment and of the user’s
interests and preferences, and enhances operational capabilities in the environment [207].
Agents often collaborate towards a specific goal and need to communicate and share results
with other agent [155]. Acting as a representative of the user on social networking tasks
requires prior knowledge of the environment and understanding of user’s behaviour, but also a
set of social rules and goals according to which an agent would initiate social interactions [10].

In agents and artifacts meta-model, agents are the (pro-)active entities in charge of
the goals/tasks that together build up the whole multi-agent system (MAS) behaviour,
whereas artifacts are the reactive entities providing the services and functions that make
individual agents work together in a MAS [184]. The artifacts are used by the agents in
the distributed task environment to configure and facilitate group decision-making, thinking
and communication [226]. Ontologies allow the sharing of common knowledge among people
and software agents that represents collaborative tasks and enable queries and inferences
about shared tasks [205]. Agents and artifacts meta-model relevant to CPSs are key steps to
support collaboration in social context.

2.2 Semantic Social Network

Semantic Web Technology (SWT) is proven to be used for explicitly model online social inter-
action between participants [77]. Its automated aggregation capability of user’s distributed
social connections give a better illustration of user’s profile and improve the functioning of the
web applications [157]. Developers uses SWT to augment to create, reuse, and semantically
link content on social networking and media sites [37]. For example, ontologies enables
community web portals more efficient at the task of sharing information and offers high
quality searching features by providing semantic-based browsing [177]. Ontological knowledge
graph widely applied in content publishing, navigation (link content and allow exploration of
topics) via schema.org 1 in many areas such as Yahoo!, Bing, Google, BBC, and so on.

1https://schema.org/

CHAPTER 2 : Background 22

2.2.1 Semantic Knowledge Representation

Knowledge representation and knowledge engineering play an important a role in Artificial
Intelligence (AI) research. The traditional methods lack of considering the semantic relations
between words, which is difficult to improve the accuracy of these classification methods.
Many of the problems that are expected to solve by machine require extensive knowledge
about the world.

The Semantic Web (SW) is an extension of the current web, also known as the Web 3.0, the
Linked Data Web, the Web of Data, has been described by Tim Berners-Lee [30]. The main
goal of the SW is to improve the processes of knowledge representation (KR) and information
retrieval (IR) on the web [7]. SW introduced to connect information as a web of linked data,
intended to be accessed and understood by computers, rather than by people [123] so that
they can perform increasing sophisticated tasks. Current web is unstructured, connected
by hyperlinks (a web of linked documents). Whereas SW enables web data to be linked
from one source to another (i.e., people, places, time periods, concepts, etc.) in a structured
form [232] and well defined meaning [166]. The World Wide Web Consortium (W3C) 2 is
the main international standards organisation for the SW and develops recommendations for
representing, sharing and reusing knowledge. We discuss the main SW standards below:

2.2.1.1 XML and XML Schema

Extensible Markup Language (XML) is a simple, very flexible text-based format derived from
Standard Generalized Markup Language (SGML; ISO 8879:1986) 3 that provides mechanisms
for describing document structures using markup tags. XML originally designed to meet the
challenges of large-scale electronic publishing. The current development plays an increasingly
important role for the exchange of a wide variety of data on the web. However, in terms of
semantic interoperability, XML has restrictions. For instance, there is no way to recognise the
semantics of a particular domain because XML aims at a document structure and enforces
no common interpretation of the data [44].

The XML Schema 4 is introduced to formally specifies the structure of an XML document
that gives additional semantic meaning to the data, assigned to different elements and
attributes and use to assess the validity of well-formed XML document. The Document Type
Definition (DTD) 5 or XML Schema Definition (XSD) 6 are the two main schema definition
languages for XML that can are commonly used to define the syntax and structure of an
XML document.

2https://www.w3.org/standards/semanticweb/
3https://www.w3.org/XML/
4https://www.w3.org/XML/Schema
5https://www.w3schools.com/xml/xml_dtd.asp
6https://www.w3.org/TR/xmlschema11-1/

CHAPTER 2 : Background 23

2.2.1.2 RDF and RDF Schema

Resource Description Framework (RDF) 7 is a standard data modelling language for the SW.
It has been developed as solution to represent information about resources on the WWW (e.g.,
meta data/annotations), data integration and interoperability purpose in the WWW [44]. It
describe web resources and their relationships in the form of triples (i.e., subject, predicate,
object) expressions [241], so it could be read and understood by computer applications.

The subject is the resource or the thing (i.e., Eric) that is being described, and predicates
express the relationship (i.e, type) and object (i.e., Person) is the value assign to the
predicate [44]. A resource is uniquely identifiable by a Universal Resource Identifier (URI)
and central to the SW [29] and the property value is either also a URI or a literal (e.g.,
String, Boolean, Float). A triple can graphically be described as a directed arc, labelled by
the property (predicate) and pointing from the subject node to the property value node [136].
However, the RDF data model provides very few mechanisms to address the problem of
understanding the meaning of the terms used in semantic annotation. Hence, RDF Schema
(RDF(S)) has been designed as an extension of RDF to overcome the limitation of RDF
specifications.

RDF(S) 8 describes the resources with classes, properties, and values [44]. Although,
RDF(S) allows the hierarchical specification of classes and properties that enable simple
inference, the expressive power of RDF(S) is quite limited and unable to support many
commonly required features, such as negation or disjunction.

2.2.1.3 DL and Ontology

Description logics (DL) is a knowledge representation language to represent the knowledge of
an application domain in a structured and formally well-understood way. DLs differ from
their predecessors, such as semantic networks and frames, in that they are expressive and
equipped with a formal, logic-based semantics [19].

An ontology is one of the main building blocks of Semantic Web that build on RDF/RDF(S)
and add expressiveness to the ontology. An ontology is a collection of definitions of concepts
and the shared understanding comes from the fact that all the agents interpret the concepts [19].
It formally and explicitly specifies entities, attributes and properties related to a domain [180].
According to W3C 9 standard definition, in an ontology model, Classes or Concepts represents
a collection of objects or individuals (usually sharing some common characteristics), Properties
describes the relationships between individuals (and data) and Instances are concrete members
of a class. There are two types of properties defined: object property that relates individuals
to other individuals, and data property that relates object or individuals to data values.

7https://www.w3.org/RDF/
8https://www.w3.org/TR/rdf-schema/
9https://www.w3.org/standards/semanticweb/ontology

CHAPTER 2 : Background 24

There are many languages have been developed to build an ontology for different purposes.
The Ontology Web Language (OWL) 10 is the schema language or knowledge representation
(KR) languages, of the SW. OWL enables authoring ontologies to represent rich and complex
knowledge about things or groups of things [241]. The OWL standard defines different
syntaxes based on RDF(S), XML and proprietary text format, what has greater machine
interoperability of the web content. Similar to RDF(S), OWL provides syntactic modelling
constructs for the basic elements of an ontology, i.e. concepts, relations and instances. In
OWL, these are called classes, properties and individuals, respectively, and they correspond
to concepts, roles, and individuals in Description Logics (DL) [96]. OWL abstract syntax
serves as a human readable text format to present OWL ontologies to knowledge engineers.

2.2.2 Rules and Reasoning

Rules are a key element of the Semantic Web that provide a foundation for reasoning
capabilities for underpin the intelligent manipulation and exploitation of information content.
Reasoning is the process to deduce new information from a set of asserted statements
using rules. An inference engine deduce logical consequences from a set of facts or detect
inconsistencies in the ontologies [185] by using the technologies such as description logic
theory, forward chaining, backward chaining, and Rete Algorithm, and so on [53]. The most
popular automated reasoning engines like Pellet 11, Racer 12, FaCT++ 13 are based on very
expressive OWL DLs. The OWL language itself is designed to support various types of
inferences such as subsumption and classification [210].

The reasoning tasks can also be done through the application of the rule languages
such as RDF Query Language (RDQL), SWRL (Semantic Web Rule Language) [205], or
SPARQL (Protocol And RDF Query Language) [232]. The SWRL 14 is designed based on a
combination of the OWL DL and OWL Lite sublanguages of the OWL with the Unary/Binary
datalog RuleML sublanguages. SWRL includes a high-level abstract syntax for Horn-like
rules that offers an efficient reasoning support to ontologies with of the benefit of added
expressiveness. SPARQL 15 is the W3C standard for querying RDF data or linked open
data that has capabilities for querying required and optional graph patterns along with their
conjunctions and disjunctions.

There are few free and open source Java framework available for building Semantic Web
and Linked Data applications. For example, Apache Jena 16 ontology inference system is
designed to support a wide range of inference task or reasoners. Jena includes a general

10https://www.w3.org/OWL/
11http://pellet.owldl.com/
12http://www.ifis.uni-luebeck.de/ moeller/racer/
13http://owl.cs.manchester.ac.uk/tools/fact/
14https://www.w3.org/Submission/SWRL/
15https://www.w3.org/TR/rdf-sparql-query/
16https://jena.apache.org/

CHAPTER 2 : Background 25

purpose rule-based reasoner (Generic Rule Reasoner) which is used to implement both the
RDFS and OWL reasoners but is also available for general use [192]. RDF Data Query
Language (RDQL), a declarative query language for RDF supported by Jena’s inference
models. RDQL uses a declarative SQL-like syntax for querying information contained in an
inference model, often expressed as a set of triples. On the other hand, the OWL API 17, a
high-level Java Application Programming Interface (API) for working with OWL ontologies
that has been around for more than a decade. It supports parsing and rendering in the
syntaxes defined in the W3C specification (Functional Syntax, RDF/XML, OWL/XML
and the Manchester OWL Syntax); manipulation of ontological structures; and the use of
reasoning engines [107].

2.2.3 Existing Ontologies

Numerous ontology-based reasoning framework has been developed in the community
[6], [224], [239] for addressing cyber-physical system or social networking application in
many domains. However, existing cyber-physical or other social collaboration ontologies
are not applicable in practical, not reusable or inadequate to semantically represent cyber-
physical object relations and interactions in a social context. Most of the existing social
ontology modelling focuses on the study of different categories of social entities and proper-
ties, including social laws, social facts, social groups, human kinds, social objects and social
properties according to social theorists [76]. Research explored that social software would
benefit from utilising existing social ontologies by modelling and visualisation of social relation
and interaction for the web. For example, FOAF (Friend-Of-A-friend), SIOC (Semantically-
Interlinked Online Communities), SKOS (Semantically-Interlinked Online Communities),
and DC (Dublin Core) ontology are the well known social ontologies that can provide a
better-personalised recommendation based on semantic user profile [72], semantic search
and data reuse [160], social network analysis [181], modelling social contexts for pervasive
computing environments [33], and so forth.

FOAF ontology 18 is the most popular social ontology used for describing people, their
relationships and social activity [146, 77]. FOAF has become a widely accepted standard
vocabulary for representing social networks, and many large social networking websites use it
to produce semantic profiles for their users [91]. SIOC ontology 19 provide a semantic layer
to the social web platforms to describe the most common resources exchanged within and
across the web of communities such as define the concept of “site”, “post”, “forum”, “blog”,
etc. [146, 77, 64]. SIOC also allows adding metadata to blog posts, as it is strongly mapped
to existing ontologies as Dublin Core or FOAF for the people aspect [191]. SKOS ontology 20

17https://www.w3.org/2001/sw/wiki/OWLAPI
18http://www.foaf-project.org/
19http://sioc-project.org
20https://www.w3.org/2004/02/skos/

CHAPTER 2 : Background 26

describes systems of organisation of knowledge [146]. A common practice is to use DC terms
and its refinements to add librarian metadata to the post such as creation date using the
term dc:created, title (dc:title) or author (dc:author) [191]. The Figure 2.1 by Ereteo, et
al. [77] shows the alignment of most common social ontologies that is reused in many social
application.

Fig. 2.1 Alignments between SIOC, FOAF and SKOS [77]

Recently, the W3C Semantic Sensor Network (SSN) ontology 21 introduced that can
describe sensors and actuators in terms of capabilities, measurement processes, observations
and deployments [55]. However, a little explanation is given in the literature addressing the
problem of agent-centric cyber-physical collaboration in social environment.

2.3 Autonomic Computing Concept

Autonomic Computing (AC) is a generic concept that has becoming an important software
engineering discipline with rich literature, active research communities, and a growing
number of applications [87]. AC introduced by Paul Horn at IBM, in 2001 [106] to develop
systems endowed with autonomic behaviour, capable of self-government and self-organisation
without human intervention [152]. AC field itself draws from a disparate number of well
established fields, including artificial intelligence, telecommunications research, mathematics,
software/hardware engineering, statistics etc., each with its own view of how a system is to
be defined [213]. Particularly, Artificial Intelligent (AI) is an appropriate core discipline from

21https://www.w3.org/TR/vocab-ssn-ext/

CHAPTER 2 : Background 27

which autonomic computing borrow concepts and techniques, as automated decision making
is its central focus [125].

The grand challenge of autonomic computing is to reduce the increasing scale and
complexity of IT infrastructure by making systems and applications self-managing [227].
Complex systems are defined as those with much diversity in the interacting components
and little certainty about the outcomes in advance [179]. The complexity normally arise due
to the several factors, including advances in hardware and software technology, the growth
of Internet-connected networks, etc. AC goal is to handles such system complexity and
uncertainties by realising that computing systems and applications capable of managing
themselves with minimum human intervention [5]. For several years, there has been a fair
amount of research working on conceptual architectures or theoretical designs to create
software systems that can change themselves in the context of system performance, security,
and fault management issues. However, there is still a lack of understanding between research
communities of the broader software engineering aspects of autonomic system development.

2.3.1 AI and Machine Learning

AI concerns the study and design of intelligent machines or software that are capable of
performing a similar task of using computers to understand human intelligence [162]. AI
has been gaining popularity due to the three major factors: the growth of Big Data; the
availability of cheap, scalable, computational power; and the development of new machine
learning techniques [187]. Machine Learning (ML) is a branch of Artificial Intelligence (AI)
that aims at enabling machines to learn by themselves from the past experience or data and
perform intellectual tasks to solve specific problem that have been traditionally difficult to
solved by human beings [172]. The current research in machine learning focuses on computer
vision, hearing, natural languages processing, image processing and pattern recognition,
cognitive computing, knowledge representation, and so on [167]. Machine-learning techniques
can help in automating the time-consuming process of knowledge acquisition that is essential
to the development of a knowledge-based system [194]. More specifically, one popular view of
the field of AI—outlined by Russell and Norvig 2003 [200] in their standard text on AI that
it is fundamentally concerned with the design of rational agents. Knowledge is often acquired
by machine learning techniques, which are usually uncertain, for example in a probabilistic
sense or in the sense of fuzzy logic [96].

2.3.2 Self-Managed and Adaptive System

A self-managed system considered to automatically make decisions and take actions at runtime
that relieving the system administrator from detailed and manual operation activities [267].
Self-management concept extended to the self-adaptation aiming to adjust various artifacts
or attributes of a system with the ability to adapt, manage, repair and update themselves

CHAPTER 2 : Background 28

autonomously in response to changes in run-time and within the context of the operating
environment [21, 201]. In contrast, self-adaptation is the ability of a system to adapt, manage,
repair and update themselves automatically at the run-time often achieved through a feedback
control loop [21]. In the IBM autonomic computing architecture, self-managed resources
manage their behavior in response to higher-level goals and interact with other resources
to provide or consume computational services [56]. At the adaptive level, not only does the
system monitor, correlate, and develops action plans, the system also takes corrective actions
according to established policies [4]. However, enabling adaptive and flexible functionality
when the system is constantly changing and exhibits varying or uncertain information,
performance may be poor [66].

2.3.3 Autonomic Computing Properties

AC theory encompasses four common self-management properties usually categorised as self-*
properties or simply summarised under the term self-managing by several studies [56, 229,
125, 89, 4]. The key requirement for the self-* capabilities is that the system is aware of its
own state, requirements, or context at runtime and described as follows:

• self-configuring is the ability to adapt and re-configure automatically (i.e., installing,
updating, and integrating software entities) in response to the changing environments
by using high-level goals. The changing environment could be an integration of new
components or the removal of existing ones.

• self-healing is the ability to detect errors at runtime and initiate policy-based corrective
action without disruption of system services (i.e., detect, diagnose, and repair localised
problems resulting from bugs or failures in software and hardware). IT vendors devote
a lot of their time to identify, tracing, and determining the root cause of failures in
complex computing systems. Self-healing mechanism detects, diagnose and initiate
remedial action by switching to a redundant component or by downloading and installing
software updates.

• self-optimising is the ability to monitor and tune resources automatically (i.e., real-
locating resources, dynamic workload management, interfacing with other automatic
modules to exchange data and files). This environment continuously learns the ways
to improve its operation, identify the opportunities to make the system efficient in
performance. For example, the environment will proactively seek to upgrade its function
by finding, verifying, and applying the latest updates.

• self-protecting system has the ability to anticipate, detect, identify, and protect them-
selves from attacks from anywhere (i.e., resolve open security concerns, automatically
backup and recover resources) and take autonomous corrective actions to make itself
less vulnerable to attacks on business data and general failures.

CHAPTER 2 : Background 29

Fig. 2.2 IBM Autonomic Manager

Additionally, autonomic computing applications required some other properties apart
from the generic self-X attributes, which are interrelated and contribute to an appropriate
achievement of the AC goals [129]. These properties may include adaptability, awareness,
monitoring, dynamicity, autonomy, robustness, mobility, traceability. According to Sterritt
et al. [229] and Duan [69], other attributes may include self-awareness (aware of managed
resource) - a system must be aware of its internal state, ultimate capacity, physical connections
with other systems to govern itself [99, 242], and context-awareness (aware of the external
environment) - the system knows how to negotiate, communicate and interact with the
systems or other components of a system, and how to anticipate environmental system states,
situations and changes [242].

2.3.4 Intelligent MAPE-K Loop

A classic IBM autonomic computing architecture is generally composed of an autonomic
manager that controls one or more managed resource or element (i.e., any software or
hardware resources) using a sensor interface, which collects information from managed
resource and effectors that carry out changes interface [266, 245]. IBM coined this control
loop as MAPE-K loop (Monitor (M), Analysis (A), Plan (P) and Execute (E) using a shared
Knowledge (K)) [56] and their interactions together produce a self-managing system as shown
in Figure 2.2 that control the functioning of computer applications.

In general, Monitor component collects, aggregates and filter information retrieve from
the managed resources or environment through sensors (i.e., metrics and topologies), Analysis
component correlate and model complex situations (i.e., time-series forecasting and queuing

CHAPTER 2 : Background 30

models), Plan component constructs the actions needed to perform a desire action using
policy, and Execute component control the execution of a plan with considerations of dynamic
updates and apply changes through effectors on the controlled system [56]. The Knowledge
is the core component in an autonomic manager that deposit the sharing knowledge of data,
including system logs, strategies and some measures used by the MAPE components [69].
The knowledge is related to any information that enables the provision of self-adaptation,
such as historical information about the use of the system, context information, managed
resource details, metrics, symptoms and predefined policies [21].

At the most abstract level, the resource managed and control in the MAPE-K loop is
the smallest functional unit that exists in the run-time IT environment. These managed
elements or resources may include individual computers, servers, and data-storage devices,
but they also may include operating systems, commercial software applications, and the
middleware that connects and integrates them [170]. The key idea of this control loop
is to foster self-* properties within the software systems [80] to design safe, efficient and
predictable controllers, which enable monitoring and adjusting system’s operation dynamically
while keeping overhead low [266]. Fundamentally, this loop acts upon some hand-coded
logic, embedded by management experts in knowledge, which is not appropriate in many
context [26].

2.3.5 Social Intelligence of Autonomic Agent

Autonomous software agent focuses on the interactions between the decision processes within
the software entity and its surrounding environment to react to changes in their execution
contexts [80]. It is an autonomous component that encapsulates the logic and control of its
execution, which is directed towards the achievement of some task(s), as described in the agent
program [196]. The attributes of an agent are autonomy, sociability, reactivity, pro-activeness,
adaptiveness, interactivity, rationality, and interactivity, etc [254]. The social intelligence
of an agent has implied interaction with other agents via cooperation, coordination, and
negotiation plus intelligence [70, 253]. A social agent is described as an artificial agent
with two dimensions: processing capabilities and differentiated knowledge of the self, task
domain, and environment that drive to the development of a social behaviour [10]. However,
traditional agent model cannot activate or suppress each other directly, they must use
accepted social rules, norms and social communication capability to solve a given problem
collaboratively [124], which is essential for developing socially intelligent autonomous agent.

2.3.6 Autonomic Computing Knowledge Model

Knowledge representation and management are one of the important aspects of developing
intelligent systems. The more knowledgeable systems are the closest to achieve a real
intelligent system [242]. To determine actions, the autonomic agent relies on its knowledge

CHAPTER 2 : Background 31

base, which contains a priori defined policies [209]. The knowledge is the core component in
an autonomic manager, which allows access to data shared by the MAPE functions [69, 128].
Typically, a knowledge source is an implementation of a registry, dictionary, database or
another repository who provides access to knowledge according to the interfaces prescribed
by the architecture [4].

Behavioural knowledge and knowledge execution is a vital research area for the successful
fulfilment of Autonomic Communication [230]. The representation of knowledge at the auto-
nomic manager level is a critical issue for designing and deploying self-governing systems [141].
The autonomic computing architectural blueprint [165] outlined three broad types of knowl-
edge: i) solution topology knowledge (represented by installable unit descriptors), ii) policy
knowledge (i.e., goals, objectives or actions to be taken), and iii) problem determination
knowledge (such as monitored data and symptoms).

Different approaches to knowledge modelling and representation have been developed
for intelligent systems. Initially, Knowledge representation utilises multiple techniques,
including the incorporation of business rules, decision analytical models and models generated
from the application of machine learning algorithms through data mining techniques [218].
Nowadays, the most prevalent knowledge representation models are based on production
rules, association rules, frames, logic, decision trees, neural networks, clusters and semantic
networks [238, 242, 96]. It is more advantageous to represent knowledge according to the
open-world assumption with machine-understandable semantics [5]. Therefore, ontological
knowledge modelling is now central to many areas, including communication and knowledge
sharing, logic inference and reasoning and knowledge reuse [263].

2.4 Policy-Based Autonomic System

A policy describes principles or strategies for a plan of action that is designed to achieve a
particular set of goals [150]. Policy-based computing handles complex system properties and
allowing administrators to modify the system’s behaviour without changing the source code or
reprogramming the systems [109, 198]. Initially, the management of network infrastructure in
an enterprise was a complex and daunting affair for trained personnel [244]. Therefore, policy-
enabled network management (i.e., security, configuration, recovery, or quality of service)
introduced as a flexible solution by which the administration process can be simplified and
largely automated to reduced maintenance costs, improved flexibility, verifiability and runtime
adaptability [36]. Current policy-based approaches provide a flexible means of specifying
adaptation strategies in pervasive systems and sensor networks [35], as well as policy-based
data integration for e-Health monitoring [78].

Policy-based management is particularly important with the future vision of autonomic
computing, where an administrator may simply specify the business objectives, and the
system will operate in terms of the needed ICT [229]. However, an autonomic system requires

CHAPTER 2 : Background 32

a well-defined method for defining the policies that will specify decision-making criteria to
accomplish certain tasks such as providing services to humans and other autonomic elements
or manages and controls themselves [4]. Kephart and Walsh [125] defined three types of
policies for autonomic computing based on the notions of states and actions: i) action policies
specify what actions should be taken based on the current state of the system, ii) goal policy
specifies either a single desired state or one or more criteria that characterize an entire set of
desired states and iii) utility function policies are objective functions that express the value
of each possible state.

2.4.1 Policy Specification Approaches

There are several approaches introduced to the definition of policies, and accompanying policy
languages, which represent different levels of policy expressiveness and semantics, ranging
from logic-based languages, special-purpose policy languages, generic rule-based (if-then-else)
formats, ontology-based approaches, and so on [36]. Logic-based languages are attractive
for the specification of security policy because they have a well-understood formalism that
is amenable to machine inference[59]. On the other hand, the rule-based approach is most
influential, and most widely-deployed policy language. The classical application of rule-based
systems is in expert systems, which typically use a human expert knowledge expressed in
terms of rules for solving real-world problems. Other rule-based policy systems adopt an
Event-Condition-Action(ECA) rule [22] paradigm. ECA rules are widely used to control the
environment as well as to control reconfiguration of software systems. ECA rules have been
used in many settings, including active databases for triggering functionality based on data
monitoring and workflow management [237], access control and system management to react
to different situations [211]. In contrast, the lower-level action-based policies are used to
express the actions that should be performed when given conditions are satisfied [4].

ECA rules-based policy specification approach is a well-known and an integral part of
the AC knowledge to control the behaviour of the autonomous entities and the interactions
with other autonomic elements [211]. ECA rules have been a widely used construct for the
high-level specification of controllers in adaptive systems, such as cyber-physical systems and
other smart environments, where devices equipped with sensors and actuators are controlled
according to a set of rules [43]. Typically, an ECA rule takes the form of ON Event IF
Condition DO Actions [22]. The event part describes a situation of interest and dictates
when the rule should be triggered, and the action part of a rule is a sequence of one or more
events that describes what needs to be done if the condition evaluates true. Executing a rule
action may, in turn, may trigger further ECA rules and the rule execution proceeds until no
more rules are triggered [189].

CHAPTER 2 : Background 33

2.4.2 Policy or Rule Representation Languages

XML documents are self-describing and provide a platform-independent means to describe
data and therefore, can transport data from one platform to another [32]. The major advantage
of using XML as a policy representation language is its straightforward extensibility and
flexibility [36]. ECA rules on XML data based on the XPath and XQuery standards also
use to specify the event, condition and action parts of rules [189]. Ontology languages like
OWL are based on logical formalisms and the formal semantics of the language precisely
defines the meaning of an ontology in terms of logic [96]. Thus, ontology-based structuring
and abstraction help maintain complex sets of policies more expressively [176]. Recently,
RuleML 22 has been modularised through a hierarchy of rule sub-languages, encompassing
derivation rules (Prolog-like clauses), transformation rules (function definition equations),
and reaction rules (Event-condition-action rules) [34]. RuleML is an XML based markup
language and formulated based on datalog (a function-free fragment of Horn clause logic) for
rule representation in the SW that was proposed by the Rule Markup Initiative.

Policy-based system management deploys complex sets of rules, which may lead to conflicts
in the deployed rules due to the dynamic nature of the system. Conflict in policies means
that the actions of some rules may override the actions of others due to the overlapping
of conditions of some policies. However, policy conflict detection and resolution, along
with policy refinement and reasoning, continue to be unsolved areas of policy-based system
management [61]. In particular, different kinds of verification techniques perform on the
ECA rule-based system, depending on the available information, as described by Cano et
al. [43]. According to their study, the first verification to be performed for the detection
of inconsistency and syntax errors in the declaration of rules such as the use of undeclared
events or unavailable device actions is examples of such errors. Because syntax errors are
easily detected by any compiler or interpreter when recognising the ECA rules source code.
Additionally, redundancy of rules is detected when the condition and actions of one rule
represent a subset of conditions and actions of the other rule. Redundant rules are not
directly detected because it can be compiled and executed at the run-time without problems.

2.4.3 Autonomic System Evaluation

Testing an autonomic system and verifying that they behave correctly is still an area of
research. However, measuring the reliability and verifying that the autonomic system operates
correctly is challenging in large-scale systems, especially when it extends across multiple
domains or enterprises [4]. In general, a combination of quantitative and qualitative methods
is used to evaluate every characteristic or property of the autonomic system. McCann and
Huebscher [110] have suggested a set of metrics and methods such as Quality of Service
(QoS) to evaluate performance (usually speed or efficiency), cost of running, which reduces

22http://ruleml.org/index.html

CHAPTER 2 : Background 34

as the system becomes more self-managing, granularity for the degree of distribution of the
intelligence and so on. Alternatively, the availability of benchmarks, testbeds, and appropriate
case studies can help in evaluating and comparing distinct adaptation solutions, at least
concerning each adaptation process [201]. On the other hand, testing and validation in a live
system are arguably the most accurate way of verifying an autonomic system to ensure its
compliance with the set system’s goal [79].

2.5 Summary

There are many social collaborative platforms developed that can offer a wide range of
features including communication, dynamic collaboration, and forming the community of
people. However, these systems are lacks of agent-centric sociality and even not semantically
structured to represent and manage cyber-physical relation, collaboration and autonomous
decision making. Semantic Web technology can provide knowledge representation and
reasoning mechanism for the socio-cyber-physical system. On the other hand, it has been
seen from the literature review that autonomic computing can empower socio-cyber-physical
collaboration with self-management and adaptive capabilities. An autonomic agent model
can be developed and deploy to the system for monitor and manage socio-cyber-physical
resources, action coordination, execution and event notification on behalf of these managed
resources. Several autonomic computing models proposed to provide solutions in different
aspects but not for the self-managed socio-cyber-physical collaboration. More importantly,
to achieve a flexible autonomic control, policy model and specification model is required for
governing the behaviour of the autonomic adapter during the runtime without re-code whole
the system that can minimise the operating cost.

CHAPTER 3

Related Work

This chapter describes the state-of-the-art related work of this thesis that spans into two main
research areas: semantic social-collaborative network for cyber-physical resource collaboration
and policy-based autonomic computing to manage these resources without human intervention.
This chapter discusses and criticises the existing research efforts related to the theory,
methodology, framework and tool that were proposed to solve the related problem of this
thesis. Finally, this chapter concludes by highlighting the shortcomings of the existing work.

3.1 Semantic Social-Collaborative Network

3.1.1 Definition of Collaboration

Numerous authors have studied the phenomenon of collaboration in different ways and
proposed many distinctive definitions and characteristics of collaboration in a variety of
contexts. According to Beyerlein and Harris [31], effective collaboration means working
together efficiently and effectively to create a successful business function. Petrick [193]
suggested that collaboration requires a systems view to solve problems in a complicated
environment where agents obtain mutual benefits through their interaction. Ferreira et al. [83]
suggested that adequate collaborative software solutions needed to enable individuals and
organisations to manage, communicate and work together across time and space barriers.
However, before this study, Ellis, Gibbs and Rein [73] shown how the groupware merged
computer and communications technology and applied to a broad range of systems. The
pointed out that three key areas (communication, collaboration, and coordination) are
important to support group interaction. According to Romano et al. [197], collaboration can
be established between two researchers (i.e., peer-to-peer interactions) or among groups (i.e.,
many-to-many interactions). In both cases, it may be implemented by using collaboration
tools such as instant messaging, chat, blogs, forums, social networking and so on.

CHAPTER 3 : Related Work 36

3.1.2 Social Computing for Collaboration

A new computing paradigm termed social computing has gained rapid growth recently to
support collaboration and a few research evidenced of a broad range of benefits associated with
the use of the social network. Nan et al., [173] defined Social Computing (SC) is the study of
computer-mediated communication and interactions among people. They identified that social
computing applications like Wikipedia, Facebook and Twitter have met with tremendous
success in recent years and revolutionised how people work and communicate with each other.
Early studies by Ardini et al., [14] investigated the use of social computing to facilitate online
discussions and knowledge sharing, building awareness and supporting team coordination.
Chen and Liu [51] explored that social computing and social networks are concerned with
the intersection of social behaviour and computing systems, creating or recreating social
conventions and social contexts through the use of software and technology. The study by
Ardini et al. [14] shown the growing interest in the field of software engineering, mainly in
academia, and a general trend toward developing designated social computing platforms and
utilising them for management, coding, requirements’ engineering, and maintenance and
enhancement.

Abbattista et al. [1] presented a survey of social software, as well as investigated the
existing tools and environments for collaborative software development. They also discussed
some opportunities and challenges of incorporating social software aspects in agile distributed
software development. They explored that social software such as wikis and blogs emerged
as a practical and economical option, which may use for organising, tracking, and publishing
work and sharing knowledge.

A different study by Cordoş, Bolboacă and Drugan [57] emphasised the influence of social
media and the importance of patient’s social media usage context in retrieving health-related
information. However, they pointed out the greatest challenges in harnessing social media due
to the constant and rapid evolution, including the continuous development of new technologies
and the ever-changing popularity as well as the adoption of specific platforms among different
user demographics. Similar social healthcare research by Ventola [243] and Griffiths et al. [95]
investigated the benefits, risks and best practices of using social media tools for the future
health care delivery using social networks. In contrast, Lapointe et al. [137] examined how
individuals and organisations use social media to collaborate to promote health awareness.
In the same way, Khorakhun and Bhatti [127] explored online social networks for remote
health monitoring.

3.1.2.1 Context-Aware Social Framework

Previously, the use of the social network by collaborative organisations has been used in a
variety of contexts, including to create virtual teams, enterprise collaborations, and social
movements. There have been significant amounts of research efforts into the modelling of

CHAPTER 3 : Related Work 37

social aspects in the context-aware system. Smailovic and Podobnik [221] described the
BeFriend, a context-aware ad-hoc social networking platform based on Facebook and Google+
social graph, which can effectively be used to describe social connections. Lima et al. [144]
explored the potential of using context-aware information in Computer Supported Cooperative
Work (CSCW) application in order to support collaboration in pervasive environments. They
described the approach can be used for the design and development of a context-aware
framework that utilises users’ context information interpretation for behaviour adaptation of
collaborative applications in pervasive communities. Kamberov [121] proposed a solution
on social paradigms in mobile context-aware computing in the Smart City context. Its aim
to support the dynamical integration of devices into a context-enabled computing system
with a predefined structure where the device needs to possess a certain set of information
about the surrounding environment and enable cooperation with other elements (i.e., other
nearby devices) belonging to a system. Beach et al. [23] offered ‘SocialFusion’ that capable of
systematically integrating diverse mobile, social, and sensing input streams and effectuating
the appropriate context-aware output action.

3.1.2.2 Object and Artifacts in Collaboration Task

Several large scale empirical studies discussed how social media artifacts or objects, such
as tags, feeds and dashboards, are interrelated to bridge task management in a social
environment. Nansen et al. [174] investigated the importance and role of objects in social
relations based upon a review of literature, which emphasised that the relationships between
humans, material artifacts, and their environments. They cited that the recognition of object
sociality, where objects not only materialise relations between people but are also active
participants in human social life. Lundberg [153] observed that humans and artifacts are
interrelated in collaborative work in order to fulfil some aims or intentions.

Lima et al. [145] investigated ‘Software Ecosystem (SECO)’ as component repositories
that include socio-technical resources. They claimed that social and technical elements
need to work together in order to establish and maintain a better network where technical
artifacts and actors interact closely. Hazeyama [103] argued that some communications
exchanged during software development are closely related to various types of artifacts. He
reviewed some developed application like Jazz, Libra_on_Chat, and Bugzilla that support
the management of software artifacts (i.e., source codes, UML diagrams, and bug reports,
etc.) specific to an aspect in software development. However, he criticised some limitations
such as these applications do not support relationships among different types of artifacts or
provide a function that associates artifacts with communications.

In contrast, several studies have attempted to identify the sources of collaboration, looking
especially at the role of communication and the effects of physical and social objects on the
tendency to collaborate. Maamar, Burgeo and Sellami [156] discussed how to design and

CHAPTER 3 : Related Work 38

develop collaborative enterprise applications using business and social artifacts and supports
interactions between these artifacts through social software. Begel and Deline [24] introduce
‘Codebook’, a social networking web service in which people can be friends not only with
other people but with the work artifacts they share. The ‘Codebook’s’ graph includes nodes
for code at various levels of granularity (DLLs, source files, namespaces, types, members),
work items, bugs, revisions, non-code documents, and email messages, as well as people,
which enable software engineers to keep track of task dependencies, discover and maintain
connections to other teams, and understand the history and rationale behind the code that
they work on and use. Marie and Gandon [158] proposed the notion of Object Centred Social
Networks that define the union of a social object and corresponding users and interactions
that correspond to socially augmented content or representations such as a video or a place.
A study by Xiao [257] illustrated the role of physical artifacts to support collaborative
work in a healthcare domain. His work suggested that the design and deployment of new
healthcare technology should support the functions of physical artifacts in collaborative work
by embedding ICT into the existing infrastructure of physical artifacts.

3.1.2.3 Cyber-Physical Object Collaboration

In the past few years, a number of independent research activities that investigate the
potentialities of integrating social networking concepts into the Internet of Things (IoT)
solutions. The first idea of socialisation between objects has been introduced by Holmquist
et al. [104]. An important step in the direction of the SIoT has been accomplished in [134].
There, the implications of the integration between the IoT and the social networks have
been investigated and a few interesting exemplary applications are described. That paper,
however, does not describe how social relationships should be established by objects and does
not propose any solution regarding the required architecture and protocols.

Wei et al. [250] put forward a new concept of ‘Physical Objects Social Relationship’ for
describing, managing, and predicting the relationships between physical objects in IoT. De et
al. [62] proposed a conceptual framework for data-oriented Cyber-Physical–Social Systems
(CPSSs) and discussed a solution for building human-machine intelligence. Sheth et al. [212]
present an emerging paradigm called physical-cyber-social (PCS) computing. It encompasses
a holistic treatment of data, information, and knowledge from the PCS worlds to integrate,
correlate, interpret, and provide contextually relevant abstractions to humans. They view
PCS as the next phase of computing systems, building on current progress in cyber-physical
systems, socio-technical systems, and cyber-social systems to support computing for human
experience. Weth et al. [246] introduced cyber-physical social networks that took into
account both the physical context as well as the virtual context of the user’s live and social
recommendation service.

CHAPTER 3 : Related Work 39

3.1.3 Semantic Social Framework

In recent years, various studies have been conducted by researchers to integrate Semantic
Web technologies in distributed environments for knowledge sharing and interpretation
in the machine-understandable format. Initially, to capture and share knowledge about
collaboration, different ontologies have been developed. For example, Oliveira et al. [182]
presented a domain ontology and related sub-ontologies for collaboration, cooperation and
communication within the context of collaborative web browsing. However, it has a lack of
concept to identify a collaboration pattern in different contexts. Bennett and Baclawski [27]
cited that wikis one of the most powerful tools for geographically distributed collaboration.
They identified the most commonly used Semantic MediaWiki (SMW) that adds semantic
features such as tagging and queries to the wiki, but it is relatively limited as an ontology
language.

Finin et al. [84] investigated the way the Semantic Web utilised to represent and process
social network information. Their finding has shown that FOAF ontology is the most widely
used social ontology on the Semantic Web. Golbeck and Rothstein [91] presented an analysis of
cross-network linkages with FOAF in many online social networks and explored how this affects
network structure, relationships and captures individual behaviour. Challenger [49] introduced
‘UniGrad’ ontology by extending FOAF with graduate education and research domain concepts
and designed a social network based on this ontology. Krä̈mer and Conrad [133] proposed
a theory of social structures on the Internet that has themed as ontological representation.
Chen, Hendry and Huang [53] designed an ontology and integrated with social network
data from users and their friends, the user interest and community influences to improve
personalised recommendation systems for mobile device users. In an academic context, Obeid
et al. [180] proposed an ontology-based recommendation system to assist students to find and
select relevant universities and major subject areas in their study of interest. On the other
hand, Kumazawa et al. [135] discussed the effectiveness of ontology engineering approach for
the process of collaborative research and proposed the way ontology used in interdisciplinary
research through the experimental workshops of research development. They described
the ontology as a domain-neutral meta-model and illustrated its construction process in a
domain-neutral manner.

There are many ontology-based reasoning frameworks developed [6], [224], [239] for
supporting cyber-physical system or social networking application in many aspects. Smirnov
et al. [222] presented ontology-based information model for smart home devices interaction
where the physical level of the cyber-physical-social system described by the ontology. They
claimed that the services of physical level linked to the appropriate smart room devices
interact in cyberspace while physical devices interact in physical space.

Kabir et al. [119] introduced a ‘Social Context Information Management System (SCIMS)’
with the ability to acquire raw social data from multiple sources. It was an ontology-

CHAPTER 3 : Related Work 40

based model for classifying, inferring and storing social context information such as social
relationships and status of entities. Several researchers tend to develop ontology-driven
models for health monitoring applications. In the healthcare domain, Lasierra et al. [139]
introduced an ontology-driven system to capture knowledge regarding item management and
usage for hospitals and medical centres. Chen et al. [52] presented an ontology-based model
for diagnosis and treatment of diabetes patients in remote healthcare systems.

Smirnov et al. [222] presented an ontology-based information model for smart home
devices interaction where the physical level of a cyber-physical-social system was described
by the ontology. Later in another study, Smirnov et al. [224] proposed ontology-Based
resource interoperability in a Socio-Cyber-Physical System without agent-oriented function-
ality. Törsleff et al. [239] suggested an approach for modelling the context of collaborative
cyber-physical systems and generated ontologies that can be used at runtime to communicate
with each other and perform context-related reasoning. However, this approach did not
consider the social aspects of collaborative cyber-physical systems.

Several researchers tend to develop ontology-driven models for health monitoring applica-
tions. In the healthcare domain, Lasierra et al. [139] introduced an ontology-driven system to
capture knowledge regarding item management and usage for hospitals and medical centres.
Chen et al. [52] presented an ontology-based model for diagnosis and treatment of diabetes
patients in remote healthcare systems. However, these works suffer from several limitations
including the lack of semantic interoperability of the medical connected objects and their
data is still poorly represented. Moreover, they are based on patients medical record and
clinical practice guidelines without taking into account the emergence of IoT technology [195],
the lack of ontology model for representing knowledge of cyber-physical healthcare service in
a social context.

3.1.4 Agent-Based Social Framework

Continuous efforts were being devoted by researchers to make information systems as social
intelligent systems that encompass human and object interaction with machines. Although
some review papers have investigated agent-based modeling and tools for different domain,
very few studies have investigated the cyber-physical system design and the applications of
semantic ontology for supporting semantic interoperability. Smailovic and Podobnik [221]
integrated “Belief-Desire-Intention (BDI)” agents within the “BeFriend” platform that provide
autonomous decision-making and enable automated social discovery of new community
members.

CHAPTER 3 : Related Work 41

3.2 Towards Autonomic Computing Approach

3.2.1 Preliminary Autonomic Computing Research

The researcher from both academia and industry has contributed to the design, development,
implementation, deployment, operation and evaluation of various architectural aspects and
challenges related to autonomic computing approach. After the introduction of initial
autonomic computing model by Paul Horn at IBM, in 2001 [106], Ganek and Corbi [89]
discussed in details the autonomic computing framework and fundamental characteristics of
the self-managed system to deal with increasing software and environment complexity. Then,
White et al. [251] described a different architectural approach of autonomic computing to
achieve the goals of self-managing components. Afterwards, Sterritt [229] reported the latest
autonomic systems research and technologies that influenced the industry. He summarised the
state-of-the-art research and technology transfer issues behind autonomic computing approach.
The second version of IBM architectural blueprint for autonomic computing published in
2005 [56] that introduced an architectural building block, adoption model, the role of the
human in autonomic systems, including delegation of tasks and standardisation. Kephart
and Walsh [125] introduced a unified framework based on concepts from artificial intelligence
such as states, actions, and rational agents. Their framework interrelates three different types
of policies (i.e., action, goal and utility function policies) to be used in autonomic computing
systems.

Later, the area of autonomic computing research has been moved towards the overcome the
issue of different autonomic system modelling problem and its applications in different domain.
Tamma et al. [233] developed ‘SERSE (SEmantic Routing SystEm)’, a distributed multi-
agent system that was designed to exhibit autonomic behaviour (i.e., self-configuration and
self-healing capabilities) according to events coming from diverse resources. The idea was to
provide robust and efficient gathering and aggregation of digital content from diverse resources.
Salehie and Tahvildari [201] presented a landscape of research in self-adaptive software
by highlighting relevant disciplines and some prominent research projects to identify the
underlying research gaps and elaborates on the corresponding challenges. They explored the
adaptive properties (known as self-* properties) of IBM perspective of autonomic computing
and challenges related to it. Stathis [227] explored an alternative to the original idea of
autonomic computing that uses symbolic Artificial Intelligence (AI) agents to support self-
governance as an extension of self-management. Belhaj, Belaïd and Mukhtar [26] proposed
autonomic systems with learning abilities to render the decision-making processes of an
autonomic MAPE-K loop. Zhao et al. [264] presented a survey of autonomic computing and
communication in the context of Software-Defined Networking (SDN) and Network Function
Virtualisation (NFV) and focused on self-management and optimisation using machine
learning techniques. They discuss several goals, research challenges, and development issues
on self-management mechanisms and architectures about the software-driven network. Their

CHAPTER 3 : Related Work 42

paper covers multiple perspectives of autonomic communications in software-driven networks,
such as automatic testing, integration, and deployment of network functions.

3.2.2 Existing Autonomic System Model

Recently, some of the research efforts in both academia and industry have aimed to tackle
adaptation in different levels and domains to maintain autonomic systems functionality.
Shuaib, Anthony and Pelc [213] presented an extended intelligent machine design that was
used as a basis for defining autonomic computing systems. They pointed out that the
autonomic computing system must be certified based on its expected characteristics before
it goes live, as these systems have implications from the financial to the space exploration
industries. Alaya and Monteil [5] proposed the “FRAMESELF”, a generic autonomic
architecture based on the decision models for the self-deployment and self-configuration
of machine-to-machine (M2M) systems. FRAMESELF was designed and implemented for
self-deployment and self-configuration of M2M communication services according to machines
and applications description and environment changes. The Zhao et al. [264] presented
a survey of autonomic computing and communication in the context of Software-Defined
Networking (SDN) and Network Function Virtualisation (NFV). They further elaborated the
issues of automatic service testing, integration and deployment in the context of a virtualised
network.

Mezghani et al. [164] proposed a model-driven approach to tackle the complexity of
designing autonomic architectures and the related adaptation issues. They considered the
remote health care system for in-home patient monitoring as a case study to illustrate
the proposed models and their transformations. Recently, autonomic computing reference
model superimposed into the areas of context-aware application for sensing, inference and
action [178]. Alti et al. [9] described a “Kali-Smart”, autonomic semantic-based context-aware
platform based on Semantic Web technologies and a middleware architecture that provided
autonomy and reasoning facilities. The main objective of the Kali-Smart platform was to
collect contextual data captured directly by sensors, as well as automatically adapting data
contents to users.

3.2.3 Social Autonomic System

The integration of autonomic computing approach within social context has drawn the
attention of social scientists, academics and enterprise communities for the development
of socially-aware systems. Silva et al. [216] suggested that social software users would
greatly benefit from the utilisation of autonomic features in a social environment. They
argued that autonomic computing could help with the analysis and in decision-making,
transforming the network into an intelligent social network. To support the claim, they
applied existing autonomic computing techniques to improve social network analysis that

CHAPTER 3 : Related Work 43

primarily concentrated on identifying social entities and their relationships. In contrast, Emilio
et al. [74] analysed the self-disclosure problem in social media and provided insights towards a
self-adaptive solution. The purpose of that study was to perform constant monitoring over the
user sharing activities and notifying when a self-disclosure behaviour detected. Lin, Ho and
Lin [147] proposed a framework for developing a Near-Field Communication (NFC) enabled
intelligent agent, which combined the NFC technique with context-acquisition, ontology
knowledge base, and semantic-adaptation modules to be aware of location, time, device,
and activity contexts with respect to personal and social profiles. They also discussed an
insight towards a self-adaptive solution, intelligent and social functionalities for the NFC-
based intelligent agent (NIA) to support a comprehensive intelligent recommendation and
social-cooperation functionalities with appropriate adaptation operators for Social Internet
of Things (SIoT) environments.

3.2.4 Cyber-Physical Autonomic System

In the last few years, significant attention has given to employing autonomic computing
paradigm for cyber-physical system (CPS) design. Chun et al. [115] focused on applying
autonomic computing technologies as an alternative to making a robust and reliable system
to deal with uncertainty and uncontrolled condition in the cyber-physical world. To embody
autonomous in the software system, they proposed the Autonomic Computing Cycle of
CPS (ACCC). Hong et al. [105] proposed an autonomic computing framework for CPS and
discussed its overall architecture, development process and operation process at runtime. They
implemented the autonomic computing engine and validate the feasibility of the proposed
approach through Home Surveillance Robot scenario. Wan and Alagar [247] proposed an
agent-based autonomic system architecture that provides global dependable (behaves as
expected) functioning of CPS. They proposed Agent-based Autonomic Cover (AAC) to CPS
that focused on adaptation, healing, optimisation, and protection of resources. They assigned
AAC to monitor CPS sites autonomously and take timely actions to enforce dependable
service delivery. Aman and Snekkenes [11] proposed event-driven adaptive security (EDAS)
model for Internet-of-Things (IoT) that observe security events (changes) generated by
various things in the monitored IoT environment, investigates any intentional or unintentional
risks associated with the events and adapts to it autonomously. Recently, Ashraf et al. [16]
proposed “Enforced Demand Management (EDM)” in a smart grid as an implementation of
the autonomic computing framework, which has primarily focused on the adaptation of the
autonomic computing paradigm to make IoT self-sufficient system.

CHAPTER 3 : Related Work 44

3.3 Knowledge-Driven Autonomic Computing

There has been substantial work in the knowledge-based system in a different context,
including autonomic computing, robot control, decision support system and so on. In
general, an intelligent system is intended to possess self-awareness capabilities and autonomic
behaviour based on well-structured knowledge and algorithms [242]. In autonomic computing
era, there is an increasing demand for knowledge model to execute tasks, to make decisions,
problem resolution and system collaboration with one another. Sterritt [229] claimed that a
vital issue for the success of autonomic computing could be transfer knowledge about the
system management and configuration from human experts to the software. He outlined
the role of behavioural knowledge in autonomic communication networks, which requires a
knowledge layer to facilitate effective, transparent and high-level self-management capabilities
and the ability to possess context-awareness. Seleznyov and Hailes [206] discussed a conceptual
model for automatic acquisition and processing of knowledge about users and devices in
computer networks. Their framework employed autonomous agents for distributed knowledge
management and integrated them into an autonomic middleware component. Oliveira, Souza
and Perazolo [183] analysed knowledge management for autonomic computing by proposing
an environment to help knowledge management of human and autonomic elements. Park,
Yoon and Lee [190] described an approach for implementing system knowledge monitoring
for the autonomic control system.

Stenmark and Malec [228] shown a generic knowledge-based architecture and represen-
tation of knowledge using ontology and discussed a couple of scenarios as possible usage of
ontology knowledge in industrial robotic systems. Tenorth, Bartels and Beetz [235] investi-
gated constraint-based motion representations used in robot control that combined with a
semantic knowledge base to let a robot reason about their movements and to automatically
generate executable motion descriptions that could be adapted to different robots, objects
and tools. Tripathi [238] discussed the architecture, knowledge representation techniques and
application areas of knowledge-based expert system in Human Resource. Singh et al. [218]
presented an “Intelligent Distributed Decision Support Architecture (IDDSA)” that provided
knowledge representation and exchange among intelligent agents. Their work provided the
basis for the agent-based architecture to support knowledge management, including knowl-
edge creation, knowledge representation, knowledge exchange and the use of knowledge for
decision support on a distributed platform. Vassev et al. [242] presented a vision of knowledge
representation and awareness in mobile swarm systems formed as open-ended ensembles of
special autonomic components.

3.3.1 Policies For Autonomic System Control

For several decades, there have been several works on policy-based systems focusing on
developing architecture and specification languages for managing and deploying policies

CHAPTER 3 : Related Work 45

in autonomic computing. Liu and Parashar [149] designed “DIOS++” infrastructure for
enabling rule-based autonomic adaptation and control of distributed scientific applications.
Mukhija and Glinz [169] proposed “CASA (Contract-based Adaptive Software Architecture)”
framework for enabling the development and operation of autonomic applications for dealing
with the adaptation concerns at runtime. In “CASA”, the adaptation policy of every appli-
cation has defined externally and specified using an XML-based language, which facilitates
changes in the adaptation policy at runtime. Rufus et al. [199] discussed an autonomic system
that could allow the system administrator to specify high-level policies to maintain the system
without administrator assistance. They developed Jess (Java expert system shell) rule-based
policy engine and used Artificial Immune Systems (AISs) to sense environment status and to
monitor system components and performance to address the problems of system complexity.
Schaeffer-Filho, Lupu and Sloman [204] proposed the “Self-Managed Cell (SMC)” as an ar-
chitectural pattern for managing autonomous ubiquitous systems comprised of hardware and
software components that implemented policy-based adaptation strategies. They have shown
that the basic policy-based interactions between management components of autonomous
SMCs could be realised through exchanges of notifications and policies. Mola and Bauer [168]
proposed collaboration and communication between different autonomic managers at different
levels of the hierarchy based on active policies. Bailey, Chadwick and Lemos [21] proposed
a “Self-Adaptive Authorization Framework (SAAF)” capable of managing any policy-based
distributed “Role-Based Access Control (RBAC)” and “Attribute-Based Access Control
(ABAC)” authorisation infrastructure. Calinescu [41] introduced a framework for the formal
specification of autonomic computing policies, and used it to define how the autonomic
manager at the core of an autonomic system should expose the system to its environment.
Anthony [13] presented flexible policy expression language and AGILE framework, which
facilitates run-time adaptation policy configuration for autonomic computing.

3.3.2 Policy Specification Approaches and Languages

There are several and most adopted policy specifications languages have been proposed ranging
from general-purpose to domain-specific. A popular example is the “Policy Description
Language (PDL)” proposed by Lobo et al. [150], which is a simple but expressive language to
specify the policy as a function that maps a series of events as a set of actions. The ponder
policy specification language proposed by Damianou et al. [59] is a declarative, object-oriented
language for specifying security and management policy for distributed object systems. It
provides a common means of specifying security policies that map onto various access control
implementation mechanisms for firewalls, operating systems, databases and Java. Sloman and
Lupu [220] surveyed some of the work on policy specification for both security management
and policy-driven network management with an emphasis on practical rather than theoretical
approaches. Calinescu [41] introduced a framework for the formal specification of autonomic

CHAPTER 3 : Related Work 46

computing policies, and used it to define how the autonomic manager at the core of an
autonomic system should expose the system to its environment.

Rufus et al. [199] developed if-then rule-based policy engine for autonomic system.
Anthony [12] presented a policy definition language for the autonomic computing system in
which the policies themselves could be modified dynamically and automatically. Anthony [13]
presented flexible policy expression language and AGILE framework, which facilitates run-time
adaptation policy configuration for autonomic computing. Another widely used rule-based
policy system that adopted an Event-Condition-Action (ECA) rule paradigm. In another
study, a specification-enhanced ECA model called “Event-Condition-Precondition-Action-
Postcondition (ECPAP)” proposed by Shankar et al. [211] for designing adaptation rules.
They introduced a new notion called enforcement semantics that claimed guarantees about
rule ordering.

Davy [61] used ontologies to create interoperability across different management do-
mains using semantic reasoning, leveraging policy-based management techniques to achieve
autonomic behaviour. Quyang [117] presented a policy-based adaptive architecture for
pervasive computing and proposed policy ontology and policy language based on Event-
Condition-Action rules for well expressive and easily extensible to support the design of the
policy.

Bradshaw et al. [36] highlighted the RuleML, which is a generic rule language based
on the structure of Horn clauses (Head < − Body), but evolved toward event-condition-
action rule formats. One of the most widely-used policy languages for access control is
XACML (eXtensible Access Control Markup Language) [255] based on XML, and many
implementations for XACML documentation are available on the web site, with varying
licensing terms for public download [258]. W3C 1 recommendation of the XML data model
is hierarchical and semi-structured [86], which has many advantages to represent the policy
for its straightforward extensibility [36] and machine readability.

3.4 Application of Autonomic Computing Approach

Initially, the autonomic computing approach has been successfully applied in many disciplines
such as autonomic space exploration missions [240], spacecraft ground systems at NASA [265],
scientific collaboration [197] and many other areas. Almomen et.al. [8] examined overcrowding
problems in hospitals that threaten the safety of patients who rely on timely emergency
treatment. They applied an autonomic computing framework for self-managed emergency
departments to regulate and maintain themselves without human intervention. Ayala,
Amor and Fuentes [18] focused on the design and implementation challenges of an agent-
based “Ambient Assisted Living (AAL)” system that incorporated self-configuration tasks by
applying autonomic computing to software agents’ internal architecture.

1https://www.w3.org/TR/xmlschema-1/

CHAPTER 3 : Related Work 47

Mulcahy, Huang and Mahgoub [170] proposed an architecture of “Vehicular Ad-hoc
Networks (VANETA)” that offered the potential for intelligent transportation networks
and claimed that it can actively and passively improve travel efficiency and safety for the
vehicles. Kosonen and Ma [131] presented an intelligent traffic signal control method with
a combination of autonomic properties both controlling the signals and for modelling the
prevailing traffic situation. Aggarwal, Nigam and Shrivastava [3] introduced a new paradigm
to reduce the development cost, effort and software maintenance focusing on real-life traffic
light management system.

Warnier, Sinderen and Brazier [249] discussed an approach and architecture for a home
energy system based on adaptive and self-managing knowledge representation. They applied
a weighted rule-based system that adapts continuously to home energy environment. Seydoux
et al. [209] proposed “Semantic Internet-Of-Things (SemIoT)” that implements the MAPE-K
loop to control the connected devices in the apartment according to the policies fixed by the
user.

3.5 Summary

There are numerous study conducted in the areas of semantic social computing and policy-
based autonomic computing system and developed many approaches, methodology, tools and
framework to support in a various context. However, most of the existing research work only
focused on developing systems, whether in the area of social computing or developing auto-
nomic computing system separately and applied in many domains. Previous social computing
and networking studies [132], [14], [173] and [171] highlighted the general benefits of using
existing Web 2.0 tools or social software for human-centric social networking, communication
and collaboration. These approaches successfully applied online healthcare service where
the attention paid to create collaborative health awareness using social media [137], remote
health monitoring using online social media [127], social media for older adults [142], social
networks for future health delivery [95], etc. The limitation of these studies mainly focused on
social software in the aspects of social connections, bringing together people and organisation
with common interests and allowing them to exchange knowledge and intensify collaboration.
Many works proposed theoretical foundation, methodology and framework for collabora-
tive aspects of cyber-physical resources. Very few publications found that addressed the
issue of non-human centric social relations, communication and interactions with real-world
implementation.

As we see, semantic representations of tasks through ontologies are starting to appear as
promising research directions. Several researches [84] and [91] also suggested that modelling
of social-collaborative networks can be aided by Semantic Web’s ontologies in a machine-
readable way, which is beneficial for data and knowledge integration and reuse of the concepts.
These representations enable agents to reason about tasks, for example, to implement activity

CHAPTER 3 : Related Work 48

recognition approaches. However, existing social or other collaboration ontologies has not
explored objects or artifact-centric semantic representation in a social-collaborative network.

There has been a significant amount of research efforts into the development of autonomic
systems in a variety of contexts, which has partially replaced a few manual managements
of system element [251, 149, 233, 169, 265, 42, 209, 266, 26]. A few research suggested that
autonomic computing could help with the analysis and in decision-making, transforming
the traditional social network into an intelligent social network [122]. Very few works
such as [216], [147], and [74] indicated the benefits of integrating social and autonomic
perspective. Many studies showed that social networking methodology could be effectively
used to represent social connections between cyber-physical resources for developing social
context-aware self-adaptive system to support objects collaborative decision making. The
integration between the IoT and the social networks have been investigated and a few
interesting exemplary applications are described [134]. That paper, however, does not
describe how social relationships should be established by objects and does not propose any
solution regarding the required architecture and protocols.

There are a lot of works within the greater scope to specify and implement policy-
based management and solutions in the autonomic system without fixed coded logic. For
example, policy-based autonomic collaboration for cloud management [168], policy-driven
self-management in wireless sensor networks [35], monitoring workflows execution using ECA
rules [237], ponder policy specification language [59], policy infrastructure for self-managing
systems [50]. However, most of the literature suggested the proposed approaches were
limited-purpose languages and related to the domain or just implemented a small academic
prototype, but not appropriate for driving autonomic behaviour in every possible context.

Overall, based on the above literature review, we can emphasise that numerous researches
devoted to the area of autonomic computing and developed many approaches, methodology,
tools and framework in different aspects. Comparatively, little attention has been given to
the concept of integrating the autonomic computing approach into the cyber-physical-system.
Moreover, there are a lot of works within the greater scope to specify and implement policy-
based management and solutions in the autonomic system without fixed coded logic. However,
most of the literature suggested that existing policy-based approaches were limited-purpose
languages and related to the domain or just implemented a small academic prototype, but
not appropriate for driving autonomic behaviour in every possible context.

CHAPTER 4

Software Agent-Centric Semantic
Social-Collaborative Network

Considerable research has recently focused on integrating cyber-physical systems in a social
context. However, several challenges remain concerning appropriate methodologies, frame-
works and techniques for supporting socio-cyber-physical collaboration. Existing systems do
not recognise how cyber-physical resources can be socially connected so that they interact in
collaborative decision making like humans. Furthermore, the lack of semantic representations
for heterogeneous cyber-social collaborative networks limits integration, interoperability, and
knowledge discovery from their underlying data sources. Semantic Web ontology models can
help to overcome this limitation by semantically describing and interconnecting cyber-physical
objects and human participants in a social space.

This chapter addresses the establishment of both cyber-physical and human relationships
and their interactions within a social-collaborative network. We discuss how nonhuman
resources can be represented as socially connected nodes and utilised by software agents. A
software agent-centric Semantic Social-Collaborative Network (SSCN) is then presented that
provides functionality to represent and manage cyber-physical resources in a social network. It
is supported by an extended ontology model for semantically describing human and nonhuman
resources and their social interactions. A software agent has been implemented to perform
some actions on behalf of the nonhuman resources to achieve cyber-physical collaboration.
It is demonstrated within a real-world decision support system, GRiST, (www.egrist.org)
used by mental health services in the United Kingdom. The research work presented in this
chapter has been published in a few international journals and conferences [114], [113] and
[111].

This chapter organised as follows: Section (4.1) discusses the background of the area of
the study. Section (4.2) presents a new agent-centric Semantic Social-Collaborative Network
(SSCN) model with an extended ontology. Section (4.3) discusses the GRiST mental-health
service case study. Section (4.4) implements the extended domain ontology with a Java-based

https://www.egrist.org

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 50

software agent API design. Section (4.5) discuss the evaluation and testing of the ontology
with a comparison to related works. The chapter concludes with a discussion and further
research directions in Section (4.7).

4.1 Introduction

In the last decade, the emergence of social computing and associated Web 2.0 technologies such
as wikis, blogs, and social networks has dramatically changed the way people communicate and
share information across communities [53]. Recently, the convergence of cyber-Physical System
(CPS) and Social Computing (SC) known as Cyber-Physical Social Systems (CPSS) [46]
accelerated construction of smart communities. The fundamental idea is that the various
objects (i.e., both human and physical things) can socially interact and cooperate with each
other [256]. Within the context of CPSS, it requires tight integration of human-to-human,
human-to-object, and object-to-object interactions within the physical, social and virtual
worlds [203]. The ultimate goal of a CPSS is to improve the quality of life of citizens in a wide
variety of domains such as transportation, healthcare, smart homes, and energy consumption
by providing an infrastructure for interactive, intelligent and cost-effective services.

Recent development of the Internet of Things (IoT) seeks to connect computers to objects
with self-configuring capabilities for convergence of the physical and cyber worlds [62]. Social
IoT (SIoT) is an emerging paradigm of IoT in which heterogeneous IoT devices not only
connect and interact together but also socialise and collaborate to achieve a common goal [2].
However, existing research lacks a well-defined methodology and framework for supporting
cyber-physical interaction and collaboration in a social space. Most literature on CPSS or
SIoT research is primarily focused on low-level developments such as connectivity, platforms,
infrastructures, and component/system security.

Gaps remain with developing highly collaborative cyber-physical systems [239]. Although
some of the social aspects are partially discussed in the literature, additional efforts are
still needed for collaboration among various cyber-physical entities within the operating
environment [175]. The challenge is to implement a socio-cyber-physical collaborative system
where not only human but also cyber-physical resources (e.g., physical devices, network
components, software entities, and digital documents) can interact and communicate socially
for collaborative decision making. Developing social relationships between physical objects
will facilitate solving problems with multiple physical-object collaborations [250].

In general, social networking empowers and encourages participation, conversation, open-
ness, content creation and socialisation among a community of users [88]. A social networking
approach has been successfully applied in many domains such as plant science [186], software
engineering research [217, 25], scientific research [197], and collaborative enterprise appli-
cation [156]. These so-called social networking applications are built around connections

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 51

between people through their objects of interest such as a blog, forum, tags, bookmarks,
images, and groups of friends.

Object-centred sociality [75] was introduced for connecting people via social objects
of interest related to their jobs, workplaces, and hobbies. Social objects have a diverse
representation including events, multimedia content, people, interests, activities, and things,
which provoke, support, maintain interaction, and create social relationships or bonds with
at least one other person or a group of people[250, 158]. People do not just connect to each
other, they also connect through shared objects and work artifacts in a social network [24].
These relations between documents, software components, technical designs and other work
artifacts can influence the collaboration process [148].

Several reference models, frameworks, applications and infrastructures have been proposed
that support object-centric sociality such as wikis, groupware, google, and codebook. Unfor-
tunately, these social applications are not adequate for establishing cyber-physical and human
interactions within a social context. They do not entirely recognise how objects can establish
and maintain their social relationships, how they can be used and understood by people,
or how they tie people together within a social network [174]. The fundamental research
challenge is to investigate and find a way of representing and managing cyber-physical objects
in a social space for building smart communities.

Previously, social agents have been introduced for acting as a representative of users on
social networking tasks, such as to track and change users’ behaviour, produce content and
create connections over existing social networks [10]. A collaboration agenda includes the
collaboration’s goal, policies and the action selection order enabling the agents to achieve a
shared goal [92]. This chapter proposes a framework for software agent-centric sociality that
will not only act on behalf of humans but also provide the functionality to represent, manage
and perform actions on behalf of cyber-physical resources in a social network. The framework
will allow heterogeneous systems and resources to work together in a decentralized manner,
creating the foundations for collaborative work between humans and cyber-physical networks.

A cyber-physical object-centric social network must be able to expand dynamically as new
and diverse objects are added. This requires an intuitive and meaningful representation for
navigating and inferring information from heterogeneous data sources. Semantic Web-based
ontologies [30] provides appropriate representation approaches by semantically describing
resources and their properties in a social network. An ontology is a knowledge model
that explicitly specifies the domain concepts, properties and relationships, where reasoning
and inference mechanism can be applied to deduce new information (i.e., discover new
relationships) [181].

Core languages for producing knowledge representation models include Resource Descrip-
tion Framework (RDF), RDF schema (RDF(s)), and Web Ontology Language (OWL) [232].
Ontologies using them have been employed in many social applications to describe formal
representations of domain knowledge, often in the form of taxonomies [133]. For example,

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 52

standard social ontologies such as Friend of Friend (FOAF), Semantically-Interlinked Online
Communities (SIOC), Simple Knowledge Organization System (SKOS), and Dublin Core
(DC) have defined social network structures in many domains [91, 101, 37]. However, they
are not capable of semantically representing cyber-physical objects and their interconnection
within a social network. More recent efforts [239, 224] have still not provided a comprehensive
model of semantic relations, interactions, or reasoning within a socio-cyber-physical context.

This chapter proposes an agent-centric Semantic Social-Collaborative Network (SSCN)
that can be built on top of an existing social network. The significant advantage over
existing systems is that it allows social connections and collaborations not only between
humans but also among cyber-physical resources in a social space with the help of software
agent. An extended ontology model is introduced that semantically defines the concepts,
properties and complex social relations between human and cyber-physical resources in the
SSCN. The proposed approach is implemented and validated by applying it to a large-scale
social-collaborative healthcare service called GRiST 1 used within the United Kingdom. The
case study demonstrates the online healthcare aspects to create and manage human and
nonhuman resources (i.e., patients, care workers, physical devices, etc.) using the software
agent. The domain ontology allows semantic interlinking of these resources and the ability to
infer when interventions and social collaborations are required to meet healthcare needs. A
Java-based Software Agent API is built that provides functionality to create and manage
nonhuman resources and evaluate the effectiveness of the proposed collaborative network.
This approach helps to maximise the user experiences in collaborative healthcare services
such as emergency notification service based on the medical device data and social context.

4.2 The Proposed Agent-Centric Semantic Social-Collaborative
Network

This section discusses the design and development of a software agent-centric Semantic
Social-Collaborative Network (SSCN) with an extended ontology model. The main idea
is to establish social and semantic relations between distributed cyber-physical resources,
including humans and their work artifacts, in a social-collaborative environment. The design
considerations of the proposed SSCN is motivated by the current limitations of an existing
object-centric social networking methodology with regards to supporting cyber-physical
resource interactions and collaborations in a social context.

Our framework leverages some existing social networking features (e.g., blogs, tags,
bookmarks, sharing, instant messaging) with extended functionality relating to supporting
socio cyber-physical collaboration. Additionally, we concentrate on the establishment of
semantic social relations and interactions between cyber-physical objects as well as human

1https://www.egrist.org

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 53

entities, which can be represented and managed by the software agent. We design an
extended ontology model to support the task by semantically defining and interlinking the
socio-cyber-physical resources and their properties to facilitate data interoperability and infer
new information using reasoning rules.

4.2.1 The Design of the SSCN Framework

The proposed SSCN framework is comprised of two core functional subsystems: i) an Extended
Social-Collaborative Network (ESCN), which is built on top of an existing Social Network
(SN), and ii) an Ontology Service Module (OSM). The Human Participants and Software
Agent are the entities that represent and manage cyber-physical and social resources and
work artifacts cooperatively in the ESCN. All these subsystems together form the overall
SSCN as shown in Figure 4.1.

Fig. 4.1 Semantic Social-Collaboration Network Framework

The Extended Social-Collaborative Network (ESCN) is a subsystem of the SSCN
and comprises of a Social Network environment and Collaboration Workspace (CW) where
both human and software agents are the active participants in the system. The SN environment
represents both human and nonhuman entities (i.e., shared social objects, collaborative work
artifacts and cyber-physical resources) as network nodes and their properties and relationships
are represented as vertices. The SN also allows having an account and social profile page of
these nonhuman resources (i.e., detailed information, properties, interactions and social links,

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 54

etc.) similar to a human social profile. Human entities in the SN can establish and maintain
their social status, relations and interactions such as create and update their profile, publish
and share information, make friendship-forming groups, etc. whereas nonhuman entities can
perform similar tasks with the help of a software agent. An event notification mechanism is
important for proactive delivery of event information to focused users or resources and to
reduce repeated checks for changes or updates of activities.

The Collaboration Workspace (CW) consists of logical containers, where the human
and software agents interact to manage resource activities. The software agent is a program
composed of a set of agent templates, defining the structure and behaviour of specific kinds
of agents. Each agent acts on behalf of the nonhuman resources and interacts with the SN
environment. In CW, the software agent encapsulates functionality to represent, manage
and maintain distributed cyber-physical resources (i.e., software elements, physical sensors or
devices, network components, etc.) or collaborative work artifact (e.g., digital documents,
project entities, task schedule, programs, applications and so on) in the whole ESCN. The
agent interacts with the environment through its sensors. Sensors collect event data from the
resources and formulate actions based on the deduced information from the ontology and
execute through an effector. For example, if any changes or interactions occur in a resource,
an event is generated, which is then monitored and captured by the agent. The agent then
communicates with the OSM and sends a notification to the relevant SN node based on the
inferred information from the ontology.

The Ontology Service Module (OSM) provides ontology management and inference
services to the system. An upper ontology links with the Extended Socio Cyber Ontology
and explicitly models abstract semantic relationships between the nonhuman objects. The
extended ontology is also linked with the existing FOAF and SIOC social ontologies as well
as DC metadata. The extended ontology is linked with a Domain Ontology that borrows
necessary terms to represent the ESCN domain knowledge. This whole integrated ontology
formally represents the ESCN structure, and it updates the ontology as changes happen in
the network environment with the support of the software agent.

The Reasoning Engine is an application or subsystem of the OSM that provides the
functionality of consistency checking, concept satisfiability and automated reasoning (i.e.,
inferring logical consequences from a set of asserted facts or axioms). It provides an interface
for working with any existing OWL reasoners such as FaCT++, HermiT, Pellet, and Racer
for automated reasoning tasks. The reasoners provide basic reasoning services to apply to
OWL ontologies and use description logic-based algorithms for reasoning tasks. The reasoning
engine also provides a mechanism to create and manipulate SWRL reasoning rules so that
the ontology can make logical inferences based on a set of axioms and input data. The

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 55

software agent uses this deduced information to perform some actions on the environment or
resources.

4.2.2 Ontology Modelling

The proposed ontology model discusses a way to represent socio-cyber-physical collaboration
network data in a shared and machine-readable way. The main objective is to capture
additional nonhuman related concepts, properties and relations while reducing the unintended
modelling costs and human efforts. The main reason for the additional semantic is to overcome
limitations of existing ontologies, which are incapable of representing cyber-physical and
human sociality. For ease of development, we split our new ontology model into an UpperOnto
ontology and an extended SocioCyberOnto ontology model. A separate domain ontology that
reuses concepts and properties from extended ontologies for semantically representing the
target domain knowledge is discussed in the implementation section of this chapter.

4.2.2.1 Defining the UpperOnto Ontology

The UpperOnto ontology is the main building block that defines a minimal set of abstract
concepts and properties to semantically represent cyber-physical resources in the ESCN
environment. It is a light-weight ontology that can be reused or extended further to define
domain knowledge.

Fig. 4.2 Upper Ontology Abstract Concepts

As shown in Figure 4.2, we distinguish the upper ontology concepts precisely between
umanEntity and NonHumanEntity, which are defined as the subclasses Owl:Thing. The class
Owl:Thing is predefined and every OWL class is a subclass of Oowl:Thing. The HumanEntity
class describes a person’s related concepts and the NonHumanEntity class describes various
types of cyber-physical resources, software elements, social objects and collaborative artifacts

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 56

in the ESCN system. In the UpperOnto ontology, it is not necessary to further conceptualise
the HumanEntity class as this can be extended by borrowing terms from existing FOAF and
SIOC ontologies, such as the foaf:Person class. However, we need to extend the nonhuman
entity class to describe the object-centric social relations, which is new to the ontology
definition. For instance, the class NonHumanEntity is extended, which has a subclsses of
CyberPhysicalObject, SoftArtifact and SocialObject. The SocialObject class corresponds to
the socially augmented objects such as blogs, forums, videos, or a place, with additional
deconstructed subclasses including WorkArtifact, Bookmark and Tag/Category. Moreover,
the SoftwareAgent class represents a group of agents acting on behalf of nonhuman resources,
where they can interact and collaborative together to perform certain tasks supporting their
activities.

4.2.2.2 The Extended SocioCyberOnto Ontology

The extended SocioCyberOnto ontology reuses the concepts and properties from the Up-
perOnto ontology as well as existing ‘FOAF, SIOC and DC ontologies. The constructed
SocioCyberOnto ontology, as shown in Figure 4.3, illustrates how cyber-physical objects and
artifacts are semantically connected. The extension is limited to a very abstract conceptuali-
sation of cyber-physical object-centric sociality, but it can be shared to develop domain-level
ontologies by defining additional concepts and properties to meet the domain-specific knowl-
edge representation.

As shown in Figure 4.3, the extended SocioCyberOnto ontology borrows concepts and prop-
erties from the UpperOnto ontology. For example, the classes uo:HumanEntity, uo:NonHumanEntity,
uo:SoftwareAgent and their associated subclasses such as uo:CyberPhysicalObject and uo:SocialObject.
The class uo:HumanEntity is linked with the classes foaf:Person, foaf:Organisation and
sioc:UserGroup, borrowed from the FOAF and SIOC ontologies. The nonhuman entities can
interact with human as well as social objects such as blog posts and are , therefore, linked by
the property relation interact with the classes foaf:Person and sioc:Item. The software
manages the nonhuman entities by means of create, share, notify, etc. and links them as
uo:SoftwareAgent manages uo:NonHumanEntity.

4.3 Case Study - GRiST Online Healthcare Service

To demonstrate the applicability of the proposed approach, we consider a real-world case
study, called GRiST (Galatean Risk and Safety Technology), with the aim of implementing a
richer semantic social healthcare network. The case study explores the potential application
of our agent-centric SSCN framework. It also illustrates the benefits of the ontological model
for representing healthcare domain knowledge with regards to socio cyber-physical healthcare
resource interoperability.

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 57

Fig. 4.3 Extended SocioCyberOnto Ontology

First, we discuss social connectivity between the human participant and nonhuman
medical objects (i.e., heart sensor, digital health record, etc.), represented as nodes in the
extended social-collaborative GRiST healthcare system. Second, we discuss the semantic
representation of the cyber-physical medical object and social object by constructing an
extended domain ontology.

The particular application of GRiST for this case study is for older-adult healthcare,
which was a project sponsored by the European Union within its European Institute of
Innovation and Technology Health Knowledge Innovation Community (EIT Health) 2. The
GRiST older-adult system provides expertise directly to older adults and their network of
carer’s such as family, friends, and clinical services to ensure they are safe, secure, and
thriving [39].

The cyber-physical resources and care objects or work artifacts across the GRiST health-
care network consisting of a variety of IoT devices, medical assessment and treatment plan
documents, digital health record database, and web resources as well as human participants.
These shared objects are connected to the patient for monitoring and detecting mental-health
and wellbeing conditions. They send alerts to emergency responders or family members
and deliver an appropriate treatment plan for the patient. Currently, human participants
can interact, communicate and send messages within the care network in different ways for

2https://www.egrist.org/grace-age

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 58

delivering care services. However, GRiST and many other similar online healthcare systems
do not wholly encapsulate social relations, interactions and collaboration for nonhuman med-
ical resources. These healthcare resources and their data are not semantically represented:
metadata and relationships are not described by machine-interpretable ontologies and are not
able to take advantage of ontology inferencing. Figure 4.4 illustrates the GRiST healthcare
service scenario in a social-collaborative perspective with extended social relations involving
human and nonhuman entities.

Fig. 4.4 GRiST Social-Collaborative Healthcare Network

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 59

4.3.1 Scenario A - Simple Social Networking

Scenario A discusses simple social connections and interactions between human and nonhuman
entities in the GRiST healthcare system. In the GRiST social-collaborative network, human
entities may include Patient, Doctor, Carer, and Family; a few cyber-physical medical
resources such as Heart Sensor, Activity Sensor and GPSSensor. The care artifacts may
include DigitalHealthRecord, HealthAssessmentDoc and PersonalTreatmentPlan. All of these
entities are socially connected as network nodes and they interact and communicate with each
other to provide collaborative care support to patients. As shown in Figure 4.4, a Patient
is socially connected with a Doctor by the allocated-gp property relation, and with a Carer
who provides daily care support to the patient by visiting patient’s home. The Patient is
also connected with his Family as a friend relation, which is required in case of an emergency
contact. A Doctor and a Carer are also connected because they are co-workers in the same
care network, which builds a network of care support. All of these entities and relationships
shown in the scenario are maintained by the social networking system with the help of agents,
which is easy to implement.

4.3.2 Scenario B - Cyber-Physical Object Sociality

Scenario B also illustrates in more detail the complex social connections and interactions
between cyber-physical resources and healthcare artifacts in the GRiST social-collaborative
network. Software agents represent and manage these resources, which are created, accessed,
and used in a variety of contexts to deliver a distinctive aspect of socialisation and even
coordinate and trigger collaborative work in the care network. As shown in Figure 4.4,
there may be different kinds of physical sensors attached to a patient’s body, including
a HeartSensor to monitor heart rate, an ActivitySensor to measure physical activity, a
GPSSensor to determine the location and a SmartDevice to receive notifications if the
person’s health is at risk. Similarly, the nonhuman entities can establish social relations and
communications based on their status, interests, preferences and goals. For example, different
types of physical sensor connected to a single patient can establish social relations with each
other through a friend, or by following and notifying each other. As shown in Figure 4.4, a
HeartSensor can be a friend of an ActivitySensor by being connected to the same patient,
which means they know each other.

These medical sensors are represented as social network nodes that receive physiological
data from the patient and managed by Agent1. The sensor data are stored in the ontology
and information is deduced by reasoning rules that generate a HealthStatusReport, managed
by Agent2. The ‘Agent2’ retrieves the deduced information from the HealthStatusReport and
if the health condition is at danger level, it notifies the associated doctor’s SmartDevice based
on the additional inference rule. Afterwards, the doctor can view the alert in a smartphone,

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 60

assess the report and prescribe a treatment plan, which is a kind of document artifact called
the TreatmentPlanDocument.

Care resources also include the DigitalHealthRecord that stores health assessment data,
which is managed by Agent3. A HealthAssessmentDocument related to an individual patient’s
health assessment is normally created by a carer and stored in the health record database.
This is normally accessed by the doctor manually to see the assessment report and suggest
treatment accordingly.

In addition, the http://MedlinePlusWeb for example, is a web resource that contains
health information and other medical artifacts, and ClinicalGuidance is the page of the
website that describes the various types of health policies and information. These web
artifacts may socially be connected to each other as well as with the human user by the
relation of friends, follows, storedIn, createdBy, suggests, etc. property relations.

4.4 Implementation

First, we discuss the design and implementation of the GristOnto ontology using an OWL
language. The GristOnto ontology is built and merged with the SocioCyberOnto ontology
using the Protégé-5.5.0 ontology editor 3. Protégé is a free, open-source platform that
provides a suite of tools to construct domain models and knowledge-based applications. The
resulting ontology is populated with the GRiST synthesised dataset and automated reasoning
is performed by launching the FaCT++ ontology reasoner to determine ontology consistency,
syntax and semantics. Afterwards, a set of reasoning rules written in SWRL are applied
to test the correct operation of the ontology by inferring the medical status of a patient
from raw sensor data. SPARQL queries are also performed to determine the correct search
operation in the ontology by retrieving health-related information, similar to the structured
database search. Secondly, we implement a software agent API using the Java programming
language that can provide the functionality to create, manipulate and represent cyber-physical
resources in the social-collaborative network system.

4.4.1 Constructing the GRiST Domain Ontology

To design the GRiST care domain ontology, first, we created a mind map that defines the
most general concepts in the domain and subsequent specialisation of the concepts. Once
we have defined some of the classes, we add properties and features to these classes. Then,
we reuse concepts and properties from the extended SocioCyberOnto ontology and interlink
with the GristOnto ontology classes. The ontology extension has been done for three aspects:
human-centric corresponds to the human entity representation; artifact-centric corresponds
to the cyber-physical and collaborative augmented content representation; and social-centric

3https://protege.stanford.edu/products.php#web-protege

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 61

corresponds to the socially augmented content representation. Figure 4.5 shows the GRiST
domain ontology that illustrates the cyber-social medical resources and semantic relations.

Fig. 4.5 GRiST Domain Ontology

Using the Protégé-5.5.0 ontology editor the GristOnto ontology is constructed and merged
with the UpperOnto ontology and SocioCyberOnto ontology with appropriate classes, objects
and data properties based on the domain ontology, designed in Figure 4.5. To perform the
merging process, the extended SocioCyberOnto ontology is imported from the local drive
where it was created, and FOAF, SIOC and DC ontologies has been imported from their
URL. Only those axioms are copied that are needed as part of the target GristOnto ontology.
A snapshot of the constructed ontology is shown in Figure 4.6.

4.4.2 Software Agent API Design and Implementation

To develop the software agent API, we produced a class diagram as shown in Figure 4.7 and
then implemented it as Java classes, which define the abstract structure and behaviour of an
agent. The Agent API also provides a mechanism to create and manipulate SWRL rules in
an OWL knowledge base.

The agent function is defined in the abstract AgentTemplate class, which can be directly
inherited to implement an individual agent by defining concrete agent classes to manage
individual resources. For instance CyberPhysicalAgent and SocialAgent classes implement the
abstract methods, defined in the AgentTemplate class. The individual agent class contains the

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 62

Fig. 4.6 GRiST Ontology Class Hierarchy in Protégé

Fig. 4.7 Software Agent API Class Diagram

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 63

definition of the functions that the agent has to execute to fulfil its tasks such as observing
events and actions to be performed in the environment. Each agent class can be extended to
create and manage a specific type of resources. For example, CyberPhysicalAgent class is
extended to SensorObject class, which can also be further extended to create specific types of
sensors such as HeartSensor, ActivitySensor and GPSSensor.

The IResource interface defines functions to register and unregister agents and an agent
notification method. An agent is notified of all the observable events that the associated
resource will generate from that moment. All the observable events are detected by the sensor
and processed by the agent, which is implemented in ResourceImpl class.

The IRuleEngine interface provides basic functionality to all rules that inherit from it and
the RuleEngineImpl class represents a concrete implementation of the IRuleEngine interface.
The concrete rule engine implements rule processing, evaluation and distribution logic so
that an agent can behave accordingly.

To demonstrate programmatically how the agent abstract pattern works, let’s create a
simple agent abstract class with Java, called AgentTemplate. The states and behaviours of
the agent are defined in the the AgentTemplate by creating a set of variables (i.e., agentID,
agentName) and abstract methods (i.e., createAgent(), addResource(), executeAction()) that
can be inherited by concrete agent classes. The RuleEngine class is responsible for defining
and processing rules required to deduce information from the ontology. The code fragment
in Listing 4.1 shows the partial implementation of Agent API with Java.

1 public abstract class AgentTemplate
{

2 public abstract void createAgent
();

3 // ...
4 public final void BuildAgent ()

{
5 createAgent ();
6 }
7 addResourceRule ();
8 executeAction ();
9 update ();

10 // ...
11 }
12
13 public class CyberPhysicalAgent

extends AgentTemplate {
14 private agentName;
15 // constructor
16 public CyberPhysicalAgent(

String agentID , String
agentName) {

17 this.agentID = agentID;
18 this.agentName = agentName

;
19 // ...

20 }
21 //to process action
22 executeAction () {
23 //
24 }
25 // ...
26 }
27
28 public class SocialAgent extends

AgentTemplate {
29 // constructor
30 public SocialAgent(String

agentName) {
31 this.agentName = agentName;
32 // ...
33 }
34 // to process action
35 executeAction () {
36 //
37 }
38 // ...
39 }

Listing 4.1 : Agent API implementation with
Java.

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 64

4.5 Evaluation

4.5.1 Ontology Testing

To validate the ontological approach, the GristOnto ontology is populated with data synthe-
sised from the GRiST domain. Ontology reasoning and SPARQL queries are performed to test
the consistency, correct operation and performance of the ontology. The automated reasoning
task using the existing FaCT++ reasoner determines the consistency of the ontology, based
on assertion, syntax and semantics. The Semantic Web Rule Language (SWRL) 4 reasoning
rules determine whether the ontology accurately derives information from the cyber-physical
resource. SWRL allows users to write rules that can be expressed in terms of OWL concepts
to provide more powerful deductive reasoning capabilities than OWL alone. Finally, SPARQL
queries are performed to determine the correct information returned by the ontology.

4.5.2 Experimental Dataset

The dataset is synthesised from the GRiST healthcare domain as CSV flat documents, which
are textual representations of tabular data. In this dataset, the users’ related data include
patients, doctors, carers and family members with their basic profiles, relationship, explicit
interests, and content of social and personal activities. Nonhuman resource data include
sensors, social objects, and medical artifacts with their basic information, status, connection,
etc.

To enable the dataset for testing, it is generated to match our experimental template
for the following information: patient demographic factors (e.g., age, sex, health condition),
allocated GPs, associated carers and family members; connected physical devices to monitor
patient health condition and location; personal and social circumstances; and healthcare
artifacts created by the medical practitioners and software agent. Second, we created the
Resource Description Framework (RDF) graph of the generated dataset using the Java-based
ontology programming language, known as OWLAPI. The OWLAPI 5 is a Java API and
reference implementation for creating, manipulating and serialising OWL Ontologies. RDF is
a graph data model that formally describes the semantics or meaning of information.

One of the main advantages of the RDF model is its ability to interconnect resources in
an extensible way using a graph-like structure for data (i.e., set of triples, where a triple is
represented as subject, predicate, object). The full version of our RDF graph consists of data
about 60 users; 15 physical devices that are connected to patients, categorised as heart sensor,
activity sensor, and GPS sensor; 10 social objects and 10 medical artifacts created by and
collaborated with users, along with their metadata. The size of the RDF graph is sufficient

4https://github.com/protegeproject/swrlapi/wiki/SWRLLanguageFAQ
5http://owlapi.sourceforge.net/

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 65

to validate the system in terms of semantic modelling of socio-cyber-physical collaboration.
A partial representation of the RDF graph is shown in Figure 4.8.

Fig. 4.8 RDF Model of GRiST Data

4.5.3 Performing Ontology Reasoning and Queries

In this step, ontology reasoning and queries are performed in the Protégé ontology editor to
validate the ontology in terms of (i) the consistency and correct syntax of the ontology, (ii)
high-risk patient information inferred from sensor data by applying SWRL rules, and (iii)
SPARQL queries to verify the correctness of the ontology search.

Ontology Consistency and Syntax. The automated reasoning test is performed on
the GristOnto ontology by lunching FaCT++ reasoner. The reasoner returns the result as

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 66

expected, which indicate that the ontology is consistent and error-free as shown in Figure 4.9.
If the ontology was not consistent, the reasoner would return an error. The loading of the
ontology and import closure is successfully completed in 1544 ms. Classifying the classes
and properties and applying the ontology inference was achieved in 110 ms by the FaCT++
inference engine, which is reasonable for this size of knowledge-base.

Fig. 4.9 Ontology Classification Result Using FaCT++ Reasoner

Ontology Inference Using SWRL Rule. As discussed earlier, the GristOnto ontology
is constructed to represent knowledge from the GRiST domain that consists of cyber-physical
medical resources such as sensors, digital health records, and medical web resources. Different
types of physical sensors are connected to patients that measure their physiological data,
which is to the social network in real-time. This heterogeneity impedes to perform reasoning
across these data sources to generate an integrated view of health report based on physiological
and social data from different sources. Let us assume the following example: a domain

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 67

administrator is interested in inferring the health status of a patient and wants to send an
appropriate alert to a relevant person or object (i.e., doctor, family member, or software agent).
Consider the following questions: how can an abnormal health condition be automatically
distinguished if the measurement of the connected sensor is out of limit; and who should be
sent an alert based on varying social situations such as the patient location, nearest people,
ambulance, and so on?

Consider the following Description Logic (DL) syntax (1,2, and 3) in Listing 4.2 for the
definition of the sensors: HeartSensor, ActivitySensor, and GPSSensor are subClassOf

uo:Sensor. The HeartSensor has measurement value 60 bps, ActivitySensor has measurement
value 1.5 pal and GPSSensor has measured value as location home, which are stored in the
ontology. The HealthStatusReport ontology class represents different levels of health condition
that are defined as “normal”, “medium” and “high”. The Alert class represents different levels
of notification such as “urgency”, “severity” and “certainty”. According to the SWRL rule, a
reasoner (software agent) is able to infer the patients’ health condition from the ontology
and notifies the human or other agent via an API call.

HeartSensor ⊑ Sensor ⊓ (∃observedData .[hasValue >=60]) [DL Syntax 1]
ActivitySensor ⊑ Sensor ⊓ (∃observedData .[hasValue >=1.5]) [DL Syntax 2]
GPSSensor ⊑ Sensor ⊓ (∃hasLocation.Home) [DL Syntax 3]

Listing 4.2 : DL Syntax.

For testing the ontology inference, the following SWRL rules are written in SWRLTab, a
Protégé plug-in that provides a development environment for working with SWRL rules.

• Rule 1 states that if the heart rate (?h) of a patient (?p) measured by the heart sensor
(?s) is between 60 bps to 100 bps, then the heart condition is “normal”.

Person (?p) ∧ HeartSensor (?s) ∧ hasValue (?s,? value) ∧
swrlb:greaterThanOrEqual (?value ,60) ∧ swrlb:lessThanOrEqual (?value
,100) =⇒ hasHeartCondition (?p,normal) [Rule 1]

• Rule 2 states that if the heart rate (?h) of a patient (?p) measured by the heart sensor
(?s) is greater than 100 bps, then the heart condition is “too fast”.

Person (?p) ∧ HeartSensor (?s) ∧ hasValue (?s,? value) ∧ swrlb:greaterThan (?
value ,100) =⇒ hasHeartCondition (?p,too fast) [Rule 2]

• Rule 3 states that if the heart rate (?h) of a patient (?p) measured by the heart sensor
(?s) is less than 60 bps, then the heart condition is “too slow”.

Person (?p) ∧ HeartSensor (?s) ∧ hasValue (?s,? value) ∧ swrlb:lessThan (?
value ,100) =⇒ hasHeartCondition (?p,too slow) [Rule 3]

• Rule 4 states that if the physical activity (?a) of a patient (?p) measured by the activity
sensor (?s) is between 1.0 to 1.5, then the activity level is “low active”.

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 68

Person (?p) ∧ ActivitySensor (?s) ∧ hasValue (?s,? value) ∧
swrlb:greaterThanOrEqual (?value ,1.0) ∧ swrlb:lessThanOrEqual (?value
,1.5) =⇒ hasActivity (?p,low active) [Rule 4]

• Rule 5 states that if the physical activity (?a) of a patient (?p) measured by the activity
sensor (?s) is between 1.6 to 1.9, then the activity level is “active”.

Person (?p) ∧ ActivitySensor (?s) ∧ hasValue (?s,? value) ∧
swrlb:greaterThanOrEqual (?value ,1.7) ∧ swrlb:lessThanOrEqual (?value
,1.9) =⇒ hasActivity (?p,active) [Rule 5]

• Rule 6 states that if the physical activity (?a) of a patient (?p) measured by the activity
sensor (?s) is between 2.0 to 2.5, then the activity level is “very active”.

Person (?p) ∧ ActivitySensor (?s) ∧ hasValue (?s,? value) ∧
swrlb:greaterThanOrEqual (?value ,1.9) ∧ swrlb:lessThanOrEqual (?value
,2.5) =⇒ hasActivity (?p,very active) [Rule 6]

• Rule 7 states that if the heart condition (?p, too low) and activity level (?p, low active)
and location (?p, home) then alert level is “severity”.

hasHeartCondition (?p,too low) ∧ hasActivity (?p, low activity) ∧
hasLocation (?p,home) =⇒ sendAlert(severity , "do␣some␣exercise") [
Rule 7]

Performing SPARQL Queries To test the correct operation of the ontology and its
execution performance, we perform 6 basic SPARQL queries that are frequently issued by
practitioners in GRiST domain to retrieve medical information relevant to the patient such as
patient details, connected devices, gp, etc. The test data are not for real patients or doctors
but are synthesised based on the GRiST knowledge domain.

• Query 1. To find all patient details, the following SPARQL query 4.5.3 is executed,
which returns the results of 20 RDF statements, partially shown in Table 4.1.

1 SELECT * WHERE {
2 ?Patient sioc:id ?id .
3 ?Patient dcterms:title ?title .
4 ?Patient foaf:firstName ?firstName .
5 ?Patient foaf:lastName ?lastName .
6 ?Patient foaf:gender ?gender .
7 ?Patient foaf:age ?age .
8 ?Patient dcterms:description ?description . }

SPARQL Query 1.

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 69

Table 4.1 List of Patients Details from SPARQL Query 1

Patient id title firstName lastName

:Patient_A “P001” “Mr” “John” “Dale”
:Patient_B “P002” “Mrs” “Ann” “Preston”
:Patient_C “P003” “Mr” “Thomas” “Hartley”
:Patient_D “P004” “Mr” “Sajid” “Rahman”
:Patient_E “P005” “Mrs” “Mina” “Katti”
:Patient_F “P006” “Mr” “Mike” “Daun”
:Patient_G “P007” “Mr” “Xia” “Feng”

• Query 2. To find patient and doctor relationships where patients are connected to their
associated doctors who provide regular consultations and treatments. The following
SPARQL query 4.5.3 gives the results of 24 RDF statements, partially shown in
Table 4.2.

1 SELECT DISTINCT ?x ?y WHERE { ?x :allocated -gp ?y } ORDER BY ?x

SPARQL Query 2.

Table 4.2 Patient-Doctor Relationships from SPARQL Query 2

no x y

1 :Patient_A :Doctor_A
2 :Patient_B :Doctor_B
3 :Patient_C :Doctor_B
4 :Patient_D :Doctor_C
5 :Patient_E :Doctor_A
6 :Patient_F :Doctor_D
5 :Patient_G :Doctor_E

• Query 3. To find the status of all connected sensors for a patient. Different types of
sensor are attached to a patient’s body that provide physiological data to the GRiST
ontology. The following SPARQL query 4.5.3 gives the results of 21 RDF statements,
which is partially shown in Table 4.3.

1 SELECT * WHERE {
2 ?Sensor :sensorID ?sensorID .
3 ?Sensor foaf:name ?name .
4 ?Sensor foaf:status ?status .
5 ?Sensor :attachedto ?attachedto .
6 ?Sensor :timestamp ?timestamp .
7 ?Sensor :value ?value .}

SPARQL Query 3.

• Query 4. To find the health status of a patient. Data from all connected sensors are
combined to generate a health status report using the following SPARQL query 4.5.3
with the results of 3 RDF statements shown in Table 4.4.

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 70

Table 4.3 Status of All Connected Sensors from SPARQL Query 3

sesorID name status attachedto timestamp value

“hs01” “Heart Monitor” “Active” Patient_A “12:20” “96bpm”
“hs02” “Heart Monitor” “Active” Patient_B “13:11” “74bpm”
“hs03” “Heart Monitor” “Active” Patient_C “14:21” “88bpm”
“as01” “Activity Monitor” “Active” Patient_A “12:20” “4.0pal”
“as02” “Activity Monitor” “Active” Patient_B “13:11” “2.0pal”
“gps01” “GPS Sensor” “Active” Patient_A “12:20" “home”
“gps02” “GPS Sensor” “Active” Patient_B “13:11" “street”

1 SELECT DISTINCT * WHERE {
2 ?x :sdata ?sdata .
3 ?x :related ?y .
4 ?x :riskStatus ?riskStatus .}

SPARQL Query 4.

Table 4.4 Health Status Of A Patient from SPARQL Query 4

x sdata y riskStatus

health_report_1 activity_sensor_1 Patient_A “abnormal”
health_report_1 heart_sensor_1 Patient_A “abnormal”
health_report_1 gps_sensor_1 Patient_A “abnormal”

• Query 5. To find the health assessment of a patient from a manual assessment document
completed and submitted by a patient or one of the care team to the GRiST system
and assessed by a relevant doctor. The following SPARQL query 4.5.3 gives the results
of 1 RDF statement as shown in Table 4.5.

1 SELECT * WHERE {
2 ?assessment_document_1 dcterms:description ?description .
3 ?assessment_document_1 dcterms:date ?date .
4 ?assessment_document_1 :createdBy ?createdBy .
5 ?assessment_document_1 :assessedBy ?assessedBy .
6 ?assessment_document_1 :related ?related . }

SPARQL Query 5.

Table 4.5 Health Assessment Of A Patient from SPARQL Query 5

assessment_
doc_1 description createdBy assessedBy related

assessment_
doc_1

“The patient
Jemmie Lee
is suffering
from suicide
tendency”

“Jemmie
Lee”

“Dr. Andrew
Garfield” Patient_A

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 71

• Query 6. To find a treatment plan document, which is created by a doctor based on
the patient’s manual health assessment and health status report generated by sensors.
The following SPARQL query 4.5.3 gives the results of 1 RDF statement as shown in
Table 4.6.

1 SELECT * WHERE {
2 ?treatment_plan_1 dcterms:description ?description .
3 ?treatment_plan_1 :prescription ?prescription .
4 ?treatment_plan_1 :prescribedBy ?prescribedBy .
5 ?treatment_plan_1 :related ?related . }

SPARQL Query 6.

Table 4.6 Treatment Plan For A Patient from SPARQL Query 6

treatment_
plan_1 description prescription prescribed

By related

treatment_
plan_1

“Treatment
plan for Mr
John Dale”

“Patient
should do
regular
exercise
and take
medication
prescribed
in document”

“Dr.
Fincher
David”

Patient_A

4.5.4 Ontology Performance Metrics

To measure the GristOnto ontology performance on query processing, we use the metrics
query “execution time” in milliseconds (ms) and the number of “returned results” after
processing each SPARQL query, which is shown in Table 4.7. Since we are using only exact
queries in a single ontology, the use of traditional Information Retrieval measures, such as
precision and recall makes no sense, because the precision will be always 1 in our case.

Table 4.7 Ontology Performance Metrics

Query no. Execution time (ms) Returned results

Query 1 0.4 20
Query 2 0.6 24
Query 3 0.4 21
Query 4 0.2 3
Query 5 0.1 1
Query 6 0.1 1

Based on the ontology performance metrics shown in Table 4.7, we found that the main
factor influencing query response time is the number of available axioms in the ontology. The
results show that the ontology performs very well for a small-sized RDF statement (i.e., Query
5 and Query 6), but as the RDF size increases the computation cost increases dramatically

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 72

(Query 1 and Query 2). This suggests care must be taken in how the knowledge domain is
interrogated, making sure the queries are granular enough to be conducted in real-time.

4.5.5 Comparison to Related Works

To assess both characteristics and capabilities of the proposed SSCN system, a systematic
comparison between SSCN and most recent related work in the area of study is presented.
The key properties that are considered for evaluating the proposed SSCN model are social
networking, use of agents, semantic interoperability of the system, and the support for
human-centric, object-centric and socio-cyber-physical collaboration. Table 4.8 presents the
comparison metrics for different aspects of the system.

Table 4.8 Comparison metrics between the proposed SSCN and related work

Related
Work

Social
Network-
ing

Agent-
Oriented

Semantic
Interoper-
ability

Human-
Centric

Object-
Centric

Socio-
Cyber-
Physical
Collabo-
ration

Alvertis et al. [10] n y n n n n
Schmidt et al. [205] n y y y y n
Törsleff et al. [239] n n y n n y
De et al. [62] n n y n y y
Smirnov et al. [224] n n y n y y
Weth et al. [246] n n y n y n
Kabir et al. [119] n n y y y n
Wei et al. [250] n n y n y y
Nazarenko et al. [175] n n y n y y
Hristoskova et al. [108] n n y y y n
Xia and Ma [256] y n n y y y
SSCN Model y y y y y y

4.6 Discussion

Several studies have explored foundational theory, frameworks, models, and adaptive services
across cyber-physical-social systems. They mainly investigated the theories and frameworks
for implementing human and object-centric social networks and discussed collaboration
aspects between them. Although a few studies addressed the cyber-physical social system,
they do not consider how these resources could establish and maintain their social relations and
interactions with each other including human entities. In order to assess both characteristics
and capabilities of the proposed SSCN system, a systematic comparison between SSCN and
the selected 11 most recent related works in the area of study is reviewed and analysed.

Based on our investigation, different socio-cyber-physical or social-collaborative solutions
have been proposed for different purposes, each of them presenting advantages and drawbacks.
The comparison metrics in Table 4.8 shows that most of the related work is not focusing on
developing the mechanism for an agent-oriented approach with semantic social interoperability

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 73

to support cyber-physical collaboration. Our proposed SSCN model is a comparatively
enriched semantic structure for deducing information and performing agent-based actions in
the environment.

Additionally, in this chapter, we aimed to model a set of shareable concepts and semantic
knowledge of the GRiST domain to demonstrate socio-cyber-physical collaboration in a
machine-readable way. A few previous studies developed some well-defined ontological
knowledge models for specific cyber-physical domains. However, they are not focusing on
ontological knowledge modelling of the agent-oriented approach to managing socio-cyber-
physical resources in a social environment. Thus, our specific study goal was to determine
whether the Semantic Web ontology was considered suitable for the semantic representation
and interoperability between cyber-physical and social systems resources.

Designing and developing ontologies is a complex task, which greatly needs involving
appropriate knowledge management methodology and domain experts. On the other hand,
there are no globally accepted evaluation mechanisms to measure the ontology performance.
Most often, an ontology is tested and validated through performing a series of SPARQL
queries and observing the syntax, consistency and correctness of returned results. This similar
approach has been applied to test and validate our ontological GRiST knowledge model. Our
ontology has passed these tests and demonstrates the benefits of semantic cyber-physical
resource interoperability and the feasibility of ontological operations on it within a decision
support system. The implemented software Agent API demonstrated how to observe and
retrieve events from the resources and perform actions in the environment by manipulating
SWRL rules in an OWL knowledge base.

4.7 Conclusion

Current research and development of social software methodologies have no adequate function-
alities to support cyber-physical relations and interaction in a social context. Moreover, the
lack of semantic definition provides poor data interoperability, accessibility and information
discovery from the heterogeneous data sources. To overcome these limitations, we propose
the agent-centric SSCN framework. It allows cyber-physical resources to be represented and
semantically interconnected as social network nodes, which are managed by the software agent.
We develop an extended ontology model that plays a key role in semantically interlinking
nonhuman resources in the social world, and supporting ontology reasoning and SPARQL
queries for information integration and retrieval.

We discussed a real-world scenario for a collaborative healthcare service context, called
GRiST to validate the practical applicability of the proposed approach. The case study
demonstrates how SSCN could be utilised to deliver better care support through establishing
semantic social collaboration between health practitioners and socio-cyber-physical medical
resources (i.e., wearable devices, sensors, care artifacts, etc.). To validate the case study,

CHAPTER 4 : Software Agent-Centric Semantic Social-Collaborative Network 74

we developed an extended domain ontology and populated it with test data, synthesised
from the GRiST domain, which is then tested and evaluated through the reasoning rules
by performing a series of SPARQL queries. The results show that reasoning rules can be
beneficial to infer additional knowledge and trigger the appropriate level of alerts by the
software agent-based on the patient’s physiological medical data and social context.

One of the key limitations of our approach is the inability to handle uncertainty and social
dynamics of cyber-physical data due to the complexity and constant changes in resource
status as the network grows. Managing and keeping track of these larger numbers of resources
is a complex task for human agents even with the help of traditional software agents. Our
future work is to develop a knowledge-based intelligent agent model that can autonomously
monitor and analyse the environment data and take appropriate actions within the complex
socio-cyber-physical system that do not require human intervention. To address the issue, In
Chapter 5, we propose a generic autonomic social-collaborative framework and autonomic
adapter architecture that is driven by flexible policy.

CHAPTER 5

Generic Autonomic
Social-Collaborative Framework
(GASCF) and Autonomic Adapter
(AA) Architecture

Autonomic Computing (AC) was intended to tackle the growing complexity of Information
Technology (IT) infrastructure by making it self-managing and adaptive. The core idea is to
make the system intelligent enough to monitor all aspects of the changing environments and
its resources, and to control management decisions by defining high-level policies. For several
years, great efforts have been devoted to the study of system performance, security, and fault
management issues in different IT domains. Less attention paid on the development and
adoption of AC theory to achieve the self-management and adaptability within the context
of socio-cyber-physical collaborative system. This may be because it is difficult to create
such autonomic systems capable to continuously sense and adapt to ongoing changes of
cyber-physical resource status and their social context and can make collaborative decision
and actions by themselves. The social network plays an essential role in representing the
situation in which socio-cyber-physical resources can interact, communicate and collaborate
with each other with the help of software agent. However, the remaining challenge for humans
or traditional computational agents is to monitor, manage and maintain a large number of
socio-cyber-physical resources in real-time as the network grows uncertainly. It also causes
additional management and decision making issues, increasing resources, costs and human
errors.

To deal with the above problem, this chapter introduce an intelligent agent model, called
Autonomic Adapter (AA) driven by the high-level policy. The AAs are integrate into the
system for monitoring and managing the socio-cyber-physical resources and to achieve the

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 76

self-managed and adaptive goal in the deployed system. The AAs are also able to interact and
communicate with each other through our proposed Generic Autonomic Social-Collaborative
Framework (GASCF). The GASCF is a social-collaborative network built on top of the
existing social network. We demonstrate and validate the propose system by applying it to a
healthcare system, called eGRiST1. The research work presented in this chapter has been
published in a international conferences [112].

This chapter is organised as follows: Section (5.1) discusses the background of the area
of the study. Section (5.2) discuss the conceptual model of a new Generic Autonomic
Social-Collaborative Framework (GASCF). It focuses on a high-level social-context based
collaborative system, and the use of AAs makes the system self-managed and adaptive. Section
(5.3) introduce AA architecture and section (5.4)the general representation of event-condition-
action rule-based policy to control AAs operation. Section (5.5) validate the effectiveness of
the approach by applying it to a large-scale collaborative healthcare service, called GRiST
(https://www.egrist.org/) that is being used within the English National Health Service and
other organisations. Finally, we discuss this work in terms of its overall contribution and what
is necessary to evaluate such systems to identify operational performance and effectiveness in
Section (5.6). The chapter concludes with a further research challenge in Section (5.7).

5.1 Introduction

Autonomic Computing (AC) was introduced by IBM in 2001 [106] that brings together many
fields of computing with the purpose to create self-managed systems [266]. The fundamental
design goal of AC was to build an intelligent and self-controlled IT system in the same
manner as the human nervous system regulates and protects our body [231]. The theory
of AC revolves heavily around the monitor, analyze, plan, execute, and knowledge (MAPE-
K) control loop [56]. The initial design AC aimed to decrease some of the complexities
associated with the management of the IT system, reduction of maintenance costs and
errors, and improvement of services by making the system self-managed and adaptive [227].
Later, AC concept has been extended by the capability of adapting themselves based on
context-awareness features [215, 164]. The context-awareness idea was to adjust various
artifacts or attributes in response to changes and the context of the operating environment in
run-time [201]. At the adaptive level, the system not only monitors, correlate and develops
action plans, it also takes corrective actions according to established rules.

Additionally, to be autonomic, a system should have knowledge of itself and its components,
as well as the context surrounding its activity, and then be able to act accordingly [106].
This requires an accurate model of knowledge specification, acquisition and processing [202].
For example, rule engines and correlation engines (with their associated languages) are useful

1https://www.egrist.org/home

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 77

technologies for analysing monitored data and log files to identify trends or situations that
warrant deeper examination [125].

Policy-based management using Event-Condition-Action (ECA) rules [22] is a well-known
approach and an integral part of the AC knowledge. Typically, an ECA rule takes the form of
ON Event IF Condition DO Actions [22]. The event part describes a situation of interest, the
conditions determine when the rule can be fired, and the action part executes some change
in the environment.

Several AC model proposed that have been successfully applied to tackle the adaptation
problem in different levels and domains. For example, AC approach has been successfully ap-
plied in autonomic space exploration missions [240], spacecraft ground systems at NASA [265],
scientific collaboration [197], autonomic traffic control [231, 131], and self-controlled traffic
management [3], enforced demand management (EDM) in a smart grid [16], autonomic
communication in the context of software-driven network [264] and so on.

Socio-Cyber-Physical System (CPSS) is a more recent domain where autonomic computing
would seem to be particularly appropriate for managing heterogeneous resources. In general,
a Cyber-Physical System (CPS) facilitates tight integration between computation, including
cyber world (i.e., computers, servers) and the physical processes (i.e., sensors data) through
computer networks with the aim to integrate the intelligence in everyday objects/services
to execute critical tasks [65]. CPSS integrates various resources from the physical world,
cyberspace, and social network [203] that take both the physical context as well as the virtual
context of users into account [246]. It can be applied to social services, especially in medical
and healthcare applications for real-time monitoring of the patient’s health condition and
deliver services on the fly. However, having a large number of resources makes CPS unreliable
because of the lack of the abilities to change the system behaviour against unexpected
changes in the external environment and to adapt for the internal system failures [105].
Therefore, it is an ardours task and error-prone for human or traditional software agents to
keep track, manage and maintain these large numbers of unpredicted resource status and
their behaviour with the environment in which it is deployed when they are interconnecting
in the social-collaborative environment. AC approach has the necessary foundation to tackle
this challenge by developing an intelligent agent model with their behaviour governed by
the high-level policy. Previous research suggested that autonomic computing approach can
be employed to improve collaborative information processing in the social network so that
system-wide self-management is achieved [122].

Despite the several architectural models and practical applications of AC in different
domain, there are still many technical challenges exists which needs to be addressed to achieve
the self-managed and adaptive goals in a social cyber-physical collaboration context. As
discussed in Chapter 4, semantic social networking approach can enhance the capabilities for
easier collaboration, communication and interactions between human and non-human entities
through software agent. However, there are several gaps and dilemmas identified that need

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 78

to be resolve to achieve self-managed socio-cyber-physical system. The most common issue is
to monitor and manage a large number of cyber-physical resources, their social interactions
and collaboration using traditional software agent. Within so-called multi-agent systems,
agents cannot activate or suppress each other directly but must use accepted social rules and
forms of communication to solve a given problem [124].

Furthermore, initial research suggested that an autonomic system design should consider
to support communication and interaction cooperatively with various autonomic elements
without human involvement [125]. It is a challenging task to establish relations between
autonomic managers and their cooperation in social context [168]. Many studies discussed the
social intelligence of the agent, which has the ability to interact with other agents (and possibly
with humans) via cooperation, coordination, and negotiation rules [253, 67]. The presence
of a social intelligence denoted as the sophistication of communicative mechanisms, ability
to represent aspects of other agents (individually or grouped), in order to anticipate their
actions [70]. Semantic social network is a promising approach to design and implement social
intelligence feature within an autonomic agent that can act on behalf of socio-cyber-physical
resources to support their social interaction and perform action [113].

To achieve the aforementioned challenge, this chapter proposes Generic Autonomic Social-
Collaborative Framework (GASCF) and generic Autonomic Adapter (AA) architecture with
their behaviour governed by ECA rule-based policy. The GASCF can be used to implement
a self-managed IT system such as social cyber-physical collaborative system, where numerous
AAs can be configured and deploy within the IT system to manage resources. Our proposed
AA architecture is unique compared to other existing model because it is generic and socially
intelligent as they can cooperate and communicate with each other through a social network
for collaborative decision making when installing in the target IT system. These AAs uses
centralise knowledge repository to decide and perform action on the environment to achieve a
shared goal. The AA’s local rule inference engine can trigger actions based on the monitored
data and execute some or all of these actions through its executor after getting confirmation
from the global rule inference engine. In some cases, an action triggered by an AA may
be insufficient to meet operational or system requirements, hence, the global rule inference
engine outside AA can collate all actions triggered by different AAs and then decides the
final intervention according to high-level strategy. The cyfber-physical health care system is
one of the popular application which can greatly benefit from the utilisation of our GASCF
and AA architecture. We demonstrate and validate the propose system by applying it to the
eGRiST2, mental-health risk and safety management decision support system [71, 40, 38].
The eGRiST is currently used within the English National Health Service (NHS) and other
organisations. The research work presented in this chapter has been published in [113].

2https://www.egrist.org/home

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 79

5.2 High-Level Conceptual Model of the GASCF

The GASCF is a high-level conceptual framework that is composed of multiple AAs that can
collaborate and communicate through a Social-Collaborative Network (SCN) for decision
making and intervention. A set of managed resources in the operating IT environment are
integrated with several AAs, where individual AA can communicate with each other via a
social-collaborative network and uses event notification mechanism to activate and coordinate
decisions based on the defined policy. The GASCF framework composes of multiple AAs
that work in cooperation through the social-collaborative network proposed in Chapter 4.
All kinds of connections and interactions between human and resources are maintained
through the social-collaborative network, which is monitored and managed by integrated AAs.
Figure 5.1 describes the high-level architecture of GASCF, which incorporates three main
sub-systems: i) IT Infrastructure, ii) Social-Collaborative Network proposed in Chapter 4,
and iii) Autonomic Adapters. All of these sub-systems together create the whole GASCF
infrastructure, describes in details below:

Fig. 5.1 High-level Architecture of GASCF

The GASCF can be used to implement self-managed IT systems in a social context
to monitor and optimise their resources without human intervention. The example of IT

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 80

systems may include, cyber-physical social system, distributed network, Social Internet of
Things (SIoT), Intelligent Decision Support Systems (DSS), etc. The resources may include
all physical devices, cyber components, software elements, social objects, system processes
as well as humans who may interact and collaborate through a social network. The event
data may generate and come from heterogeneous resources of the IT environment such as the
physical devices, software elements, social objects or other artifacts and so on. For example,
the state changes of a device (i.e., threshold parameter out of limit), the document created
or updated, etc., all of these change to the resources generate events, which is monitor and
control by the integrated AAs.

The AAs are a collection of interactive and socially intelligent agents in GASCF, respon-
sible for monitoring, sensing and acquiring raw context data about an event from various
distributed cyber-physical resources and then analyse the these data and determines the
actions needed for the system. This decision is taken based on the external policies stored
in the knowledge repository, configured by domain experts such as sending notifications to
resources, update or change something in a resource or communicate with other AAs.

Basically, the social-collaborative network as a whole acts as a communication network
between the cyber-physical and social resources, autonomic adapters, human participants
and the IT system as a whole. The SCN represents internal or external resources as network
nodes and their relationships as edges to support social interactions of these resources. AAs
has no direct communications between them but they can communicate through SCN for
collaborative decision making. For example, an AA can be represented as a node and
connected with other AA as a friend property relation in the social network for sharing event
and trigger actions to the target environment or resources.

5.3 Generic AA Architecture

AAs are the fundamental autonomous agents of GASCF that perceive input events from their
managed resources through sensors use these percepts to determine actions to be executed
through their executors. The resources can be monitored and managed by AAs including
physical hardware component (i.e., network components, medical monitoring devices and
sensors), a software element (i.e., APIs, a database, a web service), a virtual system (i.e.,
cloud application, workstation, IT services), any other type of web resources (i.e., social
objects, work artifacts), or a IT system as a whole.

The AAs interacts with neighbouring AAs or with the environment as well as humans via
a social-collaborative network for cooperation and coordination of decision. Subsequently,
AA uses policies from central knowledge Repository, which is triggered and interpreted
as rules by the rule inference engine. Typically, an event is generated when there is a
significant change occurs in a resource (i.e., failure of CPU, memory overload, database
updates, etc.). An action trigger and execute by AA’s based on either correlation rules

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 81

or action rules from the policy to solve allocated tasks by executing dedicated programs.
Correlation rules infer a situation by combining several dependent events or actions into one
meaningful action. An output action from an AA may raise further input events for another
AA during its execution.

As illustrated in AA architecture (Figure 5.2), an individual AA builds upon four main
functional elements: a Sensor Interface (SI) that manages multiple sensors, an Intelligent
Manager (IM) loop that consists of additional three sub-elements, including Monitor (M),
Executor (E), and a Local Rule Inference Engine (Local RIE) that trigger an own intervention.
Another important component is Global Rule Inference Engine (Global RIE) that collate
all actions triggered by AA’s Local RIE and make a final decision according to higher-level
strategy.

Fig. 5.2 Generic Autonomic Adapter Architecture

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 82

i) Sensor Interface (SI): An AA can manage or control multiple events from one
or more managed resources through its several sensors or listeners, deeply embedded
in the operating system. These sensors are basically software modules, implemented
within AA and communicate with resources via web a service interface. Events are
generated when there is a significant change occurs in managed resources. Each AA’s
Sensor detects and retrieve the occurrence of the events from the variety of resources
(i.e., internal or external objects) and then sends the collected sensor data to the
associated Monitor component of an AA.

ii) Intelligent Manager (IM): An AA’s intelligent control loop functionality is config-
ured within the Intelligent Manager module, and their behaviour are controlled by the
ECA rule-based policy from central knowledge repository. The basic functions of the
AA’s Intelligent Manager components are discussed below:

• Inside the intelligent manager, the Monitor component is responsible to collect,
correlate and filter sensors’ data, received from multiple Sensor components.
AA’s Monitor function is to pull out these sensor data and determine which factors
are of interest, the priority order and whether this is only for particular value
ranges through correlation rules in the policy. In effect, the monitor accesses the
policy knowledge and matches sensor data to their associated threshold parameter
and determines whether the received data set contains variables and values that
match the monitor’s threshold parameters in the policy. Next, the monitor sets a
new context variable by combining several dependent events into one meaningful
event. Afterwards, the monitor communicates and sends the new variable

conditions to the AA’s Local RIE, which can trigger some actions depending
on these variables.

• Local RIE component provides a mechanism to trigger the relevant actions by
evaluating the variables given by the Monitor component based on action rules
from the policy. The local RIE fires the action, needed to achieve certain
goals and objectives defined in the policy. It is one of the core mechanism that
implements the action rules, associated with the specific AA that determines
what action should be fired, if relevant parameters are observed, and the
conditions are fulfilled. The local RIE also determines that if an action is
triggered, a message is sent to the Global RIE for further action evaluation and
correlation, triggered by the other AAs.

• Executor component receives the final action command from Global RIE and
provides the mechanisms to execution of the action over the managed resources
or other AAs via social network environment. To perform this tasks, the executor
retrieves the actions definition from the policy such as function name, parameters

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 83

and values. These actions usually indicate some sort of alteration or adaptation
(i.e., setting new variables, triggering a new event, sending an alert or notification
message, or do something else) to one or more managed resource or sending
intervention to a specific social network node.

iii) Global RIE: A Global RIE is a central rule inference engine that implements Knowledge
Repository and translate policies as independent rules. It is a most essential module for
knowledge distribution, where all AA’s Local RIE must communicate and send actions.
The global RIE is responsible for collating all actions that are active at any one time
across all AAs, and model final adaptation plan by scrutinising these actions based on
its own higher-level strategies from the knowledge repository. The global RIE evaluates
whether all of the action requirements and constraints are met the system requirement
and decide if an adaptation is needed or not. If the decision is taken to execute the
given AA’s intervention, then the global RIE sends the yes notification back to the
associated AA’s Executor and the actions are then executed accordingly by calling
some relevant functions defined in the policy.

5.3.1 Process Flow of an Autonomic Adapter

The interactions between AA’s sensors and intelligent manager’s component (monitor, local
RIE, executor) uses the event notification mechanism based on the input and output pa-
rameters. An event is a type of action or signal to the sensor that something has happened
to the objects or the system. As shown in Figure 5.2, each AA’s sensor and intelligent
manager components have a separate function that takes several inputs and produces outputs
according to defined policy. An output action from an AA may raise further input events or
interventions for other AAs during their execution. The process flow below describes the
high-level input and output data flow between AA’s components in real-time.

5.3.1.1 Sensor Process.

Sensors are connected to one or more managed resources and configured to collect specific
event data from each managed resource. When an AA’s sensors observed data fell within
their remit, an event is triggered and these data are then streamed in real-time to associated
AA’s monitor with which a sensor is connected. The sensors do not by themselves know or
care about whether event data is of interest to a connected AA or not. The sensor process is
shown in the Process 1.

5.3.1.2 Monitor Process.

The monitor component of an AA is configured to respond to specific elements of the sensor
data where the relevance of sensor data is determined. Data may come from multiple sensors

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 84

Process 1 : Sensor
1: input: generated event ei from managed resource mri or a social-collaborative network

scn environment that matches with AA’s sensor threshold parameter;
2: output: a notification message ni and a set of sensor data d1, d2, ..., dn to monitor

component m;
3: procedure begin
4: while at time ti, a new event ei occurs in mri do
5: if e1 value is within the threshold range fo sensor si then
6: input e1 into the sensor si;
7: assign unique key for input event e1 ;
8: put event e1 into the dispatch queue based on the arrival time;
9: end if

10: check next event until 0;
11: end while
12: send a notification message ni to monitor m;
13: send all sensor data {(d1, d2, ..., dn) ∈ Si} to monitor first-come-first-serve basis

if requested;
14: end procedure

and if the values match the monitor’s threshold parameters, a rule is triggered. For each true
condition, a new parameter is assigned according to the context requirements. The monitor
is then sent a notification message with the new variable set to the local RIE component.
The monitor process is shown in the Process 2.

Process 2 : Monitor
1: input: a notification message ni with all sensor data {(d1, d2, ..., dn) ∈ Si}, where each

monitor input is si ∈ M ;
2: output: a notification message ni to Local RIE and a list of assigned context variables

var1, var2, ..., varn that are returned true;
3: procedure begin
4: while at time ti, a notification ni received from sensor si do
5: input all sensor s1, s2, ..., sn;
6: for each input sensor si do
7: if sensor data di is equal or within the range of threshold value vi then
8: set a new context variable for each matching condition;
9: return true;

10: end if
11: end for
12: send a notification message ni to Local RIE ;
13: send all context variable var1, var2, ..., varn to Local RIE ;
14: end while
15: end procedure

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 85

5.3.1.3 Local RIE Process.

The local RIE finds all the rules that have variable conditions matching to the monitor
outputs. The local RIE collates and evaluates all new context variable sets. If a condition
matched with a particular type of context data, it returns true. For all combined true
conditions for a particular group of contexts within an expression, it will trigger actions from
the specified policy. The local RIE process is shown in the Process 3.

Process 3 : Local RIE
1: input: a notification message ni with all context variables var1, var2, ..., varn that are

only returned true;
2: output: trigged action ai with associated metadata and a notification message ni to

Global RIE ;
3: procedure begin
4: while at time ti, a notification ni received from monitor m do
5: input all context variable var1, var2, ..., varn that are evaluated to true in monitor;
6: for a set of expression Expri do
7: collate and evaluate group of context variables {(var1, var2, ..., varn) ∈ Expri};
8: if all context variable within Expri evaluated to true then
9: return true;

10: end if
11: end for
12: for a set of expression Expri do
13: if Expri is true then
14: trigger actions ai;
15: end if
16: end for
17: end while
18: send a notification message ni to Global RIE ;
19: send triggered actions a1, a2, ..., an to Global RIE ;
20: end procedure

5.3.1.4 Global RIE Process.

The global RIE collates and evaluates all actions coming from different AA’s local RIE
for final intervention. This is the core of autonomic adaptation, where the central policies
determine how, where and which adaptation takes place. Afterwards, the action plans with
command messages are sent to the AAs executors separately. The global RIE process is
shown in the Process 4.

5.3.1.5 Executor Process.

The executor component receives yes notification with an execution command from Global
RIE. The execution process carries out by calling a function definition according to policy

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 86

Process 4 : Global RIE
1: input: a notification message ni with all triggered actions a1, a2, ..., an from all AAs;
2: output: an intervention decision with a notification message yes and distribute actions

ai to relevant AA’s Executor ;
3: procedure begin
4: while at time ti, a notification ni received from a Local RIE do
5: input all actions {(a1, a2, ..., an) ∈ AAi} triggered by Local RIE ;
6: for a set of expression Expri do
7: collate and evaluate group of actions {(a1, a2, ..., an) ∈ Expri};
8: if all actions within Expri evaluated to true then
9: return true;

10: end if
11: end for
12: for a set of decision Deci do
13: if Deci is true then
14: confirm actions ai to be executed;
15: end if
16: end for
17: end while
18: send a confirmation message ni to all AAs Executors {(exe1, exe2, ..., exen) ∈ AAi};
19: dispatch actions a1, a2, ..., an that will be executed;
20: end procedure

and then the Executor issues the adaptation or sends further action or event to the target
resource or the network environment. The executor process is shown in the Process 5.

Process 5 : Executor
1: input: a notification message ni and action execution command cmd1, cmd2, ..., cmdn

from Global RIE;
2: output: apply adaptation or action ai to one or more resource mr1, mr2, ..., mrn or

target social network nodes node1, node2, ..., noden;
3: procedure begin
4: while at time ti, a notification ni received from Global RIE do
5: for each input command cmdi do
6: if triggered action ai is equal to ai ∈ cmdi then
7: call the relevant function or method fi defined in the policy;
8: end if
9: end for

10: end while
11: end procedure

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 87

5.4 Policy Specification Language For Autonomic Adapter

In this section, we describe the general-purpose Policy Specification Language (PSL) for AA
based on the well-accepted Event-Condition-Action paradigm. The PSL defines an XML
grammar for policies, which contains the various elements and attributes of a policy in
object-oriented nature. XML is a de facto standard for data representation and interchange,
which is convenient for defining the PSL because it is hierarchical.

The PSL is generic, in the sense that is capable of describing a wide range of policies for
a very diverse set of application domains. It will be allied to a policy schema for any given
domain so that XML documents can be validated against the PSL syntax.

5.4.1 PSL Syntax

The PSL syntax uses the Backus-Naur Form (BNF) 3 notation as follows:
<PolicySet>::=<ManagedResource>,
<AdapterID>,{<Policy>};
<Policy>::=<policyID>,<policyName>,<policyType>,
{<Event>,<Condition>,<Actions>};
<Event>::={<eventID>,<source>,<timestamp>,
<description>};
<Condition>::=<var>,<op>,<value>;
<Actions>::={<Action>};
<Action>::=<actionID>,<actionName>,{<Method>};
<Method>::={<MethodSignature>,<Parameter>};

• The <PolicySet> element is the root element that uses a “ManagedResource” at-
tribute to describe which managed resource belongs to a particular policy set and
the “AdapterID” attribute to describe the unique identifier of the attached AA for
that managed resource. One <PolicySet> element may contain one or more <Policy>

elements.

• The <Policy> element describes the group of policies within a <PolicySet>. The
<Policy> element uses the “policyID” attribute to describe the unique identifier of
a policy, the “policyName” attribute to describe the relevant policy name, and the
“policyType” attribute is optionally used to describe the policy type of the AA. Each
<Policy> element is composed of <Event>, <Condition> and <Actions> elements.

• The <Event> element contains the attributes “eventID”, “source”, “timestamp” and
“description”.

3http://cuiwww.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNF.html

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 88

• The <Condition> element contains a “var” attribute to describe the condition variable,
an “op” attribute for the arithmetic operator, e.g., “=”, “!=”, “<”, “>”, and a “value”
attribute to describe the value that is matched to the operator.

• The <Actions> element can have one or more more <Action> elements.

• Each <Action> element represents the action that needs to be invoked for a policy and
is specified by the user according to the analysed symptoms (i.e., the matching policy
conditions). The <Action> element comprises one or more <Method> elements. Every
individual action must be declared separately using the <Method> element inside the
<Action> element. The <Action> element uses an “actionID” attribute to describe the
unique identifier of an action and an “actionName” attribute to describe the relevant
actions.

• The <Method> element defines the concrete action, which contains a <MethodSignature>

element that represents programming syntax to declare a method signature and a
<Parameter> element that represents the object or variable instance value to be passed
as an object reference. A single <Method> element declaration can have one or more
<Parameter> elements.

5.5 Case Study - GRiST Autonomic Socio-Healthcare System

This section demonstrates the applicability of the proposed approach by applying it to a
real-world healthcare service context, called GRiST (Galatean Risk and Safety Technology).
In Chapter 4, we demonstrated the GRiST domain within the context of socio-cyber-physical
collaboration. In this chapter, we discuss the enhanced functionality of the system by
integrating our GASCF and AA approach to make the GRiST system self-managed and
adaptive. Integrating AAs into GRiST environment is immensely useful to identify the care
environment situations, recognise the resource states and eventually in adapting the system’s
behaviour according to high-level policy.

5.5.1 GRiST Care Service Scenario

Currently, GRiST system receives data directly from the patients automatically through
software sensors that they may be carrying at home environment. Its inbuilt expertise helps
the patients to know whether any health or safety problems need to be addressed and also
connect them to their care network to elicit help. Due to this facilitation sensor, both the
older adults and their carers feel more confident living independently as any problems arise,
they can trigger the necessary responses.

In general, the managed resources across the GRiST care domain include a variety of
physical devices, software sensors, web resources and network applications as well as human

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 89

participants. All of them interact, communicate and send messages in different ways for
different purposes. For example, one or more wearable devices are attached to a patient’s
body that records their heart-rate and physical activity level. There are also some software
resources or artifacts available within the network environment that controls patients’ data
and executes specific tasks. Based on the case study, the physical resource includes Pulse
Monitor and Activity Sensor and sends pulse data (bpm) and physical activity level data
(pal) respectively to the GRiST system and communicates via a web service (i.e., RESTful
API) interface. On the other hand, the managed resource Assessment Document associated
with some software components that handle the risk assessment document submitted to the
network by a patient or practitioners. AAs are deployed and attached to these individual
resources that continuously monitor their status within care network. AA1 manages Pulse
Monitor and AA2 manages Activity Sensor, and AA3 links to a software artifact, labelled
as Assessment Document. The social objects or artifacts in the care network, include Pulse
Node, Activity Node and Assessment Node that represent AA1, AA2 and AA3 respectively,
which maintain objects’ social connections, communications and interactions. Figure 5.3
shows the deployment of the AAs into GRiST Care Network.

The threshold parameters are set by doctors in the monitor part of each AAs policy
separately for certain bio-data types. For example, lower range and higher range of heart-rate
bits per minute (bpm) and physical activity level (pal) to measure the intensity of body
movement each minute. Moreover, the parameter can be defined to monitor the status of
any software artifacts, including new a health assessment document created and submitted
to the system, or health database updated, etc. If the associated resource’s event parameter
is out of range, or any other type condition defined in the policy, it triggers some rule that
may depict an action to be sent to the connected nodes in the care network. For example, if
the heart rate exceeds or drops below a threshold or no physical activity of a patient, then a
doctor, caregiver and a family member could be alerted to contact the patient urgently as
illustrated in Figure 4.4.

5.5.2 Prototype Implementation

This section discusses a prototype implementation of our Autonomic Adapter architecture
and the general XML representation of policy for the associated AAs, which are configured
according to the GRiST case study discussed above.

As shown in Table 5.1, each AA can have their own integrated sensors S1 and S2 to
observe events from integrated managed resource and GRiST care network nodes respectively.
AA1’s sensor S1 is attached with the physical managed resource ‘Pulse Monitor’ and sensor
S2 is attached with the ‘Pulse Node’ in the care network. Similarly, AA2’s sensor S1 is
attached with the physical managed resource Activity Sensor and sensor S2 is attached with
Activity Node in the care network. AA3’s sensor S1 is attached with the software artifacts

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 90

Fig. 5.3 GRiST Autonomic Socio-Healthcare System

(or managed resource) ‘Assessment Document’ and sensor S2 is attached with ‘Assessment
Node’ in the care network. The ‘Pulse Node’, ‘Activity Node’ and ‘Assessment Node’ are the
network objects in the care network that represents AA1, AA2 and AA3 respectively, which
maintains their social relationship, communication and collaboration.

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 91

Table 5.1 Deployment of AAs into GRiST System

Adapters AAs Sen-
sors

Managed Resources Resource Type

AA1 S1 Pulse Monitor Device Physical Resource
S2 Pulse Node Social Network Object

AA2 S1 Physical Activity Sensor De-
vice

Physical Resource

S2 Activity Node Social Network Object
AA3 S1 Assessment Document Software Artifact

S2 Assessment Node Social Network Object

5.5.2.1 AAs Policy Specification

As shown in Table 5.2, the physical Pulse Monitor device is out of the threshold limit “140
bpm” and its value is within the range of interest of the associated sensor, and then the
sensor sends retrieved data to monitor of AA1. The AA1’s Monitor component filters out the
received events that are relevant to its remit and accessing the shared knowledge in Global
RIE, creates a symptom, such as the patient’s heart condition is “abnormal”. The Monitor
then sends the new condition variable to the Local RIE. The rule R1 gets triggered when
the AA1’s Local RIE determines that the heart rate is less than “40 bpm” or greater than
“140 bpm”. The fired rule triggers a notification actions that tells patient to sit down and
breath slowly and steadily until the pulse reduces. It also notifies AA2 that manages physical
Activity Sensor device. The Local RIE is then communicates with the Global RIE and sends
the triggered actions to it for further evaluation. The Global RIE gets the actions and checks
the shared knowledge, whether any other conditions or AA’s input need to be verified before
executing any actions. In this case, Global RIE rule R1 get triggered because heart-rate is
abnormal and dispatches actions back to the AA1’s executor. The Executor component calls
the appropriate function definition by accessing shared knowledge and sends the executed
actions to the Pulse Node associated with AA1 in the network. The AA1 then distributes
the notification messages directly to the person node in the care network and related one
notifies Activity Node that is listened by AA2’s sensor S2, which manages physical Activity
Sensor. This means a message is directly sent to the patient node in the care network. It
also causes AA2 to be activated upon receiving an event notification from the AA1.

AA2 receives the notification that triggers rule R2, which combines with the Activity
Sensor data. If the AA2’s sensor S1 detects physical activity output is within its remit,
the data is sent to the monitor. The Monitor component filter out the event and creates a
symptom such as patient’s physical activity is “low” by accessing the shared knowledge and
send the condition variable to Local RIE. The AA2’s rule inference engine checks whether

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 92

the condition ascertains a physical activity level is less than “1.40” pal in the policy and
triggers some actions. The actions are then sent to the Global RIE that triggers rule R2,
which combines the output of the triggered rules from AA1 and AA2 and checks with its
higher-level strategy such as if the heart-rate is “abnormal” and physical activity is “low”,
and then sends the actions back to the AA2. The Executor retrieves the function definition
from the shared knowledge and after execution, it sends the actions to Activity Node within
care network, which distribute the notifications to a doctor suggesting the patient is having
a possible anxiety attack, because the pulse is high but activity is low. The same rule also
triggers an alert asking the patient to do a manual assessment and also notify AA2 that
manages social object, called Assessment Document.

Finally, the AA3 may have been triggered for a new assessment for the older adult that
falls within the time span of the anxiety attack. The AA3 rule R3 triggers upon detecting an
event new assessment document submission from the managed resource AssessmentDocument
and based on the risk assessment report. If the risk assessment is “normal”, subsequently the
fired rule trigger actions to notify a doctor, patient and family member confirming that it
is an anxiety attack. However, if the risk assessment is “high”, then the rule R4 fired that
trigger actions to notify doctor, patient and family member with different alert messages. In
Global RIE, the output actions from AA3 combined with the outputs of the triggered actions
from AA1 and AA2 that determines whether the care network should be alerted for the
patient’s health condition or risk status. From the global policy, rule R3 determines that if
the hear-rate is “abnormal” and physical activity level is “low” and risk assessment is “high”,
which then sends the actions back to the AA3 to execute the actions trigged by the AA3
rule R4. If global policy rule R4 determines that the hear-rate is “abnormal” and physical
activity level is “low” but risk assessment is “normal”, then send the actions back to the
AA3 to execute the actions trigged by the AA3 rule R3. The fundamental decision making
policies for individual AA’s based on the GRiST scenario is presented in Table 5.2.

5.5.2.2 ECA Rule Pattern of AAs Policies

AAs policy specification in the ECA rule format according to GRiST context presented in
object-oriented nature as shown below. The object-oriented nature of the policy specification
enables highly expressive policy logic using a simple and consistent syntax. In particular,
it promotes easy understanding and coding into the programming language and reuse of
policy objects significant savings in the time and cost associated with policy development
and testing. The object-oriented approach will allow policy attributes to be assigned to the
various classes and objects (i.e., rules, events, conditions, actions, variables, etc.) during the
program implementation.

• AA1 Policy specification in ECA rule pattern shown in below:

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 93

Table 5.2 GRiST Basic Policy Specification

Policy
Type

Rule
ID

Event Condition Action

AA1 R1 On pulse out
of range

If (heartRate < 40
bpm OR heartRate
> 140 bpm)

action 1: notify(patient, “sits
down and breathes slowly and
steadily until the pulse nor-
mal”)
action 2 : notify(activity sensor,
event)

AA2 R2 On receive no-
tification from
AA1

If (physicalActivity
< 1.40 pal)

action 3: alert(patient, “do a
manual assessment”)
action 4: alert(doctor, “possi-
ble anxiety attack”)

R3 On received
doc notifica-
tion

If (riskAssessment
==“normal”)

action 5: notify(doctor, “con-
firmed anxiety attack”)
action 6: notify(patient, “con-
firmed anxiety attack”)
action 7: notify(family mem-
ber, “confirmed anxiety at-
tack")

AA3 R4 On receive no-
tification from
AA2

If (riskAssessment
== “high”)

action 8: alert(doctor, “pa-
tient’s need urgent care”)
action 9: alert(patient, “you
are at risk, emergency service
is on the way”)
action 10: alert(family, “imme-
diately give first aid”)

R1 IF (heartRate ==
“abnormal”)

dispatch action 1 and 2 to AA1

R2 IF (heartRate ==
“abnormal” AND
physicalActivity
== “low”)

dispatch action 3 and 4 to AA2

Global
Policy

R3 IF (heartRate ==
“abnormal” AND
physicalActivity
== “low” AND
riskAssessment =
“high”)

dispatch action 8, 9 and 10 to
AA3

R4 IF (heartRate ==
“abnormal” AND
physicalActivity
== “low” AND
riskAssessment ==
“normal”)

dispatch action 5, 6 and 7 to
AA3

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 94

ON (pulseChange(ManagedResource pulseSensor))
IF ((pulseMonitor.heartRate < 40 bpm) OR (pulseMonitor.heartRate > 140

bpm)) THEN
action a1: alert(PatientNode nodeID, msg("sits down and breathes slowly
and steadily until the pulse normal")
action a2: notify(ManagedResource activitySensor, Event e1)

END IF
END

• AA2 Policy specification in ECA rule pattern shown in below:

ON (getNotified(ManagedResource activitySensor))
IF (activityMonitor.physicalActivity > 1.40 pal) THEN

action a3: alert(PatientNode nodeID, msg("do a manual assessment"))
action a4: alert(DoctorNode nodeID, msg("possible anxiety attack"))

ENDIF
END

• AA3 Policy specification in ECA rule pattern shown in below:

ON (assessmentSubmitted(ManagedResource assessmentMonitor))
IF (assessmentDocument.riskAssessment == "normal") THEN

action a5: notify(DoctorNode nodeID, msg("confirmed anxiety attack"))
action a6: notify(PatientNode nodeID, msg("confirmed anxiety attack"))
action a7: notify(FamilyNode nodeID, msg("confirmed anxiety attack"))

ENDIF
ELSE IF (assessmentDocument.riskAssessment == "high") THEN

action a8: alert(CarerNode nodeID, msg("patient’s need urgent care"))
action a9: alert(PatientNode nodeID, msg("you are at risk, emergency service

is on the way"))
action a10: alert(FamilyNode nodeID, msg("immediately give first aid"))

ENDIF
ELSE

Do Nothing
ENDIF

END

• Global Policy specification in ECA rule pattern shown in below:

ON (triggeredActions)
IF (aa1.heartRate=="abnormal")

dispatch(Action action[a1],[a2]; Adapter aa1)
ENDIF
ELSE IF (aa1.heartRate=="abnormal" AND aa2.physicalActivity=="high")

dispatch(Action action[a3],[a4]; Adapter aa2)
ENDIF
ELSE IF (aa1.heartRate=="abnormal" AND aa2.physicalActivity=="low" AND

aa3.riskAssessment="high")
dispatch(Action action[a8],[a9],[a10]; Adapter aa3)

ENDIF
ELSE IF (aa1.heartRate=="abnormal" AND aa2.physicalActivity=="high" AND

aa3.riskAssessment="normal")
dispatch(Action action[a5],[a6],[a7]); Adapter aa3)

ENDIF
ELSE

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 95

Do Nothing
ENDIF

END

5.5.2.3 XML Configuration of AAs Policies

In practice, policy scripts are formatted in XML with an enforced ECA rule outlined in above
section. The XML representation of the policies for AA1 and AA2 is partially shown below,
and the full configurations of AA3 and Global Policy scripts are shown in Appendix A.

AA1 Policy Script represented in XML format, which has shown in the Listing 5.1.
1 <AAPolicy aaID="aa1" managedResource="pulseMonitor" policyType="pulse
2 ␣monitor␣policy">
3 <Rule ruleID="r1">
4 <Event eventID="e1" eventSource="pulseMonitor" event="pulseChange"/>
5 <Condition >
6 <Expression exprID="ex1" varName="heartRate" op="<" value="40"/>
7 <Expression exprID="ex2" varName="heartRate" op=">" value="140"/>
8 <Action actionID="a1" actionName="send -alert">
9 <Method name="alert">

10 <Parameter paramName="patientNode" value="10"/>
11 <Parameter paramName="message" value="sits␣down␣and␣breathes␣slowly

␣and␣steadily␣until␣the␣pulse␣normal"/>
12 </Method >
13 </Action >
14 <Action actionID="a2" actionName="send -notification">
15 <Method name="notify">
16 <Parameter paramName="ManagedResource" value="activitySensor"/>
17 <Parameter paramName="Event" value="e1"/>
18 </Method >
19 </Action >
20 </Condition >
21 </Rule>
22 </AAPolicy >

Listing 5.1 : AA1 policy script in XML format.

AA2 Policy Script represented in XML format, which is shown in the Listing 5.2.
1 <AAPolicy aaID="aa2" managedResource="activitySensor" policyType="activity␣

sensor␣policy">
2 <Rule ruleID="r2">
3 <Event eventID="e2" eventSource="activitySensor" event="getNotified"/>
4 <Condition >
5 <Expression varName="physicalActivity" op="<" value="1.4"/>
6 <Action actionID="a3" actionName="send -alert">
7 <Method name="alert">
8 <Parameter paramName="patientNode" value="10"/>
9 <Parameter paramName="message" value="do␣a␣manual␣assessment"/>

10 </Method >
11 </Action >

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 96

12 <Action actionID="a4" actionName="send -alert">
13 <Method name="alert">
14 <Parameter paramName="doctorNode" value="3"/>
15 <Parameter paramName="message" value="possible␣anxiety␣attack"/>
16 </Method >
17 </Action >
18 </Condition >
19 </Rule>
20 </AAPolicy >

Listing 5.2 : AA2 policy script in XML format.

AA3 Policy Script represented in XML format, which is shown in the Listing 5.3.
1 <AAPolicy aaID="aa3" managedResource="assessmentMonitor" policyType="assessment

␣monitor␣policy">
2 <Rule ruleID="r3">
3 <Event eventID="e3" eventSource="assessmentMonitor" event="

assessmentSubmitted" />
4 <Condition >
5 <Expression varName="riskAssessment" op="==" value="normal" />
6 <Action actionID="a5" actionName="send -notification">
7 <Method name="notify">
8 <Parameter paramName="doctorNode" value="3" />
9 <Parameter paramName="message" value="confirmed␣anxiety␣

attack" />
10 </Method >
11 </Action >
12 <Action actionID="a6" actionName="send -notification">
13 <Method name="notify">
14 <Parameter paramName="patientNode" value="10" />
15 <Parameter paramName="message" value="confirmed␣anxiety␣

attack" />
16 </Method >
17 </Action >
18 <Action actionID="a7" actionName="send -notification">
19 <Method name="notify">
20 <Parameter paramName="familyNode" value="5" />
21 <Parameter paramName="message" value="confirmed␣anxiety␣

attack" />
22 </Method >
23 </Action >
24 </Condition >
25 </Rule>
26
27 <Rule ruleID="r4">
28 <Event eventID="e3" eventSource="assessmentMonitor" event="

assessmentSubmitted" />
29 <Condition >
30 <Expression varName="riskAssessment" op="==" value="high" />
31 <Action actionID="a8" actionName="send -alert">
32 <Method name="alert">
33 <Parameter paramName="carerNode" value="2" />
34 <Parameter paramName="message" value="patient ’s␣need␣urgent␣

care" />

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 97

35 </Method >
36 </Action >
37 <Action actionID="a9" actionName="send -alert">
38 <Method name="alert">
39 <Parameter paramName="patientNode" value="10" />
40 <Parameter paramName="message" value="you␣are␣at␣risk ,␣

emergency␣service␣is␣on␣the␣way" />
41 </Method >
42 </Action >
43 <Action actionID="a10" actionName="send -alert">
44 <Method name="alert">
45 <Parameter paramName="familyNode" value="5" />
46 <Parameter paramName="message" value="immediately␣give␣first␣

aid" />
47 </Method >
48 </Action >
49 </Condition >
50 </Rule>
51 </AAPolicy >

Listing 5.3 : AA3 policy script in XML format.

Global Policy Script represented in XML format, which is shown in the Listing 5.4.
1 <GlobalPolicy >
2 <InputAction >
3 <Action id="a1" ref_aa="aa1" />
4 <Action id="a2" ref_aa="aa1" />
5 <Action id="a3" ref_aa="aa2" />
6 <Action id="a4" ref_aa="aa2" />
7 <Action id="a5" ref_aa="aa2" />
8 <Action id="a6" ref_aa="aa2" />
9 <Action id="a7" ref_aa="aa2" />

10 <Action id="a8" ref_aa="aa2" />
11 <Action id="a9" ref_aa="aa2" />
12 <Action id="a10" ref_aa="aa2" />
13 </InputAction >
14 <RuleSet >
15 <Rule ruleID="r5">
16 <Condition >
17 <Expression exprID="ex1" varName="heartRate" op="==" value="abnormal" />
18 <Dispatch target="aa1">
19 <Action > a1 </Action >
20 <Action > a2 </Action >
21 </Dispatch >
22 </Condition >
23 </Rule>
24 <Rule ruleID="r6">
25 <Condition >
26 <Expression exprID="ex1" varName="heartRate" op="==" value="abnormal" />
27 <Expression exprID="ex2" varName="physicalActivity" op="==" value="high" />
28 <Dispatch target="aa2">
29 <Action > a3 </Action >
30 <Action > a4 </Action >

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 98

31 </Dispatch >
32 </Condition >
33 </Rule>
34 <Rule ruleID="r7">
35 <Condition >
36 <Expression exprID="ex1" varName="heartRate" op="==" value="abnormal" />
37 <Expression exprID="ex2" varName="physicalActivity" op="==" value="low" />
38 <Expression exprID="ex2" varName="riskAssessment" op="==" value="high" />
39 <Dispatch target="aa3">
40 <Action > a8 </Action >
41 <Action > a9 </Action >
42 <Action > a10 </Action >
43 </Dispatch >
44 </Condition >
45 </Rule>
46 <Rule ruleID="r8">
47 <Condition >
48 <Expression exprID="ex1" varName="heartRate" op="==" value="abnormal" />
49 <Expression exprID="ex2" varName="physicalActivity" op="==" value="high" />
50 <Expression exprID="ex2" varName="riskAssessment" op="==" value="normal" />
51 <Dispatch target="aa3">
52 <Action > a5 </Action >
53 <Action > a6 </Action >
54 <Action > a7 </Action >
55 </Dispatch >
56 </Condition >
57 </Rule>
58 </RuleSet >
59 </GlobalPolicy >

Listing 5.4 : Global policy script in XML format.

5.6 Discussion

Autonomic management of distributed IT systems has become increasingly necessary, since
frequent manual configuration and fault-diagnosis is error-prone and not feasible in the
longer-term [124]. Our research contribution in this chapter focuses on designing a generic
autonomic framework and its autonomic adapter architecture driven by high-level policy. Our
proposed framework is a modest contribution to the ongoing discussions about developing
a self-managed socio-cyber-physical collaborative system, which is easy to implement and
universal enough to be applied in most similar cases. We have illustrated that the self-
managed properties can be achieved through integrating AAs into the target system, where
resource states can be monitored and automatically transforms social context information
into decision support based on high-level policies defined by the domain expert. One of the
core feature is that AAs can communicate or activate each other through social-collaborative
network channel in order to make an collaborative intervention plan, which is not possible
using traditional multi-agent system.

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 99

Significantly, our AA model has several significant advantages over existing approaches
to context-aware autonomic system development. First, it is generic and socially intelligent,
because it can be re-configured for use with any legacy or future IT system whose behaviour
can be triggered without disrupting the system operation, and they can socially interact
with other for collaborative decision. This system consists of multiple autonomic adapters
that can be scaled to any degree, runs autonomously and cooperates between AAs and
resources through a social network system. Each of the AA can express different objectives
and optimization criteria based on policy specification. Second, the decisions taken by the
autonomic adapters are based on a rich and flexible set of high-level ECA rule-based policies
represented in XML that are unavailable in existing context-aware autonomic solutions.
Finally, each AA has a local rule inference engine, which triggers own AA intervention and
communicates with the global rule inference engine, where a global rule inference engine
combines all AAs output actions for final decision making by constantly communicating with
shared knowledge source.

As a further motivation behind this research, the healthcare domain has been considered as
a case study to illustrate social-based collaborative work that needs context-aware autonomic
management. We demonstrated that AAs can offer continuous monitoring of a patient’s health
condition, the collection of patient data, and the ability to send action to the GRiST care
network such as triggering critical alarms or notification when a patient’s critical conditions
detected so that doctors or carers can instantly react to them. We explored that social
networking enabled collaborative systems are ideal for the future of e-Health systems to
enable the delivery of healthcare outside clinical sites at a reduced cost and in conjunction
with self-managed care network.

Similar to any other autonomic system framework, it is also important to evaluate and
compare the capabilities of our proposed GASCF and AA architecture against the existing
solutions. However, testing dynamically adaptive systems is extremely challenging due to
the fact that the structure and behaviour of the system may change during its execution.
There has not been any comprehensive work addressing evaluation criteria or metrics for
the self-adaptive system. However, the availability of appropriate case studies can help in
evaluating and comparing distinct adaptation solutions, at least in relation to each adaptation
process, which has done in case of our proposed approach.

One of the paramount challenges that autonomic system research is currently focusing
is related to describing the appropriate and comprehensive policy model and specification
language. The limitation of this work is that the AA policies are configured in a standard
XML data model, which is not appropriate for the efficient, flexible representation and
validation of the performance of the system in many other contexts. In order to test and
evaluate the correct system response according to the defined policy, we need a comprehensive
policy model and specification language, and then testing it in real-world problem domains.

CHAPTER 5 : Generic Autonomic Social-Collaborative Framework (GASCF) and
Autonomic Adapter (AA) Architecture 100

5.7 Conclusion

This chapter has provided powerful motivation for pursuing this programme of research to
increase the applicability of autonomic systems. It has presented GASCF as a promising
approach for developing a socially context-aware collaborative application. We introduced the
autonomic adapter (AA) architecture, which is an intelligent agent able to monitor the status
of physical resources and collaborative artifacts and suggests actions based on policies defined
by the domain experts. We argue that AAs can transform traditional social-collaborative
networks into an intelligent social context-aware collaborative system, which is capable of
autonomous monitoring of cyber-physical and social resources. It can also analyse the system
states and make an appropriate decision without human intervention to serve its purpose.
The GRiST case study demonstrates the potential applicability for our generic approach for
the implementation of a socially context-aware system.

In Chapter 6, we discuss how to design a comprehensive policy model and specification
language and how to exploit it as shared knowledge within the rule inference engines to
control AA’s behaviour, and on the addition of more configurable AA application program
interfaces in order to support domain-specific needs.

CHAPTER 6

Policy Model and Specification
Language for AA

The policy-based approach is suitable for governing the behaviour of autonomic system oper-
ations and adjusting the services accordingly [199]. To perform policy-based self-management
task, autonomic adapters (or agents) must rely on its knowledge base and execute it to fulfil
the operational needs. However, implementing policy-based adaptation in the autonomic
system is a complex and challenging task, which requires to design appropriate policy model
and its representation and execution mechanism within autonomic computing knowledge
source [36].

In previous Chapter 5, we proposed a generic autonomic framework, called GASCF
and Autonomic Adapter (AA) architecture with simple XML-based policy representation
strategy, introduced in Chapter 5, Section (5.2) and (5.3). In this chapter, we presents a
more comprehensive and flexible Event-Condition-Action (ECA) rule-based policy model
and specification language to overcome the limitation of the existing autonomic computing
knowledge representation and execution approach.

This chapter is organised as follows: Section (6.1) presents a general introduction to
the problem. Section (6.2) discusses the policy model and specification language with a
conceptual model of ECA rule-based policy interaction and an Entity Relationship Diagram
(ERD). This section also defines a policy specification syntax in XML and related Policy
Schema Definition (PSD) language. Section (6.3) discusses eGRiST case study. Section (6.4)
discusses the prototype implementation of the system. Section (6.5) discusses the AA Engine
implementation with Java programming language. Section (6.6) discusses the testing and
evaluation of the proposed system with appropriate input and output action management
drawn from the eGRiST case study. Finally, Section (6.7) concludes the outcome of the work
presented in this chapter.

CHAPTER 6 : Policy Model and Specification Language for AA 102

6.1 Introduction

During the last two decades, policy-based systems have gained considerable attention within
both computer science research community and IT industry. A policy describes principles or
strategies for a plan of action designed to achieve a particular set of goals [150]. The main
goal of the policy-based system is to perform management tasks and controls the actions
of a complex system at a high-level of abstraction. The policy-based management allows
administrators to modify system behaviour without changing the source code, thereby reduce
the amount of work and time to be spent by human operators for management and maintenance
of the system [198]. Initially, governing system behaviour using policies increasingly is used
as a means of implementing flexible and adaptive systems for management of Internet
services, networks and security systems [220]. Previous research into the policy-based system
demonstrated that it is a suitable approach for network administration [244], network-wide
configuration management [198], a self-adaptive scheme in pervasive computing [117], policy-
based data integration for e-Health monitoring [78], policy-based governance of complex
distributed systems [36], and many others.

Leveraging policy-based techniques to achieve self-managed control is an important way
to manage the next generation of autonomic system and services [13]. Recently, there have
been several pieces of research focusing on the policy-based autonomic computing system,
which reveal how the collaboration or cooperation among autonomic managers at different
levels can be done based on the active policies [168]. A policy defines as knowledge source
for autonomous agents to decide why, when, how and where to perform the adaptation
operations [202]. However, in a legacy self-managed system, adaptation strategy is done in
an ad-hoc manner, which is based on predicting future circumstances and embedding the
adaptation decisions in the program code in a limited variety of contexts [117]. In contrast,
the algorithmic approach based on pre-defined rule sets often fails where the environment
is uncertain due to the unforeseen cases, unmanageable complexity, emerging behaviour
and too complicated to be predicted [87]. Thus, the policy-based approach is arguably the
most flexibility and general applicability among the currently popular autonomic system
approaches [12].

Within autonomic computing, low-level decision making is often designed based on the
well-known Event-Condition-Action (ECA) rule-based policy model [22]. Considerable effort
has been devoted to developing expressive representations and sophisticated management
systems for specifying, managing, analysing, and enforcing policies. Event-Condition-Action
(ECA) rules are a widely used approach for the high-level specification of controllers in
autonomic computing systems [43]. ECA rules define how to perform actions in response
to events if specified conditions meet [22]. However, the common use of fixed and hand-
coded policies in AC knowledge component is inadequate and inflexible, when the system
is constantly changing and exhibits varying or uncertain information, which makes the

CHAPTER 6 : Policy Model and Specification Language for AA 103

system management decision very difficult and inappropriate [26, 245]. Instead, the policy
should be specified as externally-imposed rules whose enforcement is for a predictable system
behaviour [36] and to control the adaptation behaviour at run-time in a more flexible way,
outside the code itself.

Several works proposed policy specification language for domain-specific autonomic system,
which are not appropriate and reconfigurable for many cases for managing cyber-physical
resources in a social context. As proposed AA architecture in Chapter 5.3, we explored the
true potential of autonomic computing approach within socio-cyber-physical collaborative
system. However, we identified several key limitations (i.e., inflexibility and inconsistency)
for the modelling and representation of autonomic computing policy. Therefore, one of the
research challenge is how to define a more flexible policy model and specification language
and how the policies should be executed by the AAs. Currently, there is no in-depth
discussion on fulfilling the gap of appropriate policy specification and execution model for
the socio-cyber-physical collaboration and autonomous decision process.

To overcome these limitation, this chapter proposes a more comprehensive and flexible
policy model and specification language for AA, modelled in XML syntax that can be
imposed into autonomic computing knowledge. In this effort, first, we proposed an ECA
rule-based policy execution framework in the social cyber-physical environment. Afterwards,
we describe an Entity Relationship Diagram (ERD) to illustrate the interrelationship between
AA, managed resources and policy with their associated attributes or properties. Then, we
define the Policy Schema Definition (PSD) language and Policy Specification Script (PSS) in
XML representation format, a formal way to specify the structure of the policy. The PSS is
an XML instance document that describes the domain-specific policy configuration in terms
of PSD syntax and semantics. XML has many advantages to represent the policy for its
straightforward extensibility [36] and machine readability. This policy can be deployed as
an external script in the knowledge repository and translated as rules by the global rule
inference engine, which are shared by the AA’s intelligent manager components. Finally, we
implement a prototype Java console-based application of an autonomic computing engine to
test the feasibility of the proposed AA functions in terms of input and output parameter.
We demonstrate and validate proposed system by applying it to the eGRiST1 mental-health
assessment system. We collected the experimental datasets and configured policies to manage
three AAs operation based on the datasets. We input parameter from the case domain and
observed the output actions triggered by the AA according to the rules specified in the policy.

6.2 Policy Model And Specification Language

The AA knowledge is expressed in the terms of ECA rule-based policy model and specification
language that define system behaviour set by a system administrator. First, we describe

1https://www.egrist.org/home

CHAPTER 6 : Policy Model and Specification Language for AA 104

the higher-level conceptual model of the ECA rule execution within the AA and adaption
to the IT system. We then discuss an Entity Relationship Diagram (ERD) to illustrate the
interrelationship between AA’s components, managed resources and policy rules with their
associated attributes or properties. Afterwards, we define the Policy Schema Definition (PSD)
language, along with rules and constraints for policy content and semantics, a formal way to
define policy in XML representation format. The PSD can be also be used to implement and
validate the structure and consistency of the Policy Specification Script (PSS). The PSS is an
XML instance document that describes the domain-specific policy configuration in terms of
PSD syntax and semantics. This PSS can be deployed as an external script in the knowledge
repository and translates as rules by the global rule inference engine, which are shared by
the AA’s intelligent manager components.

Our proposed PSD language adheres to be most flexible and domain-independent, which
will allow a system administrator to define policies in any IT environment that incorporate
our GASCF with AA model. The policy will regulate the AAs behaviour without modifying
the code itself and disrupting the normal system operation to the target domain.

6.2.1 Conceptual Model of ECA Policy Interaction

The conceptual model illustrates how AA uses ECA rules from the policy knowledge in the
application domain (i.e., managed resources or environment) in order to control some tasks at
runtime. As mentioned earlier in this chapter, the fundamental construct of our proposed AA
policy model is based on the ECA rule that defines when a specific event occurs, if conditions
are true, then actions would be triggered. Figure 6.1 shows the conceptual model of ECA
rule-based policy execution inside an AA for managing resources in an IT system.

Fig. 6.1 Conceptual Model of ECA Rule Execution

As shown in Figure 6.1, the ECA rules in a policy definition consist of three main parts,
namely, event, condition, and action. The event part dictates one or more possible states of a
resource that can be occurred at regular interval. When any of the required states occurred

CHAPTER 6 : Policy Model and Specification Language for AA 105

in the managed resource at a specific point of time, an event is considered to be triggered and
the rules are activated. The rules dictates how the evaluation of one or more condition can
impact on firing actions in order to perform adaptation to the system. The condition part
specifies some threshold parameters, which is evaluated against input event variables from the
source environment to determines the actions to be triggered if the conditions are satisfied.
The action part describes the changes or adaptation to be made to the target resources
or environment that influences the overall system self-management. However, before the
execution of the action, it is sent to the Global RIE, which correlate all actions and send
back to the AA, which is then executed accordingly.

6.2.2 Entity Relationship Diagram of AA Policy Model

In general, an Entity Relationship Diagram (ERD) describes explicit logical representation of
a collection of Entity (E1, E2, ..., En), a set of Attributes (attr1, attr2, ..., attrn) of these
entities and a set of Relationship (R1, R2, ..., Rn) between these entities. An entity can be a
person, artifacts, resources, etc. that are relevant to a given context-aware IT system, and
the relationship describes how these entities interact, which are represented by an association
(connector) in the ERD. The cardinality constraints define the possible number of occurrence
between entities and typically are one of the following forms: one-to-one (1..1), one-to-many
(1..n), many-to-many (m..n).

As depicted in Figure 6.2, in the AA policy ERD, the core entities are AA, Monitor,
LocalRIE, Executor, ManagedResource, Sensor, SocialNetwork, GlobalRIE, SharedKnowledge
and PolicyRules.

In this ERD, the core entities are AA, Monitor, LocalRIE, Executor, ManagedResource,
Sensor, SocialNetwork, GlobalRIE, SharedKnowledge and PolicyRules. The entity AA has
one or more Sensor and one particular Sensor is connected to one specific AA only. It is
represented as one-to-many relationships. A particular AA associated with one Monitor, one
LocalRIE and one Executor, which is represented as one-to-one relationship. An AA can
manage one or more ManagedResource and each of the ManagedResource may be managed
by many AA, which is represented as many-to-many relationships. A Sensor can sense
events from one or many ManagedResource, represented as one-to-many relationships. On
the other hand, a Sensor can sense events from at least one SocialCollaboraiveNetwork
environment, represented as one-to-one relationship. One or more sensors notify the events
to a Monitor connected with a particular AA and the relationship is represented as many-to-
one. The association between a Monitor and a LocalRIE is one-to-one only. One or many
AA’s LocalRIE can communicate with a GlobalRIE by sending triggered action once at a
time, which is represented as many-to-one relationship. However, a GlobalRIE needs to
communicate with one or more AA’s Executor at the same time to confirm the actions to be
executed, and the relationship is represented as one-to-many. One or many Executors may

CHAPTER 6 : Policy Model and Specification Language for AA 106

Fig. 6.2 AA Policy Specification Model

send actions to a SocialCollaboraiveNetwork, thus the relationship is many-to-one. At the
same time, a SocialCollaboraiveNetwork can send adaption to one or many ManagedResource,
which is expressed as one-to-many relationships. One or many LocalRIEs can access a
SharedKnowledge, which is represented as many-to-one relationship. A GlobalRIE needs to
access a SharedKnowledge, which is represented as one-to-one relationship. A SharedKnowledge
may contain many PolicyRules that can be used by the AA’s components, and the relationship
is represented as one-to-many.

6.2.3 Policy Schema Definition (PSD) Language

The Policy Schema Definition (PSD) language is a formal way to specify the structure
and syntax of the XML representation of the AA policy, along with rules and constraints
for data content and semantics. The PSD language is developed based on XML Schema

CHAPTER 6 : Policy Model and Specification Language for AA 107

Definition (XSD) artifacts 2 (e.g., element, complex types, simple type, sequence, etc.) for
the mapping the policy ERD into the XML declaration syntax. The PSD consists of a
set of markup declarations of the elements and sub-elements, attributes, cardinality, the
datatype and values that are essential for creating XML instance documents for domain-
specific policy configuration. Due to the limited space, the partial declaration of PSD
language is discussed below and the complete and workable PSD is available at Github (https:
//github.com/nhussain920/thesis_source_code), which can be used to configure and validate
any policy instance document.

The declaration of PSD language is discussed below. The complete and workable PSD
is presented in Appendix B that can be used to configure and validate any policy instance
without further modification of the schema.

Schema Element: Every PSD document starts with a single root <xs:schema/> element
that belongs to the XML Schema namespace. The value "http://www.aapolicyschema.com/policy.xsd"
of the targetNamespace attribute is simply a unique identifier where the policy schema is
stored. The definition of <schema/> element is as follows:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.aapolicyschema.com/policy.xsd"
elementFormDefault="qualified">

...
</xs:schema>

PolicySet Element: In the following code fragment, for a given a set of policy (PS), it is
defined as a tuple PS = (AAP,GP), where AAP is a finite set of AA policy, each associates
with an individual autonomic adapter. GP is a single set of global policy, which collates all
the triggered action by AAs for final intervention decision. In PSD declaration, the element
<PolicySet> comprised of a sequence of child elements <AAPolicy> and <GlobalPolicy>,
which is defined as follows:

<xs:element name="PolicySet">
<xs:complexType>

<xs:sequence>
<xs:element ref="AAPolicy" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="GlobalPolicy"/>

</xs:sequence>
</xs:complexType>

</xs:element>

AAPolicy Element: For an AAPolicy element (AAP), it is defined as a tuple AAP =
(AA, {MRl}, SN), where AA represents the autonomic adapters, {MRl} is the managed
resource list that is a container for all declared managed resources, and {SN} is the social

2https://www.w3.org/TR/xmlschema11-1/

(https://github.com/nhussain920/thesis_source_code)
(https://github.com/nhussain920/thesis_source_code)

CHAPTER 6 : Policy Model and Specification Language for AA 108

network that contains social entity elements. In PSD definition, the element <AAPolicy>
comprised of a sequence of child elements <ManagedResourceList>, <SocialNetwork>, and
<AA>. The <AAPolicy> element always has the required attributes ‘policyID’ to define an
unique id for a policy. The ‘policyType’ and ‘policyDescription’ are the optional attribute,
and ‘ref_aa’ attribute is always required that is used to define a reference value of the
associated AA. The definition of <AAPolicy> element in PSD defined as follows:

<xs:element name="AAPolicy">
<xs:complexType>

<xs:sequence>
<xs:element ref="ManagedResourceList" minOccurs="0"/>
<xs:element ref="SocialNetwork" minOccurs="0"/>
<xs:element ref="AA"/>

</xs:sequence>
<xs:attribute type="xs:string" name="policyID" use="required"/>
<xs:attribute type="xs:string" name="policyType" use="optional"/>
<xs:attribute type="xs:string" name="policyDescription" use="optional"/>
<xs:attribute type="xs:string" name="ref_aa" use="required"/>

</xs:complexType>
</xs:element>

ManagedResourceList Element: For a ManagedResourceList element (MRl), it may
contain a finite set of ManagedResource elements MR = {MR1, MR2, ..., MRn}, which
represent one or more resource that can trigger events. In PSD declaration, the element
<ManagedResourceList> can have a sequence of child element <ManagedResource>, which is
defined as follows:

<xs:element name="ManagedResourceList">
<xs:complexType>

<xs:sequence>
<xs:element ref="ManagedResource" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

ManagedResource Element: In a ManagedResource element (MR), there may be a
finite set of TriggerEvent element that represents possible events that may be triggered by
resources. In PSD declaration, the element <ManagedResource> can have a sequence of child
element <TriggerEvent> with a mandatory attribute ‘resourceID’ to define an unique id
for a managed resource. The ‘resourceType’ is an optional attribute. The required attribute
‘ref_sensor’ is used to define a reference value of the attached sensor, which is defined as
follows:

<xs:element name="ManagedResource">
<xs:complexType>

<xs:sequence>
<xs:element ref="TriggerEvent"/>

</xs:sequence>

CHAPTER 6 : Policy Model and Specification Language for AA 109

<xs:attribute type="xs:string" name="resourceID" use="required"/>
<xs:attribute type="xs:string" name="resourceType" use="required"/>
<xs:attribute type="xs:string" name="ref_sensor" use="required"/>

</xs:complexType>
</xs:element>

Event Element: For an Event element (E), it has required attributes ‘inputEvent’ to
define an event parameter (i.e., event name or id), and ‘op’ to define any arithmetic symbol
(i.e., ‘==’, ‘!=’, ‘!’, ‘>=’, ‘<=’) for the parameter.

<xs:element name="Event">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="inputEvent" use="required"/>
<xs:attribute type="xs:string" name="op" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

SocialNetwork Element: For a given SocialNetwork element (SN), it is defined to repre-
sent a list of network resource or node elements. The element <SocialNetwork> can have a
sequence of child element <NetworkResourceList> with required attributes ‘networkID’ to
define a unique id for the network and optional attribute ‘networkName’ to specify a network
name.

<xs:element name="SocialNetwork">
<xs:complexType>

<xs:sequence>
<xs:element ref="NetworkResourceList"/>

</xs:sequence>
<xs:attribute type="xs:string" name="networkID" use="required"/>
<xs:attribute type="xs:string" name="networkName" use="required"/>

</xs:complexType>
</xs:element>

AA Element: For an AA element, it is defined as a tuple, AA = ({Sl}, M, lRIE, EX),
where {Sl} represents the sensor list element that is a container for all sensor associates
with a particular AA, M represents the monitor of this AA, lRIE represents the local rule
inference engine, and EX represents the executor of the AA. In PSD declaration, the element
<AA> is comprised of a sequence of child elements <SensorList>, <Monitor>, <LocalRIE>,
and <Executor>. The <AA> element always has required attribute ‘adapterID’ to define an
unique id for an AA and an optional attribute ‘adapterType’ to define the type of adapter.

<xs:element name="AA">
<xs:complexType mixed="true">

<xs:sequence>
<xs:element ref="SensorList" minOccurs="0"/>

CHAPTER 6 : Policy Model and Specification Language for AA 110

<xs:element ref="Monitor" minOccurs="0"/>
<xs:element ref="LocalRIE" minOccurs="0"/>
<xs:element ref="Executor" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="adapterID" use="required"/>
<xs:attribute type="xs:string" name="adapterType" use="optional"/>

</xs:complexType>
</xs:element>

SensorList Element: For a given SensorList element (Sl) there may be a finite set of
Sensor elements, which represents one or more sensor that are connected with a managed
resource or network node to observe events. In PSD, the element <SensorList> have a
sequence of child elements <Sensor> and is declared as follows:

<xs:element name="SensorList">
<xs:complexType>

<xs:sequence>
<xs:element ref="Sensor" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Sensor Element: For a Sensor element (S) it has required attribute ‘sensorID’ to define
an unique id for a sensor and an optional ‘sensorType’ attribute to define the type of sensor.

<xs:element name="Sensor">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="sensorID" use="required"/>
<xs:attribute type="xs:string" name="sensorType" use="optional"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

Monitor Element: For a Monitor element (M), there may be a finite set of GetSen-
sorData elements to represent the data receiving from sensors. It may also have one or
more <Condition> element to define some conditional statements to evaluate the threshold
parameters. The <Monitor> element has a sequence of child elements <GetSensorData>
and <Condition> element. The required attributes ‘monitorID’ to define an unique id for a
monitor element.

<xs:element name="Monitor">
<xs:complexType>

<xs:sequence>
<xs:element ref="GetSensorData" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="Condition"/>

</xs:sequence>
<xs:attribute type="xs:string" name="monitorID" use="required"/>

CHAPTER 6 : Policy Model and Specification Language for AA 111

</xs:complexType>
</xs:element>

LocalRIE Element: For a LocalRIE element (lRIE), it is a tuple lRIE = (GMD, {C},
TA), where GMD represents data receiving from AA’s monitor, {C} represents a list of
conditional expression associates with received monitor data, and TA represents the action
to be triggered if conditions are met. In PSD declaration, the <LocalRIE> element has a
sequence of child elements <GetMonitorData>, <Condition> and <TriggerAction>. It has
a required attribute ‘rieID’ to define an unique id for a local RIE.

<xs:element name="LocalRIE">
<xs:complexType>

<xs:sequence>
<xs:element ref="GetMonitorData"/>
<xs:element ref="Condition"/>
<xs:element ref="TriggerAction"/>

</xs:sequence>
<xs:attribute type="xs:string" name="rieID" use="required"/>

</xs:complexType>
</xs:element>

TriggerAction Element For a TriggerAction element TA there may be a finite set of
While elements, which represent some condition declaration. In PSD declaration, the ele-
ment <TriggerAction> has a sequence of child elements <While> with required attributes
‘ref_condition’ to define a reference value of the condition element defined in <LocalRIE>
element.

<xs:element name="TriggerAction">
<xs:complexType>

<xs:sequence>
<xs:element ref="While" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="ref_condition" use="required"/>

</xs:complexType>
</xs:element>

ActionTemplate: For an ActionTemplate element AT it defines the action details that
can be executed. It has a required attribute ‘actionID’ to define an unique id for an action.
The optional attribute ‘actionType’ is used to define a relevant action name, and ‘category’
attribute is to define the action category if necessary. The required attribute ‘target_resource’
may be used to define some reference value such as resource id, name or location where the
adaptation or changes may occur. It is declared in PSD as follows:

<xs:element name="ActionTemplate">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="actionID" use="required"/>

CHAPTER 6 : Policy Model and Specification Language for AA 112

<xs:attribute type="xs:string" name="actionType" use="optional"/>
<xs:attribute type="xs:string" name="category" use="optional"/>
<xs:attribute type="xs:string" name="target_resource" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

Executor Element: For an Executor element EX there may be one or more GetNotification
element, which are used to express notification details received from GlobalRIE element. In
PSD declaration, the element <Executor> has a sequence of child element <GetNotification>
with required attributes ‘executorID’ to define an unique id of the <Executor> element
associated with an AA and is declared as follows:

<xs:element name="Executor">
<xs:complexType>

<xs:sequence>
<xs:element ref="GetNotification"/>

</xs:sequence>
<xs:attribute type="xs:string" name="executorID"/>

</xs:complexType>
</xs:element>

Execute Element: For an Execute element EX there may be one or more Function elements
that express the function definition to be called for the execution. In PSD declaration, the
element <Execute> have a sequence of child elements <Function> with required attribute
‘action’ that is used to define conditional statement as attribute value to define what action
to be executed after getting command form GlobalRIE. The ‘ref_command’ attribute to
define a reference value of the associated command id of GlobalRIE :

<xs:element name="Execute">
<xs:complexType>

<xs:sequence>
<xs:element ref="Function"/>

</xs:sequence>
<xs:attribute type="xs:string" name="action" use="required"/>

<xs:attribute type="xs:string" name="ref_command" use="required"/>
</xs:complexType>

</xs:element>

Function Element: For a Function element F there may be one or more Parameter
elements that represent a set of parameters to be defined for the function. In PSD declaration,
the element <Function> have a sequence of child element <Parameter> with required
attributes ‘functionID’ to define an unique id for a function. The ‘functionName’ is used to
define the method signature and declared is as follows:

<xs:element name="Function">
<xs:complexType>

CHAPTER 6 : Policy Model and Specification Language for AA 113

<xs:sequence>
<xs:element ref="Parameter" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="functionID" use="required"/>

<xs:attribute type="xs:string" name="functionName" use="required"/>
</xs:complexType>

</xs:element>

GlobalPolicy Element: For a GlobalPolicy element GP there can be one specific Global-
RIE element to represent the global policy declaration. In PSD, the element <GlobalPolicy>
comprised of a sequence of child element <GlobalRIE>, which is defined as follows:

<xs:element name="GlobalPolicy">
<xs:complexType>

<xs:sequence>
<xs:element ref="GlobalRIE"/>

</xs:sequence>
</xs:complexType>

</xs:element>

GlobalRIE Element: For a GlobalRIE element gRIE, it is a tuple GlobalRIE = ({AL},
C, {D}), where {AL} represents all input actions coming from different AAs, C use to specify
some conditional statement and {D} represents a finite set of Decision element to define
final intervention. In PSD declaration, the element <GlobalRIE> have a sequence of child
elements <ActionList>, <Condition>, and <Decision> with required attribute ‘rieID’ to
define an unique id for a <GlobalRIE> element, which is declared as follows:

<xs:element name="GlobalRIE">
<xs:complexType>

<xs:sequence>
<xs:element ref="ActionList"/>
<xs:element ref="Condition"/>
<xs:element ref="Decision" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="rieID" use="required"/>

</xs:complexType>
</xs:element>

ActionList Element: For a ActionList element Al there may be a finite set of GetAction
element that represents a set of input actions coming form AA. In PSD declaration, the
element <ActionList> have a sequence of child elements <GetAction> and is declared as
follows:

<xs:element name="ActionList">
<xs:complexType>

<xs:sequence>
<xs:element ref="GetAction" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

CHAPTER 6 : Policy Model and Specification Language for AA 114

Decision Element: For a Decision element DC, there may be one or more Command
elements that represent a set of intervention command to be distribute to AA’s executor
according to the true conditional expression defined in <GlobalRIE> element. In PSD decla-
ration, the <Decision> element has a sequence of child elements <Command> with required
attribute ‘ref_condition’ that references to the condition element. The ‘ref_expression’
attribute to define reference value to its conditional expression element.

<xs:element name="Decision">
<xs:complexType>

<xs:sequence>
<xs:element ref="Command" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="ref_condition" use="required"/>
<xs:attribute type="xs:string" name="ref_expression" use="required"/>

</xs:complexType>
</xs:element>

Command Element: For a Command element CMD the required attribute ‘commandID’
use to assign unique id for each command to be sent to the executor. The ‘message’ attribute
is used to assign a string literal as a notification message. The ‘target_adapter’ attribute to
specify the reference value of the target AA that should receive the command from global
RIE. It is declared in PSD as follows:

<xs:element name="Command">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="commandID" use="required"/>
<xs:attribute type="xs:string" name="message" use="required"/>
<xs:attribute type="xs:string" name="target_adapter" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

Condition Element: For a Condition element C it can be defined under AA’s different
functional elements, including Monitor, LocalRIE, and GlobalRIE elements. It is composed of
a finite set of Expression elements that represents condition statements, whether composite,
regular or boolean types by using any of the and, or, not elements. In PSD declaration,
the <Condition> element is composed of a sequence of child element <Expression> with a
required attribute ‘conditionID’ to define an unique id for each specified condition.

<xs:element name="Condition">
<xs:complexType>

<xs:sequence>
<xs:element ref="Expression" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="conditionID" use="required"/>

</xs:complexType>
</xs:element>

CHAPTER 6 : Policy Model and Specification Language for AA 115

Expression Element: It encapsulates a set of If statements with boolean operator and,
or, not to negate the values of an expression within a filter pattern. For an Expression element
(Expr), it can define one or more If elements with or without boolean and, or, not element
to encapsulate conditional statements. In PSD declaration, the <Expression> element has a
sequence of <If>, <and>, <or>, <not> element. The required attributes ‘exprID’ to define
an unique id for an expression but optional ‘ref_event’ attribute that may or may not be
necessay to define in every expression element. However, it can be use in Monitor element to
define a reference value from an input event. In PSD, it is declared as follows:

<xs:element name="Expression">
<xs:complexType>

<xs:sequence>
<xs:element ref="If" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="and" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="or" minOccurs="0"/>
<xs:element ref="not" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="exprID" use="required"/>

<xs:attribute type="xs:string" name="ref_event" use="optional"/>
</xs:complexType>

</xs:element>

If Element: For a If element, there are mixed attributes, some of them are required and
some are optional. The attributes ‘varName’ to define a variable, ‘op’ attribute to define the
arithmetic operators (i.e., less than (<) greater than (>), equal (==), not equal (!=),
etc.), and ‘datavalue’ attribute to assign a value for a variable. The attribute ‘ref_context’ is
only required to define in conditional statement within LocalRIE element but optional for
other elements. The ‘ref_input_action’ attribute is only required to define for the conditional
statement declaration in the GlobalRIE element and optional for other elements.

<xs:element name="If">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="varName" use="required"/>
<xs:attribute type="xs:string" name="op" use="required"/>
<xs:attribute type="xs:string" name="datavalue" use="required"/>
<xs:attribute type="xs:string" name="ref_context" use="optional"/>
<xs:attribute type="xs:string" name="ref_input_action" use="optional"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

In the above PSD declaration, we do not list all the elements due to the limited space.
However, we listed only some important elements for illustration purposes. The complete
PSD declaration can be found in Appendix B.

CHAPTER 6 : Policy Model and Specification Language for AA 116

6.2.4 Policy Specification Script (PSS) Syntax

This section describes the XML representation of the Policy Specification Script (PSS) syntax
for AA, which is adheres to the PSD. We use the Backus-Naur Form (BNF) 3 notation for
encoding XML grammar for the PSL syntax, which is defined as follows:

<PolicySet>::= Element({<AAPolicy>}, <GlobalPolicy>);
<AAPolicy>::= Element({<AA>, <ManagedResourceList>}, <SocialNetwork>), Attribute(policyID, [policyType,
policyDescription], ref_aa);
<ManagedResourceList>::= Element({<ManagedResource>});
<ManagedResource>::= Element({<TriggerEvent>}), Attribute(resourceID, [resourceType], ref_sensor);
<TriggerEvent>::= Element({<and>}, {<or>}, {<not>}, {<Event>});
<Event>::= Attribute(<inputEvent>, <op>);
<SocialNetwork>::= Element(<NetworkResourceList>), Attribute(<networkID>, <networkName>);
<NetworkResourceList>::= Element({<NetworkResource>};
<NetworkResource>::= Element({<TriggerEvent>}), Attribute(<resourceID>, <resourceType>, <ref_sensor>);
<AA>::= Element(<SensorList>, <Monitor>, <LocalRIE>, <Executor>), Attribute(<adapterID>, <adapterType>);
<SensorList>::= Element({<Sensor>});
<Sensor>::= Attribute(<sensorID>, <sensorType>);
<Monitor>::= Element({<GetSensorData>}, <Condition>), Attribute(<monitorID>);
<GetSensorData>::= Attribute(<ref_sensor>, <ref_event>);
<LocalRIE>::= Element(<GetMonitorData>, <Condition>, <TriggerAction>), Attribute(<rieID>);
<GetMonitorData>::= Element(<{GetContextVariable>}), Attribute(<contextID>, <ref_expression>);
<GetContextVariable>::= Attribute(<contextID>, <ref_expression>);
<TriggerAction>::= Element(<{While>}), Attribute(<ref_condition>);
<While>::= Element(<ActionTemplate>), Attribute(<condition>);
<ActionTemplate>::= Attribute(<actionID>, <actionType>, <category>, <target_resource>);
<Executor>::= Element(<GetNotification>), Attribute(<executorID>);
<GetNotification>::= Element(<{Execute>}), Attribute(<message>, <ref_sender>);
<Execute>::= Element(<{Function>}), Attribute(<action>, <ref_command>);
<Function>::= Element(<{Parameter>}), Attribute(<functionID>, <functionName>);
<Parameter>::= Attribute(<paramName>, <datavalue>);
<GlobalPolicy>::= Element(<GlobalRIE>);
<GlobalRIE>::= Element(<ActionList>, <Condition>, {<Decision>}), Attribute(<rieID>);
<ActionList>::= Element(<{GetAction>});
<GetAction>::= Element({<and>}, {<or>}, {<not>}, {<Action>}), Attribute(<ref_aa>);
<Action>::= Attribute(<inputActionID>);
<Decision>::= Element(<Command>), Attribute(<ref_condition>, <ref_expression>);

3http://cuiwww.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNF.html

CHAPTER 6 : Policy Model and Specification Language for AA 117

<Command>::= Attribute(<commandID>, <message>, <target_adapter>);
<Condition>::= Element({<Expression>}, Attribute(<conditionID>);
<Expression>::= Element({<and>}, {<or>}, {<not>}, {<If>}), Attribute(<exprID>, [<ref_event>]);
<If>::= Attribute(varName, op, datavalue, [ref_context, ref_input_action]);
<and>::= Element(<If>, [<Event>], [<Action>]);
<or>::= Element(<If>, [<Event>], [<Action>]);
<not>::= Element(<If>, [<Event>], [<Action>]);

6.3 Case Study - eGRiST Clinical Decision Support System

In this section, we discuss a case study to demonstrate the applicability of our proposed
approach in a real-world domain, known as eGRiST, web-based mental-health risk and safety
management decision support system [71]. This case study focuses on integrating AAs into
eGRiST CDSS for managing risk assessments and judgement nodes and triggering appropriate
action or intervention according to configured policy.

The eGRiST system uses the Galatean model of decision making, which mimics how
experts use patient’s cues and process the cues to arrive at accurate judgements of patient
mental health condition [40, 38]. Basically, eGRiST is naturally composed of hierarchical
tree nodes, points users to the right risk assessment questions to answer in the hierarchy, and
provide expert advice based on their answers for early detection of mental health problems.
The technique is based on the premise that the probability of different decision outcomes
competes with each other for influence on the final decision. However, the system currently
lacks triggering appropriate actions (i.e., sending an alert or notification) autonomously based
on the given risk assessment answer by patients or practitioners in the eGRiST system. Thus,
an important issue of the eGRiST system is how to detect and act upon risk escalators.

In essence, eGRiST actions are specific outputs or interventions of an assessment triggered
by the risk escalator. The actions are defined in a template that specifies the action type (i.e.,
open-url), the template name, the specific action for that template (i.e., the particular URL
to be open, the alert message, who should receive the alert), the categories associated with
the action (i.e., a music action, a picture action, or a poem action), and the nodes associated
with the action. The action template can be associated with many nodes, but the specific
instantiation of the template is for a single node. It is immensely useful for identifying the
patients’ mental health situations, determine the risk status and eventually trigger actions
autonomously.

Figure 6.3 by C.D. Buckingham [38] shows a hypothetical assignment of membership
grades and relative influences to the intended concept and how these generate membership
grades for a particular patient’s values.

CHAPTER 6 : Policy Model and Specification Language for AA 118

Fig. 6.3 Hypothetical example of the galatean model’s classification of a patient into suicide
and no-suicide categories. CPs=conditional probabilities and SAs=selective attentions [38].

6.3.1 Limitation of eGRiST Actions

Originally, eGRiST is naturally composed of hierarchical tree nodes, which can be controlled by
collaborative and cooperative AAs interaction and decisions to solve the existing intervention
problem.

Currently, actions are triggered by the Membership Grade (MG) of a specific node, which
is generated by the provided assessment answer (cue). Meanwhile, the system handles various
action types using a static database design with one-table-fits-all solutions, which is not
convenient. For every new action type that is added to the system, new tables, specific
to that action need to be added. At present, this means they cannot be influenced by the
answers from several nodes at the same time, unless the node, they are in is a concept node.
This is because concept nodes collate MGs from all of their input leaf nodes. Nevertheless,
this is the only way collective answers can have an effect, and it depends on the way the
MG for the concept is calculated. More generally, an MR could be a risk node, because the
trigger for an event is the MG, not the specific answer.

Therefore, the action may need more flexibility than being generated by the MGs,
especially, if the MGs are only calculated using risk evaluation. In theory, a single intervention
could be triggered by a pattern of responding across many event variables that lie the different
parts of the tree. To this extent, if AAs are used for actions, each node needs the potential of
“listening to” many managed resources (MRs), where an MR in this case study is taken to be
an assessment answer from leaf nodes. AAs would seem to be most suited for the triggering
and execution action functionality according to the externally imposed policy and based on

CHAPTER 6 : Policy Model and Specification Language for AA 119

the individual’s situation or some environmental context that has been embedded within
eGRiST. It is likely that interventions may need to be collated with respect to other actions
in place from outside sources that can be handled using the action rules, which specify the
final interventions. Hence, integrating information within the AA and also controlling actions
at a higher level through the policy is the most appropriate solution. The proposed policy
model can be used to configure policies integrated AAs into the eGRiST system, and AA
process the data to make a collaborative intervention decision according to the defined policy.

6.3.2 eGRiST Risk Assessment Scenarios

The common practice of eGRiST system is to evaluate multiple types of mental health-related
risks, including suicide, self-harm, harm to others, self-neglect, depression, vulnerability, etc.,
which are validated against the psychological model. To answer an assessment question, a
user clicks on the radio button corresponding to the appropriate answer (cue) that is input
MG variables on a scale from zero to ten, while others require yes/no/don’t know answers.
For example, there is a high-level filter question asking whether the patient has made any
past suicide attempts. If the answer is selected as “no”, this part of the tree is immediately
closed off with no additional exploration. If, however, clinicians or patients say “yes’, then
further questions open up to carry out the assessment in this top-down fashion. Each of these
selected answer options generates an MG that produces a derived MG at the concept node
level. This derived MG is based on the risk judgement dependent variable (DV) and a linear
regression calculation. Each cue that lies within a particular concept can have values between
0 and 10, with a value of 10 providing the maximum MG and value 0 the minimum MG. For
example, if the clinician gives realism a value of 7, then the membership grade will be 0.7.
Each assessment question has two additional elements: actions - allow to enter text, which
describes an action that can be taken to help manage the risk issue, and comments - provide
to write a comment about the understanding of that risk item. When all the information
collected it needs to evaluate each risk, provide a risk judgement for each one, and create a
risk formulation to produce the safety plan for the complete assessment.

Let us consider the screening questions of three concept nodes: “depression”, “suicide”
and “social world” to demonstrate the use case scenario of eGRiST risk assessment population
for older adults. These concept nodes (attached with AA) have a number of input variables
comes from different leaf nodes or screening questions (consider as manage resources, attached
with AAs sensors), which can trigger an event using the MG for that node and AAs sensors
observe these events.

For a given “depression” concept, assume that the patient has been diagnosed with
clinical depression previously. For the risk assessment questions, the answer selected as
clinical depression = yes, suffers from delusions = yes and act on delusions = yes. The
patient’s most appropriate label for the current depression status selected as first depression

CHAPTER 6 : Policy Model and Specification Language for AA 120

stage. The MG is derived from the given answer of each cue, given as act on the voices >
0.6, harm or endanger him/herself < 0.2, harm or endanger other people < 0.4, and act on
any delusion > 0.7. The Figure 6.4 shows the screenshot of the possible assessment answers
given by a practitioner for the “depression” concept node.

Fig. 6.4 Assessment Answer Given for Depression Concept

On the other hand, for the “suicide” concept, the assessment answer selected as suicide
attempt = yes, more than one suicide attempt = no, number of suicide attempt = 1, and
any suicide note written = don’t know. The MG is derived from the given answer of each
cue, including serious method used for suicide attempt > 0.6, try to hide any suicide attempt
< 0.4, and suicide attempts to succeed > 0.6. The Figure 6.5 shows the screenshot of the
possible assessment answers given by a practitioner for the “suicide” concept node.

CHAPTER 6 : Policy Model and Specification Language for AA 121

Fig. 6.5 Assessment Answer Given for Suicide Concept

Finally, for the “social world” concept, the assessment answer selected as concerned about
social context = yes, and the MG is derived from the given answer of each cue, including
relationships changed > 0.8, well cared living place < 0.3, and well fitted accommodation
> 0.6. The Figure 6.6 shows the screenshot of the possible assessment answers given by a
patient for the “social” concept node.

Based on the assessment questions answered, an intervention plan depends on the input
variables coming from different Managed Resources (MRs) and an MR can contribute to
many interventions. The MR may have many different events (MG ranges) for each question
selected, each one associated with a different action. For example, if a question at depression
node asking whether the patient has a sad factor and if the answer is selected as the MG
range sad > 0.5, then an action will be triggered. In this case, our AA approach can integrate
risk assessments and judgements score, and then trigger an appropriate action according to
the specified condition in the policy. The benefits of integrating AAs is that they can reduce
the complexity of manual management of thousands of actions, possible cost, time, human
errors, and accelerate faster clinical decision. Although the AA needs to link each event to

CHAPTER 6 : Policy Model and Specification Language for AA 122

Fig. 6.6 Assessment Answer Given for Social Concept

each action, the action itself is actually defined, triggered, and executed by inputs from many
other AAs. An AA cannot, therefore, activate the action on its own, which can be done by
collating actions across many other AAs by the global rule inference engine. However, AAs
can only be managed at the local level by local RIE, both for triggering and executing the
action, which counters the idea of distributed and independent AAs.

6.3.3 eGRiST Datasets

Here, we discuss the collected data files that we use to configure the policy and input for the
AAs. From these data files, we synthesised the data to use these as inputs for autonomic
adapters that then return identifiers for the actions that should be fired. The data files used
for the inputs includes are as follows:

• answers.xml - sample answers for an individual assessment that trigger actions.

• actions-data.json - a list of actions and categories that policies need to cater to trigger
only actions in specified categories for individual calls.

• questions.xml - contains the risk assessment question text and codes.

CHAPTER 6 : Policy Model and Specification Language for AA 123

6.4 Prototype Implementation

This section presents a prototype implementation of the Autonomic Adapter architecture
introduced in Chapter 5. It also discusses the implementation and configuration of the
proposed policy model in a real-world eGRiST CDSS. We deploy and configure AAs policies
according to the collected data from the eGRiST and scenario discussed in previous Section
(6.3.2).

6.4.1 Integrating AAs into eGRiST Domain

This section discusses the integration of AAs and policy specification according to the eGRiST
scenario discussed above. As shown in Table 6.1, AA1 is integrated with the depression node,
and the associated sensors S1 to S5 are responsible for observing the means of MG input
variables from connected leaf nodes (managed resources or cues). AA2 is integrated with the
suicide node, and connected sensors S1 to S7 are liable for observing the means of MG input
variables from connected leaf nodes. AA3 is integrated with the social world concept, and
associated sensors S1 to S3 are responsible for observing the means of MG input variables
from the connected leaf nodes.

Table 6.1 eGRiST Concept Nodes with Integrated AAs

Adapter Name Concept Node Managed Resources Sensors MG Score

depression-status S1 first-diagnosis
act-on-voices S2 0.6

AA1 Depression Node voice-urge-harm-self S3 0.2
voice-urge-harm-others S4 0.4

delusion S5 0.7

Suicide attempt S1 yes
More-than-one S2 no

total-suicide-attempt S3 1
AA2 Suicide Node suicide-note S4 unknown

seriousness S5 0.6
hide-attempts S6 0.4

wanted-to-succeed S7 0.6

worse-relationship S1 0.8
AA3 Social Node well-cared-living S2 0.3

well-fitted-accommodation S3 0.6

6.4.2 Policy Specifications for AAs

The ECA rule pattern is used to configure the policies for AAs, integrated with eGRiST
concept nodes to manage risk assessment questions and actions. To recall AA architecture in
Chapter 5, sensor observes and retrieves the resource’s event such as MG score for a given
cue. The monitor component receives this sensor data and looks at the rules to match the
sensor data with threshold parameters. The local RIE evaluates the context variables and
then triggers some action, which reflects adaptation. The behaviour of the AAs individual
component is controlled by the policies stored in the knowledge repository. Each policy has a

CHAPTER 6 : Policy Model and Specification Language for AA 124

set of rules containing specific conditions which, if matched, can trigger some actions. The
rule specification for each AA and Global RIE in eGRiST system are as follows:

AA1 Policy Specification This section presents the ECA rules specification for the
AA1’s Monitor, Local RIE and Executor components are shown in Tables (6.2, 6.3 and 6.4),
respectively.

• AA1’s Monitor policy defines fourteen rules (R1, R2, R3, ..., R14) and each rule is
associated with a managed resource (cue) as shown in Table 6.2. The rule states that on
click in an assessment question (managed resource) and if the condition part matches
with the event variable, then a new context variable to be set. For example, rule R1 is
triggered if a user clicks on the managed resource “depression-status” and if the option
selected is “first-diagnosis” as an assessment answer, the context variable to be set to
“low”.

Table 6.2 AA1 Monitor Policy in ECA Rule Pattern

Policy Name Rule ID Event Condition Action

R1 On click depression-
status cue

If depression-status ==
“first-diagnosis”

Set new context parameter = “low”

R2 On click depression-
status cue

If depression-status ==
“recovery-single-episode”

Set new context parameter = “medium”

R3 On click depression-
status cue

If depression-status ==
“recovery-repeat-episode”

Set new context parameter = “high”

R4 On click depression-
status cue

If depression-status == “re-
lapse”

Set new context parameter = “critical”

R5 On click depression-
status cue

If depression-status == “un-
known”

Set new context parameter = “un-
known”

R6 On click act-on-
voices cue

If act-on-voices >= 0.5 Set new context parameter = “likely”

AA1 Monitor R7 On click act-on-
voices cue

If act-on-voices < 0.5 Set new context parameter = “unlikely”

R8 On click act-on-
voices cue

If act-on-voices == “un-
known”

Set new context parameter = “un-
known”

R9 On click voice-urge-
harm-self cue

If voice-urge-harm-self >=
0.5

Set new context parameter = “likely”

R10 On click voice-urge-
harm-self cue

If voice-urge-harm-self < 0.5 Set new context parameter = “unlikely”

R11 On click voice-urge-
harm-self cue

If voice-urge-harm-self ==
“unknown”

Set new context parameter = “un-
known”

R12 On click delusion
cue

If delusion >= 0.5 Set new context parameter = “likely”

R13 On click delusion
cue

If delusion < 0.5 Set new context parameter = “unlikely”

R14 On click delusion
cue

If delusion == “unknown” Set new context parameter = “un-
known”

• AA1’s Local RIE policy defines three rules (R1, R2 and R3) and each rule has associated
ECA specification. The rules are trigger upon receiving a notification from monitor
and if a set of context variables evaluates to be true, then trigger an action. As
shown in Table 6.3, if rule R1 get triggered, it evaluates the conditions as depression-
status = “low” and act-on-voices = “likely” and voice-urge-harm-self = “unlikely” and
voice-urge-harm-others = “unlikely” and delusion = “likely”, then trigger “open-url”
action.

CHAPTER 6 : Policy Model and Specification Language for AA 125

Table 6.3 AA1 Local RIE Policy in ECA Rule Pattern

Policy Name Rule ID Event Condition Action

R1 On trigger rule If depression-status ==
“low” and
act-on-voices == “unlikely”
and
voice-urge-harm-self ==
“unlikely” and
voice-urge-harm-others ==
“unlikely” and
delusions == “unlikely”

Trigger Action, Send Email

AA1 Local RIE R2 On trigger rule If depression-status ==
“high” and
act-on-voices == “unlikely”
and
voice-urge-harm-self ==
“unlikely” and
voice-urge-harm-others ==
“unlikely” and
delusions == “unlikely”

Trigger Action, Open URL

R3 On trigger rule If depression-status ==
“critical” and
act-on-voices == “likely”
and
voice-urge-harm-self ==
“likely” and
voice-urge-harm-others ==
“likely” and
delusions == “likely”

Trigger Action, Dial Emergency

• AA1’s Executor policy defines three rules (R1, R2 and R3) and each rule has associated
ECA specification. The rules are triggered upon receiving a notification from Global
RIE, and the condition determines what action should be executed based on the Global
RIE command. As shown in Table 6.4, if rule R1 get triggered, the condition defines if
the action id is “a1”, then call “sendEmail” function to be executed.

Table 6.4 AA1 Executor Policy in ECA Rule Pattern

Policy Name Rule ID Event Condition Action

R1 On received notifi-
cation

If action == "a1" execute action, sendEmail()

AA1 Executor R2 On received notifi-
cation

If action == "a2" execute action, openURL()

R3 On received notifi-
cation

If action == "a3" execute action, dial999()

AA2 Policy Specification Similar to AA1 policy, the ECA rule based policy specification
for AA2’s Monitor, LocalRIE and Executor components are shown in Tables (6.5, 6.6 and
6.7), respectively.

• AA2’s Monitor policy defines twenty rules (R1, R2, R3, ..., R21) and each rule is
associated with a managed resource as shown in Table 6.5, which are triggered based
on the event from assessment questions and new context variable are set if conditions
are matched.

• AA2’s Local RIE policy defines two rules (R1 and R2), which determines what actions
will be triggered if a set of context variables evaluates to true as shown in Table 6.6.

CHAPTER 6 : Policy Model and Specification Language for AA 126

Table 6.5 AA2 Monitor Policy in ECA Rule Pattern

Policy Name Rule ID Event Condition Action

AA2 Monitor R1 On select suicide-
attempt cue

If suicide-attempt == "yes" Set context
parameter = "likely"

R2 On select cue
suicide-attempt

If suicide-attempt == "no" Set context
parameter = "unlikely"

R3 On select cue
suicide-attempt

If suicide-attempt == "un-
known"

Set context
parameter = "unknown"

R4 On select more-
than-one

If more-than-one == "yes" Set context
parameter = "high"

R5 On select cue more-
than-one

If more-than-one == "no" Set context
parameter = "medium"

R6 On select more-
than-one

If more-than-one= "don’t
know"

Set context
parameter = "unknown"

R7 On select total-
attempt

If total-attempt >= 3 Set context
parameter = "likely"

R8 On select cue total-
attempt

If total-attempt < 3 Set context
parameter = "unlikely"

R9 On select cue total-
attempt

If total-attempt == "don’t
know"

Set context
parameter = "unknown"

R10 On select cue
suicide-note

If suicide-note == "yes" Set context
parameter = "unlikely"

R11 On select cue
suicide-note

If suicide-note == "no" Set context
parameter = "likely"

R12 On select cue
suicide-note

If suicide-note == "don’t
know"

Set context
parameter = "unknown"

R13 On select serious-
ness

If seriousness >= 0.5 Set context
parameter = "likely"

R14 On select cue seri-
ousness

If seriousness < 0.5 Set context
parameter = "harmless"

R15 On select cue seri-
ousness

If seriousness == "don’t
know"

Set context
parameter = "unknown"

R16 On select cue hide-
suicide-attempt

If hide-suicide-attempt >=
0.5

Set context
parameter = "hiding"

R17 On select cue hide-
suicide-attempt

If hide-suicide-attempt <
0.5

Set context
parameter = "no-hiding"

R18 On select cue hide-
suicide-attempt

If hide-suicide-attempt ==
"don’t know"

Set context
parameter = "unknown"

R19 On select cue
wanted-to-succeed

If wanted-to-succeed >= 0.5 Set context
parameter = "desire-succeed"

R20 On select cue
wanted-to-succeed

If wanted-to-succeed < 0.5 Set context
parameter = "no-desire"

R21 On select cue
wanted-to-succeed

If wanted-to-succeed ==
"don’t know"

Set context
parameter = "unknown"

Table 6.6 AA2 Local RIE Policy in ECA Rule Pattern

Policy Name Rule ID Event Condition Action

AA2 Local RIE R1 On trigger rule If suicide-attempt ==
"likely" and
more-than-one == "high"
and
total-attempt == "likely"
and
suicide-note == "unlikely"
and
seriousness == "likely" and
hide-suicide-attempt ==
"hiding" and
wanted-to-succeed ==
"desire-succeed"

Trigger Action, Urgent Support

R2 On trigger rule If suicide-attempt ==
"likely" and
more-than-one == "high"
and
total-attempt == "likely"
and
suicide-note == "unlikely"
and
seriousness == "likely" and
hide-suicide-attempt ==
"hiding" and
wanted-to-succeed ==
"desire-succeed"

Trigger Action, Send SMS

CHAPTER 6 : Policy Model and Specification Language for AA 127

• AA2’s Executor policy defines two rules (R1 and R2), which dictates what action will
be executed upon receiving a confirmation from Global RIE as shown in Table 6.7.

Table 6.7 AA2 Executor Policy in ECA Rule Pattern

Policy Name Rule ID Event Condition Action

AA2 Executor R1 On received notifi-
cation

If action == "a1" execute action, urgentSupport()

R2 On received notifi-
cation

If action == "a2" execute action, sendSMS()

AA3 Policy Specification Similar to AA1 and AA2 policy, the ECA rule based pol-
icy specification for AA3’s Monitor, LocalRIE and Executor components are shown in
Tables (6.8, 6.9 and 6.10), respectively.

• AA3’s Monitor policy defines nine rules (R1, R2, R3, ..., R9) as shown in Table 6.8.

Table 6.8 AA3 Monitor Policy in ECA Rule Pattern

Policy Name Rule ID Event Condition Action

AA3 Monitor R1 On select cue worse-
relationship

If worse-relationship >= 0.5 Set context
parameter = extremely-worse"

R2 On select cue seri-
ousness

If worse-relationship < 0.5 Set context
parameter = "less-worse"

R3 On select cue seri-
ousness

If worse-relationship ==
"don’t know"

Set context
parameter = "unknown"

R4 On select cue hide-
suicide-attempt

If well-cared-living >= 0.5 Set context
parameter = "well-cared"

R5 On select cue hide-
suicide-attempt

If well-cared-living < 0.5 Set context
parameter = "less-cared"

R6 On select cue hide-
suicide-attempt

If well-cared-living ==
"don’t know"

Set context
parameter = "unknown"

R7 On select cue
wanted-to-succeed

If well-fitted-
accommodation >= 0.5

Set context
parameter = "well-fitted"

R8 On select cue
wanted-to-succeed

If well-fitted-
accommodation < 0.5

Set context
parameter = "unfit"

R9 On select cue
wanted-to-succeed

If well-fitted-
accommodation == "don’t
know"

Set context
parameter = "unknown"

• AA3’s Local RIE policy defines two rules (R1 and R2), as shown in Table 6.9.

Table 6.9 AA3 Local RIE Policy in ECA Rule Pattern

Policy Name Rule ID Event Condition Action

AA3 Local RIE R1 On trigger rule If worse-relationship ==
"less-worse" and
well-cared-living == "well-
cared" and
well-fitted-accommodation
== "well-fitted"

Trigger Action, Send SMS

R2 On trigger rule If worse-relationship ==
extremely-worse" and
well-cared-living == "less-
cared" and
well-fitted-accommodation
== "unfit"

Trigger Action, Call Social Service

• AA3’s Executor policy defines two rules (R1 and R2), as shown in Table 6.10.

CHAPTER 6 : Policy Model and Specification Language for AA 128

Table 6.10 AA3 Executor Policy in ECA Rule Pattern

Policy Name Rule ID Event Condition Action

AA3 Executor R1 On received notifi-
cation

If action == "a1" execute action, sendSMS(Patient 10)

R2 On received notifi-
cation

If action == "a2" execute action, callSocialService()

Global RIE Policy Specification The Global RIE policy defines four rules (R1, R2, R3
and R4) and that rules are triggered upon receiving actions from the one or more AA’s local
RIE. These rules are most important to determine the final intervention by collating all input
actions triggered by the AAs. The ECA rule specification for Global RIE that determine the
factors that influence decision making is shown in Table 6.11.

Table 6.11 Global RIE Policy in ECA Rule Pattern

Policy Name Rule ID Event Condition Action

Global RIE R1 On triggered action If (aa1.action == "a1"
aa2.action == "a1"
aa3.action == "a1")

send confirmation command to AA1,
AA2 and AA3 to execute their triggered
action "a1".

R2 On triggered action If aa1.action == "a2"
aa2.action == "a2"
aa3.action == "a2"

send confirmation command to AA1,
AA2 and AA3 to execute their triggered
action "a2".

R3 On triggered action If aa1.action == "a3"
aa2.action == "a1"
aa3.action == "a2"

send confirmation command to AA1 to
execute action "a3" and AA2 to execute
action "a1", but not AA3 action "a2" .

R4 On triggered action If aa1.action == "a2"
aa2.action == "a1"
aa3.action == "a1"

send confirmation command to AA2
and AA3 to execute both action "a1",
but not AA1 action "a2".

Based on the ECA rule specification for AA1, AA2 and AA3, in the following Sec-
tion 6.4.2.1, we configure the XML representation of the policies that enforce PSL syntax
and is validated by PSD.

6.4.2.1 XML Configuration of AAs Policies

This section presents the XML configuration of AA1 policy, which is deployed into eGRiST
CDSS as shown partially in the listings 6.2, 6.1, 6.3, 6.4 and 6.5. Due to the limited
space, we do not show the policy configuration for AA2, AA3 and Global policy in this
section. However, the full configuration of all of the policies policy that enforces PSD and
PSS syntax is shown in Appendix B. Additionally, the XML representation of the configured
policies is available at the URL : https://github.com/nhussain920/thesis_source_code. All
the configured policies are validated against PSD language, which is consistent, valid and
available to use for testing.

1 <!-- PolicySet root element -->
2 <PolicySet xmlns:xs="http: //www.w3.org /2001/ XMLSchema"
3 xmlns:xsi = "http: //www.w3.org /2001/ XMLSchema -instance"
4 xsi:schemaLocation="http://www.aapolicyschema.com/␣policy.xsd">
5 <!-- Define events dandle by AA1 policy -->
6 <AAPolicy policyID="p1" policyType="depression"
7 policyDescription="carer ’s␣medium␣help␣intervention" ref_aa="aa1">
8 <ManagedResourceList >

https://github.com/nhussain920/thesis_source_code

CHAPTER 6 : Policy Model and Specification Language for AA 129

9 <ManagedResource resourceID="mr1" resourceType="depression -status"
ref_sensor="s1">

10 <TriggerEvent >
11 <or><Event inputEvent="depression -status" op="="> first -diagnosis </Event>

</or>
12 <or><Event inputEvent="depression -status" op="="> recovery -single -episode

</Event></or>
13 ...
14 </TriggerEvent >
15 </ManagedResource >
16 <ManagedResource resourceID="mr2" resourceType="act -on-voices" ref_sensor="

s2">
17 <TriggerEvent >
18 <or><Event inputEvent="act -on -voices" op="="> 0.0 </Event></or>
19 <or><Event inputEvent="act -on -voices" op="="> 0.1 </Event></or>
20 ...
21 ...
22 </TriggerEvent >
23 </ManagedResource >
24 ...
25 ...
26 </PolicySet >

Listing 6.1 : XML Configuration for AA1’s event Policy.

1 <!-- Configure AA1 sensor policy -->
2 <AA adapterID="aa1" adapterType="depression -concept -adapter">
3 <SensorList >
4 <Sensor sensorID="s1" sensorType="depression -status -sensor" />
5 <Sensor sensorID="s2" sensorType="act -on-voices -sensor" />
6 ...
7 </SensorList >
8 ...
9 </AA>

Listing 6.2 : XML Configuration for AA1’s sensor Policy.

1 <!-- Configure AA1 monitor Policy -->
2 <Monitor monitorID="m1">
3 <GetSensorData ref_sensor="s1" ref_event="depression -status" />
4 ...
5 <Condition conditionID="c1">
6 <Expression exprID="expr1" ref_event="depression -status">
7 <If varName="depression -status" op="==" threshold="first -diagnosis">

low </If>
8 ...
9 </Expression >

10 <Expression exprID="expr2" ref_event="act -on-voices">
11 <If varName="act -on -voices" op=">=" threshold="0.5"> likely </If>
12 ...
13 </Expression >
14 ...
15 ...
16 </Condition >
17 </Monitor >

CHAPTER 6 : Policy Model and Specification Language for AA 130

Listing 6.3 : XML Configuration for AA1’s Monitor Policy.

1 <!-- Configure AA1 local RIE policy -->
2 <LocalRIE rieID="aa-rie1">
3 <GetMonitorData ref_monitor="m1" ref_condition="c1">
4 <GetContextVariable contextID="context1" ref_expression="expr1"/>
5 <GetContextVariable contextID="context2" ref_expression="expr2"/>
6 ...
7 </GetMonitorData >
8 <Condition conditionID="c2">
9 <Expression exprID="expr1">

10 <and><If varName="depression -status" op="==" datavalue="low"
ref_context="context1"> true </If></and>

11 <and><If varName="act -on -voices" op="==" datavalue="likely"
ref_context="context2"> true </If></and>

12 ...
13 </Expression >
14 ...
15 ...
16 <TriggerAction ref_condition="c2">
17 <While condition="expr1␣=␣’true ’">
18 <ActionTemplate actionID="a1" actionType="open -url" category="none"

target_resource="resource␣name">
19 galassify -action -open -url -template
20 </ActionTemplate >
21 </While>
22 <While condition="expr2␣=␣’true ’">
23 <ActionTemplate actionID="a2" actionType="send -email" category="none"

target_resource="resource␣name">
24 galassify -action -send -email -template
25 </ActionTemplate >
26 </While>
27 ...
28 </TriggerAction >
29 </LocalRIE >

Listing 6.4 : XML Configuration of AA1’s Local RIE Policy.

1 <!-- Configure AA1 local RIE policy -->
2 <GlobalPolicy >
3 <GlobalRIE rieID="globalRIE">
4 <ActionList >
5 <!-- Assume that send - email action triggered by AA1 -->
6 <GetAction ref_aa="aa1">
7 <or><Action inputActionID="aa1 -action"> a1 </Action ></or>
8 <or><Action inputActionID="aa1 -action"> a2 </Action ></or>
9 <or><Action inputActionID="aa1 -action"> a3 </Action ></or>

10 </GetAction >
11 <GetAction ref_aa="aa2">
12 ...
13 </GetAction >
14 ...
15 </ActionList >

CHAPTER 6 : Policy Model and Specification Language for AA 131

16 <Condition conditionID="c3">
17 <Expression exprID="expr1">
18 <and><If varName="action" op="==" datavalue="a1" ref_input_action="

aa1_action"> true </If></and>
19 <and><If varName="action" op="==" datavalue="a1" ref_input_action="

aa2_action"> true </If></and>
20 </Expression >
21 <Expression exprID="expr2">
22 ...
23 </Expression >
24 ...
25 </Condition >
26 <Decision ref_condition="c3" ref_expression="expr1">
27 <Command commandID="cmd1" message="yes" target_adapter="aa1"> a1 </Command

>
28 <Command commandID="cmd2" message="yes" target_adapter="aa2"> a1 </Command

>
29 </Decision >
30 ...
31 </Decision >
32 </GlobalRIE >
33 </GlobalPolicy >

Listing 6.5 : XML Configuration of Global RIE Policy.

6.5 Implementing AA Engine With JAVA

This section presents a prototype implementation of “AA Engine” with Java console-based
application. The “AA Engine” design pattern includes a set of abstract classes, interfaces,
data members and methods that provide a generic solution to create AAs to attached with
managed resources within the application domain. The advantage of our “AA Engine” design
patterns is that the code is easily extensible, reusable and maintainable in other similar
autonomic system application. The common Java abstract classes and interfaces are defined
for “AA Engine” includes interfaces (i.e., ISensor, IManagedResource, INotification) and
concrete classes (i.e., AASensor and ManagedResource) that implements interfaces; abstract
classes (i.e., Monitor, LocalRIE, Executor) and concrete classes (i.e., AA1Monitor_Depression,
AA1LocalRIE_Depression, AA1Executor_Depression) that extends the abstract classes. The
Unified Modelling Language (UML) class diagram of “AA Engine” in Figure 6.7 shows the
association and dependencies between the classes.

6.5.1 AA Engine Design Pattern

The following subsections and code fragment show the partial implementation of “AA Engine”
design pattern with Java, whcih can be extendted to create domain specific AAs classes
and interface. The full source code is available online, which can be found using the URL
link: https://github.com/nhussain920/thesis_source_code.

https://github.com/nhussain920/thesis_source_code

CHAPTER 6 : Policy Model and Specification Language for AA 132

Fig. 6.7 UML Class Diagram of AA Engine

6.5.1.1 Constructing AA’s Intelligent Manager Abstract Classes

To implement AA’s generic Intelligent Manager (IM) components, abstract classes and
methods are defined for the Monitor, LocalRIE and Executor components. These abstract
classes can be instantiated to create multiple AAs IM as class-subclass relationship and
share data member and methods by all subclasses. The AAEngine class define a main
method public static void main(String[] args) where many AA class objects can be created
for the main entry point of the program for execution. A policy inference engine is also

CHAPTER 6 : Policy Model and Specification Language for AA 133

implemented with Java to parse policies from XML document for AAs that is configured in
policy specification Section (6.4.2) in this chapter. The code fragment in listing 6.6 shows
the partial implementation of AAs abstract classes and methods.

/* AA Monitor abstract class that declared abstract methods. */
public abstract class Monitor {

// declare abstract methods.
public abstract boolean getNotified(AASensor s);
public abstract boolean notifyLocalRIE ();
public abstract void setContext ();

...
} // end monitor abstract class

/* AA Local RIE abstract class that declared abstract methods. */
public abstract class LocalRIE {

// declare abstract methods.
public abstract void triggerAction ();
public abstract boolean notifyGlobalRIE ();

...
} // end local rie abstract class

/* AA Executor abstract class that declared abstract methods. */
public abstract class Executor {

// declare abstract methods.
public abstract boolean getNotified(GlobalRIE rie);
public abstract void getCommand(String commandID , String actionID , String

adapterID);
public abstract void executeAction ();
public abstract void applyChanges ();

...
} // end executor abstract classs

/* AAEngine class is the main entry point of the program because
when we start a java program , it looks for the main method.
Many objects can be created from classes for instantiation. */
public class AAEngine {

public static void main(String [] args) {
...
...

} // end main method
} // end AAEngine class

Listing 6.6 : Intelligent Manager Abstract Classess.

6.5.1.2 Constructing AA’s Sensor

To create an AA sensor, we fist define interface ISensor that is a completely abstract class and
provide default implementations of methods. The AASensor class is a concrete implementation
of ISensor interface that observes changes in a list of managed resource objects. For example,
the AASensor class define a method, update(Resource resource, String eventData) to set the
object to be observe and this method method is used by ManagedResource class to notify

CHAPTER 6 : Policy Model and Specification Language for AA 134

sensor for any updates occur. The code fragment in listing 6.7 shows the implementation of
these classes.

/* Defining ISensor interface. */
public interface ISensor {

// method to update the sensor , used by managed resource.
public void update(Resource resource , String eventData);
public void retrieveEventData ();

...
} // end ISensor interface

/* Concrete AASensor class that implements of ISensor interface
to handle events and notification. */
public class AASensor implements ISensor {

private String sensorID , sensorType;
private ManagedResource mr;

...
// constructor initialise varaibles.
public AASensor(String sensorID , String sensorType) {

this.sensorID = sensorID;
this.mr = new ManagedResource(new Resource("","",""));

...
} // end constructor

// called when a change has occurred in the state of the managed resource.
@Override
public void update(Resource resource , String eventdata) {

System.out.println(sensorID + "␣has␣received␣event␣data␣from␣"
+ resource + ",␣event␣value:␣"+ eventdata);

this.notification = true;
} // end method

// notifyMonitor () method handle notification to monitor by sensors.
public boolean notifyMonitor () {

if(notification == true) {
System.out.println("Sensor␣" + sensorID + "␣notified␣AA ’s␣Monitor"

);
return true;

} // end if
return false;
} // end method

// retrieveEventData () retrieve event data from monitor.
public void retrieveEventData () {

System.out.print("Event␣Data:␣[");
for(int i=0; i< mr.getEvents ().size(); i++) {

eventData[i] = mr.getEvents ().get(i);
System.out.print("␣"+ eventData[i] + ",");

} // end for loop
System.out.println("]␣retrieved␣by␣sensors\n");

} // end method
...

} // end class

Listing 6.7 : AA’ Sessor Interface and Class.

CHAPTER 6 : Policy Model and Specification Language for AA 135

6.5.1.3 Constructing Managed Resource

The ManagedResource class defines a list of sensors object ArrayList<ISensor> sensors and
provide methods to register registerSensor(ISensor sensor) and unregister sensors unregis-
terSensor(ISensor sensor). The ManagedResource class also contains a method notifySen-
sor(String eventData) that provide functionality to notify all the registered sensors if any
change received from managed resource objects. The interface IManagedResource is defined
that provide default implementations of methods and the ManagedResource class implement
IManagedResource interface. The code fragment in listing 6.8 shows the IManagedResource
interface and concrete implementation of ManagedResource class.

/* Defining IManagedResource interface. */
public interface IManagedResource {

// methods to register and unregister sensors.
public void registerSensor(ISensor sensor);
public void unregisterSensor(ISensor sensor);
// method to notify sensors of changes.
public void notifySensor(String eventData);
// method to get updates from managed resource.
public Object getUpdate(ISensor obj);

...
} // end interface

/* Concrete ManagedResource class that implements IManagedResource interface.
*/

public class ManagedResource implements IManagedResource {
private ArrayList <ISensor > sensors;
private Resource resource;

...
// constructor initialise varaibles.
public ManagedResource(Resource resource) {

this.resource = resource;
this.sensors = new ArrayList <ISensor >();

...
} // end constructor

// add sensor to the managed resources.
@Override
public void registerSensor(ISensor sensor) {

sensors.add(sensor);
System.out.println(sensor + "␣has␣started␣sensing␣event␣from␣" +

resource);
} // end method

// remove sensor from the managed resources.
@Override
public void unregisterSensor(ISensor sensor) {

sensors.add(sensor);
System.out.println(sensor + "␣has␣started␣sensing␣event␣from␣" +

resource);
} // end method

// notify all the registered sensors.

CHAPTER 6 : Policy Model and Specification Language for AA 136

@Override
public void notifySensor(String eventData) {

for(ISensor sensor : sensors) {
sensor.update(resource , eventData);

} // end for loop
} // end method

// set triggered event from manage resource.
public void setEvent(String selectedEvent) {

this.eventData = selectedEvent;
this.eventList.add(eventData);
System.out.println("\n" + resource + "␣has␣event␣value:␣" + this.

eventData + "\n");
notifySensor(eventData);

} // end method
...

} // end ManagedResource class

Listing 6.8 : MR Interface and Class.

6.5.1.4 Construction Global RIE Abstract Class

The GlobalRIE class defines an abstract array list method ArrayList<String> actions to
store all the actions coming from the AAs and provide methods to define decision as shown
in the code listings 6.9.

/* GlobalRIE class implementation. */
public abstract class GlobalRIE {

// declare abstract field and method.
private abstract ArrayList <String > actions;
public abstract void decision ();

...
} // end abstract class

Listing 6.9 : GlobalRIE Abstract Class.

6.5.1.5 Creating PolicyElement Class.

The PolicyElement class define the accessor and mutator methods to store the individual
elements and attributes parsed from the XML-based policy file, which is partially shown in
listing 6.10.

/* the Policy class defines the accessor and mutatotr method for all
policy elements and attributes represented in XML document. */
public class PolicyElement {
/* declare fields for policy document elements */
private String policyID , policyType , policyDescription , ref_aa;
private String resourceID , resourceType , ref_sensor , ref_event;
...

private Object AAPolicy , AA , ManagedResourceList , ManagedResource;
...

CHAPTER 6 : Policy Model and Specification Language for AA 137

private ArrayList <Object > Sensor;
...

/* constructor to initilise the fields */
public Policy () {
listOfActions = new ArrayList <Object >();
...

}

public String getAdapterID () {
return adapterID;

}

public void setAdapterID(String adapterID) {
this.adapterID = adapterID;

}

public String getAdapterType () {
return adapterType;

}

...

...
} // end PolicyElement class

Listing 6.10 : Defining Policy Element Class.

6.5.1.6 Creating PolicyHandler Class.

The PolicyHandler class defines a set of callback handler methods that can be invoked when
events occur during parsing. It reads the XML file and creates a list of object items from the
entries in the XML file, which is partially shown in the code listing 6.11.

public class PolicyFileHandler extends DefaultHandler{
//List to hold policies objects
private ArrayList <Policy > policySet;
private Policy policy;
private String tmpValue;

public PolicyFileHandler () {
policyList = new ArrayList <Policy >();
policy = new Policy ();
parseDocument ();

}

public void parseDocument () {
File cvPolicy = new File("./src/policy.xml");
SAXParserFactory factory = SAXParserFactory.newInstance ();
try {
SAXParser parser = factory.newSAXParser ();
parser.parse(cvPolicy , this);

} catch(ParserConfigurationException e) {
System.out.println("ParserConfig␣error");

CHAPTER 6 : Policy Model and Specification Language for AA 138

} catch(SAXException e) {
System.out.println("SAXException␣:␣xml␣not␣well␣formed");

} catch(IOException e) {
System.out.println("IO␣error");

}

}// End parseDocument method

// Triggered when the start of tag is found.
@Override
public void startElement(String uri , String localName , String elementName ,

Attributes attributes)
throws SAXException {
if(elementName.equalsIgnoreCase("AAPolicy")) {
// if current element is Policy , Create a new policy and put it in map
// clear tmpValue on start of element
policy = new Policy ();
String policyID = attributes.getValue("policyID");
String policyType = attributes.getValue("policyType");
String policyDescription = attributes.getValue("policyDescription");
String ref_aa = attributes.getValue("ref_aa");

policy.setPolicyID(policyID);
policy.setPolicyType(policyType);
policy.setPolicyDescription(policyDescription);
policy.setRefAA(ref_aa);

} // end if statements

} // end startElement Method

...

...
} // end PolicyFileHandler class

Listing 6.11 : Defining Policy Handler Class.

After the above Java implementation of necessary program classes, methods and policies,
the MG scores from eGRiST assessment dataset are set to the AAs sensors as generated event
variable for the managed resources and observe their output results such as the intervention
decision. After executing the program, the output produced by the program indicates that
the system is feasible and performing all of the operations correctly as expected.

6.6 Testing And Evaluation

This subsection presents an experimental testing and evaluation of the proposed AAs operation
and policy model based on the collected and synthesised data from eGRiST, discussed in
Section (6.3). Due to the lack of freely available open source autonomic system API, we
implement a prototype Java console-based application of the AA engine to validate the
feasibility of our proposed method introduced in Chapter (5).

CHAPTER 6 : Policy Model and Specification Language for AA 139

To test and evaluate the system feasibility, we have created three instances of AAs, AADe-
pression class as AA1, AASuicide class as AA2 and AASocial class as AA3 and their intelligent
manager component classes such as AA1Monitor_Depression class, AA1LocalRIE_Depression
class, and AA1Executor_Depression class, that inherits AA design pattern classes and method.
We also implement GlobalRIE class that evaluates actions and trigger final intervention. The
policy elements are parsed and instantiated as Java objects in order to test a range of input
and output according to the eGRiST risk assessment scenario illustrated in Section (6.3.2.
Several event data are input to the AAs sensors as environment variable and observe their
output results such as the intervention decision.

Due to the limited space, we do not show the full implementation of all classes. Due
to space limitation, we only show the partial code in this section. However, the complete
implementation of AADepression adapter, AASuicide adapter and AASocial adapter and
the related configured policy document is available online at the URL https://github.com/
nhussain920/thesis_source_code.

The following sub-sections discuss the partial Java program implementation for AADe-
pression adapter and its intelligent manager component classes: AA1Monitor_Depression,
AA1LocalRIE_Depression, and AA1Executor_Depression and shows the relevant input and
output after executing the program.

6.6.1 Creating AADepression Class and Sensor Instances

As shown in the code fragment below, we have defined AADepression class where managed
resource instances and sensor instances are created as ‘sensor1’, ‘sensor2’, ‘sensor3’, ‘sen-
sor4’, and ‘sensor5’ and registered with associated managed resources ‘depression_status’,
‘act_on_voice’, ‘voice_urge_harm_self’, ‘voice_urge_harm_others’ and ‘delusions’, respec-
tively. Then, the MG variables (as shown in eGRiST scenarios) are set by invoking setEvent()
method as: ‘depression_status = 0.6’, ‘act_on_voice = 0.6’, ‘voice_urge_harm_self’,
‘voice_urge_harm_others = 0.4’ and ‘delusions = 0.7’. Each sensor observes and retrieved
these events variables during the execution the program. The Java code of AADepression
class is partially shown in listing ??.

/* AA1Depression class implementation. */
public class AADepression {
// delare variables and class instances as fields.
ManagedResource depression_status;
ManagedResource act_on_voice;
ManagedResource voice_urge_harm_self;
ManagedResource voice_urge_harm_others;
ManagedResource delusions;
AASensor sensor , sensor1 , sensor2 , sensor3 , sensor4 , sensor5;

// declare constructor to initialise fields .
public AADepression () {
// initialise managed resource instances.

https://github.com/nhussain920/thesis_source_code
https://github.com/nhussain920/thesis_source_code

CHAPTER 6 : Policy Model and Specification Language for AA 140

depression_status = new ManagedResource(new Resource("mr1", "Depression␣
Status", "s1"));

act_on_voice = new ManagedResource(new Resource("mr2", "Act␣On␣Voice", "s2")
);

voice_urge_harm_self = new ManagedResource(new Resource("mr3", "
voice_urge_harm_self", "s3"));

voice_urge_harm_others = new ManagedResource(new Resource("mr4", "
voice_urge_harm_others", "s4"));

delusions = new ManagedResource(new Resource("mr5", "delusions", "s5"));

// creating sensors instances.
sensor1 = new AASensor("S1", "AA1␣Depression␣Sensor");
sensor2 = new AASensor("S2", "AA1␣Act␣on␣Voice␣Sensor");
sensor3 = new AASensor("S3", "AA1␣Voice␣Urge␣Self␣Sensor");
sensor4 = new AASensor("S4", "AA1␣Voice␣Urge␣Other␣Sensor");
sensor5 = new AASensor("S5", "AA1␣Delusion␣Sensor");

// registering sensors with managed resources.
depression_status.registerSensor(sensor1);
act_on_voice.registerSensor(sensor2);
voice_urge_harm_self.registerSensor(sensor3);
voice_urge_harm_others.registerSensor(sensor4);
delusions.registerSensor(sensor5);

// setting environment event variables.
depression_status.setEvent("first -diagnosis");
act_on_voice.setEvent("0.6");
voice_urge_harm_self.setEvent("0.2");
voice_urge_harm_others.setEvent("0.4");
delusions.setEvent("0.7");
...
...

} // end constructor
} // end class

Listing 6.12 : AA1 Depression Class.

6.6.2 Creating AA1Monitor_Depression Class and Instances

In the code fragment below, we have created AA1Monitor_Depression class that extends
abstract Monitor class. The concrete implementation of the setContext() method defines a
new context variable for each monitored event according to the policy. The class definition is
partially shown in the program code listing 6.13.

/* AA1Monitor_Depression class implementation that extends abstract Monitor
class. */

public class AA1Monitor_Depression extends Monitor {
// delare class instances and variables as fields.
private ManagedResource mr;
private String depContext , voiceContext , voiceUrgeSelf ,
voiceUrgeOther , delusions;
...

CHAPTER 6 : Policy Model and Specification Language for AA 141

// declare constructor to initialise fields.
public AA1Monitor_Depression(String monitorID) {
mr = new ManagedResource(new Resource("","",""));
...
...

} // end constructor

// set new context variables according to the condition evaluation.
public void setContext () {
for(int i=0; i<mr.getEvents ().size(); i++) {
if(mr.getEvents ().contains(policyData.getDepressionData ().get(i))) {
depContext = "low";
context [0] = depContext;
System.out.println("New␣context␣variable␣set␣for␣’Depression ’␣Node␣:␣" +

depContext);
} // end if

if(mr.getEvents ().contains(policyData.getVoiceActData ().get(i))) {
voiceContext = "likely";
context [1] = voiceContext;
System.out.println("New␣context␣variable␣set␣for␣’Act␣On␣Voice ’␣Node:␣" +

voiceContext);
} // end if
...
...

} end for loop
} // end setContext () method
...
...

} // end class

Listing 6.13 : AA1Monitor_Depression Class.

6.6.3 Creating AA1LocalRIE_Depression Class and Instances

In the code fragment below, we have created AA1LocalRIE_Depression class that extends
the abstract LocalRIE class. The concrete implementation of the triggerAction() method
evaluates the context variables and trigger actions according to the rule condition in the
policy, which is partially shown in listing 6.14.

/* AA1LocalRIE_Depression class implementation that extends abstract LocalRIE
class. */

public class AA1LocalRIE_Depression extends LocalRIE {
// declare class instances and variables as fields.
private AA1Monitor_Depression monitor;
private String rieID;
...

// declare constructor to initialise fields.
public AA1LocalRIE_Depression(String rieID) {
this.rieID = rieID;
...

} // end constructor

CHAPTER 6 : Policy Model and Specification Language for AA 142

// define triggerAction () method to trigger action context true.
public void triggerAction () {
int i = 0;
for(i=0; i<monitor.getContext ().length; i++) {
if(monitor.context[i]. equals(policyData.getExpression1 ().get(i)) &&
monitor.context [++i]. equals(policyData.getExpression1 ().get(i)) &&
monitor.context [++i]. equals(policyData.getExpression1 ().get(i)) &&
monitor.context [++i]. equals(policyData.getExpression1 ().get(i)) &&
monitor.context [++i]. equals(policyData.getExpression1 ().get(i))) {
System.out.println("Context␣1␣is␣true");
System.out.println("Context␣1␣is␣true");
System.out.println("Trigger␣action␣template␣open_url");
AA1LocalRIE_Depression.trigger_action = "a1";

} // end if
...
...

} // end for loop
} // end triggerAction () method
...
...

} // end class

Listing 6.14 : AA1LocalRIE_Depression Class.

6.6.4 Creating Global RIE Class and Instances

In the code fragment below, we have created GlobalRIE class that defines decision() method
to evaluate actions coming from AAs and decide what actions to be executed according to
the rule condition in the global policy, which is partially shown in listing 6.15:

/* GlobalRIE class implementation. */
public class GlobalRIE {
// declare class instances and variables as fields.
private ArrayList <String > actions;
private AA1LocalRIE_Depression aa1_rie;
...

// declare constructor to initilise fields.
public GlobalRIE(String rieID) {
this.actions = new ArrayList <String >();
...

} // end constructor

// declare addActions () method that add triggered actions coming from AAs.
public void addActions () {
map.put(aa1_rie.getAction (), aa1_rie.toString ());
map.put(aa2_rie.getAction (), aa2_rie.toString ());
map.put(aa3_rie.getAction (), aa3_rie.toString ());
...

} // end addActions () method

// declare decision () method confirms actions to be execute based on the
policy.

public void decision () {

CHAPTER 6 : Policy Model and Specification Language for AA 143

for (HashMap.Entry<String , String > entry : map.entrySet ()) {
actionID = entry.getKey ();
adapterID = entry.getValue ();

if(map.containsKey(actionID) && map.containsValue(adapterID)) {
System.out.println("Execute␣action:␣" + actionID);
aa1_executor.getCommand("cmd1", actionID , "AA1Depression");

} // end if

else if(map.containsKey("aa-rie1") && map.containsValue("a1")) {
System.out.println("Execute␣action:␣" + actionID);

} // end else if
...

} // end for loop
} // end decision () method
...
...

} // end class

Listing 6.15 : Global RIE Class that map AA1’s triggered actions.

6.6.5 Creating AA1Executor_Depression Class and Instances

In the code fragment below, we have created AA1Executor_Depression class that extends the
abstract Executor class. The concrete implementation of the executeAction() method executes
the actions confirmed by global RIE and applyChanges() method sent the intervention to the
social-collaborative network, which is partially shown in listing 6.16.

/* AA1Executor_Depression class implementation that extends abstract Executor
class. */

public class GlobalRIE {
// declare class instances and variables as fields.
private ArrayList <String > actions;
private AA1LocalRIE_Depression aa1_rie;
...

// declare constructor to initilise fields.
public GlobalRIE(String rieID) {
...

} // end constructor

// declare executeAction () method.
public void executeAction () {
String id = policy.node_id;
String name = policy.name;
String recepient = policy.recepient;
String subject = policy.subject;
String txtMessage = policy.txtMessage;
String population_restriction = policy.population_restriction;
action.sendEmail(id, name , recepient , subject , txtMessage ,

population_restriction);
...

} // end executeAction () method

CHAPTER 6 : Policy Model and Specification Language for AA 144

// declare applyChanges () method.
public void applyChanges () {

} // end applyChanges () method
...
...

} // end class

Listing 6.16 : AA1Executor_Depression Class.

6.6.6 Creating AAs Class Objects

In the code below, we have created AAEngine class that is used to define AA’s class objects,
depression_aa, suicide_aa and social_aa, which is partially shown in listing 6.17.

/* AAEngine class impementation. */
public class AAEngine {
// declare main() method to run the program.
public static void main(String [] args) {
// creating AA’s␣object.

␣␣␣AADepression␣depression_aa␣=␣new␣AADepression ();
␣␣␣AASuicide␣suicide_aa␣=␣new␣AASuicide ();
␣␣␣AASocial␣social_aa␣=␣new␣AASocial ();
␣␣}␣//␣end␣main()␣method
␣}␣//␣end␣class

Listing 6.17 : Creating AAs Object in AAEngine Class.

6.6.7 Program Output

After the implementation of necessary program classes, methods and policies, the collected
MG scores from eGRiST assessment questions are set to the AAs sensors as generated event
variable and observe their output results such as the intervention decision. After executing
the program, as expected, the output of the program indicates that the system is feasible
and performing operation correctly. Due to the limited space, we only show the AA1 output
in this chapter.
After executing the program, as expected, the output result of AA1 sensors indicates that for
any possible events, sensors are capable of observe the resources’ states correctly, which is
partially shown in listing 6.18.

// sensors sensing events from managed resoures.
Sensor S1, Sensor Type AA1 Depression Sensor has started sensing event from

Resource ID: mr1 ,
type: Depression Status , ref sensor: s1
Sensor S2, Sensor Type AA1 Act on Voice Sensor has started sensing event from

Resource ID: mr2 ,
...
...
// sensors retrieved events data.

CHAPTER 6 : Policy Model and Specification Language for AA 145

Resource ID: mr1 , type: Depression Status , ref sensor: s1 has event value:
first -diagnosis

S1 has received event data from Resource ID: mr1 , type: Depression Status , ref
sensor: s1,

event value: first -diagnosis
...
...

Listing 6.18 : AA1 Sensor Output.

The output of AA1 Monitor for Depression node is partially shown in listing listing 6.19.
// sensors notified monitor.
Sensor S1 notified AA’s␣Monitor
Monitor␣received␣notification␣from␣sensor:␣Sensor␣S1,␣Sensor␣Type␣AA1␣Sensor␣1
Sensor␣S2␣notified␣AA’s Monitor
Monitor received notification from sensor: Sensor S2 , Sensor Type AA1 Sensor 2
...
...
// sensors data added to monitor.
Senosr ’s␣Data␣[first -diagnosis ,␣0.6,␣0.2,␣0.4,␣0.7]␣added␣to␣Monitor

//␣new␣context␣variables␣set␣by␣monitor.
New␣context␣variable␣set␣for␣’Depression ’␣Node␣:␣low
New␣context␣variable␣set␣for␣’Act On Voice’␣Node:␣likely
...
...

Listing 6.19 : AA1 Monitor Output.

The output of AA1 Local RIE for Depression node is partially shown in listing 6.20.
// monitor notified local RIE.
Monitor m1 notified AA’s␣Local␣RIE
Local␣RIE␣received␣notification␣from␣Monitor:␣Monitor␣m1
//␣context␣1␣evaluated␣true.
Context␣1␣true
//␣send_email␣action␣triggered␣which␣id␣is␣a1.
Trigger␣action␣template␣send_email
Triggered␣Action␣ID:␣a1␣

Listing 6.20 : AA1 Local RIE Output.

The output of Global RIE is partially shown in listing 6.21.
// local RIE notified global RIE.
Local RIE: aa-rie1 notified Global RIE
Local RIE: aa-rie2 notified Global RIE
Local RIE: aa-rie3 notified Global RIE

// global RIE received notification from global RIE.
Global RIE received notification from: AA1 Local RIE: aa-rie1
Global RIE received notification from: AA2 Local RIE: aa-rie2
Global RIE received notification from: AA3 Local RIE: aa-rie3
// global RIE decided action a1 to be executed and sent the command to AA1’s␣

executor.

CHAPTER 6 : Policy Model and Specification Language for AA 146

Execute␣action:␣a1
//␣global␣RIE␣decided␣action␣a1␣to␣be␣executed␣and␣sent␣the␣command␣to␣AA2’s

executor.
Execute action: a1
// global RIE decided action a1 to be executed and sent the command to AA3’s␣

executor.
Execute␣action:␣a1
AA1Depression␣adapter␣recieved␣command:␣cmd1␣from␣Global␣RIE␣to␣execute␣action:

␣a1
AA2Siucide␣adapter␣recieved␣command:␣cmd2␣from␣Global␣RIE␣to␣execute␣action:␣a1
AA3Social␣adapter␣recieved␣command:␣cmd3␣from␣Global␣RIE␣to␣execute␣action:␣a1

Listing 6.21 : Global RIE Output.

The output of AA1 Executor for Depression that execute some actions is partially shown in
listing 6.22.

// global RIE notified executor.
Global RIE ID: GlobalRIE notified AA’s␣Executor
//␣executor␣received␣notification␣from␣global␣RIE.
Executor␣received␣notification␣from:␣GlobalRIE
//␣executing␣email␣action.
Sending␣email␣...
Email␣ID:␣n1,␣Person␣Name:␣John ,␣Email:␣abc@example.come ,␣Subject␣line:␣medical

␣advice ,
Message:␣We␣recommended␣you␣to␣seek␣help...,␣Population␣Category:␣older␣adults

Listing 6.22 : AA1 Executor Output.

In the eGRiST program implementation and testing above, we first implemented generic
AA Engine, including concrete implementation of sensor interface and intelligent manager
loop and policy parser in Java as shown in above section (6.5). Then, we have extended the
AA Engine with the implementation of AA1 classes for Depression node, which is partially
shown in above section (6.6.1. Similarly, AA2 and AA3 classes are implemented (code is
available at https://github.com/nhussain920/thesis_source_code) for Suicide and Social
concept node of eGRiST system. The environment variables are set as input events for
each managed resource that are associates with each AA and observed the outputs of each
intelligent manager component separately. The program implementation of AA engine and
the integrated AAs into eGRiST, AA1, AA2 and AA3, which contains many abstract and
concrete classes, interfaces and methods, which are a very large amount of code and the
program output. Thus, due to the limited space, we have partially shown few essential classes
and the output but omitted many lines of the code from the main text. Although, our current
program simulation has produced the output as expected, unfortunately, it is difficult to
comprehensively determine whether a program validation is sufficient. Because, a realistic
large-scale software-development context and testing scenarios, the program simulation
may have various bottlenecks such as program bugs, insufficient performance, optimisation,
memory and resource leaks under different circumstances. Therefore, we plan to develop more
sophisticated program code, which could be easy to analysis, sufficiently debugged, reusable

https://github.com/nhussain920/thesis_source_code

CHAPTER 6 : Policy Model and Specification Language for AA 147

and scalable to provide relevant indicators to reconfigure the managed system. Finally, we
expect to explore additional experiment in different contexts such as cyber-physical smart
cities or embedded systems in which the reconfiguration scenarios and goals are different.

6.7 Conclusion

This chapter presented a flexible and consistent policy model and specification language
for supporting the policy-based interactions and decision making between AAs. This is a
modest contribution to overcome the limitation of existing fixed coded autonomic computing
issues, especially the self-management and adaptive characteristics to reduce human agent
intervention. Our policy model incorporates ECA rules as shared knowledge, which is enforced
by the rule inference engine within the management components of the AAs. We proposed
PSL and PSD that are used to configure and validate the policy, respectively. We described
a prototype implementation, testing and validation of the proposed policy-based autonomic
control service through a real-world mental health decision support system case study, namely
eGRiST. We developed a Java-based program simulation of integrated AAs into eGRiST
system, and the input and output test established according to eGRiST assessment questions
by executing program. The output result proved that the system is feasible, consistent and
valid on given input values that produced the expected results.

Some general requirements that any policy design and representation should satisfy
regardless of its field of applicability and expressiveness to handle the wide range of policy
requirements, simplicity to ease the policy definition, enforceability to various platforms,
scalability to ensure adequate performance. More work is needed on implementing and testing
our AA policy model in different domains in terms of the general requirements of the policy
design and representation. This would provide the autonomic system a more robust way to
evaluate system operation in various environments.

CHAPTER 7

Conclusion and Future Work

This chapter presents a summarised discussion of the main thesis contributions and draws
some conclusions from this study and highlights some future works, which may further
improve the current research outcomes.

7.1 Contributions

This thesis attempts to design and develop a self-managed and adaptive socio-cyber-physical
collaborative system by utilising social computing and autonomic computing approach. We
addressed the problem of how socio-cyber-physical resources can be semantically represented
and can interact, collaborate and make a decision without human interventions. Afterwards,
we proposed GASCF and AA architecture and explored how different AAs should be deployed
across the IT infrastructure and how policy could manage and automate the AAs behaviour
for a collaborative decision-making process within a socio-cyber-physical environment. Finally,
we discussed the implementation and evaluation of the proposed approach in real-world
healthcare systems, name GRiST online healthcare service and GRiST CDSS. In summary,
the main contributions of this thesis and the novel ideas are as follows:

• Social computing methodology has been studied and used with encouraging results in
developing collaborative tools and applications in different domains. However, existing
collaboration approaches do not consider how cyber-physical objects can establish and
maintain their social relations, interactions and communications to achieve a shared
and collaborative decision-making goal based on their event status. Existing social
networking applications developed for general networking purposes such as to keep in
touch with family and friends, or online conversations only [186] and lack of semantic
structure for supporting socio-cyber-physical relation and collaboration abilities. A few
research evidenced that people not only connect to each other directly, but they also
connect through shared objects or artifacts [24]. In the literature, several social agent-
based solutions have been discussed as a set of micro-services to handle digital traces of

CHAPTER 7 : Conclusion and Future Work 150

human activities, respecting both users’ privacy and the business models of companies
to build personalised services or applications in the web [10]. Unfortunately, these
social agent model are not adequate to represent and act on behalf of the cyber-physical
resources in a social environment.

To overcome this limitation, in Chapter (4), we investigated the impacts and benefits
of employing agent-based social networking approach with semantic ontology integra-
tion for supporting human and nonhuman (e.g. cyber-physical resources) interactions
and collaboration task. First, we proposed a software agent-centric semantic social-
collaborative network (SSCN) where socio-cyber-physical resources represented as a
social graph. These nonhuman resources or social artifacts cannot interact and commu-
nicate with each other by themselves. Therefore, the software agent component was
integrated into the framework that provides the functionality to manage and maintain
resources activities and actions. The OWL-based ontology model also introduced that
provides a common semantic knowledge framework to represent concept, properties and
relation of a domain of discourse, and also improve data interoperability, accessibility
and information inference from the hidden facts.

To validate the proposed approach, we discussed GRiST online healthcare service and
constructed a domain-centric ontology to represent domain concepts (i.e., human, smart
devices, web resources and medical artifacts), properties and relations among them.
We performed ontology reasoning using existing reasoner to check the correct syntax
and consistency of the ontology. Several SWRL and SPARQL queries were applied
to test the correct functioning of the ontology. The query results show that semantic
representation of healthcare network provides efficient interconnection and discovery of
the hidden information from the resources interactions.

The socio-cyber-physical collaborative system rapidly becomes brittle and unmanageable
due to the growing complexity, heterogeneity of the cyber-physical resources and
their social dynamics. Therefore, it is a difficult task and error-prone for traditional
software agents model to cope with this large and uncertain situation within the social-
collaborative environment. To provide a solution to this problem, we investigated the
autonomic computing approach to create and leverage intelligent agent into the system
for self-management capabilities.

• Autonomic computing was introduced to manage complex computer applications and
systems without human intervention [106]. The intelligent control loop (monitor,
analysis, plan, execute and knowledge) is the core concept of autonomic computing [56].
Most of the existing autonomic computing approaches have been tightly coupled with the
domain-specific applications for which they have been developed. A few have provided
frameworks that focused on the self-adaptive system, but they are not adequate for
autonomous socio-cyber-physical resource collaboration. To fulfil this gap, in Chapter

CHAPTER 7 : Conclusion and Future Work 151

(5), we proposed GASCF and AA architecture to make the system self-managed by
enabling autonomous monitoring of resource states, analysis the situations, trigger
and execute actions in a real-time according to the rules in the policy. This GASCF
framework focuses on the higher-level social context, and the use of AAs communicates
and collaborates with each other through a social network for collaborative decision
making.

Our GASCF and AA model has several significant advantages over existing agent-based
approaches with regards to socio-cyber-physical autonomic system development. It
is universal enough to be re-configured for use with any legacy or future IT system
whose behaviour can be controlled by the policy without disrupting the normal system
operation. The decisions taken by the AAs are based on a rich and flexible set of high-
level ECA rule-based policies that are unavailable in existing cyber-physical solutions
or multiagent-based systems. Moreover, each AA has a local rule inference engine that
triggers single action, whereas a global rule inference engine collates output actions
coming from AAs to make a final decision, which is new to the autonomous agent
model. Both rule inference engines constantly communicate with shared knowledge
source to fetch rule for action intervention whenever needed.

As practical applicability and validity of our proposed approach, we discussed how
GASCF and AAs can be applied to extended GRiST domain to implement a self-
managed and adaptive healthcare system. We have shown that AAs enables continuous
monitoring of a patient’s health condition, the collection of patient data, and triggers
some actions such as notification alarms when critical conditions are detected so that
doctors or carers can instantly react to them. This helps to reduce the burden of
data input required by the older adults themselves but also provide a mechanism for
monitoring their safety at home on a continuous basis.

However, the current challenges of autonomic computing research are related to designing
a general-purpose, flexible and consistent policy model and specification language for
managing AAs behaviour within the application domain. In general, low-level decision-
making logic is usually encapsulated by Event-Condition-Action (ECA) rules as a fixed
coded within the autonomic computing knowledge [22]. The common uses of fixed
coded policies are inadequate and inflexible to dynamically change contexts [26]. To
address this problem, we conducted a comprehensive study within the area of policy
specification language for modelling general-purpose policies autonomic system.

• Policy-based management has emerged as an attractive approach for flexible and
dynamically controlled systems, services and network management [143]. The use of
a policy-based approach has received considerable attention in autonomic computing
for the management of large and distributed IT environments. There are a number
of approaches introduced to define the policies with accompanying policy languages,

CHAPTER 7 : Conclusion and Future Work 152

ranging from logic-based languages, special-purpose policy languages, generic rule-
based (if-then-else) formats, ontology-based approaches, and so on [36]. However, there
is no well-defined policy model compatible with the autonomic management of the
socio-cyber-physical collaborative system.

We address this challenge in Chapter (6) by designing and implementing an ECA
rule-based policy model and specification language, represented in XML format to
control AAs behaviour at run-time. At a core, we proposed Policy Schema Definition
(PSD) language that allows us to construct policy according to the schema structure.
A general-purpose Policy Specification Scripts (PSS) also discussed that are easily
reusable for domain-specific policy configuration. Finally, we implemented a generic AA
Engine API in Java programming language and extended the classes and interface to
create AAs, integrated into the eGRiST system. We validated the effectiveness of our
AA policy model by implementing it to a web-based mental health risk decision support
system, called eGRiST. To test the functionality of the system, we input synthesised
data from the eGRiST as events parameter to the AAs and observed the output actions
by running the system. The results show that risk assessment interventions are correctly
triggered and feasible according to the AAs policy configuration, with appropriate
system functionality and configuration capability.

7.2 Future Work

Dealing with uncertainty in a socio-cyber-physical system integrated with a large number
of heterogeneous resources (i.e., mobile devices, sensors, cameras, wearable devices, etc.) is
a challenging area for future research. We intend to improve the AAs analysing capability
with the machine learning techniques to deal with predicting uncertain context information
more accurately and self-adaptive decision-making. In addition to tackle heterogeneity, these
resources will need to be consistently and formally represented through suitable abstraction
technologies (i.e., ontology). However, how to use Semantic Web ontology to formally define
context-aware resources and how to exploit it within the AAs intelligent manager’s loop are
a future research direction. Moreover, our proposed approach also need to be tested in other
domain to evaluate the scalability and performance of the system.

REFERENCES

[1] Abbattista, F., Calefato, F., Gendarmi, D., and Lanubile, F. (2008). Incorporating
Social Software into Distributed Agile Development Environments. In 23rd IEEE/ACM
International Conference on Automated Software Engineering, volume 1, pages 46–51.
IEEE Press.

[2] Afzal, B., Umair, M., Asadullah Shah, G., and Ahmed, E. (2019). Enabling IoT platforms
for social IoT applications: Vision, feature mapping, and challenges. Future Generation
Computer Systems, 92:718–731.

[3] Aggarwal, P. K., Nigam, P., and Shrivastava, V. (2016). Self Controlled Traffic Man-
agement Using Autonomic System. In 3rd International Conference On Computing for
Sustainable Global Development (INDIACom), pages 3813–3815, New Delhi. IEEE.

[4] Ahuja, K. and Dangey, H. (2014). Autonomic Computing: An Emerging Perspective
and Issues. Proceedings of the 2014 International Conference on Issues and Challenges in
Intelligent Computing Techniques, ICICT 2014, pages 471–475.

[5] Alaya, M. B. and Monteil, T. (2012). FRAMESELF: A generic autonomic framework
for self-management of distributed systems -Application on the self-configuration of M2M
architecture using semantic and ontology. In International Conference on Collaboration
Technologies and Infrastructures (IEEE WETICE 2012). IEEE.

[6] Alirezaie, M., Renoux, J., Köckemann, U., Kristoffersson, A., Karlsson, L., Blomqvist, E.,
Tsiftes, N., Voigt, T., and Loutfi, A. (2017). An Ontology-based Context-aware System for
Smart Homes: E-care@home. Sensors, 17(7):1–23.

[7] Almeida, M., Souza, R., and Fonseca, F. (2018). Semantics in the Semantic Web: A
Critical Evaluation. Knowledge Organization, 38(3):187–203.

[8] Almomen, S. and Menascé, D. A. (2011). An Autonomic Computing Framework for Self-
managed Emergency Departments. HEALTHINF 2011-Proceedings of the International
Conference on Health Informatics, pages 52–60.

[9] Alti, A., Lakehal, A., Laborie, S., and Roose, P. (2016). Autonomic semantic-based
context-aware platform for mobile applications in pervasive environments. Future Internet,
8(4):1–26.

[10] Alvertis, I., Biliri, E., Lampathaki, F., and Askounis, D. (2018). Social Agents to
Enable Pervasive Social Networking Services. Journal of Theoretical and Applied Electronic
Commerce Research, 13(3):50–84.

[11] Aman, W. and Snekkenes, E. (2015). EDAS: An evaluation prototype for autonomic
event-driven adaptive security in the internet of things. Future Internet, 7(3):225–256.

CHAPTER 7 : REFERENCES 154

[12] Anthony, R. (2006). Generic Support for Policy-Based Self-Adaptive Systems. 17th
International Conference on Database and Expert Systems Applications (DEXA’06), pages
108–113.

[13] Anthony, R. J. (2007). Policy-centric integration and dynamic composition of autonomic
computing techniques. In In Autonomic Computing, 2007. ICAC’07., pages 2–2. IEEE.

[14] Ardini, A., Hosseini, M., Alrobai, A., Shahri, A., Phalp, K., and Ali, R. (2014). Social
computing for software engineering: A mapping study. Computer Science Review, 13-
14(C):75–93.

[15] Arnaboldi, V., Conti, M., Passarella, A., and Dunbar, R. I. (2017). Online Social
Networks and information diffusion: The role of ego networks. Online Social Networks
and Media, 1:44–55.

[16] Ashraf, Q. M., Yeoh, C. Y., Khalaf, A. A., Al-Haddad, A., Habaebi, M. H., Abdullah,
W. R. W., and Yahya, M. R. (2017). Autonomic Internet of Things for Enforced Demand
Management in Smart Grid. American Journal of Data Mining and Knowledge Discovery,
2(2):69–75.

[17] Atzori, L., Iera, A., Morabito, G., and Nitti, M. (2012). The Social Internet of Things
(SIoT) – When Social Networks meet the Internet of Things: Concept, Architecture and
Network Characterization. Computer Networks, 56(16):3594–3608.

[18] Ayala, I., Amor, M., and Fuentes, L. (2013). Self-configuring agents for ambient assisted
living applications. Personal and Ubiquitous Computing, 17(6):1159–1169.

[19] Baader, F., Horrocks, I., and Sattler, U. (2005). Description logics as ontology languages
for the semantic web. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2605 LNAI:228–248.

[20] Badr, N., Taleb-Bendiab, A., and Reilly, D. (2004). Policy-Based Autonomic Control
Service. In Policy, pages 99–102.

[21] Bailey, C., Chadwick, D. W., and Lemos, R. D. (2011). Self-adaptive authorization
framework for policy based RBAC/ABAC models. In IEEE 9th International Conference
on Dependable, Autonomic and Secure Computing, DASC 2011, pages 37–44.

[22] Bailey, J., Poulovassilis, A., and Wood, P. T. (2002). An event-condition-action language
for XML. Proceedings of the eleventh international conference on World Wide Web - WWW
’02, page 486.

[23] Beach, A., Gartrell, M., Xing, X., Han, R., Lv, Q., Mishra, S., and Seada, K. (2010).
Fusing Mobile, Sensor, and Social Data To Fully Enable Context-Aware Computing.
Proceedings of the 23nd annual ACM symposium on User interface software and technology
- UIST ’10, page 105.

[24] Begel, A. and Deline, R. (2009). Codebook: Social Networking Over Code. In 31st
International Conference on Software Engineering - Companion Volume, pages 263–266,
Bancouver, BC. IEEE.

[25] Begel, A., DeLine, R., and Zimmermann, T. (2010). Social media for software engineering.
In Proceedings of the FSE/SDP workshop on Future of software engineering research -
FoSER ’10, pages 33–38, NY. ACM.

CHAPTER 7 : REFERENCES 155

[26] Belhaj, N., Belaïd, D., and Mukhtar, H. (2017). Self-adaptive Decision Making for
the Management of Component-Based Applications. In OTM Confederated International
Conferences "On the Move to Meaningful Internet Systems", pages 570–588. Springer.

[27] Bennett, M. and Baclawski, K. (2017). The Role of Ontologies in Linked Data, Big Data
and Semantic Web Applications. Applied Ontology, 12(3-4):189–194.

[28] Bergstrom, A., Clark, R., Hogue, T., Iyechad, T., Miller, J., Mullen, S., Perkins, D.,
Rowe, E., Russell, J., Simon-Brown, V., Slinski, M., Snider, A. B., and Thurston, F. (1995).
Collaboration framework: Addressing community capacity. Technical report, National
Network for Collaboration, Fargo, ND.

[29] Berners-Lee, T., Fielding, R., and Masinter, L. (2005). Uniform resource identifier (URI):
Generic syntax.

[30] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). THE SEMANTIC WEB. Scientific
American, 284(5):28–37.

[31] Beyerlein, M. M. and Harris, C. L. (2002). Critical Success Factors in Team-Based
Organising A Top Ten List. The Collaborative Work Systems Fieldbook, page 3.

[32] Bhowmick, S., Mohania, M., Sakamuri, B. C., Madria, S., and Lane, K. P. (2002). A
Model for XML Schema Integration. E-Commerce and Web Technologies, pages 193–202.

[33] Biamino, G. (2011). Modeling Social Contexts for Pervasive Computing Environments.
In 8th IEEE Workshop on Context Modeling and Reasoning Modeling, pages 415–420.
IEEE.

[34] Boley, H. (2001). The Rule Markup Language: RDF-XML Data Model, XML Schema
Hierarchy, and XSL Transformation. International conference on Applications of Prolog,
pages 5–22.

[35] Bourdenas, T. and Sloman, M. (2010). Starfish: Policy Driven Self-Management in
Wireless Sensor Networks. In ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems, pages 75–83.

[36] Bradshaw, J. M., Uszok, A., and Montanari, R. (2014). Policy-Based Governance of
Complex Distributed Systems: What Past Trends Can Teach Us about Future Requirements.
Agile Computing, pages 259–284.

[37] Breslin, J. and Decker, S. (2007). The Future of Social The Need for Semantics. Ieee
Internet Computing, 5:86–90.

[38] Buckingham, C. D. (2002). Psychological cue use and implications for a clinical decision
support system. Medical Informatics and the Internet in Medicine, 27(4):237–251.

[39] Buckingham, C. D., Adams, A., Vail, L., Kumar, A., Ahmed, A., Whelan, A., and
Karasouli, E. (2015). Integrating service user and practitioner expertise within a web-based
system for collaborative mental-health risk and safety management. Patient Education
and Counseling, 98(10):1189–1196.

[40] Buckingham, C. D., Ahmed, A., and Adams, A. (2013). Designing multiple user
perspectives and functionality for clinical decision support systems. In Computer Science
and Information Systems (FedCSIS), 2013 Federated Conference on, pages 211–218.

CHAPTER 7 : REFERENCES 156

[41] Calinescu, R. (2009). Resource-definition policies for autonomic computing. In 5th
International Conference on Autonomic and Autonomous Systems, ICAS 2009, pages
111–116. IEEE.

[42] Calinescu, R. and Kwiatkowska, M. (2009). Using Quantitative Analysis to Implement
Autonomic IT Systems a software framework that achieves such adaptiveness for. In IEEE
31st International Conference on Software Engineering, pages 100–110.

[43] Cano, J., Rutten, E., and Cano, J. (2014). Coordination of ECA rules by verification
and control Julio. In International Conference on Coordination Languages and Models,
pages 33–48. Springer.

[44] Cardoso, J. and Pinto, A. M. (2015). The Web Ontology Language (OWL) and its
Applications. Encyclopedia of Information Science and Technology, Third Edition, pages
7674–7683.

[45] Carstensen, P. H. and Schmidt, K. (1999). Computer supported cooperative work: New
challenges to systems design.

[46] Cassandras, C. G. (2016). Smart Cities as Cyber-Physical Social Systems. Engineering,
2(2):156–158.

[47] Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., and Carley, K. M. (2006). Identification
of coordination requirements: implications for the Design of collaboration and awareness
tools. In Proceedings of the 2006 20th anniversary conference on Computer supported
cooperative work (CSCW 06), pages 353–363, New York. ACM.

[48] Catherine, M. and Lee, M. J. (2009). Pedagogical Responses to Social Software in
Universities. In Stylianos, H. and Steven, W., editors, Handbook of Research on Social
Software and Developing Community Ontologies, chapter ch023, pages 335–356. IGI Global.

[49] Challenger, M. (2012). The Ontology and Architecture for an Academic Social Network.
IJCSI International Journal of Computer Science Issues, 9(2):22–27.

[50] Chan, H., Segal, A., Verma, D., Arnold, B., Giles, J., Agrawal, D., and Olshefski,
D. (2003). An Approach to Policy Infrastructure for Self- Managing Systems. In First
Workshop on Algorithms and Architectures for Self-Managing System, Federated Computing
Research Conference.

[51] Chen, J. and Liu, J. (2014). Introduction: Social Computing and Social Networks.
Journal of Organizational Computing and Electronic Commerce, 24(2-3):119–121.

[52] Chen, L., Lu, D., Zhu, M., Muzammal, M., Samuel, O. W., Huang, G., Li, W., and Wu, H.
(2019). OMDP: An ontology-based model for diagnosis and treatment of diabetes patients
in remote healthcare systems. International Journal of Distributed Sensor Networks, 15(5).

[53] Chen, R. C., Hendry, and Huang, C.-Y. (2016). A Domain Ontology in Social Networks
for Identifying User Interest for Personalized Recommendations. Journal of Universal
Computer Science, 22(3):319–339.

[54] Christopoulou, S. C., Kotsilieris, T., Anagnostopoulos, I., Anagnostopoulos, C. N., and
Mylonas, P. (2017). vhMentor: An Ontology Supported Mobile Agent System for Pervasive
Health Care Monitoring. Advances in Experimental Medicine and Biology, 989:57–65.

CHAPTER 7 : REFERENCES 157

[55] Compton, M., Barnaghi, P., Bermudez, L., García-Castro, R., Corcho, O., Cox, S.,
Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey,
W. D., Le Phuoc, D., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant,
A., Sheth, A., and Taylor, K. (2012). The SSN ontology of the W3C semantic sensor
network incubator group. WebSemantics: Science,ServicesandAgentsontheWorldWideWe,
17:25–32.

[56] Computing, A. (2006). An Architectural Blueprint for Autonomic Computing. Technical
report, IBM Corporation.

[57] Cordoş, A.-A., Bolboacă, S., and Drugan, C. (2017). Social Media Usage for Patients
and Healthcare Consumers: A Literature Review. Publications, 5(2):9.

[58] Damiani, F., Giannini, P., Ricci, A., and Viroli, M. (2011). A Calculus of Agents and
Artifacts. In International Conference on Software and Data Technologies, volume 50,
pages 124–136. Springer Berlin Heidelberg.

[59] Damianou, N., Dulay, N., and Lupu, E. (2001). The ponder policy specification language.
In Workshop on Policies for Distributed Systems and Networks, pages 18–39.

[60] Das, S. K. (2016). Cyber-physical-social convergence in smart living: Challenges
and opportunities. 2016 IEEE International Conference on Pervasive Computing and
Communication Workshops, PerCom Workshops 2016, page 1.

[61] Davy, S., Barrett, K., Serrano, M., Strassner, J., Jennings, B., and Van Der Meer, S.
(2007). Policy Interactions and Management of Traffic Engineering Services Based on
Ontologies. In 2007 Latin American Network Operations and Management Symposium -
LANOMS 2007, number June 2014, pages 95–105.

[62] De, S., Zhou, Y., Larizgoitia Abad, I., and Moessner, K. (2017). Cyber–Physical–Social
Frameworks for Urban Big Data Systems: A Survey. Applied Sciences, 7(10):1–26.

[63] De Meo, P., Quattrone, G., and Ursino, D. (2010). Integration of the HL7 standard in a
multiagent system to support personalized access to e-health services. IEEE Transactions
on Knowledge and Data Engineering, 23(8):1244–1260.

[64] Deparis, É., Abel, M. H., and Mattioli, J. (2011). Modeling a social collaborative
platform with standard ontologies. Proceedings - 7th International Conference on Signal
Image Technology and Internet-Based Systems, SITIS 2011, pages 167–173.

[65] Dey, N., Ashour, A. S., Shi, F., Fong, S. J., Manuel, J., and Tavares, R. S. (2018).
Medical cyber-physical systems: A survey. Journal of Medical Systems, 42(4):1–13.

[66] Dobson, S., Sterritt, R., Nixon, P., and Hinchey, M. (2010). Fulfilling The Vision of
Autonomic Computing. IEEE Computer, 43(1):35–41.

[67] Dorri, A., Kanhere, S. S., and Jurdak, R. (2018). Multi-Agent Systems: A Survey. IEEE
Access, 6:28573–28593.

[68] Dressler, F. (2018). Cyber Physical Social Systems: Towards Deeply Integrated Hy-
bridized Systems. In 2018 International Conference on Computing, Networking and
Communications, ICNC 2018, pages 420–424. IEEE.

[69] Duan, F., Li, X., Liu, Y., and Fang, Y. (2011). Towards Autonomic Computing: A
New Self-Management Method. In International Conference on Artificial Intelligence and
Computational Intelligence, pages 292–299. Springer-Verlag.

CHAPTER 7 : REFERENCES 158

[70] Edmonds, B. (1998). Modeling socially intelligent agents. Applied Artificial Intelligence,
12(7-8):677–699.

[71] Egrist (2019). GRiST Mental Health Decision Support for Everyone.

[72] El-korany, A. M. and Khatab, S. M. (2012). Ontology-based Social Recommender
System. IAES International Journal of Artificial Intelligence, 1(3):127.

[73] Ellis, C., Gibbs, S., and Rein, G. (1991). Groupware: Some Issues and Experiences.
Communications of the ACM, 34(1):39–58.

[74] Emilio, N., Ferreyra, D., and Sch¨awel, J. (2016). Self-disclosure in Social Media: An
Opportunity for Self-Adaptive Systems. In REFSQ Workshops, volume 1564.

[75] Engeström, J. (2005). Why some social network services work and others don’t-Or: the
case for object-centered sociality.

[76] Epstein, B. (2018). Social Ontology. In Zalta, E. N., editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University.

[77] Erétéo, G., Limpens, F., Gandon, F., Corby, O., Buffa, M., Leitzelman, M., and Sander,
P. (2011). Semantic Social Network Analysis , a concrete case. Knowledge Organization,
pages 122–156.

[78] Eze, B., Kuziemsky, C., Peyton, L., Middleton, G., and Mouttham, A. (2010). Policy-
based data integration for e-health monitoring processes in a B2B environment: Experiences
from Canada. Journal of Theoretical and Applied Electronic Commerce Research, 5(1):56–
70.

[79] Eze, T. O., Anthony, R. J., Walshaw, C., and Soper, A. (2011). The Challenge
of Validation for Autonomic and Self-Managing Systems. In he Seventh International
Conference on Autonomic and Autonomous Systems, number 7, pages 128–133. IARIA.

[80] Farahani, A., Nazemi, E., Cabri, G., and Capodieci, N. (2017). Enabling autonomic
computing support for the jade agent platform. Scalable Computing, 18(1):91–103.

[81] Farfan, F., Hristidis, V., Ranganathan, A., and Weiner, M. (2009). XOntoRank:
Ontology-aware search of electronic medical records. In 2009 IEEE 25th International
Conference on Data Engineering, pages 820–831. IEEE.

[82] F.E., E. and E.L., T. (1960). Socio-technical systems. Management sciences, models and
Techniques, volume II. Pergamon Press, Oxford.

[83] Ferreira, M. E. and Tereso, A. P. (2014). Software Tools for Project Management–Focus
on Collaborative Management. New Perspectives in Information Systems and Technologies,
2:73–84.

[84] Finin, T., Ding, L., Zhou, L., and Joshi, A. (2005). Social networking on the semantic
web. The Learning Organization, 12(5):418–435.

[85] Foster, D., McGregor, C., and El-Masri, S. (2005). A survey of agent-based intelligent
decision support systems to support clinical management and research. Proceedings of the
Fourth International Joint Conference on Autonomous Agents and Multiagent Systems,
pages 16–34.

CHAPTER 7 : REFERENCES 159

[86] Franceschet, M., Gubiani, D., Montanari, A., and Piazza, C. (2009). From Entity Rela-
tionship to XML Schema: A Graph-Theoretic Approach. Database and Xml Technologies,
Proceedings, 5679:165–179.

[87] Furrer, F. J. (2017). From ALGORITHMIC Computing to AUTONOMIC Computing.
Technical report, Technische Universität Dresden.

[88] Gaál, Z., Szabó, L., Obermayer-Kovács, N., and Csepregi, A. (2015). Exploring the Role
of Social Media in Knowledge Sharing. The Electronic Journal of Knowledge Management,
13(3):185–197.

[89] Ganek, A. G. and Corbi, T. A. (2003). The dawning of the autonomic computing era.
IBM Systems Journal, 42(1):5–18.

[90] Ghafoor, F. and Niazi, M. A. (2016). Using social network analysis of human aspects
for online social network software: a design methodology. Complex Adaptive Systems
Modeling, 4(1):14.

[91] Golbeck, J. and Rothstein, M. (2008). Linking Social Networks on the Web with
FOAF: A Semantic Web Case Study. In 23rd national conference on Artificial intelligence,
volume 2, pages 1138–1143. AAAI Press.

[92] Golpayegani, F. (2015). Multi-agent collaboration in distributed self-adaptive systems.
Proceedings - 2015 IEEE 9th International Conference on Self-Adaptive and Self-Organizing
Systems Workshops, SASOW 2015, pages 146–151.

[93] González, E. J., Hamilton, A. F., Moreno, L., Marichal, R. L., and Muñoz, V. (2006).
Software experience when using ontologies in a multi-agent system for automated planning
and scheduling. Software: Practice and Experience, 36(7):667–688.

[94] Greif, I. (1988). Computer-supported cooperative work: a book of readings. Morgan
Kaufmann Publishers Inc., San Francisco, USA.

[95] Griffiths, F., Cave, J., Boardman, F., Ren, J., Pawlikowska, T., Ball, R., Clarke, A., and
Cohen, A. (2012). Social networks - The future for health care delivery. Social Science
and Medicine, 75(12):2233–2241.

[96] Grimm, S., Hitzler, P., and Abecker, A. (2007). Knowledge Representation and Ontologies
Logic, Ontologies and Semantic Web Languages. Semantic Web Services, pages 51–105.

[97] Gruber, T. R. and Others (1993). A translation approach to portable ontology specifica-
tions. Knowledge acquisition, 5(2):199–220.

[98] Gurgen, L., Gunalp, O., Benazzouz, Y., and Galissot, M. (2013). Self-aware Cyber-
physical Systems and Applications in Smart Buildings and Cities. Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2013, pages 1149–1154.

[99] Gutiérrez, S. A. and Branch, J. W. (2011). A comparison between expert systems
and autonomic computing plus mobile agent approaches for fault management . Una
comparación entre los enfoques basados en sistemas expertos y computación autónoma más
agentes móviles para la gestión de fallas, 78(168):173–180.

[100] Haake, J., Hussein, T., Joop, B., Lukosch, S., Veiel, D., and Ziegler, J. (2009). Technis-
cher Bericht Nr . 2009-02 Context Modelling for Adaptive Collaboration. Management,
77251(60):1–49.

CHAPTER 7 : REFERENCES 160

[101] Hamasaki, M. and Matsuo, Y. (2007). Ontology extraction using social network. . . .
Workshop on Semantic . . . , 18700163(18700163).

[102] Haque, S. A., Aziz, S. M., and Rahman, M. (2014). Review of cyber-physical system in
healthcare. International Journal of Distributed Sensor Networks, 2014.

[103] Hazeyama, A. (2014). Collaborative Software Engineering Learning Environment
Associating Artifacts Management with Communication Support. In The 3rd International
Conference on Advanced Applied Informatics, pages 592–596. IEEE.

[104] Holmquist, L. E., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., and Gellersen, H.-W.
(2001). Smart-its friends: A technique for users to easily establish connections between
smart artefacts. In international conference on Ubiquitous Computing, pages 116–122.
Springer.

[105] Hong, I., Youn, H., Chun, I., and Lee, E. (2011). Autonomic Computing Framework for
Cyber-Physical Systems. In International Conference on Advances in Computing, Control,
and Telecommunication Technologies, volume 1, pages 140–143. ACEEE.

[106] Horn, P. (2001). Autonomic computing: IBM’s Perspective on the State of Information
Technology.

[107] Horridge, M. and Bechhofer, S. (2011). The OWLAPI: a Java API for OWL ontologies.
Semantic Web, 2(1):11–21.

[108] Hristoskova, A., Sakkalis, V., Zacharioudakis, G., Tsiknakis, M., and De Turck, F.
(2014). Ontology-Driven Monitoring of Patient’s Vital Signs Enabling Personalized Medical
Detection and Alert. Sensors, 14(1):1598–1628.

[109] Hu, H., Ahn, G.-J., and Kulkarni, K. (2011). Ontology-based Policy Anomaly Man-
agement for Autonomic Computing. In 7th International Conference on Collaborative
Computing: Networking, Applications and Worksharing (CollaborateCom), pages 487–494,
Orlando. IEEE.

[110] Huebscher, M. C. and McCann, J. a. (2004). Evaluation Issues in Autonomic Computing.
In International Conference on Grid and Cooperative Computing, pages 597–608. Springer-
Verlag.

[111] Hussain, N. and Wang, H. H. (2014). Semantic Enabled Social-Collaborative Re-
search Framework for Proteomics Domain. In The 3rd International Conference on ASE
BigData/SocialInformatics/PASSAT/BioMedCom, pages 1–11, MA, Cambridge. ASE.

[112] Hussain, N., Wang, H. H., and Buckingham, C. (2018). Policy Based Generic Autonomic
Adapter For A Context-Aware Social-Collaborative System. In International Conference
on Intelligent Systems and Computer Vision (ISCV), pages 1–9, Fez. IEEE.

[113] Hussain, N., Wang, H. H., and Buckingham, C. D. (2019). Artifact-Centric Semantic
Social-Collaborative Network In An Online Healthcare Context. In 17th International
Conference on e-Society, Utrecht. IADIS Digital Library.

[114] Hussain, N., Wang, H. H., Buckingham, C. D., and Zhang, X. (2020). Software
Agent-Centric Semantic Social Network for Cyber-Physical Interaction and Collaboration.
International Journal of Software Engineering and Knowledge Engineering, 30(06):859–893.

CHAPTER 7 : REFERENCES 161

[115] Ingeol, C., Park, J., Kim, W., Kang, W., Lee, H., and Park, S. (2010). Autonomic
computing technologies for cyber-physical systems. In Advanced Communication Technology
(ICACT), 2010 The 12th International Conference on, volume 2, pages 1009–1014.

[116] Irani, Z., Sharif, A. M., Papadopoulos, T., and Love, P. E. D. (2017). Social media
and Web 2.0 for knowledge sharing in product design. Production Planning & Control,
28(13):1047–1065.

[117] Jian Quan OUYANG, Dian Xi SHI, Bo DING, J. F. and WANG, H. M. (2009). Policy
Based Self-Adaptive Scheme in Pervasive Computing. Wireless Sensor Network, 1(1):1–60.

[118] Joly, A., Maret, P., and Daigremont, J. (2009). Context-awareness, the missing block of
social networking. International Journal of Computer Science and Applications, 6(2):50–65.

[119] Kabir, M. A., Han, J., Yu, J., and Colman, A. (2014). User-centric social context
information management: An ontology-based approach and platform. Personal and
Ubiquitous Computing, 18(5):1061–1083.

[120] Kaldoudi, E., Dovrolis, N., Giordano, D., and Dietze, S. (2011). Educational Resources
as Social Objects in Semantic Social Networks. In Proceedings of the Linked Learning,
volume 717. CiteSeerX.

[121] Kamberov, R. (2016). Using social paradigms in smart cities mobile context-aware
computing. In 11th Iberian Conference on Information Systems and Technologies (CISTI),
pages 1–5. IEEE.

[122] Kang, H., Li, X., and Moran, P. J. (2006). Autonomic Sensor Networks: A New
Paradigm for Collaborative Information Processing. In 2nd IEEE International Symposium
on Dependable, Autonomic and Secure Computing, pages 258–268. IEEE.

[123] Katayama, T., Wilkinson, M. D., Micklem, G., Kawashima, S., Yamaguchi, A., Nakao,
M., Yamamoto, Y., Okamoto, S., Oouchida, K., Chun, H. W., Aerts, J., Afzal, H., Antezana,
E., Arakawa, K., Aranda, B., Belleau, F., Bolleman, J., and Bonnal, R. J. (2013). The
3rd DBCLS BioHackathon: Improving life science data integration with Semantic Web
technologies. Journal of Biomedical Semantics, 4(1):1.

[124] Kennedy, C. M. (2010). Decentralised metacognition in context-aware autonomic
systems : Some key challenges. In 4th AAAI Conference on Metacognition for Robust
Social Systems (AAAIWS’10-04), pages 34–41. ACM Digital Library.

[125] Kephart, J. O. and Walsh, W. E. (2004). An Artificial Intelligence Perspective on
Autonomic Computing Policies. In Fifth IEEE International Workshop on Policies for
Distributed Systems and Networks, POLICY ’04, pages 3–12, NY. IEEE.

[126] Kershaw, A., Ruppel, K., and Chan, C. (2013). Oracle Social Network.

[127] Khorakhun, C. and Bhatti, S. (2013). Remote Health Monitoring Using Online Social
Media Systems. Saleem.Host.Cs.St-Andrews.Ac.Uk, pages 23–25.

[128] King, T. M., Ramirez, A. E., Cruz, R., and Clarke, P. J. (2007). An Integrated Self-
Testing Framework for Autonomic Computing Systems. JOURNAL OF COMPUTERS,
2(9):37–49.

[129] Klein, C., Schmid, R., Leuxner, C., Sitou, W., and Spanfelner, B. (2008). A survey of
context adaptation in autonomic computing. Proceedings - 4th International Conference
on Autonomic and Autonomous Systems, ICAS 2008, pages 106–111.

CHAPTER 7 : REFERENCES 162

[130] Koch, M. (2008). CSCW and Enterprise 2.0 - towards an integrated perspective. In
21th Bled eConference eCollaboration: Overcoming Boundaries Through Multi-Channel
Interaction, pages 1–15, Bled.

[131] Kosonen, I. and Ma, X. (2016). Traffic Signal Control with Autonomic Features.
Autonomic Road Transport Support Systems, Autonomic Systems, pages 253–267.

[132] Kożuch, B. and Sienkiewicz-Małyjurek, K. (2016). Factors of Effective Inter-
Organizational Collaboration: a Framework for Public Management. Transylvanian
Review of Administrative Sciences, 12(47):97–115.

[133] Krämer, B. and Conrad, J. (2017). Social Ontologies Online: The Representation of
Social Structures on the Internet. Social Media and Society, 3(1):1–11.

[134] Kranz Matthias, L. R., Michahelles, F., Kranz, M., and Roalter, L. (2010). Things
that twitter: social networks and the internet of things. In Kranz, Matthias, Luis Roalter,
and Florian Michahelles. "Things that twitter: social networks and the internet of things."
In What can the Internet of Things do for the Citizen (CIoT) Workshop at The Eighth
International Conference on Pervasive Computing, pages 1–10.

[135] Kumazawa, T., Hara, K., Endo, A., and Taniguchi, M. (2017). Supporting collaboration
in interdisciplinary research of water–energy–food nexus by means of ontology engineering.
Journal of Hydrology: Regional Studies, 11:31–43.

[136] Kwiatkowski, T., Choi, E., Artzi, Y., and Zettlemoyer, L. (2013). Scaling Semantic
Parsers with On-the-fly Ontology Matching. In Proceedings of the 2013 conference on
empirical methods in natural language processing, number October, pages 1545–1556.
Association for Computational Linguistics.

[137] Lapointe, L., Ramaprasad, J., and Vedel, I. (2014). Creating health awareness: A social
media enabled collaboration. Health and Technology, 4(1):43–57.

[138] Lasierra, N., Alesanco, A., Guillén, S., and Garc\’\ia, J. (2013). A three stage ontology-
driven solution to provide personalized care to chronic patients at home. Journal of
biomedical informatics, 46(3):516–529.

[139] Lasierra, N., Roldán, F., Alesanco, A., and García, J. (2014). Towards improving
usage and management of supplies in healthcare: An ontology-based solution for sharing
knowledge. Expert Systems with Applications, 41(14):6261–6273.

[140] Lee, I., Sokolsky, O., Chen, S., Hatcliff, J., Jee, E., Kim, B., King, A., Mullen-
Fortino, M., Park, S., Roederer, A., and Venkatasubramanian, K. (2012). Computer
Sciences Commons Invited Paper in Special Issue on Cyber-Physical Systems.Challenges
and Research Directions in Medical Cyber-Physical Systems. Proceedings of the IEEE,
100(1):75–90.

[141] Lehtihet, E., Strassner, J., Agoulmine, N., and Foghlú, M. Ó. (2006). Ontology-Based
Knowledge Representation for Self-governing Systems. pages 74–85.

[142] Leist, A. K. (2013). Social Media Use of Older Adults: A Mini-Review. Gerontology,
59(4):378–384.

[143] Lewis, D., Feeney, K., Carey, K., Tiropanis, T., and Courtenage, S. (2005). Semantic-
based policy engineering for autonomic systems. Lecture Notes in Computer Science,
3457:152–164.

CHAPTER 7 : REFERENCES 163

[144] Lima, C., Antunes, M., Gomes, D., Aguiar, R., and Mota, T. (2014). A Context-Aware
Framework for Collaborative Activities in Pervasive Communities. International Journal
of Distributed Systems and Technologies, 5(2):31–43.

[145] Lima, T., dos Santos, R. P., Oliveira, J., and Werner, C. (2016). The importance of
socio-technical resources for software ecosystems management. Journal of Innovation in
Digital Ecosystems, 3(2):98–113.

[146] Limpens, F., Gandon, F., and Buffa, M. (2008). Bridging ontologies and folksonomies
to leverage knowledge sharing on the social web: A brief survey. Aramis 2008 - 1st
International Workshop on Automated engineeRing of Autonomous and runtiMe evolvIng
Systems, and ASE2008 the 23rd IEEE/ACM Int. Conf. Automated Software Engineering,
pages 13–18.

[147] Lin, C.-H., Ho, P.-H., and Lin, H.-C. (2014). Framework for NFC-Based Intelligent
Agents: A Context-Awareness Enabler for Social Internet of Things. International Journal
of Distributed Sensor Networks, 10(2):1–16.

[148] Liptchinsky, V., Khazankin, R., Schulte, S., Satzger, B., Truong, H. L., and Dustdar, S.
(2014). On modeling context-aware social collaboration processes. Information Systems,
43:66–82.

[149] Liu, H. and Parashar, M. (2003). DIOS++: A Framework for Rule-Based Autonomic
Management of Distributed Scientific Applications. In European Conference on Parallel
Processing, pages 66–73. Springer Berlin Heidelberg.

[150] Lobo, J., Bhatia, R., and Naqvi, S. (1999). A Policy Description Language. In Sixteenth
national conference on Artificial intelligence, pages 291–298, CA. American Association
for Artificial Intelligence.

[151] Lohmann, S., Dietzold, S., Heim, P., and Heino, N. (2009). A web platform for social
requirements engineering. Software Engineering, pages 309–315.

[152] Loukil, F., Ghedira-Guegan, C., Benharkat, A. N., Boukadi, K., and Maamar, Z.
(2017). Privacy-Aware in the IoT Applications: A Systematic Literature Review. OTM
Confederated International Conferences "On the Move to Meaningful Internet Systems",
LNCS 10573(October):552–569.

[153] Lundberg, N. and Sandahl, T. I. (1999). Artifacts in work practice. From Paper to
Digital Documents, page 123.

[154] Lundberg, N. and Sandahl, T. I. (2000). What do artifacts mean to us in work? In
22nd Information Systems Research Seminar in Scandinavia (IRIS 22), pages 363–372.
Enterprise Architectures for Virtual Organizations.

[155] Ma, Z., Schultz, M. J., Christensen, K., Værbak, M., Demazeau, Y., and Jørgensen,
B. N. (2019). The application of ontologies in multi-agent systems in the energy sector: A
scoping review. Energies, 12(16):1–31.

[156] Maamar, Z., Buregio, V., and Sellami, M. (2015). Collaborative Enterprise Applications
Based on Business and Social Artifacts. In 24th International Conference on Enabling
Technologies: Infrastructures for Collaborative Enterprises, pages 150–155. IEEE.

[157] Malik, K. S., Prakash, N., and Rizvi, S. (2011). Ontology Creation towards an Intelligent
Web: Some Key Issues Revisited. International Journal of Engineering and Technology,
3(1).

CHAPTER 7 : REFERENCES 164

[158] Marie, N. and Gandon, F. (2011). Social Objects Description and Recommendation in
Multidimensional Social Networks: OCSO Ontology and Semantic Spreading Activation.
Proceedings - 2011 IEEE International Conference on Privacy, Security, Risk and Trust
and IEEE International Conference on Social Computing, PASSAT/SocialCom 2011, pages
1415–1420.

[159] Marsella, S. C., Pynadath, D. V., and Read, S. J. (2004). PsychSim: Agent-based
modeling of social interactions and influence. In Proceedings of the international conference
on cognitive modeling, volume 36, pages 243–248.

[160] Martin, A. (2015). Intelligent Search Engine to a Semantic Knowledge Retrieval in the
Digital Repositories. International Journal on Advances in Intelligent Systems, 8(1):67–76.

[161] Mata, F. J. and Quesada, A. (2014). Web 2.0, Social Networks and E-commerce
as Marketing Tools. Journal of Theoretical and Applied Electronic Commerce Research,
9(1):56–69.

[162] McCarthy, J. (2007). From here to human-level AI. Artificial Intelligence, 171(18):1174–
1182.

[163] Merdan, M., Hoebert, T., List, E., and Lepuschitz, W. (2019). Knowledge-based
cyber-physical systems for assembly automation. Production and Manufacturing Research,
7(1):223–254.

[164] Mezghani, E., Halima, R. B., Rodriguez, I. B., Mezghani, E., Halima, R. B., Rodriguez,
I. B., Model, K. D. A., Mezghani, E., Halima, R. B., Rodriguez, I. B., and Drira, K.
(2012). A Model Driven Approach for Automated Design of Context-Aware Autonomic
Architectures.

[165] Miller, B. (2005). The autonomic computing edge: The role of the human in autonomic
systems. Technical report.

[166] Miller, S. J. (2013). Introduction to Ontology Concepts and Terminology. pages 1–45.

[167] Mohammed, M., Khan, M. B., and Bashier, E. B. M. (2016). Machine learning:
algorithms and applications. Crc Press.

[168] Mola, O. and Bauer, M. (2012). Policy-Based Autonomic Collaboration for Cloud
Management. In The Seventh International Multi-Conference on Computing in the Global
Information Technology (ICCGI), pages 288–293.

[169] Mukhija, A. and Glinz, M. (2005). The CASA Approach to Autonomic Applications.
In 5th IEEE Workshop on Applications and Services in Wireless Networks (ASWN 2005),
number July, pages 173–182, Paris. IEEE.

[170] Mulcahy, J. J., Huang, S., and Mahgoub, I. (2015). Autonomic Computing and VANET.
In IEEE SoutheastCon, pages 1–7, Florida. IEEE.

[171] Murthy, D. and Lewis, J. P. (2015). Social Media, Collaboration, and Scientific
Organizations. American Behavioral Scientist, 59(1):149–171.

[172] Musumeci, F., Rottondi, C., Nag, A., Macaluso, I., Zibar, D., Ruffini, M., and Tornatore,
M. (2018). An overview on application of machine learning techniques in optical networks.
IEEE Communications Surveys & Tutorials, 21(2):1383–1408.

CHAPTER 7 : REFERENCES 165

[173] Nan, B. L., Qiang, Y., and Jiachun, D. (2010). Mobile takes social computing beyond
Web 2.0.

[174] Nansen, B., van Ryn, L., Vetere, F., Robertson, T., Brereton, M., and Douish, P. (2014).
An Internet of Social Things. In 26th Australian Computer-Human Interaction Conference
on Designing Futures: the Future of Design, pages 87–96, Sydney. ACM Digital Library.

[175] Nazarenko, A. A. and Camarinha-Matos, L. M. (2017). Towards Collaborative Cyber-
Physical Systems. In International Young Engineers Forum, YEF-ECE 2017, pages 12–17.
IEEE.

[176] Nejdl, W., Olmedilla, D., Winslett, M., and Zhang, C. C. (2005). Ontology-Based
Policy Specification and Management. Computer, 3532:290–302.

[177] Neumann, M., O’Murchu, I., Breslin, J., Decker, S., Hogan, D., and MacDonaill, C.
(2005). Semantic social network portal for collaborative online communities. Journal of
European Industrial Training, 29(6 SPEC. ISS.):472–487.

[178] Nimalasena, A. and Getov, V. (2015). Context-aware Approach for Determining the
Threshold Price in Name-Your-Own-Price Channels. In International Conference on
Context-Aware Systems and Applications, pages 83–93. Springer, Cham.

[179] Norman, C. (2012). Evaluation & Social Media.

[180] Obeid, C., Lahoud, I., El Khoury, H., and Champin, P.-A. (2018). Ontology-based
Recommender System in Higher Education. Companion of the The Web Conference 2018
on The Web Conference 2018, 2:1031–1034.

[181] Oellinger, T. and pinar oezden Wennerberg (2006). Ontology Based Modeling and
Visualization of Social Networks for the Web. In INFORMATIK 2006–Informatik für
Menschen–Band 2, Beiträge der 36, pages 489–497.

[182] Oliveira, F. F., Antunes, J. C. P., and Guizzardi, R. S. S. (2007). Towards a Collabora-
tion Ontology. In 2nd Workshop on Ontologies and Metamodeling in Software and Data
Engineering, pages 97–108.

[183] Oliveira, J., Souza, J. M. D., and Perazolo, M. (2006). Managing Knowledge about Re-
sources for Autonomic Computing. In 1st latin american autonomic computing symposium,
pages 124–126.

[184] Omicini, A., Ricci, A., and Viroli, M. (2008). Artifacts in the A&A Meta-model for
Multi-agent Systems. Autonomous Agents and Multi-Agent Systems, 17(3):432–456.

[185] Ongenae, F., De Backere, F., Steurbaut, K., Colpaert, K., Kerckhove, W., Decruyenaere,
J., and De Turck, F. (2010). Towards computerizing intensive care sedation guidelines:
Design of a rule-based architecture for automated execution of clinical guidelines. BMC
Medical Informatics and Decision Making, 10(1).

[186] Osterrieder, A. (2013). The value and use of social media as communication tool in the
plant sciences. Plant Methods, 9(26):1–6.

[187] Overgoor, G., Chica, M., Rand, W., and Weishampel, A. (2019). Letting the computers
take over: using AI to solve marketing problems. California Management Review, 61(4):156–
185.

CHAPTER 7 : REFERENCES 166

[188] Paganelli, F. and Giuli, D. (2008). Context-aware information services to support
tourist communities. Information Technology & Tourism, 10(4):313–327.

[189] Papamarkos, G., Poulovassilis, A., and Wood, P. T. (2003). Event-condition-action
rule languages for the semantic web. Workshop on Semantic Web, pages 855–864.

[190] Park, J., Yoon, T., and Lee, S. (2015). Generating System Knowledge for Autonomic
Control. Indian Journal of Science and Technology, 8(18):1–4.

[191] Passant, a. (2007). Using Ontologies to Strengthen Folksonomies and Enrich Information
Retrieval in Weblogs. International Conference on Weblogs and Social Media.

[192] Pessoa, R., Calvi, C., and Others (2007). Semantic Context Reasoning Using Ontol-
ogy Based Models. 3th open European summer school and IFIP TC6. 6 conference on
Dependable and adaptable networks and services, pages 44–51.

[193] Petrick, I. J. (2013). Networked Innovation: Using Roadmapping to Facilitate Coor-
dination, Collaboration and Cooperation. In Moehrle, M. G., Isenmann, R., and Phaal,
R., editors, Technology Roadmapping for Strategy and Innovation, pages 31–46, Berlin,
Heidelberg. Springer-Verlag.

[194] Pham, D. T. and Afify, A. A. (2005). Machine-learning techniques and their applications
in manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal
of Engineering Manufacture, 219(5):395–412.

[195] Rhayem, A., Ahmed Mhiri, M. B., Salah, M. B., and Gargouri, F. (2017). Ontology-
based system for patient monitoring with connected objects. Procedia Computer Science,
112:683–692.

[196] Ricci, A., Viroli, M., and Piancastelli, G. (2011). SimpA: An agent-oriented approach for
programming concurrent applications on top of Java. Science of Computer Programming,
76(1):37–62.

[197] Romano, P., Giugno, R., and Pulvirenti, A. (2011). Tools and collaborative environments
for bioinformatics research. Briefings in Bioinformatics, 12(6):549–561.

[198] Romeikat, R., Bauer, B., Sanneck, H., and Schmelz, C. (2007). A Policy-Based System
for Network-Wide Configuration Management. 18th WWRF - Wireless World Reasearch
Forum.

[199] Rufus, R., Nick, W., Shelton, J., and Esterline, A. (2016). An autonomic computing
system based on a rule-based policy engine and Artificial Immune Systems. In CEUR
Workshop Proceedings, volume 1584, pages 105–108.

[200] Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Artificial
Intelligence: A Modern Approach, pages 111–114.

[201] Salehie, M. and Tahvildari, L. (2009). Self-Adaptive Software: Landscape and Research
Challenges. ACM Transactions on Autonomous and Adaptive Systems, 4(2):1–42.

[202] Samaan, N. and Karmouch, A. (2009). Towards Autonomic Network Management: an
Analysis of Current and Future Research Directions. IEEE Communications Surveys &
Tutorials, 11(3):22–36.

[203] Sánchez, B. B., Alcarria, R., Sánchez-Picot, Á., and Sánchez-De-Rivera, D. (2017).
A methodology for the design of application-specific Cyber-Physical Social Sensing co-
simulators. Sensors (Switzerland), 17(10):1–46.

CHAPTER 7 : REFERENCES 167

[204] Schaeffer-Filho, A., Lupu, E., and Sloman, M. (2015). Federating Policy-Driven
Autonomous Systems: Interaction Specification and Management Patterns. Journal of
Network and Systems Management, 23(3):753–793.

[205] Schmidt, D., Bordini, R. H., Meneguzzi, F., and Vieira, R. (2015). An Ontology for
Collaborative Tasks in Multi-agent Systems. Ontobras, 1442.

[206] Seleznyov, A. and Hailes, S. (2004). Distributed Knowledge Management for Au-
tonomous Access Control in Computer Networks.

[207] Sen, S., Rahaman, Z., Crawford, C., and Yücel, O. (2018). Agents for Social (Media)
Change. In 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), number Aamas, pages 1198–1202. ACM.

[208] Serpanos, D. (2018). The Cyber-Physical Systems Revolution. Computer, 51(3):70–73.

[209] Seydoux, N., Drira, K., Hernandez, N., and Monteil, T. (2016). Autonomy through
knowledge: How IoT-O supports the management of a connected apartment. CEUR
Workshop Proceedings, 1783:67–78.

[210] Shadbolt, N., Hall, W., and Barners-Lee, T. (2006). The Semantic Web Revisited.
IEEE Intelligent Systems, 21(3):96–101.

[211] Shankar, C., Talwar, Y., Iyer, S., Chen, Y., Milojicic, D., and Campbell, R. (2006).
Specification-Enhanced Policies for Automated Management of Changes in IT Systems. In
20th conference on Large Installation System Administration, pages 1–17. ACM Digital
Library.

[212] Sheth, A., Anantharam, P., and Henson, C. (2013). Physical-Cyber-Social Computing:
An Early 21st Century Approach. Cyber-Physical-Social Systems, 28:78–82.

[213] Shuaib, H., Anthony, R., and Pelc, M. (2011). A Framework for Certifying Auto-
nomic Computing Systems. In The Seventh International Conference on Autonomic and
Autonomous Systems, number c, pages 122–127.

[214] Shuman, J. and Twombly, J. (2010). Collaborative Networks Are The Organization:.
Vikalpa: The Journal for Decision Makers, 35(1):1–13.

[215] Sifalakis, M., Fry, M., and Hutchison, D. (2010). Event Detection and Correlation for
Network Environments. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICA-
TIONS, 28(1):60–69.

[216] Silva, R., Oliveira, J., and de Souza, J. (2010). Improving Collaborative Knowledge
Flow Design on Social Networks through Autonomic Computing Systems Properties. In
First Workshop of the Brazilian Institute for Web Science Research, Rio de Janeiro.

[217] Singer, L. and Schneider, K. (2012). Influencing the adoption of software engineering
methods using social software. 34th International Conference on Software Engineering
(ICSE), pages 1325–1328.

[218] Singh, R., Salam, a., and Iyer, L. (2003). Using Agents and {XML} for Knowledge
Representation and Exchange: An Intelligent Distributed Decision Support Architecture
{(IDDSA)}. {AMCIS} 2003 Proceedings.

CHAPTER 7 : REFERENCES 168

[219] Skillen, K. L., Chen, L., Nugent, C. D., Donnelly, M. P., Burns, W., and Solheim, I.
(2014). Ontological user modelling and semantic rule-based reasoning for personalisation
of Help-On-Demand services in pervasive environments. Future Generation Computer
Systems, 34:97–109.

[220] Sloman, M. and Lupu, E. (2002). Security and Management Policy Specification. IEEE
Network, 16(2):10–19.

[221] Smailovic, V. and Podobnik, V. (2016). BeFriend: A Context-Aware Ad-hoc Social
Networking Platform. Automatika – Journal for Control, Measurement, Electronics,
Computing and Communications, 57(1):58–65.

[222] Smirnov, A., Kashevnik, A., and Ponomarev, A. (2015). Multi-level self-organization in
cyber-physical-social systems: Smart home cleaning scenario. Procedia CIRP, 30:329–334.

[223] Smirnov, A. and Levashova, T. (2013). Towards Methodology for Design of Context-
Aware Decision Support Systems based on Knowledge Fusion Patterns. International
Workshop on Information Logistics, Knowledge Supply and Ontologies in Information
Systems.

[224] Smirnov, A., Levashova, T., and Kashevnik, A. (2018). Ontology-Based Resource
Interoperability in Socio-Cyber-Physical Systems Collaboration scenario. IT in Industry,
6(2):19–24.

[225] Soto, M. V., Balls-Berry, J. E., Bishop, S. G., Aase, L. A., Timimi, F. K., Montori,
V. M., Patten, C. A., Valdez Soto, M., Balls-Berry, J. E., Bishop, S. G., Aase, L. A.,
Timimi, F. K., Montori, V. M., and Patten, C. A. (2016). Use of Web 2.0 Social Media
Platforms to Promote Community-Engaged Research Dialogs: A Preliminary Program
Evaluation. JMIR research protocols, 5(3):1–11.

[226] Spillers, F. and Loewus-deitch, D. (2003). Temporal attributes of shared artifacts in
collaborative task environments. In HCI2003: Workshop on the Temporal Aspects of Tasks,
pages 1–11, Bath.

[227] Stathis, K. (2010). Autonomic Computing with Self-governed Super-agents. In Fourth
IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshop,
SASOW 2010, pages 76–79. IEEE.

[228] Stenmark, M. and Malec, J. (2013). Knowledge-based industrial robotics. Frontiers in
Artificial Intelligence and Applications, 257:265–274.

[229] Sterritt, R. (2005). Autonomic Computing. Innovations in Systems and Software
Engineering, 1(1):79–88.

[230] Sterritt, R., Mulvenna, M., and Lawrynowicz, A. (2004). Dynamic and Contextualised
Behavioural Knowledge in Autonomic Communications. In Workshop on Autonomic
Communication, volume 3457, pages 217–228. Springer Berlin Heidelberg.

[231] Stoilova, K., Stoilov, T., and Nikolov, K. (2013). Autonomic properties in traffic control.
Cybernetics and Information Technologies, 13(4):18–32.

[232] Stroka, S. (2008). Knowledge Representation Technologies in the Semantic Web. World
Wide Web Internet And Web Information Systems, page 21.

CHAPTER 7 : REFERENCES 169

[233] Tamma, V., Blacoe, I., Lithgow-Smith, B., and Wooldridge, M. (2005). Introducing
autonomic behaviour in semantic web agents. In International Semantic Web Conference,
pages 653–667. Springer Berlin Heidelberg.

[234] Tang, S., Yuan, J., Xufei Mao, Xiang-Yang Li, Chen, W., and Dai, G. (2011). Rela-
tionship classification in large scale online social networks and its impact on information
propagation. In Proceedings - IEEE INFOCOM, pages 2291–2299.

[235] Tenorth, M., Bartels, G., and Beetz, M. (2014). Knowledge-based specification of robot
motions. Frontiers in Artificial Intelligence and Applications, 263:873–878.

[236] Törngren, M. and Grogan, P. (2018). How to Deal with the Complexity of Future
Cyber-Physical Systems? Designs, 2(4):1–16.

[237] Tretola, G. and Zimeo, E. (2009). Monitoring workflows execution using ECA rules. IC-
SOFT 2009 - 4th International Conference on Software and Data Technologies, Proceedings,
2.

[238] Tripathi, K. P. (2011). A Review on Knowledge-based Expert System : Concept and
Architecture. Artificial Intelligence Techniques - Novel Approaches & Practical Applications,
4(4):19–23.

[239] Trsleff, S., Hildebrandt, C., Fay, A., Daun, M., and Brings, J. (2018). Developing
Ontologies for the Collaboration of Cyber-Physical Systems: Requirements and Solution
Approach. In th International Workshop on Emerging Ideas and Trends in the Engineering
of Cyber-Physical Systems, pages 25–32. IEEE.

[240] Truszkowski, W. F., Hinchey, M. G., Rash, J. L., and Rouff, C. A. (2006). Autonomous
and Autonomic Systems: A Paradigm for Future Space Exploration Missions. IEEE
Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 36(3):279–
291.

[241] Trypuz, R. and Kuziński, D. (2016). Why use RDF / OWL rather than XML to
represent and share global Legal Entity Identifiers (LEIs) and related LEI reference data.
Technical report, MakoLab S.A. Semantic Web Research and Development Team.

[242] Vassev, E. and Hinchey, M. (2011). Knowledge representation and awareness in
autonomic service-component ensembles - State of the art. Proceedings - 2011 14th IEEE
International Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing Workshops, ISORCW 2011, pages 110–119.

[243] Ventola, C. L. (2014). Social media and health care professionals: benefits, risks, and
best practices. P & T : a peer-reviewed journal for formulary management, 39(7):491–520.

[244] Verma, D. C. (2002). Simplifying network administration using policy-based manage-
ment. IEEE Network, 16(2):20–26.

[245] Vollmer, T., Manic, M., and Linda, O. (2014). Autonomic intelligent cyber-sensor to
support industrial control network awareness. IEEE Transactions on Industrial Informatics,
10(2):1647–1658.

[246] Von Der Weth, C., Abdul, A. M., and Kankanhalli, M. (2017). Cyber-Physical Social
Networks. ACM Transactions on Internet Technology, 17(2).

CHAPTER 7 : REFERENCES 170

[247] Wan, K. and Alagar, V. (2014). Achieving Dependability of Cyber Physical Systems with
Autonomic Covering. In IEEE 12th International Conference on Dependable, Autonomic
and Secure Computing Achieving, pages 139–145, Dalian. IEEE.

[248] Wang, F.-y., Zeng, D., Carley, K. M., and Mao, W. (2007). Social Computing : From
Social Informatics. IEEE Intelligent Systems, 22(2):79–83.

[249] Warnier, M., Sinderen, M. V., and Brazier, F. M. T. (2010). Adaptive Knowledge
Representation for a Self-Managing Home Energy Usage System. In Fourth International
Workshop on Enterprise Systems and Technology (I-WEST), pages 132–141, Athens. Scite
Press.

[250] Wei, D., Ning, H., Qian, Y., and Zhu, T. (2018). Social relationship for physical objects.
International Journal of Distributed Sensor Networks, 14(1).

[251] White, S. R., Hanson, J. E., Whalley, I., Chess, D. M., and Kephart, J. O. (2004).
An Architectural Approach to Autonomic Computing. In International Conference on
Autonomic Computing (ICAC’04), pages 2–9, New York. IEEE.

[252] Wilson, C., Boe, B., Sala, A., Puttaswamy, K. P., and Zhao, B. Y. (2009). User
interactions in social networks and their implications. Proceedings of the fourth ACM
european conference on Computer systems - EuroSys ’09, page 205.

[253] Wooldridge, M. (2009). An Introduction to MultiAgent Systems. Wiley Publishing, 2nd
edition.

[254] Wooldridge, M. J. and Jennings, N. R. (1995). Intelligent agents: Theory and practice.
The knowledge engineering review, 10(2):115–152.

[255] XACML-V3.0 (2017). eXtensible Access Control Markup Language (XACML) Version
3.0.

[256] Xia, F. and Ma, J. (2011). Building Smart Communities with Cyber-Physical Systems.
In 1st International Symposium on from Digital Footprints to Social and Community
Intelligence, pages 1–5. ACM.

[257] Xiao, Y. (2005). Artifacts and collaborative work in healthcare: Methodological, theo-
retical, and technological implications of the tangible. Journal of Biomedical Informatics,
38(1):26–33.

[258] Yagüe, M. I. (2006). Survey on XML-Based Policy Languages for Open Environments.
Journal of Information Assurance and Security, 1(1):11–20.

[259] Yilma, B. A., Panetto, H., and Naudet, Y. (2019). A Meta-Model of Cyber-Physical-
Social System: The CPSS Paradigm to Support Human-Machine Collaboration in Industry
4.0. In 20th IFIP WG 5.5 Working Conference on Virtual Enterprises, pages 11–20.
Springer, Cham.

[260] Zaher, N. A. and Buckingham, C. D. (2016). Moderating the Influence of Current
Intention to Improve Suicide Risk Prediction. AMIA Annu Symp Proc, 2016:1274–1282.

[261] Zanni, A. (2015). Cyber-physical systems and smart cities Learn how smart devices ,
sensors , and actuators are advancing Internet of Things implementations. IBM developer-
Works, (April):1–8.

APPENDIX : REFERENCES 171

[262] Zhang, C., Xu, X., and Chen, H. (2019). Theoretical foundations and applications of
cyber-physical systems: a literature review. Library Hi Tech.

[263] Zhang, X., Zhao, Y., and Liu, W. (2015). A Method for Mapping Sensor Data to SSN
Ontology. International Journal of u-and e-Service, 8(6):303–316.

[264] Zhao, Z., Schiller, E., Kalogeiton, E., Braun, T., Stiller, B., Garip, M. T., Joy, J., Gerla,
M., Akhtar, N., and Matta, I. (2017). Autonomic communications in software-driven
networks. IEEE Journal on Selected Areas in Communications, 35(11):2431–2445.

[265] Zhenping, L., Savkli, C., and Jones, L. (2006). Autonomic computing for spacecraft
ground systems. In 2nd IEEE International Conference on Space Mission Challenges for
Information Technology (SMC-IT’06), pages 1–22. IEEE.

[266] Zhou, N., Delaval, G., Robu, B., Rutten, E., and Mehaut, J. F. (2016). Autonomic
parallelism and thread mapping control on software transactional memory. In IEEE
International Conference on Autonomic Computing (ICAC), pages 189–198, Wurzburg.
IEEE.

[267] Zhou, P., Zou, D., Hou, K.-M., and Zhang, Z. (2017). A Decentralized Compositional
Framework for Dependable Decision Process in Self-Managed Cyber Physical Systems.
Sensor, 17(11):1–33.

APPENDIX A

AAs Policy Configuration for
GRiST Socio-Healthcare System

This section presents the full configuration of the policies for AA1, AA2, AA3 and Global
RIE as discussed in the Chapter 5, Section (5.5.2.1).

A.1 AA1 Policy Script

The full AA1 policy script for GRiST configured in XML format, which is shown below:
1 <AAPolicy aaID="aa1" managedResource="pulseMonitor" policyType="pulse
2 monitor␣policy">
3 <Rule ruleID="r1">
4 <Event eventID="e1" eventSource="pulseMonitor" event="pulseChange"/>
5 <Condition >
6 <Expression exprID="ex1" varName="heartRate" op="<" value="40"/>
7 <Expression exprID="ex2" varName="heartRate" op=">" value="140"/>
8 <Action actionID="a1" actionName="send -alert">
9 <Method name="alert">

10 <Parameter paramName="patientNode" value="10"/>
11 <Parameter paramName="message" value="sits␣down␣and␣breathes␣slowly␣and␣

steadily␣until␣the␣pulse␣normal"/>
12 </Method >
13 </Action >
14 <Action actionID="a2" actionName="send -notification">
15 <Method name="notify">
16 <Parameter paramName="ManagedResource" value="activitySensor"/>
17 <Parameter paramName="Event" value="e1"/>
18 </Method >
19 </Action >
20 </Condition >
21 </Rule>
22 </AAPolicy >

Listing A.1 : AA1 policy script in XML format.

APPENDIX A : AAs Policy Configuration for GRiST Socio-Healthcare System 174

A.2 AA2 Policy Script

The full AA2 policy script for GRiST configured in XML format, which is shown below:
1 <AAPolicy aaID="aa2" managedResource="activitySensor" policyType="activity␣

sensor␣policy">
2 <Rule ruleID="r2">
3 <Event eventID="e2" eventSource="activitySensor" event="getNotified"/>
4 <Condition >
5 <Expression varName="physicalActivity" op="<" value="1.4"/>
6 <Action actionID="a3" actionName="send -alert">
7 <Method name="alert">
8 <Parameter paramName="patientNode" value="10"/>
9 <Parameter paramName="message" value="do␣a␣manual␣assessment"/>

10 </Method >
11 </Action >
12 <Action actionID="a4" actionName="send -alert">
13 <Method name="alert">
14 <Parameter paramName="doctorNode" value="3"/>
15 <Parameter paramName="message" value="possible␣anxiety␣attack"/>
16 </Method >
17 </Action >
18 </Condition >
19 </Rule>
20 </AAPolicy >

Listing A.2 : AA2 policy script in XML format.

A.3 AA3 Policy Script

The full AA3 policy script for GRiST configured in XML format, which is shown below:
1 <AAPolicy aaID="aa3" managedResource="assessmentMonitor"
2 policyType="assessment␣monitor␣policy">
3 <Rule ruleID="r3">
4 <Event eventID="e3" eventSource="assessmentMonitor" event="

assessmentSubmitted" />
5 <Condition >
6 <Expression varName="riskAssessment" op="==" value="normal" />
7 <Action actionID="a5" actionName="send -notification">
8 <Method name="notify">
9 <Parameter paramName="doctorNode" value="3" />

10 <Parameter paramName="message" value="confirmed␣anxiety␣attack" />
11 </Method >
12 </Action >
13 <Action actionID="a6" actionName="send -notification">
14 <Method name="notify">
15 <Parameter paramName="patientNode" value="10" />
16 <Parameter paramName="message" value="confirmed␣anxiety␣attack" />
17 </Method >
18 </Action >
19 <Action actionID="a7" actionName="send -notification">
20 <Method name="notify">

APPENDIX A : AAs Policy Configuration for GRiST Socio-Healthcare System 175

21 <Parameter paramName="familyNode" value="5" />
22 <Parameter paramName="message" value="confirmed␣anxiety␣attack" />
23 </Method >
24 </Action >
25 </Condition >
26 </Rule>
27
28 <Rule ruleID="r4">
29 <Event eventID="e3" eventSource="assessmentMonitor" event="

assessmentSubmitted" />
30 <Condition >
31 <Expression varName="riskAssessment" op="==" value="high" />
32 <Action actionID="a8" actionName="send -alert">
33 <Method name="alert">
34 <Parameter paramName="carerNode" value="2" />
35 <Parameter paramName="message" value="patient ’s␣need␣urgent␣care" />
36 </Method >
37 </Action >
38 <Action actionID="a9" actionName="send -alert">
39 <Method name="alert">
40 <Parameter paramName="patientNode" value="10" />
41 <Parameter paramName="message" value="you␣are␣at␣risk ,␣emergency␣

service␣is␣on␣the␣way" />
42 </Method >
43 </Action >
44 <Action actionID="a10" actionName="send -alert">
45 <Method name="alert">
46 <Parameter paramName="familyNode" value="5" />
47 <Parameter paramName="message" value="immediately␣give␣first␣aid" />
48 </Method >
49 </Action >
50 </Condition >
51 </Rule>
52 </AAPolicy >

Listing A.3 : AA3 policy script in XML format.

A.4 Global Policy Script

The full Global policy script for GRiST configured in XML format, which is shown below:
1 <GlobalPolicy >
2 <InputAction >
3 <Action id="a1" ref_aa="aa1" />
4 <Action id="a2" ref_aa="aa1" />
5 <Action id="a3" ref_aa="aa2" />
6 <Action id="a4" ref_aa="aa2" />
7 <Action id="a5" ref_aa="aa2" />
8 <Action id="a6" ref_aa="aa2" />
9 <Action id="a7" ref_aa="aa2" />

10 <Action id="a8" ref_aa="aa2" />
11 <Action id="a9" ref_aa="aa2" />
12 <Action id="a10" ref_aa="aa2" />

APPENDIX A : AAs Policy Configuration for GRiST Socio-Healthcare System 176

13 </InputAction >
14 <RuleSet >
15 <Rule ruleID="r5">
16 <Condition >
17 <Expression exprID="ex1" varName="heartRate" op="==" value="abnormal"

/>
18 <Dispatch target="aa1">
19 <Action > a1 </Action >
20 <Action > a2 </Action >
21 </Dispatch >
22 </Condition >
23 </Rule>
24 <Rule ruleID="r6">
25 <Condition >
26 <Expression exprID="ex1" varName="heartRate" op="==" value="abnormal"

/>
27 <Expression exprID="ex2" varName="physicalActivity" op="==" value="

high" />
28 <Dispatch target="aa2">
29 <Action > a3 </Action >
30 <Action > a4 </Action >
31 </Dispatch >
32 </Condition >
33 </Rule>
34 <Rule ruleID="r7">
35 <Condition >
36 <Expression exprID="ex1" varName="heartRate" op="==" value="abnormal"

/>
37 <Expression exprID="ex2" varName="physicalActivity" op="==" value="low

" />
38 <Expression exprID="ex2" varName="riskAssessment" op="==" value="high"

/>
39 <Dispatch target="aa3">
40 <Action > a8 </Action >
41 <Action > a9 </Action >
42 <Action > a10 </Action >
43 </Dispatch >
44 </Condition >
45 </Rule>
46 <Rule ruleID="r8">
47 <Condition >
48 <Expression exprID="ex1" varName="heartRate" op="==" value="abnormal"

/>
49 <Expression exprID="ex2" varName="physicalActivity" op="==" value="

high" />
50 <Expression exprID="ex2" varName="riskAssessment" op="==" value="

normal" />
51 <Dispatch target="aa3">
52 <Action > a5 </Action >
53 <Action > a6 </Action >
54 <Action > a7 </Action >
55 </Dispatch >
56 </Condition >
57 </Rule>
58 </RuleSet >

APPENDIX A : AAs Policy Configuration for GRiST Socio-Healthcare System 177

59 </GlobalPolicy >

Listing A.4 : Global policy script in XML format.

APPENDIX B

Policy Specification and
Configuration of eGRiST CDSS

This section presents the complete configuration of PSD language, policy configuration for
AA1, AA2, AA3 and Global RIE that are integrated into eGRiST system as discussed in
Chapter 6, Section (6.2.3) and Section (6.4.2) respectively.

B.1 Policy Schema Definition

The complete and workable PSD language is shown below:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="PolicySet">
<xs:complexType>

<xs:sequence>
<xs:element ref="AAPolicy" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="GlobalPolicy"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="AAPolicy">
<xs:complexType>

<xs:sequence>
<xs:element ref="ManagedResourceList" minOccurs="0"/>
<xs:element ref="SocialNetwork" minOccurs="0"/>
<xs:element ref="AA"/>

</xs:sequence>
<xs:attribute type="xs:string" name="policyID" use="required"/>
<xs:attribute type="xs:string" name="policyType" use="required"/>
<xs:attribute type="xs:string" name="policyDescription" use="optional"/>
<xs:attribute type="xs:string" name="ref_aa" use="required"/>

</xs:complexType>

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 180

</xs:element>

<xs:element name="ManagedResourceList">
<xs:complexType>

<xs:sequence>
<xs:element ref="ManagedResource" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="ManagedResource">
<xs:complexType>

<xs:sequence>
<xs:element ref="TriggerEvent"/>

</xs:sequence>
<xs:attribute type="xs:string" name="resourceID" use="required"/>
<xs:attribute type="xs:string" name="resourceType" use="required"/>
<xs:attribute type="xs:string" name="ref_sensor" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="TriggerEvent">
<xs:complexType>

<xs:sequence>
<xs:element ref="and" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="or" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="not" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Event">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="inputEvent" use="required"/>
<xs:attribute type="xs:string" name="op" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<xs:element name="SocialNetwork">
<xs:complexType>

<xs:sequence>
<xs:element ref="NetworkResourceList"/>

</xs:sequence>
<xs:attribute type="xs:string" name="networkID" use="required"/>

<xs:attribute type="xs:string" name="networkName" use="required"/>
</xs:complexType>

</xs:element>

<xs:element name="NetworkResourceList">
<xs:complexType>

<xs:sequence>

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 181

<xs:element ref="NetworkResource"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="NetworkResource">
<xs:complexType>

<xs:sequence>
<xs:element ref="TriggerEvent"/>

</xs:sequence>
<xs:attribute type="xs:string" name="resourceID" use="required"/>
<xs:attribute type="xs:string" name="resourceType" use="required"/>
<xs:attribute type="xs:string" name="ref_sensor" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="AA">
<xs:complexType mixed="true">

<xs:sequence>
<xs:element ref="SensorList" minOccurs="0"/>
<xs:element ref="Monitor" minOccurs="0"/>
<xs:element ref="LocalRIE" minOccurs="0"/>
<xs:element ref="Executor" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="adapterID" use="required"/>
<xs:attribute type="xs:string" name="adapterType" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="SensorList">
<xs:complexType>

<xs:sequence>
<xs:element ref="Sensor" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Sensor">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="sensorID" use="required"/>
<xs:attribute type="xs:string" name="sensorType" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<xs:element name="Monitor">
<xs:complexType>

<xs:sequence>
<xs:element ref="GetSensorData" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="Condition"/>

</xs:sequence>
<xs:attribute type="xs:string" name="monitorID" use="required"/>

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 182

</xs:complexType>
</xs:element>

<xs:element name="GetSensorData">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="ref_sensor" use="required"/>
<xs:attribute type="xs:string" name="ref_event" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<xs:element name="LocalRIE">
<xs:complexType>

<xs:sequence>
<xs:element ref="GetMonitorData"/>
<xs:element ref="Condition"/>
<xs:element ref="TriggerAction"/>

</xs:sequence>
<xs:attribute type="xs:string" name="rieID" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="GetMonitorData">
<xs:complexType>

<xs:sequence>
<xs:element ref="GetContextVariable" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="ref_monitor" use="required"/>
<xs:attribute type="xs:string" name="ref_condition" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="GetContextVariable">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="contextID" use="required"/>
<xs:attribute type="xs:string" name="ref_expression" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<xs:element name="TriggerAction">
<xs:complexType>

<xs:sequence>
<xs:element ref="While" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="ref_condition" use="required"/>

</xs:complexType>
</xs:element>

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 183

<xs:element name="While">
<xs:complexType>

<xs:sequence>
<xs:element ref="ActionTemplate"/>

</xs:sequence>
<xs:attribute type="xs:string" name="condition" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="ActionTemplate">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="actionID" use="required"/>
<xs:attribute type="xs:string" name="actionType" use="required"/>
<xs:attribute type="xs:string" name="category" use="optional"/>
<xs:attribute type="xs:string" name="target_resource" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<xs:element name="Executor">
<xs:complexType>

<xs:sequence>
<xs:element ref="GetNotification"/>

</xs:sequence>
<xs:attribute type="xs:string" name="executorID" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="GetNotification">
<xs:complexType>

<xs:sequence>
<xs:element ref="Execute" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="message" use="required"/>
<xs:attribute type="xs:string" name="ref_sender" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="Execute">
<xs:complexType>

<xs:sequence>
<xs:element ref="Function"/>

</xs:sequence>
<xs:attribute type="xs:string" name="action" use="required"/>
<xs:attribute type="xs:string" name="ref_command" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="Function">
<xs:complexType>

<xs:sequence>
<xs:element ref="Parameter" maxOccurs="unbounded" minOccurs="0"/>

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 184

</xs:sequence>
<xs:attribute type="xs:string" name="functionID" use="required"/>

<xs:attribute type="xs:string" name="functionName" use="required"/>
</xs:complexType>

</xs:element>

<xs:element name="Parameter">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="paramName" use="required"/>
<xs:attribute type="xs:string" name="datavalue" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<xs:element name="GlobalPolicy">
<xs:complexType>

<xs:sequence>
<xs:element ref="GlobalRIE"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="GlobalRIE">
<xs:complexType>

<xs:sequence>
<xs:element ref="ActionList"/>
<xs:element ref="Condition"/>
<xs:element ref="Decision" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="rieID" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="ActionList">
<xs:complexType>

<xs:sequence>
<xs:element ref="GetAction" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="GetAction">
<xs:complexType>

<xs:sequence>
<xs:element ref="and" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="or" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="not" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="ref_aa" use="required"/>

</xs:complexType>
</xs:element>

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 185

<xs:element name="Action">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="inputActionID" use="required"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>

<xs:element name="Decision">
<xs:complexType>

<xs:sequence>
<xs:element ref="Command" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="ref_condition" use="required"/>
<xs:attribute type="xs:string" name="ref_expression" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="Command">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string" name="commandID" use="required"/>
<xs:attribute type="xs:string" name="message" use="required"/>
<xs:attribute type="xs:string" name="target_adapter" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<xs:element name="Condition">
<xs:complexType>

<xs:sequence>
<xs:element ref="Expression" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="conditionID" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="Expression">
<xs:complexType>

<xs:sequence>
<xs:element ref="If" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="and" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="or" minOccurs="0"/>
<xs:element ref="not" minOccurs="0"/>

</xs:sequence>
<xs:attribute type="xs:string" name="exprID" use="required"/>
<xs:attribute type="xs:string" name="ref_event" use="optional"/>

</xs:complexType>
</xs:element>

<xs:element name="If">

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 186

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="varName" use="required"/>
<xs:attribute type="xs:string" name="op" use="required"/>
<xs:attribute type="xs:string" name="datavalue" use="optional"/>
<xs:attribute type="xs:string" name="ref_context" use="optional"/>
<xs:attribute type="xs:string" name="ref_input_action" use="optional"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<xs:element name="and">
<xs:complexType>

<xs:sequence>
<xs:element ref="If" minOccurs="0"/>
<xs:element ref="Event" minOccurs="0"/>
<xs:element ref="Action" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="or">
<xs:complexType>

<xs:sequence>
<xs:element ref="If" minOccurs="0"/>
<xs:element ref="Event" minOccurs="0"/>
<xs:element ref="Action" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="not">
<xs:complexType>

<xs:sequence>
<xs:element ref="If" minOccurs="0"/>
<xs:element ref="Event" minOccurs="0"/>
<xs:element ref="Action" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

B.2 AAs Policy Configuration

The full configuration of AA1, AA2 and AA3 policy and Global RIE policy is shown below:

<PolicySet xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.aapolicyschema.com/policy.xsd">
<!-- Configure AA1 policy with event -->
<AAPolicy policyID="p1" policyType="depression" policyDescription="carer’s medium help intervention"

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 187

ref_aa="aa1">
<ManagedResourceList>

<ManagedResource resourceID="mr1" resourceType="depression-status" ref_sensor="s1">
<TriggerEvent>

<or><Event inputEvent="depression-status" op="="> first-diagnosis </Event></or>
<or><Event inputEvent="depression-status" op="="> recovery-single-episode </Event></or>
<or><Event inputEvent="depression-status" op="="> recovery-repeat-episode </Event></or>
<or><Event inputEvent="depression-status" op="="> relapse </Event></or>
<or><Event inputEvent="depression-status" op="="> dont-know </Event></or>

</TriggerEvent>
</ManagedResource>

<ManagedResource resourceID="mr2" resourceType="act-on-voices" ref_sensor="s2">
<TriggerEvent>

<or><Event inputEvent="act-on-voices" op="="> 0.0 </Event></or>
<or><Event inputEvent="act-on-voices" op="="> 0.1 </Event></or>
<or><Event inputEvent="act-on-voices" op="="> 0.2 </Event></or>
<or><Event inputEvent="act-on-voices" op="="> 0.3 </Event></or>
<or><Event inputEvent="act-on-voices" op="="> 0.4 </Event></or>
<or><Event inputEvent="act-on-voices" op="="> 0.5 </Event></or>
<or><Event inputEvent="act-on-voices" op="="> 0.6 </Event></or>
<or><Event inputEvent="act-on-voices" op="="> 0.7 </Event></or>
<or><Event inputEvent="act-on-voices" op="="> 0.8 </Event></or>
<or><Event inputEvent="act-on-voices" op="="> 0.9 </Event></or>
<or><Event inputEvent="act-on-voices" op="="> 1.0 </Event></or>

</TriggerEvent>
</ManagedResource>
<ManagedResource resourceID="mr3" resourceType="voice-urge-harm-self" ref_sensor="s3">

<TriggerEvent>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.0 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.1 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.2 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.3 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.4 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.5 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.6 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.7 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.8 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.9 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 1.0 </Event></or>

</TriggerEvent>
</ManagedResource>
<ManagedResource resourceID="mr4" resourceType="voice-urge-harm-other" ref_sensor="s4">

<TriggerEvent>
<or><Event inputEvent="voice-urge-harm-other" op="="> 0.0 </Event></or>
<or><Event inputEvent="voice-urge-harm-other" op="="> 0.1 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.2 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.3 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.4 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.5 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.6 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.7 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.8 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 0.9 </Event></or>
<or><Event inputEvent="voice-urge-harm-self" op="="> 1.0 </Event></or>

</TriggerEvent>

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 188

</ManagedResource>
<ManagedResource resourceID="mr5" resourceType="delusions" ref_sensor="s5">

<TriggerEvent>
<or><Event inputEvent="delusions" op="="> 0.0 </Event></or>
<or><Event inputEvent="delusions" op="="> 0.1 </Event></or>
<or><Event inputEvent="delusions" op="="> 0.2 </Event></or>
<or><Event inputEvent="delusions" op="="> 0.3 </Event></or>
<or><Event inputEvent="delusions" op="="> 0.4 </Event></or>
<or><Event inputEvent="delusions" op="="> 0.5 </Event></or>
<or><Event inputEvent="delusions" op="="> 0.6 </Event></or>
<or><Event inputEvent="delusions" op="="> 0.7 </Event></or>
<or><Event inputEvent="delusions" op="="> 0.8 </Event></or>
<or><Event inputEvent="delusions" op="="> 0.9 </Event></or>
<or><Event inputEvent="delusions" op="="> 1.0 </Event></or>

</TriggerEvent>
</ManagedResource>

</ManagedResourceList>

<!-- Social network entities may also generate event if action sent to the network -->
<SocialNetwork networkID="network1" networkName="grace-care-network">

<NetworkResourceList>
<NetworkResource resourceID="" resourceType="" ref_sensor="">

<TriggerEvent>
<or><Event inputEvent="" op="="></Event></or>

</TriggerEvent>
</NetworkResource>

</NetworkResourceList>
</SocialNetwork>

<!-- Configure AA1 components -->
<AA adapterID="aa1" adapterType="depression-concept-adapter">

<SensorList>
<Sensor sensorID="s1" sensorType="depression-status-sensor" />
<Sensor sensorID="s2" sensorType="act-on-voices-sensor" />
<Sensor sensorID="s3" sensorType="voice-urge-harm-self-sensor" />
<Sensor sensorID="s4" sensorType="voice-urge-harm-others-sensor" />
<Sensor sensorID="s5" sensorType="delusions-sensor" />

</SensorList>

<!-- Configure AA1 monitor policy -->
<Monitor monitorID="m1">

<GetSensorData ref_sensor="s1" ref_event="depression-status" />
<GetSensorData ref_sensor="s2" ref_event="act-on-voices" />
<GetSensorData ref_sensor="s3" ref_event="voice-urge-harm-self-sensor" />
<GetSensorData ref_sensor="s4" ref_event="voice-urge-harm-self-others" />
<GetSensorData ref_sensor="s5" ref_event="delusions" />

<Condition conditionID="c1">
<Expression exprID="expr1" ref_event="depression-status">

<If varName="depression-status" op="==" datavalue="first-diagnosis"> low </If>
<If varName="depression-status" op="==" datavalue="single-episode"> medium </If>
<If varName="depression-status" op="==" datavalue="repeat-episode"> high </If>
<If varName="depression-status" op="==" datavalue="relapse"> critical </If>
<If varName="depression-status" op="==" datavalue="dont-know"> unknown </If>

</Expression>

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 189

<Expression exprID="expr2" ref_event="act-on-voices">
<If varName="act-on-voices" op=">=" datavalue="0.5"> likely </If>
<If varName="act-on-voices" op="<" datavalue="0.5"> unlikely </If>
<If varName="act-on-voices" op="==;" datavalue="dont-know"> unknown </If>

</Expression>
<Expression exprID="expr3" ref_event="voice-urge-harm-self">

<If varName="voice-urge-harm-self" op=">=" datavalue="0.5"> likely </If>
<If varName="voice-urge-harm-self" op="<" datavalue="0.5"> unlikely </If>
<If varName="voice-urge-harm-self" op="==" datavalue="dont-know"> unknown </If>

</Expression>
<Expression exprID="expr4" ref_event="voice-urge-harm-others">

<If varName="voice-urge-harm-others" op=">=" datavalue="0.5"> likely </If>
<If varName="voice-urge-harm-others" op="<" datavalue="0.5"> unlikely </If>
<If varName="voice-urge-harm-others" op="==" datavalue="dont-know"> unknown </If>

</Expression>
<Expression exprID="expr5" ref_event="delusions">

<If varName="delusions" op=">=" datavalue="0.5"> likely </If>
<If varName="delusions" op="<" datavalue="0.5"> unlikely </If>
<If varName="delusions" op="==" datavalue="dont-know"> unknown </If>

</Expression>
</Condition>

</Monitor>

<!-- Configure AA1 local rie policy -->
<LocalRIE rieID="aa-rie1">

<GetMonitorData ref_monitor="m1" ref_condition="c1">
<GetContextVariable contextID="context1" ref_expression="expr1"/>
<GetContextVariable contextID="context2" ref_expression="expr2"/>
<GetContextVariable contextID="context3" ref_expression="expr3"/>
<GetContextVariable contextID="context4" ref_expression="expr4"/>
<GetContextVariable contextID="context5" ref_expression="expr5"/>

</GetMonitorData>
<Condition conditionID="c2">

<Expression exprID="expr1">
<and><If varName="depression-status" op="==" datavalue="low" ref_context="context1"> true </If></and>
<and><If varName="act-on-voices" op="==" datavalue="unlikely" ref_context="context2"> true </If></and>
<and><If varName="voice-urge-harm-self" op="==" datavalue="unlikely" ref_context="context3"> true </If></and>
<and><If varName="voice-urge-harm-others" op="==" datavalue="unlikely" ref_context="context4"> true </If></and>
<and><If varName="delusions" op="==" datavalue="unlikely" ref_context="context5"> true </If></and>

</Expression>
<Expression exprID="expr2">

<and><If varName="depression-stage" op="==" datavalue="medium" ref_context="context1"> true </If></and>
<and><If varName="delusions-stage" op="==" datavalue="unlikely" ref_context="context2"> true </If></and>
<and><If varName="hallucinations-stage" op="==" datavalue="unlikely" ref_context="context3"> true </If></and>
<and><If varName="voice-urge-harm-others" op="==" datavalue="unlikely" ref_context="context4"> true </If></and>
<and><If varName="delusions" op="==" datavalue="unlikely" ref_context="context5"> true </If></and>

</Expression>
<Expression exprID="expr3">

<and><If varName="depression-stage" op="==" datavalue="high" ref_context="context1"> true </If></and>
<and><If varName="delusions-stage" op="==" datavalue="likely" ref_context="context2" > true </If></and>
<and><If varName="hallucinations-stage" op="==" datavalue="likely" ref_context="context3"> true </If></and>
<and><If varName="voice-urge-harm-others" op="==" datavalue="likely" ref_context="context4"> true </If></and>
<and><If varName="delusions" op="==" datavalue="likely" ref_context="context5"> true </If></and>

</Expression>
<Expression exprID="expr4">

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 190

<and><If varName="depression-stage" op="==" datavalue="critical" ref_context="context1"> true </If></and>
<and><If varName="delusions-stage" op="==" datavalue="likely" ref_context="context2" > true </If></and>
<and><If varName="hallucinations-stage" op="==" datavalue="likely" ref_context="context3"> true </If></and>
<and><If varName="voice-urge-harm-others" op="==" datavalue="likely" ref_context="context4"> true </If></and>
<and><If varName="delusions" op="==" datavalue="likely" ref_context="context5"> true </If></and>

</Expression>
</Condition>

<TriggerAction ref_condition="c2">
<While condition="expr1 = ’true’">

<ActionTemplate actionID="a1" actionType="open-url" category="none" target_resource="resource name">
galassify-action-open-url-template </ActionTemplate>

</While>
<While condition="expr2 = ’true’">

<ActionTemplate actionID="a2" actionType="send-email" category="none" target_resource="resource name">
galassify-action-send-email-template </ActionTemplate>

</While>
<While condition="(expr3 = ’true’) and (expr4 = ’true’)">

<ActionTemplate actionID="a3" actionType="dial-emergency" category="none" target_resource="resource name">
notify-emergency-template </ActionTemplate>

</While>
</TriggerAction>

</LocalRIE>

<!-- Configure AA1 executor rule -->
<Executor executorID="exe1">

<GetNotification message="yes" ref_sender="globalRIE" >
<Execute action="action = ’a1’" ref_command="cmd1">

<Function functionID="f1" functionName="sendEmail">
<Parameter paramName="id" datavalue="1" />
<Parameter paramName="name" datavalue="john" />
<Parameter paramName="recepient" datavalue="abc@email.com" />
<Parameter paramName="subject" datavalue="a subject line" />
<Parameter paramName="textMsg" datavalue="We recommended you to seek help..." />
<Parameter paramName="population_restriction" datavalue="older adult" />

</Function>
</Execute>
<Execute action="action = ’a2’" ref_command="cmd1">

<Function functionID="f2" functionName="openURL">
<Parameter paramName="id" datavalue="1" />
<Parameter paramName="name" datavalue="john" />
<Parameter paramName="url" datavalue="http://example.com" />
<Parameter paramName="textMsg" datavalue="Read the medical giudelines..." />
<Parameter paramName="population_restriction" datavalue="older adult" />

</Function>
</Execute>
<Execute action="action = ’a3’" ref_command="cmd1">

<Function functionID="f3" functionName="dial-emergency">
<Parameter paramName="id" datavalue="1" />
<Parameter paramName="dept" datavalue="emergency" />
<Parameter paramName="dialNo" datavalue="999" />
<Parameter paramName="population_restriction" datavalue="older adult" />

</Function>
</Execute>

</GetNotification>

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 191

</Executor>
</AA>

</AAPolicy>

<!-- Define Events Handle by AA2 Policy -->
<AAPolicy policyID="p2" policyType="suicide" policyDescription="carer’s medium help intervention" ref_aa="aa2">
<ManagedResourceList>
<ManagedResource resourceID="mr1" resourceType="suicide-attempt" ref_sensor="s1">
<TriggerEvent>
<or><Event inputEvent="suicide-attempt" op="="> yes </Event></or>
<or><Event inputEvent="suicide-attempt" op="="> no </Event></or>
<or><Event inputEvent="suicide-attempt" op="="> dont-know </Event></or>
</TriggerEvent>
</ManagedResource>
<ManagedResource resourceID="mr2" resourceType="more-than-one-suicide-attempt" ref_sensor="s2">
<TriggerEvent>
<or><Event inputEvent="more-than-one" op="="> yes </Event></or>
<or><Event inputEvent="more-than-one" op="="> no </Event></or>
<or><Event inputEvent="more-than-one" op="="> dont-know </Event></or>
</TriggerEvent>
</ManagedResource>
<ManagedResource resourceID="mr3" resourceType="total-suicide-attempt" ref_sensor="s3">
<TriggerEvent>
<or><Event inputEvent="total-attempt" op="="> 1 </Event></or>
<or><Event inputEvent="total-attempt" op="="> 2 </Event></or>
<or><Event inputEvent="total-attempt" op="="> 3 </Event></or>
</TriggerEvent>
</ManagedResource>
<ManagedResource resourceID="mr4" resourceType="suicide-note-left" ref_sensor="s4">
<TriggerEvent>
<or><Event inputEvent="suicide-note" op="="> yes </Event></or>
<or><Event inputEvent="suicide-note" op="="> no </Event></or>
<or><Event inputEvent="suicide-note" op="="> dont-know </Event></or>
</TriggerEvent>
</ManagedResource>
<ManagedResource resourceID="mr5" resourceType="seriousness" ref_sensor="s5">
<TriggerEvent>
<or><Event inputEvent="seriousness" op="="> 0.0 </Event></or>
<or><Event inputEvent="seriousness" op="="> 0.1 </Event></or>
<or><Event inputEvent="seriousness" op="="> 0.2 </Event></or>
<or><Event inputEvent="seriousness" op="="> 0.3 </Event></or>
<or><Event inputEvent="seriousness" op="="> 0.4 </Event></or>
<or><Event inputEvent="seriousness" op="="> 0.5 </Event></or>
<or><Event inputEvent="seriousness" op="="> 0.6 </Event></or>
<or><Event inputEvent="seriousness" op="="> 0.7 </Event></or>
<or><Event inputEvent="seriousness" op="="> 0.8 </Event></or>
<or><Event inputEvent="seriousness" op="="> 0.9 </Event></or>
<or><Event inputEvent="seriousness" op="="> 1.0 </Event></or>
</TriggerEvent>
</ManagedResource>
<ManagedResource resourceID="mr6" resourceType="hide-suicide-attempt" ref_sensor="s6">
<TriggerEvent>
<or><Event inputEvent="hide-suicide-attempt" op="="> 0.0 </Event></or>

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 192

<or><Event inputEvent="hide-suicide-attempt" op="="> 0.1 </Event></or>
<or><Event inputEvent="hide-suicide-attempt" op="="> 0.2 </Event></or>
<or><Event inputEvent="hide-suicide-attempt" op="="> 0.3 </Event></or>
<or><Event inputEvent="hide-suicide-attempt" op="="> 0.4 </Event></or>
<or><Event inputEvent="hide-suicide-attempt" op="="> 0.5 </Event></or>
<or><Event inputEvent="hide-suicide-attempt" op="="> 0.6 </Event></or>
<or><Event inputEvent="hide-suicide-attempt" op="="> 0.7 </Event></or>
<or><Event inputEvent="hide-suicide-attempt" op="="> 0.8 </Event></or>
<or><Event inputEvent="hide-suicide-attempt" op="="> 0.9 </Event></or>
<or><Event inputEvent="hide-suicide-attempt" op="="> 1.0 </Event></or>
</TriggerEvent>
</ManagedResource>
<ManagedResource resourceID="mr7" resourceType="wanted-to-succeed" ref_sensor="s7">
<TriggerEvent>
<or><Event inputEvent="wanted-to-succeed" op="="> 0.0 </Event></or>
<or><Event inputEvent="wanted-to-succeed" op="="> 0.1 </Event></or>
<or><Event inputEvent="wanted-to-succeed" op="="> 0.2 </Event></or>
<or><Event inputEvent="wanted-to-succeed" op="="> 0.3 </Event></or>
<or><Event inputEvent="wanted-to-succeed" op="="> 0.4 </Event></or>
<or><Event inputEvent="wanted-to-succeed" op="="> 0.5 </Event></or>
<or><Event inputEvent="wanted-to-succeed" op="="> 0.6 </Event></or>
<or><Event inputEvent="wanted-to-succeed" op="="> 0.7 </Event></or>
<or><Event inputEvent="wanted-to-succeed" op="="> 0.8 </Event></or>
<or><Event inputEvent="wanted-to-succeed" op="="> 0.9 </Event></or>
<or><Event inputEvent="wanted-to-succeed" op="="> 1.0 </Event></or>
</TriggerEvent>
</ManagedResource>
</ManagedResourceList>

<!-- Social network entities may also generate event if action sent to the network -->
<SocialNetwork networkID="network1" networkName="grace-care-network">
<NetworkResourceList>
<NetworkResource resourceID="" resourceType="" ref_sensor="">
<TriggerEvent>
<or><Event inputEvent="" op="="></Event></or>
</TriggerEvent>
</NetworkResource>
</NetworkResourceList>
</SocialNetwork>

<!-- Configure AA2 components -->
<AA adapterID="aa2" adapterType="suicide-concept-adapter">
<SensorList>
<Sensor sensorID="s1" sensorType="suicide-attempt" />
<Sensor sensorID="s2" sensorType="more-than-one" />
<Sensor sensorID="s3" sensorType="total-attempt" />
<Sensor sensorID="s4" sensorType="suicide-note" />
<Sensor sensorID="s5" sensorType="seriousness" />
<Sensor sensorID="s6" sensorType="hide-suicide-attempt" />
<Sensor sensorID="s7" sensorType="wanted-to-succeed" />
</SensorList>

<!-- Configure AA2 Monitor policy -->
<Monitor monitorID="m1">
<GetSensorData ref_sensor="s1" ref_event="suicide-attempt" />

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 193

<GetSensorData ref_sensor="s2" ref_event="more-than-one" />
<GetSensorData ref_sensor="s3" ref_event="total-attempt" />
<GetSensorData ref_sensor="s4" ref_event="suicide-note" />
<GetSensorData ref_sensor="s5" ref_event="seriousness" />
<GetSensorData ref_sensor="s6" ref_event="hide-suicide-attempt" />
<GetSensorData ref_sensor="s7" ref_event="wanted-to-succeed" />

<Condition conditionID="c1">
<Expression exprID="expr1" ref_event="suicide-attempt">
<If varName="suicide-attempt" op="==" datavalue="yes"> likely </If>
<If varName="suicide-attempt" op="==" datavalue="no"> unlikely </If>
<If varName="suicide-attempt" op="==" datavalue="dont-know"> unknown </If>
</Expression>
<Expression exprID="expr2" ref_event="more-than-one">
<If varName="more-than-one" op="==" datavalue="yes"> high </If>
<If varName="more-than-one" op="==;" datavalue="no"> medium </If>
<If varName="more-than-one" op="==;" datavalue="dont-know"> unknown </If>
</Expression>
<Expression exprID="expr3" ref_event="total-attempt">
<If varName="total-attempt" op=">=" datavalue="3"> likely </If>
<If varName="total-attempt" op="<" datavalue="3"> unlikely </If>
<If varName="total-attempt" op="==" datavalue="dont-know"> unknown </If>
</Expression>
<Expression exprID="expr4" ref_event="suicide-note">
<If varName="suicide-note" op="==" datavalue="yes"> unlikely </If>
<If varName="suicide-note" op="==" datavalue="no"> likely </If>
<If varName="suicide-note" op="==" datavalue="dont-know"> unknown </If>
</Expression>
<Expression exprID="expr5" ref_event="seriousness">
<If varName="seriousness" op=">=" datavalue="0.5"> likely </If>
<If varName="seriousness" op="<" datavalue="0.5"> harmless </If>
<If varName="seriousness" op="==" datavalue="dont-know"> unknown </If>
</Expression>
<Expression exprID="expr6" ref_event="hide-suicide-attempt">
<If varName="hide-suicide-attempt" op=">=" datavalue="0.5"> hiding </If>
<If varName="hide-suicide-attempt" op="<" datavalue="0.5"> no-hiding </If>
<If varName="hide-suicide-attempt" op="==" datavalue="dont-know"> unknown </If>
</Expression>
<Expression exprID="expr7" ref_event="wanted-to-succeed">
<If varName="wanted-to-succeed" op=">=" datavalue="0.5"> desire-succeed </If>
<If varName="wanted-to-succeed" op="<" datavalue="0.5"> no-desire </If>
<If varName="wanted-to-succeed" op="==" datavalue="dont-know"> unknown </If>
</Expression>
</Condition>
</Monitor>

<!-- Configure AA2 Local RIE policy -->
<LocalRIE rieID="aa-rie2">
<GetMonitorData ref_monitor="m1" ref_condition="c1">
<GetContextVariable contextID="context1" ref_expression="expr1"/>
<GetContextVariable contextID="context2" ref_expression="expr2"/>
<GetContextVariable contextID="context3" ref_expression="expr3"/>
<GetContextVariable contextID="context4" ref_expression="expr4"/>
<GetContextVariable contextID="context5" ref_expression="expr5"/>
<GetContextVariable contextID="context6" ref_expression="expr5"/>

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 194

<GetContextVariable contextID="context7" ref_expression="expr5"/>
</GetMonitorData>
<Condition conditionID="c2">
<Expression exprID="expr1">
<and><If varName="suicide-attempt" op="==" datavalue="likely" ref_context="context1"> true </If></and>
<and><If varName="more-than-one" op="==" datavalue="high" ref_context="context2"> true </If></and>
<and><If varName="total-attempt" op="==" datavalue="likely" ref_context="context3"> true </If></and>
<and><If varName="suicide-note" op="==" datavalue="unlikely" ref_context="context4"> true </If></and>
<and><If varName="seriousness" op="==" datavalue="likely" ref_context="context5"> true </If></and>
<and><If varName="hide-suicide-attempt" op="==" datavalue="hiding" ref_context="context6"> true </If></and>
<and><If varName="wanted-to-succeed" op="==" datavalue="desire-succeed" ref_context="context7"> true </If></and>
</Expression>
<Expression exprID="expr2">
<and><If varName="suicide-attempt" op="==" datavalue="unlikely" ref_context="context1"> true </If></and>
<and><If varName="more-than-one" op="==" datavalue="low" ref_context="context2"> true </If></and>
<and><If varName="total-attempt" op="==" datavalue="unlikely" ref_context="context3"> true </If></and>
<and><If varName="suicide-note" op="==" datavalue="likely" ref_context="context4"> true </If></and>
<and><If varName="seriousness" op="==" datavalue="unlikely" ref_context="context5"> true </If></and>
<and><If varName="hide-suicide-attempt" op="==" datavalue="no-hiding" ref_context="context6"> true </If></and>
<and><If varName="wanted-to-succeed" op="==" datavalue="no-desire" ref_context="context7"> true </If></and>
</Expression>
</Condition>

<TriggerAction ref_condition="c2">
<While condition="expr1 = ’true’">
<ActionTemplate actionID="a1" actionType="urgent-support" category="none" target_resource="999">
galassify-action-urgent-support-template </ActionTemplate>
</While>
<While condition="expr2 = ’true’">
<ActionTemplate actionID="a2" actionType="send-sms" category="none" target_resource="patient-node">
galassify-action-send-sms-template </ActionTemplate>
</While>
</TriggerAction>
</LocalRIE>

<!-- Configure AA2 Executor policy -->
<Executor executorID="exe1">
<GetNotification message="yes" ref_sender="globalRIE" >
<Execute action="action = ’a1’" ref_command="cmd2">
<Function functionID="f1" functionName="urgentSupport">
<Parameter paramName="id" datavalue="1" />
<Parameter paramName="dept" datavalue="emergency" />
<Parameter paramName="recepient" datavalue="abc@email.com" />
<Parameter paramName="telNO" datavalue="999" />
<Parameter paramName="textMsg" datavalue="Need urgent support..." />
<Parameter paramName="population_restriction" datavalue="older adult" />
</Function>
</Execute>
<Execute action="action = ’a2’" ref_command="cmd2">
<Function functionID="f2" functionName="sendSMS">
<Parameter paramName="id" datavalue="1" />
<Parameter paramName="name" datavalue="john" />
<Parameter paramName="mob" datavalue="077993344" />
<Parameter paramName="textMsg" datavalue="Read the medical giudelines..." />
<Parameter paramName="population_restriction" datavalue="older adult" />

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 195

</Function>
</Execute>
</GetNotification>
</Executor>
</AA>
</AAPolicy>

<!-- Configure Global Policy -->
<GlobalPolicy>
<GlobalRIE rieID="globalRIE">
<ActionList>
<!-- Assume that send-email action triggered by AA1 -->
<GetAction ref_aa="aa1">
<or><Action inputActionID="aa1-action"> a1 </Action></or>
<or><Action inputActionID="aa1-action"> a2 </Action></or>
<or><Action inputActionID="aa1-action"> a3 </Action></or>
</GetAction>
<!-- Assume that some actions may triggered by AA2 -->
<GetAction ref_aa="aa2">
<or><Action inputActionID="aa2-action"> a1 </Action></or>
<or><Action inputActionID="aa2-action"> a2 </Action></or>
</GetAction>
<GetAction ref_aa="aa3">
<or><Action inputActionID="aa2-action"> a1 </Action></or>
<or><Action inputActionID="aa2-action"> a2 </Action></or>
</GetAction>
</ActionList>

<Condition conditionID="c3">
<Expression exprID="expr1">
<and><If varName="action" op="==" datavalue="a1" ref_input_action="aa1_action"> true </If></and>
<and><If varName="action" op="==" datavalue="a1" ref_input_action="aa2_action"> true </If></and>
<and><If varName="action" op="==" datavalue="a2" ref_input_action="aa3_action"> true </If></and>
</Expression>
<Expression exprID="expr2">
<and><If varName="action" op="==" datavalue="a2" ref_input_action="aa1_action"> true </If></and>
<and><If varName="action" op="==" datavalue="a2" ref_input_action="aa2_action"> true </If></and>
</Expression>
<Expression exprID="expr3">
<and><If varName="action" op="==" datavalue="a3" ref_input_action="aa1_action"> true </If></and>
<and><If varName="action" op="==" datavalue="a2" ref_input_action="aa2_action"> true </If></and>
</Expression>
<Expression exprID="expr4">
<and><If varName="action" op="==" datavalue="a3" ref_input_action="aa1_action"> true </If></and>
<and><If varName="action" op="==" datavalue="a2" ref_input_action="aa2_action"> true </If></and>
</Expression>
</Condition>
<Decision ref_condition="c3" ref_expression="expr1">
<Command commandID="cmd1" message="yes" target_adapter="aa1"> a1 </Command>
<Command commandID="cmd2" message="yes" target_adapter="aa2"> a1 </Command>
<Command commandID="cmd3" message="yes" target_adapter="aa3"> a1 </Command>
</Decision>
<Decision ref_condition="c3" ref_expression="expr2">
<Command commandID="cmd1" message="yes" target_adapter="aa1"> a2 </Command>
<Command commandID="cmd2" message="yes" target_adapter="aa2"> a2 </Command>

APPENDIX B : Policy Specification and Configuration of eGRiST CDSS 196

</Decision>
<Decision ref_condition="c3" ref_expression="expr3">
<Command commandID="cmd1" message="yes" target_adapter="aa1"> a3 </Command>
<Command commandID="cmd2" message="yes" target_adapter="aa2"> a2 </Command>
</Decision>
</GlobalRIE>
</GlobalPolicy>
</PolicySet>

	Table of contents
	List of figures
	List of tables
	Listings
	Definition of Terms
	1 Introduction
	1.1 Problem Definition
	1.2 Motivational Domain
	1.3 Aims, Research Questions and Contributions
	1.3.1 Research Questions
	1.3.2 Specific Objectives
	1.3.3 Contributions to Knowledge
	1.3.4 Case Studies

	1.4 Thesis Structure
	1.5 Publications

	2 Background
	2.1 Socio-Cyber-Physical Collaboration
	2.1.1 Social Computing and Networking
	2.1.2 Object-Centred Sociality
	2.1.3 General Social-Collaborative Aspects
	2.1.4 Cyber-Physical Social System
	2.1.5 Agent-Centric Social Environment

	2.2 Semantic Social Network
	2.2.1 Semantic Knowledge Representation
	2.2.1.1 XML and XML Schema
	2.2.1.2 RDF and RDF Schema
	2.2.1.3 DL and Ontology

	2.2.2 Rules and Reasoning
	2.2.3 Existing Ontologies

	2.3 Autonomic Computing Concept
	2.3.1 AI and Machine Learning
	2.3.2 Self-Managed and Adaptive System
	2.3.3 Autonomic Computing Properties
	2.3.4 Intelligent MAPE-K Loop
	2.3.5 Social Intelligence of Autonomic Agent
	2.3.6 Autonomic Computing Knowledge Model

	2.4 Policy-Based Autonomic System
	2.4.1 Policy Specification Approaches
	2.4.2 Policy or Rule Representation Languages
	2.4.3 Autonomic System Evaluation

	2.5 Summary

	3 Related Work
	3.1 Semantic Social-Collaborative Network
	3.1.1 Definition of Collaboration
	3.1.2 Social Computing for Collaboration
	3.1.2.1 Context-Aware Social Framework
	3.1.2.2 Object and Artifacts in Collaboration Task
	3.1.2.3 Cyber-Physical Object Collaboration

	3.1.3 Semantic Social Framework
	3.1.4 Agent-Based Social Framework

	3.2 Towards Autonomic Computing Approach
	3.2.1 Preliminary Autonomic Computing Research
	3.2.2 Existing Autonomic System Model
	3.2.3 Social Autonomic System
	3.2.4 Cyber-Physical Autonomic System

	3.3 Knowledge-Driven Autonomic Computing
	3.3.1 Policies For Autonomic System Control
	3.3.2 Policy Specification Approaches and Languages

	3.4 Application of Autonomic Computing Approach
	3.5 Summary

	4 Software Agent-Centric Semantic Social-Collaborative Network
	4.1 Introduction
	4.2 The Proposed Agent-Centric Semantic Social-Collaborative Network
	4.2.1 The Design of the SSCN Framework
	4.2.2 Ontology Modelling
	4.2.2.1 Defining the UpperOnto Ontology
	4.2.2.2 The Extended SocioCyberOnto Ontology

	4.3 Case Study - GRiST Online Healthcare Service
	4.3.1 Scenario A - Simple Social Networking
	4.3.2 Scenario B - Cyber-Physical Object Sociality

	4.4 Implementation
	4.4.1 Constructing the GRiST Domain Ontology
	4.4.2 Software Agent API Design and Implementation

	4.5 Evaluation
	4.5.1 Ontology Testing
	4.5.2 Experimental Dataset
	4.5.3 Performing Ontology Reasoning and Queries
	4.5.4 Ontology Performance Metrics
	4.5.5 Comparison to Related Works

	4.6 Discussion
	4.7 Conclusion

	5 Generic Autonomic Social-Collaborative Framework (GASCF) and Autonomic Adapter (AA) Architecture
	5.1 Introduction
	5.2 High-Level Conceptual Model of the GASCF
	5.3 Generic AA Architecture
	5.3.1 Process Flow of an Autonomic Adapter
	5.3.1.1 Sensor Process.
	5.3.1.2 Monitor Process.
	5.3.1.3 Local RIE Process.
	5.3.1.4 Global RIE Process.
	5.3.1.5 Executor Process.

	5.4 Policy Specification Language For Autonomic Adapter
	5.4.1 PSL Syntax

	5.5 Case Study - GRiST Autonomic Socio-Healthcare System
	5.5.1 GRiST Care Service Scenario
	5.5.2 Prototype Implementation
	5.5.2.1 AAs Policy Specification
	5.5.2.2 ECA Rule Pattern of AAs Policies
	5.5.2.3 XML Configuration of AAs Policies

	5.6 Discussion
	5.7 Conclusion

	6 Policy Model and Specification Language for AA
	6.1 Introduction
	6.2 Policy Model And Specification Language
	6.2.1 Conceptual Model of ECA Policy Interaction
	6.2.2 Entity Relationship Diagram of AA Policy Model
	6.2.3 Policy Schema Definition (PSD) Language
	6.2.4 Policy Specification Script (PSS) Syntax

	6.3 Case Study - eGRiST Clinical Decision Support System
	6.3.1 Limitation of eGRiST Actions
	6.3.2 eGRiST Risk Assessment Scenarios
	6.3.3 eGRiST Datasets

	6.4 Prototype Implementation
	6.4.1 Integrating AAs into eGRiST Domain
	6.4.2 Policy Specifications for AAs
	6.4.2.1 XML Configuration of AAs Policies

	6.5 Implementing AA Engine With JAVA
	6.5.1 AA Engine Design Pattern
	6.5.1.1 Constructing AA's Intelligent Manager Abstract Classes
	6.5.1.2 Constructing AA's Sensor
	6.5.1.3 Constructing Managed Resource
	6.5.1.4 Construction Global RIE Abstract Class
	6.5.1.5 Creating PolicyElement Class.
	6.5.1.6 Creating PolicyHandler Class.

	6.6 Testing And Evaluation
	6.6.1 Creating AADepression Class and Sensor Instances
	6.6.2 Creating AA1Monitor_Depression Class and Instances
	6.6.3 Creating AA1LocalRIE_Depression Class and Instances
	6.6.4 Creating Global RIE Class and Instances
	6.6.5 Creating AA1Executor_Depression Class and Instances
	6.6.6 Creating AAs Class Objects
	6.6.7 Program Output

	6.7 Conclusion

	7 Conclusion and Future Work
	7.1 Contributions
	7.2 Future Work

	REFERENCES
	APPENDIX A AAs Policy Configuration for GRiST Socio-Healthcare System
	A.1 AA1 Policy Script
	A.2 AA2 Policy Script
	A.3 AA3 Policy Script
	A.4 Global Policy Script

	APPENDIX B Policy Specification and Configuration of eGRiST CDSS
	B.1 Policy Schema Definition
	B.2 AAs Policy Configuration

