
 

 

Some pages of this thesis may have been removed for copyright restrictions. 

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches 
copyright, (either yours or that of a third party) or any other law, including but not limited to 
those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, 
libel, then please read our Takedown policy and contact the service immediately 
(openaccess@aston.ac.uk) 

http://www.aston.ac.uk/library/additional-information-for/aston-authors/aston-research-explorer/takedown-policy/


Autonomous Traffic Signal Control using Deep

Reinforcement Learning

Deepeka Garg

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Department of Computer Science

ASTON UNIVERSITY

MARCH, 2020

©Deepeka Garg, 2020

Deepeka Garg asserts her moral right to be identified as the author of this thesis.

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published

without appropriate permission or acknowledgement.

1

http://www.aston.ac.uk


ASTON UNIVERSITY

Department of Computer Science

Autonomous Traffic Signal Control using Deep Reinforcement Learning

Deepeka Garg

Doctor of Philosophy, 2020

Abstract

Traffic signals provide one of the primary means to administer conflicting road traffic flows. The

efficiency of road transportation systems significantly depends on signal operation. The state-

of-the-art signal control strategies are unable to efficiently and autonomously adapt to changing

traffic flow patterns. In this thesis, we present an autonomous traffic signal control system, in

which each intersection independently computes effective signal regimes to optimize traffic flows

through that intersection at all instants-based solely on live camera footage. Our signal control

system is trained via Deep Reinforcement Learning (DRL). In recent years, DRL has emerged

as a powerful paradigm for control optimization problems by autonomously discovering effective

control policies. Our signal control agent perceives the traffic situation around an intersection

through visual sensory data and continuously modifies the traffic signal regimes in real time, as

per the changing traffic observations. The contributions of this thesis are summarised as; (1) A

truly adaptive signal control agent, that effectively tailors its signal control decisions to changing

traffic patterns and significantly outperforms the conventional signal control methods (both fixed

and adaptive) in single and multi-intersection scenarios. (2) This thesis, for the first time, by using

transfer learning, empirically demonstrates vision-based signal control agent’s high generalizabil-

ity and accelerated learning skills on newly-encountered traffic conditions (such as prioritizing

the navigation of emergency vehicles, handling adverse weather and lighting conditions). (3)

Additionally, this thesis presents the first application of attention-visualization to illustrate the

interpretation of DRL agents’ signal control decisions, while highlighting the benefits of using vi-

sual traffic data from CCTV cameras for signal control over the conventional traffic data collection

methods such as induction loops.

Keywords: Deep Reinforcement Learning; Computer Vision; Intelligent Transportation Sys-

tem; Autonomous Signal Control.
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Chapter 1

Introduction

Traffic management is a critical task with significant economic and environmental repercussions.

Urbanization and motorization have caused an imbalance between demand and supply of trans-

portation infrastructure, leading to traffic congestion and problems such as travel delays, road

accidents and environmental degradation, among others. Traffic congestion is a serious problem,

costing substantially to drivers in terms of wasted fuel and time. Among others, in the urban road

networks, inadequate traffic signal timings are one of the repeated causes of congestion (Chin et

al., 2004). This thesis explores the application of a popular machine learning paradigm; Reinforce-

ment Learning (Sutton & Barto, 2011) (used for learning effective control policies by interacting

with complex environments) in the field of traffic and transportation, particularly for autonomous

signal control.

At a road intersection, operation of traffic signal infrastructure is administered by a signal

timing plan. This timing plan defines the sequence in which the traffic light phases (i.e. green

signal) must be activated and the corresponding duration of each phase. Widely-used conventional

signal control methods are based on simple protocols that follow preset/predefined signal control

regimes for preset time intervals. Fixed-time/preset signal (Koonce & Rodegerdts, 2008) regimes

are typically based on historically recorded traffic data. The time interval may alter based on

the peak or quiet hours, but signals are not otherwise optimized. However, over the years the

variability and unpredictability of traffic have outpaced the capabilities of preset signal control

methods to operate efficiently. Consequently, the transportation research community shifted its

focus towards adaptive traffic signal control (ATSC). In contrast to preset signal control, adaptive

signal control is capable of adjusting its regimes online in real-time as per the changing traffic

patterns. Some of the more-widely used ATSC systems include SCATS (Sims & Dobinson, 1980),

SCOOT (Hunt, Robertson, Bretherton, & Royle, 1982), PRODYN (Henry, Farges, & Tuffal, 1984)
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Chapter 1. Introduction

and OPAC (Gartner, Pooran, & Andrews, 2001). However, these signal control methods are not

truly adaptive and are primarily designed to be reactive to slow long-term variations in traffic flows

and not to random short-term fluctuations in traffic patterns (e.g. a sudden road segment blockage

caused by an accident).

Real-world traffic phenomena form a complex, non-linear system, including highly-stochastic

driving dynamics (such as sudden accidents blocking the flow). To exert true, real-time, adaptive

control, signal control systems’ optimization is needed to be carried out by automated agents

capable of self-learning, self-configuration and self-optimization. Since the 1990s, Reinforcement

Learning (RL) is considered as a direct approach to optimal adaptive control of non-linear systems

involving sequential decision-making (Sutton, Barto, & Williams, 1992). Unlike conventionally

used signal control methods, RL agents do not depend on heuristic assumptions, instead, they

monitor the environment through perception, influence it by applying actions and learn the optimal

control by observing the outcomes of actions. RL was first applied to traffic signal control in

the 1990s, with the first techniques limited to tabular Q-learning (Thorpe & Anderson, 1996).

Traditional RL methods suffered from limited scalability and optimality in practice. However, in

recent years, deep learning paradigms (such as deep neural networks (DNNs)) (LeCun, Bengio, &

Hinton, 2015) have proven their effectiveness in significantly improving the performance of RL

methods. Deep Reinforcement Learning (DRL) (a mechanism combining reinforcement and deep

learning) emerged as a powerful paradigm; demonstrating unprecedented success in complex and

dynamic settings such as Atari games (Mnih et al., 2013), among others. DRL facilitates end-to-

end learning (i.e. a direct mapping from sensory inputs to action outputs) and eliminating the need

for hand engineering of task-specific features by domain experts. To accomplish a particular task,

the DRL agent learns the set of environmental features that are significant in each task. These

agents derive efficient representations of high-dimensional, raw sensory data (such as videos and

images) and subsequently utilize these to generalize the past experience to new unseen situations.

Effective signal control with multiple competing traffic flows altering dynamically (often non-

periodically) through the day, is a challenging job for the conventional signal control method-

ologies. The goal of this thesis is to develop a signal control methodology that can provide an

effective signal control in the face of complex, imprecise traffic environment. This thesis presents

a Deep Reinforcement Learning (DRL)-based signal control method, to optimize traffic flows (that
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fluctuate dynamically through the day) through intersections in real time-based solely on live cam-

era feed. Having the ability to visually perceive the prevailing traffic state gives our signal control

agent an opportunity to extensively process its environment and subsequently, learn intricate fea-

ture representations. This enables our agent to make signal control decisions, based on 3D-view

of the traffic environment (including vehicles’ type, their precise positions and corresponding ap-

proach speeds) that would otherwise be impossible/impractical to carry out using popular traffic

data collection methods (such as induction loops and microwave detectors (Coifman, 2006)).

1.1 Research Questions and Main Contributions

The aim of this thesis is to contribute to the field of traffic and transportation, in particular signal

control optimization. We address the following research questions:

Question 1: Does the existing simulation platforms (both transportation-based and in general)

support human-like learning (e.g. based on realistic visual input)?

Question 2: Can traffic signals be controlled in real time such that the signal regimes can be

effectively tailored to dynamically changing traffic situations, by solely using live camera feed?

Question 3: Can traffic flows be optimized through multiple road intersections solely based on

live camera feed, to increase the efficiency of signal control infrastructure at a network-level?

Question 4: Can the signal control agents generalize well to different newly-encountered traffic

situations by transferring their previously-learned skills/knowledge, without having to train them

from scratch every time they encounter a new (never seen before) traffic situation?

Question 5: Given the prevailing traffic conditions, can DRL agents’ signal control decisions (i.e.

configured signal phase in a certain traffic situation) be interpreted?

We address each of the above-listed research questions and contribute to the advancement of the

state-of-the-art traffic signal optimization, as follows:

Contribution 1: To address Question 1, we built a gamified traffic simulation platform; Traf-

fic3D. The goal of Traffic3D is to provide a fast, cheap and scalable proxy for real-world traffic

environments by creating physically, visually intelligent traffic simulations. This contribution has
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been published in the conferences; AAMAS-2019 (International Conference on Agents and Multi-

Agent Systems) (Garg, Chli, & Vogiatzis, 2019b) and ICCS-2019 (International Conference on

Computational Science) (Garg, Chli, & Vogiatzis, 2019c).

Contribution 2: To address Question 2, we developed a Deep Reinforcement Learning (DRL)-

based signal control agent to optimize the flow of traffic through intersections under a wide range

of ambient conditions (such as dynamically varying traffic densities, vehicle types, weather and

lighting conditions) perceived solely using live camera feed. This contribution has been published

in the conferences; ICITE-2018 (IEEE International Conference on Intelligent Transportation En-

gineering) (Garg, Chli, & Vogiatzis, 2018) and ITSC-2019 (IEEE International Conference on

Intelligent Transportation) (Garg, Chli, & Vogiatzis, 2019a).

Contribution 3: To address Question 3, we devised a system of multiple, coordinating traffic

signal control agents. This thesis presents the first application of multi-agent deep reinforcement

learning (DRL) to achieve traffic optimization through multiple road intersections solely based on

raw pixel input from live CCTV cameras. This contribution has been accepted (to appear) in the

conference ITSC-2020 (IEEE International Conference on Intelligent Transportation).

Contribution 4: To address Question 4, we used Transfer Learning so that when encountering

new (visually different) traffic situations (such as different intersection layouts, traffic densities,

weather and lighting conditions), our single signal control agent leverages previously-learned

knowledge; accumulated across a series of experiences, to optimize traffic flows.

Contribution 5: To address Question 5, we implemented a specialised visual explanation tech-

nique to interpret a certain signal control decision, given the prevailing traffic condition which is

visually perceived by the signal control agent. This contribution is part of our accepted paper (to

appear) in the conference; ITSC-2020 (IEEE International Conference on Intelligent Transporta-

tion).

1.2 Thesis Outline

This thesis consists of eight chapters, outlined below:

Chapter 1 introduces the problem of ineffective signal control strategies within the urban road

networks and the potential solution-based on Deep Reinforcement Learning.
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Chapter 2 includes the relevant background and mathematical notation describing our signal con-

trol agents’ implementation in different scenarios (such as single-intersection and multi-intersection).

In this chapter, we also introduce the pertinent literature in the domain of signal control optimiza-

tion.

Chapter 3 introduces our rich and extensible 3D-traffic environment; Traffic3D to train au-

tonomous agents in a high-dimensional complex traffic environment.

Chapter 4 presents a Deep Reinforcement Learning (DRL)-based signal control agent, with the

ability to exert real-time, adaptive control.

Chapter 5 demonstrates the optimization of traffic flows through multiple intersections to achieve

network-level coordination between individually operating signal control agents.

Chapter 6 explores transfer learning to facilitate the development of autonomously operating

signal control agents that can effectively cope with newly-encountered traffic situations.

Chapter 7, by using a visualization technique, effectively reasons about signal control agents’

signal regime decisions, while demonstrating the potential of the learning algorithm used and

validating the benefits of visual data-based signal control optimization approach.

Chapter 8, concludes the research undertaken in this thesis, highlighting the relevant future re-

search lines to further enhance the quality of our road transportation systems.
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Background

In this chapter, we briefly introduce signal control-based related work, followed by a description

of various underlying concepts involving our autonomous signal control agent’s implementation.

2.1 A Brief Introduction of Signal Control-based Related Work

Conventional signal control methods (details provided in Sec. 4.1.1) independently optimizing

traffic flows through one intersection at a time, operate on pre-programmed signal regime plans

(Sims & Dobinson, 1980; Hunt et al., 1982; Henry et al., 1984; Gartner et al., 2001). The phase

time interval may change based on the peak or quiet hours, but they are not otherwise optimized.

However, over the years, as the volatility of traffic patterns outpaced the effectiveness of pre-

programmed signal control methods, interdisciplinary methods such as Reinforcement Learning

(RL)-based are being studied to adaptively configure signal regimes. There exists a large body

of work on RL-based adaptive signal control (discussed in detail in Sec. 4.1.2), however, the

majority of recent studies are conducted using relatively simplified traffic state information-based

on hand-crafted traffic features (i.e. a vector specifying the presence of vehicles at an intersection

and their respective speed information) (Van der Pol & Oliehoek, 2016; Genders & Razavi, 2016;

Gao, Shen, Liu, Ito, & Shiratori, 2017; Liang, Du, Wang, & Han, 2018). Our signal control

method, in contrast, is end-to-end trainable and utilizes live visual inputs, rendering an extensive

representation of the prevailing traffic state (including flows, types of vehicles, weather conditions,

etc.) to decide the configuration of signal regimes. Close to our work, (Mousavi, Schukat, &

Howley, 2017; Jeon, Lee, & Sohn, 2018) used a visual representation of the traffic environment

for signal control. However, the simulation environment used in both the research studies does not

include the visual complexities of urban traffic (Pell, Meingast, & Schauer, 2017), which impedes
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the purpose of using visual traffic data for signal control. In contrast, our dynamic 3D-traffic

simulation paradigm; Traffic3D (Garg et al., 2019b, 2019c) renders a natural and unstructured

traffic environment for the signal control agents to operate on. Merits and demerits of Traffic3D

compared to other state-of-the-art simulation platforms is discussed in Sec. 3.1.

Only a handful of studies address signal control optimization through multiple intersections

(Sec. 5.1) (Wiering, 2000; El-Tantawy, Abdulhai, & Abdelgawad, 2013; Chu, Qu, & Wang, 2016;

Aziz, Zhu, & Ukkusuri, 2018). Most of these research studies implement value function-based

approaches (Q-learning) for traffic optimization. Value function-based methods are often criti-

cized for being unstable and in practice are difficult to use. For instance, they are inclined towards

finding deterministic policies, whereas, in a dynamic environment like traffic, an effective policy

is expected to be stochastic (Sutton, McAllester, Singh, & Mansour, 2000). In contrast, we use a

different method (i.e. actor-critic RL (Konda & Tsitsiklis, 2000)) for autonomous signal control

through a network of intersections based solely on live camera footage. This thesis, for the first

time, by using transfer learning, empirically evaluates our signal control agents’ generalizabil-

ity and transferability skills to newly-encountered traffic conditions, including prioritization of

emergency vehicles’ navigation through the intersections, handling adverse weather and lighting

conditions. To our knowledge, transfer learning for a vision-based signal control task has not been

previously explored, details of this are provided in Sec. 6.1. Furthermore, this work presents the

first application of attention-visualization (details provided in Sec. 7.1), to illustrate the interpre-

tation of our agents’ signal control decisions, while highlighting the benefit of using visual traffic

data for signal control over conventional traffic data collection methods (such as induction loops

and microwaves (Koonce & Rodegerdts, 2008)).

2.2 Reinforcement Learning (RL)

A fundamental problem faced by autonomous agents while interacting with an extensive environ-

ment is sequential decision making. Reinforcement Learning (RL); a popular machine learning

paradigm, is particularly useful in situations where data arrives in a continuous, sequential manner

and the agent is required to adapt its behavior in real time. In a typical RL setting, an agent learns

to achieve a goal. It does so by interacting dynamically with its environment and trying differ-

ent actions in different situations. The agent improves its learning by receiving scalar feedback
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from the environment. The basic RL loop demonstrating this interaction encompasses an agent

receiving environment observations, selecting actions to maximize a reward signal and receiving

feedback from the environment to evaluate the quality of action taken.

FIGURE 2.1: Basic Reinforcement Learning Mechanism.

Fig. 2.1 outlines the basic RL mechanism, demonstrating the interaction between the agent

and the environment. An agent has a repertoire of possible actions and it learns to map situations

to actions to maximize a numerical reward signal. A standard RL framework is mathematically

modelled as a Markov Decision Process (MDP). A Markov Decision Process (MDP) is a discrete-

time stochastic control process, that is defined using a tuple< S,A, T,R, γ >, where S andA are

the state and action spaces, respectively. γ ∈ (0, 1) denotes the discount factor, which models the

relevance of immediate rewards over the future rewards. After observing a state, an agent working

under the policy π : S 7→ A produces an action. Given current state st and action at, the transition

function T : S × A × S 7→ R+ determines the distribution of the next state st+1. The reward

function R is determined by R : S × A 7→ R. An episode τ ∼M with horizon H is a sequence

of state, action, reward (s0, a0, r0, . . . , sH , aH , rH) at every time-step t. The discounted episodic

return of τ is determined by Rt =
∑H

t=0 γ
trt. Given the agent’s policy π, the expected episodic

return is defined by Eπ[Rτ ]. The expected episodic return is maximized by optimal policy π∗

π∗ = arg max
π

Eτ∼M,π[Rτ ]. (2.1)
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FIGURE 2.2: Deep Reinforcement Learning Mechanism.

2.3 Deep Reinforcement Leaning (DRL)

Initially, RL methods were limited in their ability to effectively process the environment in its raw

form. RL agents relied on careful engineering and considerable domain expertise to transform

the raw environmental data (such as images) into a suitable representation/feature vector, using

which the agent processes/understands its environment. For instance, studying the game-playing

strategies of an expert player, observing which actions lead to winning the game and constructing

features from these insights. However, the breakthrough advancements in the field of deep learn-

ing have made it possible for RL agents to automatically learn the intricate environmental feature

representations directly from high-dimensional raw data such as images and videos (He, Zhang,

Ren, & Sun, 2016).

Deep learning methods are representation-learning methods consisting of multiple levels of

representation, composed of non-linear modules such that each transforms the representation at

one level (beginning from the raw input such as images and videos) into a representation at a

higher, more abstract level. Fundamentally, deep learning consists of computational models (such

as deep neural networks), composed of multiple processing layers to learn representations of data

with multiple levels of abstraction. For instance, for an image classification task, the initial neural

network layers detect more generic features (such as edges and color blobs), while the later layers
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progressively detect more specific features. Training a deep neural network with sufficient data

has bee shown to lead to learning of significantly better data representations than hand-crafted

features (LeCun et al., 2015). In particular, deep convolutional neural networks have yielded a

substantial performance boost for various visual-based tasks (Krizhevsky, Sutskever, & Hinton,

2012). Fig. 2.2 illustrates an end-to-end trainable DRL mechanism. In high-dimensional RL

settings, a deep neural network with parameters θ represents policy π (i.e. πθ). The agent aims to

learn θ∗ achieving the highest expected episodic return,

θ∗ = arg max
θ

Eτ∼M,π[Rτ ]. (2.2)

2.4 Reinforcement Learning Methods

This section highlights different RL methods:

2.4.1 Q-learning

Q-learning (Watkins & Dayan, 1992) is a model-free RL method, which does not build the model

of the environment’s transition and reward functions. On the contrary, it directly estimates the

value of taking an action a in state s, such that Q − value of the s, a-pair is represented as

Q(s, a). Q-learning is an off-policy algorithm; a class of algorithms that uses a different policy for

estimating Q-values than for selecting an action. Q-learning updates the Q-values of the current

s, a-pair using the greedy policy to estimate the Q-value of the optimal policy of the next s, a-pair.

The agent following the traditional Q-learning, uses a lookup table of s, a-pairs and iteratively

updates the Q-value estimates using;

Qt+1(s, a) = Qt(s, a) + α

[
rt + γ[max

α′
Qt(st+1, α

′; θt)]−Qt(s, a)
]

(2.3)

Eq. 2.3 represents the difference between the current estimate of the s, a-pair and the actual

value of the s, a-pair. However, the true value of the s, a-pair is not a priori known, the agent

instead uses the current reward signal and the maximizing Q-value of the next state as a proxy for

the true value. This method is known as tabular Q-learning and it works fine in small domains.

However, many real-world problems have large state (S), action (A) spaces and enumeration over

s, a-pairs is not feasible. A straightforward solution to this problem is function approximation, in
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which Q-value is no longer an entry in an |S| X |A| table, instead it is a function parameterized

using weights θ. These weights can be updated using gradient descent methods (Ruder, 2016), to

minimize the mean squared error between the current estimate of Q(s, a) and the target, which is

defined as the true Q-value of the s, a-pair under policy π; Qπ(s, a). The gradient descent update

can be computed by taking the derivative of the mean square error (MSE);

MSE(θ) =
∑
s∈S

P (s)

[
Qπ(s, a; θ∗)−Qt(s, a; θt)

]2
(2.4)

where P (s) is the sampling distribution or the probability of visiting state s under policy π.

The derivative is represented as;

∂

∂θt
MSE(θ) = 2

[
Qπ(s, a; θ∗)−Qt(s, a; θt)

]
∂

∂θt
Qt(s, a, ; θt) (2.5)

As targets are not directly observable, a proxy is used for targets, given by the reward in

the current time-step and a discounted estimate of the next state’s best Q-value using the current

Q-function approximation Qt;

Qπ(s, a; θ∗) ≈ rt + γ

[
max
α′

Qt(st+1, α
′; θt)

]
(2.6)

The Q-value is an expected discounted cumulative reward for taking an action a in state s and

following the policy π afterwards.

2.4.2 Policy Gradient Reinforcement Learning

Neural Network-based function approximation is essential for RL to be effective in large high-

dimensional state spaces. A dominant approach has been value-function approximation (discussed

above). The value function approach is known to work well in many applications, but it has some

limitations such as it cannot efficiently learn stochastic policies and it is less-effective in high-

dimensional state/action spaces (Sutton et al., 2000). In this thesis, we explore an alternative

policy-based approach to function approximation (known as Policy Gradient).
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FIGURE 2.3: Policy Gradient Reinforcement Learning Mechanism.

Fig. 2.3 demonstrates the policy gradient pipeline. Instead of estimating the value function,

a stochastic policy is directly estimated using an independent function approximator (such as

a neural network), whose input is some representation of the current state of the environment

(st), it generates as output action selection probabilities (at), and whose weights are the policy

parameters. In the forward pass, the neural network computes the probability distribution of the

pre-defined actions, from which an action is sampled. Based on the implemented action and

received rewards, gradients are computed in the backward pass. The objective stated in equation

2.2 can be achieved using policy gradient RL by stepping in the direction of E[Rτ∇logπ(τ)].

This gradient can be converted into a surrogate loss function (LPG),

LPG = E[Rτ log π(τ)] = E

[
Rt

H∑
t=0

log π(at|st)
]

(2.7)

such that the gradient of LPG is equal to policy gradient.

2.4.3 Actor-Critic Reinforcement Learning

In actor-critic RL, the actor is the policy πθ(a | s) with parameters θ, based on which actions are

estimated, while the critic computes value functions to help the actor in learning. Action and value

function are estimated using function approximators and the gradient is estimated from trajectories

sampled from environment. Rt is replaced by an expression equivalent toQ(st, ut)−b(st), where

b(st) contributes in reducing the variance. IfRt is replaced byA(st, ut), then b(st) = V (st). R(t)

can also be replaced by the temporal difference error; rt+γV (st+1)−V (s), which is an unbiased

estimate of A(st, ut) (Konda & Tsitsiklis, 2000).
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2.5 Multi-agent Reinforcement Learning (MARL)

This thesis extends to multi-agent RL for implementing coordination and cooperative learning

among independently operating RL-based signal control agents. To accomplish this task, a net-

work of signal control agents is considered, forming a multi-agent system. In this multi-agent

setting, the goal is to train signal control agents to effectively participate in optimizing traffic

flows at a global network level. Here, we consider the multi-agent extension of the Markov

Decision Process (MDP); which is defined by a tuple E =< S,U, P, r, Z,O, n, γ >, where n

agents (represented by a ∈ A ≡ [1, ...., n]) act in the environment E. The true state of the

environment is represented as s ∈ S. At each time-step, each agent independently, simultane-

ously chooses an action ua ∈ U , forming a joint action space u ∈ U ≡ Un, which produces

a transition in the environment (represented by P (s′ | s, u) : S × U× 7→ [0, 1]). For their in-

dividual selected actions, the agents receive their individual rewards; r(s, u) : S × U 7→ R and

γ ∈ (0, 1) denotes the discount factor. Given the real-world traffic complexity, we consider a

partially observable traffic settings, where each agent acts on its local observations z ∈ Z (based

on the observation function O(s, a) : S × A 7→ Z). Each agent depends on action-observation

history (represented by τa ∈ T ≡ (Z × U)∗), based on which it conditions a stochastic policy

πa(ua | τa) : T × U 7→ [0, 1]. The discounted return is denoted by Rt =
∑∞

t=0 γ
lrt+l. The

agents’ goal is to learn a policy that maximizes their joint expected discounted returns.

2.6 Interpretable Signal Control via Deep Neural Network (DNN)

Visualization

Deep learning models are known to offer insights that go well beyond human understanding (Mnih

et al., 2015). We analyse our signal control agents’ decision-making through a specialised visual-

ization technique involving the visual attention of vision-based inputs (Chapter 7). The core idea

of visualizing DNNs is to adaptively realize the most-relevant features as per the input data. For

the DNN visualization, we implement Grad-CAM (Selvaraju et al., 2017), which facilitates the

visual explanations of DNNs using gradient-based localization (i.e. localization of visual evidence

in an image). This localization technique generates explanation for a CNN-based model without

the need for any architectural reforms or re-training. Gradients flowing into the final convolutional
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layer generate a coarse localization, highlighting the important areas in the image leading to a cer-

tain neural network output. Via Grad-CAM, a heatmap is produced on top of the input image,

depicting the critical areas that dominate a certain decision. Grad-CAM was previously applied to

produce visual explanations for a variety of CNN-model families; (1) image classification (CNNs

with fully-connected layers), (2) image captioning (CNNs to achieve structured outputs) and (3)

visual question answering (CNNs with multimodal inputs). To our knowledge, in this work, Grad-

CAM is applied for the first time to produce visual explanations for a signal control optimization

task.

2.7 Summary

In this chapter, we briefly introduced relevant signal control-based literature. We will further

discuss the pertinent literature (based on the contributions enlisted in Sec. 1.1) in-depth in the

following chapters. In this chapter, we also presented the necessary background contributing to

the implementation of our signal control agents in both; single junction and multiple junction

scenarios. The topics we discussed in this chapter include deep reinforcement learning, types

of reinforcement learning methods (Q-learning, policy gradient and actor-critic), multi-agent re-

inforcement learning for coordinated multi-intersection signal control and DNN visualization to

interpret agents’ signal control decisions. More specific implementation details are provided in

the following chapters.
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A New Simulation Paradigm: Traffic3D

In this chapter, we address the research question 1 (outlined in Sec. 1.1). A longstanding goal of

the artificial intelligence research community is to devise robust agents that demonstrate human-

like intelligence by autonomously performing tasks in real-world settings. However, training

agents to act effectively in the real world entails challenges that go well beyond existing supervised

learning tasks such as object recognition. To be able to perform well in a dynamic physical

environment, an agent is required to have a significant amount of extensive interaction with its

environment so that it can explore, learn and effectively adapt. Reinforcement learning (RL)

(Sutton & Barto, 2011) paradigms hold the promise of allowing autonomous agents to learn to

accomplish arbitrary tasks. Mimicking the fundamentals of human learning, RL agents learn by

interacting with their environment and observing the outcome of these interactions in the form

of positive or negative feedback. However, these agents are slow to train, since they have no

prior knowledge of their intended environment and they are bound to have a large number of

interactions with the environment to learn suitable policies. To avoid expense, risk and disruption

associated with extensive real-world experimentation, computer simulations are considered as a

viable alternative for development and evaluation of new ideas and algorithms. Although there has

been widespread use of simulations to pursue research in road transportation, however, the existing

simulation platforms are limited and fail to deliver critical physical and visual functionalities that

are fundamental to authentic traffic simulation (Pell et al., 2017).

The RL agents learning in simulated environments depicting a high degree of realism are

known to learn features, which are generalizable to their corresponding real-world environments

(Sadeghi & Levine, 2016). However, creating realistic simulation environments can be cumber-

some. Some of the commonly-encountered issues when creating these simulation platforms in-

clude; (1) Developing simulation environments with high-definition graphical rendering, to ensure
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FIGURE 3.1: A view of Traffic3D’s multi-intersection graphical display.

that digital content looks as close as possible to a physical scene. (2) Authentic physics support

to model complex physical interactions between environment entities based on mass, friction and

gravity. (3) Encompassing diversity of parameters and settings, to ensure generalizability and

stability of the trained agent (domain randomization). Trained agents tend to exhibit good perfor-

mance under ideal conditions (such as well-illuminated surroundings) but as the input conditions

changes, the agents’ performance often degrades. (4) Furthermore, it needs to be ensured that

simulation assumptions about the agent’s access to the environment are realistic; while operating

in real-world settings, the agent will have limited sensoric and effectoric capabilities. For e.g. an

agent controlling an autonomous vehicle cannot see the entire road network at any given instant.

To bridge the gap between simulations and real-world traffic dynamics, we created a traffic

micro-simulation tool, Traffic3D (Garg et al., 2019b, 2019c) (illustrated in Fig. 3.1, 3.2, 3.3). The

goal of Traffic3D is to push forward research in human-like learning (e.g. based on reliable visual

input). Traffic3D provides a fast, cheap and scalable proxy for real-world traffic environment, in-

cluding a diverse and extensible range of dynamic scenes which are both visually and physically

realistic; to accurately simulate transportation entities and their emergent properties. Traffic3D

renders traffic dynamics that are being generated through the simulation, encompassing all the

emergent properties of the traffic entities, without making any explicit assumptions or aggregated

models of these properties. For openness and research collaborations, Traffic3D is publicly avail-

able (including complete documentation and installation guidelines) at https://traffic3d.org/.
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(A) (B) (C)

FIGURE 3.2: An example of different views (camera orientations) of a multi-
intersection setting in Traffic3D.

3.1 Related Work

Computer simulations are increasingly being used to train and evaluate intelligent agents, with

a large volume dedicated to games-based benchmarks such as the ATARI learning environment

(Bellemare, Naddaf, Veness, & Bowling, 2013), DeepMind Lab (Beattie et al., 2016), TorchCraft

(Synnaeve et al., 2016) and VizDoom (Kempka, Wydmuch, Runc, Toczek, & Jaśkowski, 2016).

Though these platforms contributed in successfully developing and demonstrating the perfor-

mance of RL agents (Mnih et al., 2013), these benchmarks are not photo-realistic and unsuitable

to train agents to perform real-world tasks such as autonomous transportation. More Realistic

Environments include House3D (Wu, Wu, Gkioxari, & Tian, 2018), CHALET (Yan et al., 2018),

AI2THOR (Kolve et al., 2017). These environments provide 3D-rendered indoor house scenes.

Using these environments, Gordon et al. (Gordon et al., 2018) endeavoured in effectively solving

the task of visual question answering in interactive environments. Zhu et al. (Zhu et al., 2017)

successfully implemented vision-based robot navigation by mapping sensory signals to motion

commands. In contrast to these paradigms, we focus on the simulation of the urban traffic envi-

ronment.

Traffic optimization being an established field, several traffic simulators exist. Pell et al. (Pell

et al., 2017) thoroughly reviewed popular traffic simulation environments. The review acknowl-

edges that currently-used traffic simulation tools are unable to adequately deliver critical function-

alities that are fundamental to faithful traffic simulation. The existing traffic models lack in detail

and flexibility. A detailed network model with efficient real-time traffic information collection

capabilities is necessary to simulate heterogeneous transportation networks. Reinforcing the con-

sensus among the computer vision research community that robust computer vision is key to the
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prevalence of autonomous transportation, the SYNTHIA (Ros, Sellart, Materzynska, Vazquez, &

Lopez, 2016) dataset was introduced. SYNTHIA consists of a synthetic collection of a diverse set

of urban traffic-specific photo-realistic images. We believe that due to its fundamentally different

objectives during its creation, SYNTHIA does not support transportation infrastructure optimiza-

tion. SYNTHIA’s documentation does not provide any indication about important vehicle-related

functionalities such as effectively handling the physics of vehicles. An urban driving game simula-

tor, Grand Theft Auto (Richter, Hayder, & Koltun, 2017), is known to lack the flexibility required

to pursue learning-based research simulations. Another driving simulator, TORCS (Wymann et

al., 2000), is predominantly a racing simulator. It does not represent the complexities of urban

driving efficiently.

In Table 3.1, we summarize the capabilities of a few widely-used traffic and deep learning-

based simulation environments over important simulation characteristics; photo-realistic graphi-

cal rendering, 3D nature of objects, simulation physics and flexibility to customize the simulation

environment according to the requirements of the application. Table 3.1 reflects that no single

simulator supports comprehensive traffic-based research and analysis. To address this gap, traf-

fic dynamics in our simulation platform; Traffic3D are generated using agent-based simulation

model, yielding visually rich and physically precise traffic scenarios.

3.2 Our Simulation Environment: Traffic3D

The main contribution of this chapter is our gamified simulator; Traffic3D. Traffic3D consists of a

diverse range of traffic scenes, including a variety of photo-realistic vehicles (such as emergency

vehicles, personal and public transport vehicles) and street furniture (sidewalks and traffic lights).

Scenes include, from the clear view of a sunny day to the blurry dimly-lit night, a rainy and a

snowy day (as shown in Figure 3.3). Real-world traffic images are used as a reference to create

3D-traffic scenes with near-photorealistic lighting and texture. As a microscopic traffic simulation

environment, Traffic3D configures behavior of every vehicle independently; emulating real-world
1no proper reactive control to random incidents like collisions between vehicles.
2does not support simulation of autonomous vehicles and does not prioritize public transport.
3unrealistic lane-closing behavior.
4restrictions in customizing delay.
5limited sensor suite.
6does not support road intersection simulation.
7information not available.
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(A) (B) (C)

(D) (E) (F)

FIGURE 3.3: Different views of an intersection in Traffic3D . (A) A clear sky
scene. (B) An evening scene. (C) A clear sky scene (2-way junction) . (D) A

night scene. (E) A rainy scene. (F) A snowy scene

traffic dynamically. Traffic3D is a cross-platform simulation environment. It supports different

operating systems, including Windows, Linux and Mac OS X.

To facilitate control optimization, we developed a framework to enable an agent to perform

actions in a 3D-traffic environment and subsequently, perceive the outcomes of its actions. Our

framework includes integration of Unity engine with deep learning python support (illustrated in

Fig 3.4). It consists of two components; (1) a Unity game engine, and (2) a light-weight Python

API. Traffic scenes are created within the Unity game engine with functionality to train intelligent

agents in Python. These two components interact in a client-server manner to facilitate seamless

bilateral communication between the traffic environment and the agent. The server implements

the learning agent, while the traffic simulation environment acts as a client. This client-server

architecture allows for a generic system, in which other analysis and learning platforms (such as

Matlab, R and Julia) can be conveniently plugged-in instead of Python. Fig. 3.4 illustrates the

traffic environment and learning agent’s bilateral interaction. The socket data exchange mecha-

nism we implemented to facilitate interaction between the simulation and the deep learning python

module works accurately and seamlessly. However, deep learning training is typically long. To
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Environment
Suitable

for Traffic
Simulation

Photo-
Realistic

3D Physics Customizable

SUMO (Pell
et al., 2017)

Yes No No
Yes (with

restrictions1)
Yes (with

restrictions2)
VISSIM

(Pell et al.,
2017)

Yes Yes Yes
Yes (with

restrictions3)
Yes (with

restrictions4)

TORCS
(Wymann et

al., 2000)
Yes Yes Yes

Yes (with
restrictions5)

Yes (with
restrictions6)

Virtual
KITTI

(Gaidon,
Wang,

Cabon, &
Vig, 2016)

Yes Yes Yes No7 Yes

CHALET
(Yan et al.,

2018)
No Yes Yes Yes Yes

AI2-THOR
(Kolve et al.,

2017)
No Yes Yes Yes Yes

ATARI
(Bellemare
et al., 2013)

No No No No No

DeepMind
Lab (Beattie
et al., 2016)

No No Yes No Yes

Traffic3D Yes Yes Yes
Yes(with

high degree
of realism)

Yes(fully)

TABLE 3.1: Comparison between different traffic-based and deep learning-based
simulation environments.

accelerate training, Traffic3D allows control of the frame rate and speed of the simulation without

affecting its quality. Collecting data using an accurate simulator is still faster and safer than doing

so directly from the physical world (Zhu et al., 2017).

3.3 Traffic3D’s Properties

In this section, we discuss the key simulation properties of Traffic3D. This section highlights

Traffic3D’s potential in creating relatively natural-looking and realistically-operating traffic envi-

ronment with believable visuals and physics.
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FIGURE 3.4: Our traffic environment and python API forming a client-server
system.

FIGURE 3.5: An illustration of raycast sensor for collision avoidance.

3.3.1 Traffic3D’s Physical Properties

To ensure high-precision simulation, Traffic3D is supported by NVIDIA PhysX SDK1 that allows

effective modelling of complex physical interactions between the transportation entities based on

mass, friction and other forces (such as gravity). Vehicles are independently tuned to react ap-

propriately accordingly to their input parameters and also to the presence of other vehicles/traffic

infrastructure. Vehicles exhibit progressive slow-down and acceleration. Vehicles are equipped

with appropriate sensors to avoid collisions, overtake and give way to high-priority (emergency)

vehicles.
1https://developer.nvidia.com/physx-sdk
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3.3.2 Traffic3D’s Visual Properties

Traffic3D provides high-definition graphical rendering to potentially facilitate the transfer of de-

veloped models to real-world settings with no or minimum pre-training. Traffic3D supports real-

time global illumination such that light, material, texture and scale work in synergy to make digital

content look as close to a real scene as possible. The lighting techniques used in Traffic3D create

immersive scene lighting, mimicking the real-world effects. Objects’ shadows can be dynamically

cast on the scene, adding further realism to the environment.

3.3.3 Traffic3D’s Sensors

Traffic3D facilitates the fast, inexpensive, limitless, diverse and photo-realistic collection of traffic

data for various research purposes such as online reinforcement learning and supervised learning.

Vehicles in Traffic3D are well-equipped to behave realistically. They have appropriate sensors (i.e.

ray-cast sensors which can be customized to use as an equivalent to Lidar and microwaves) and

programmed behaviour to avoid collisions, overtake and give way to emergency vehicles (illus-

trated in Fig. 3.5). Cameras in Traffic3D replicate the operation of real-world cameras; supporting

capturing of photo-realistic images and videos with proper field-of-view and depth-of-view. To

study the effects of occlusions in the traffic environment, which is common in real-world traffic

scenarios; vehicles and street furniture that are not currently being seen by the camera can have

their rendering disabled. Multiple cameras can be deployed at the same time within a scene to

perceive different aspects of the scene and their views can be combined in different ways. For ex-

ample, in addition to the main view of the complete scene, when simulating a car, camera output

to show a rear-view mirror footage can also be simulated separately, if needed.

3.3.4 Co-Simulation with SUMO

Traffic3D facilitates the simulation of traffic scenarios using external traffic simulators such as

SUMO (Behrisch, Bieker, Erdmann, & Krajzewicz, 2011) (illustrated in Fig. 3.6). Traffic3D

allows both road network and traffic density/distribution configuration/control through SUMO.

It is also possible to use SUMO’s physical abilities to configure properties of vehicles within

Traffic3D (such as maximum speed, acceleration and mobility models).
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(A)

(B)

FIGURE 3.6: An illustration of co-simulation with SUMO. (A) A road network
simulated in SUMO. (B) Equivalent road network transferred from SUMO to Traf-

fic3D.

3.3.5 Real-world Road Maps

Via an interface with SUMO, real-world digital road maps can be imported in Traffic3D. This

makes it is possible to create precise models of complex real-world road networks, including the

number of lanes, accurate locations of traffic lights and permitted traffic movements. Real-world
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(A)

(B)

FIGURE 3.7: An illustration of real-world road network around Aston University,
Birmingham. (A) In SUMO. (B) In Traffic3D.

road maps are illustrated in Fig. 3.7.
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3.3.6 Traffic3D’s Diversity of Parameters

To ensure stability and generalizability of agents trained using Traffic3D to different variants of

the environment, Traffic3D supports plug-n-play architecture to facilitate seamless creation and

switching between scenarios during the run-time without interrupting the simulation or causing

frame-rate hiccups. For example, traffic density can be dynamically varied independently, or

around different times of the day (rush and quiet hours), as well as different weather conditions

(e.g. rain, snow) can be varied during the run-time. This allows studying quantitatively the impact

of different times and weather conditions on the learning agent’s behavior. The current level

of diversity offered by Traffic3D includes (1) vehicle number, types, models, colors and sizes,

(2) vehicles’ trajectory configuration and speed, (3) pedestrians, (4) different road layouts and

surface textures, (5) variety of street furniture, (6) different lighting and weather conditions and

(7) different camera position and orientation to comprehensively capture a wide range of possible

aspects of a traffic scene.

3.3.7 Traffic3D’s Reusability

Traffic3D consists of a library of pre-created traffic environments. In addition, it offers com-

plete flexibility over the creation/deployment of new simulation scenarios; allowing complete

customization over vehicle spawning, vehicle routing, road layouts and street furniture place-

ment. Apart from creating simulation scenes manually, which can be tedious and less intuitive,

Traffic3D also allows its users to programmatically generate scenes. Any of the traffic elements

(such as vehicles) available within the project can be programmatically placed at any position and

their physical (such a vehicle’s size, mass and its speed) and visual behavior (such as a vehicle’s

texture) can also be programmatically configured.

3.4 Summary

In this chapter, we introduced our novel traffic simulation platform; Traffic3D. We built Traf-

fic3D to create visually and physically realistic traffic simulation models to develop and test new

technology with the goal of its eventual deployment in the real world. Traffic3D provides a high

level of complexity (sensory, social and cognitive). To realistically train autonomous agents, Traf-

fic3D supports unique simulation features, including complex physical phenomenon, creation of
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relevant content (such as traffic objects with appropriate background), photo-realism, compre-

hensibility, robustness, adaptability, partial observability challenges and inexpensive collection

of diverse training data. While most of the presently-used traffic simulation environments are

pertinent to transportation-specific research, Traffic3D’s capabilities transcend beyond the realm

of transportation. Traffic3D can facilitate research across multiple directions, including, but not

limited to semantic segmentation, 3D navigation visual question answering and neural attention

mechanisms. As per the application under consideration, the required level of complexity can be

conveniently simulated.
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Chapter 4

Deep Reinforcement Learning-based

Autonomous Traffic Signal Control

using Live Camera Feed

In this chapter, we address the research question 2 (outlined in Sec. 1.1) by using the Reinforce-

ment Learning method; Policy Gradient (described in Sec. 2.4.2). A road intersection is a shared

physical space; access to this common resource must be granted intelligently to optimize the flow

of traffic while ensuring the safe passage of vehicles. In urban areas, the efficiency of road trans-

portation systems significantly depends on the signal operation. Ever since their advent at the

end of 19th century, traffic lights have been used as the primary mode to grant vehicles access to

the intersections, however, their benefits tail off when they fail to adapt to dynamically changing

traffic flows (Priemer & Friedrich, 2009). Furthermore, existing signal control methods operate

on pre-specified models of the traffic environment (Koonce & Rodegerdts, 2008). The purpose

of having these pre-specified traffic models is to effectively visualize the picture of the present

and imminent traffic conditions. These models are required to be constructed by the domain ex-

perts and must be generic enough to cover a variety of traffic conditions, as it is impractical to

have a separate model to independently demonstrate each potential traffic situation. However, a

generalized traffic model may not be able to reliably reflect the vast range of traffic flow patterns.

For instance, TRANSYT, one of the popular adaptive signal control methods, only uses platoon-

dispersion model to determine the arrival pattern of vehicles (Manar & Baass, 1996), irrespective

of the prevailing traffic conditions.

A truly adaptive agent; exerting real-time signal control, must directly respond to the actual
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traffic conditions without any pre-specification of the traffic environment. RL (Sutton et al., 1992)

is a successful paradigm that obviates the need for pre-specification of an environment model.

The environment RL agents operate in is not known in advance. Instead, the agents monitor their

environment through perception, influence it by implementing actions and learn by observing

the outcomes of their actions. Deep neural networks (DNNs) have further enhanced the learn-

ing power of RL agents; allowing end-to-end learning from raw sensory data and eliminating the

need for hand-engineered features describing the prevailing state of the environment (Mnih et al.,

2015). To accomplish a particular task, the DRL agent constantly interacts with its environmental

and learns the set of environment features that are significant in each task. In this chapter, we

address the problem of congestion around the road intersections. We present a DRL-based sig-

nal control agent that effectively optimizes traffic through intersections with multiple competing

traffic flows altering dynamically and non-periodically through the day. Our signal control agent

solely operates on live camera feed to optimize traffic flows through intersections in real time. Our

empirical results reflect that our vision-based signal control agent is able to extensively process

the traffic environment to learn it’s intricate feature representations. This allows our agent to take

signal control decisions, based on 3D-view of the traffic environment (including vehicles’ type,

their precise positions and corresponding approach speeds) that would otherwise be tedious to ex-

plore/exploit using popular traffic data collection methods (such as induction loops and microwave

detectors (Coifman, 2006)). We compare our DRL-based signal control approach against baseline

methods, including conventional signal control (fixed and adaptive). Our empirical evaluations

reveal that our DRL-based signal control methodology led to a significant performance boost in

comparison to the baseline methods.

4.1 Related Work

In this section, we summarize state-of-the-art conventional signal control methods, followed by

incorporation of reinforcement learning (RL) methods for signal control.

4.1.1 Conventional Signal Control

Conventional signal control methods operate on pre-programmed signal regimes. These methods

either follow a fixed-time/preset mode, an adaptive/actuated mode, or a combination of the two.
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In the fixed mode, traffic networks are continuously monitored using sensors (such as induction

loops) to collect important traffic data (such as traffic density on a certain road segment) and

subsequently draw inference on congestion trends of the intersections. Based on this traffic infor-

mation, the fixed/preset signal regimes are retrospectively configured. In this mode, typically the

same duration of time is allocated to each phase in each cycle. However, with real-world traffic

phenomena exhibiting highly-stochastic dynamics, the irregularities in traffic flow patterns cannot

be a priori anticipated-based solely on historical data. An alternative is online traffic monitoring

and subsequently configuring signal regimes in real time. In contrast to preset signal control, in ac-

tuated signal control (summarized in Table 4.1), actual traffic flows approaching the intersections

are monitored online using sensors to reactively allow variations in phase durations. The sen-

sors can be located upstream of stop lines at the entrance of a road link, or downstream from the

previous junction. A variety of sensors is used to monitor traffic. The most commonly used sen-

sors can be categorized as (a) underground vehicle detectors (such as induction loops (Coifman,

2006)), and (b) above-ground vehicle detectors (such as microwaves (Coifman, 2006)). The for-

mer detect the presence of vehicles by measuring the change in inductance when vehicles move

over the loop and the latter detect the presence of vehicles anywhere within the field of vision as

long as a vehicle is moving faster than 2-3mph. However, sensor reliability and accuracy are key

concerns in these popular traffic detection approaches. For instance, vehicles taking sharp turns at

an intersection can be missed by induction loops, resulting in unreliable traffic density estimation

(Rhodes, Bullock, Sturdevant, Clark, & Candey Jr, 2005). Furthermore, buried under the road, the

loop detectors have a narrow operational range and can be easily damaged by heavy vehicles or

road deterioration. Microwave-based sensors are unable to detect slow-moving vehicles and can

be easily obstructed by overhanging objects such as trees. Although optimizing phase durations

has shown improvement in the performance of fixed-signal control, it does not take the prevail-

ing traffic state adequately into account (loops have vehicle counting/speed monitoring limited

functionality), leading to less than efficient regulation of dynamic traffic flows. Using RL may be

advantageous here, as RL-trained signal control agents can learn to make effective signal control

decisions precisely based on the true prevailing state of the traffic environment.
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Control
Technique

Traffic Data
Control
System

Optimizing Performance Metric

SCAT (Sims
& Dobinson,

1980)

Online data (from
stop-line downstream

detectors)
Centralized Junction throughput, travel time

SCOOT
(Hunt et al.,

1982)

Online data (from
upstream detectors)

Centralized Delay, stops and congestion

UTOPIA
(Mauro &

Di Taranto,
1990)

Online data (from
upstream detectors)

Centralized Delay and stops

MOVA
(Peirce &

Webb, 1994)

Online data (from a
single upstream detector)

Decentralized Delay, congestion and stops

OPAC
(Gartner et
al., 2001)

Online data (from
upstream detectors)

Decentralized Delay and stops

Our study Online data (from
cameras) Centralized Traffic throughput, junction

travel-time

TABLE 4.1: Summary of techniques used for adaptive traffic signal control.

Research Study State Space Reward Simulator

Van der Pol and
Oliehoek (Van der Pol

& Oliehoek, 2016)
Position of vehicles

Teleport, wait time, stop,
switch and delay

SUMO

Genders and Razavi
(Genders & Razavi,

2016)

Position & speed of
vehicles

Cumulative delay SUMO

Gao et al. (Gao et al.,
2017)

Position & speed of
vehicles

Cumulative wait time SUMO

Mousavi et al.
(Mousavi et al., 2017)

Raw pixels Cumulative delay SUMO

Jeon et al. (Jeon et al.,
2018)

Raw pixels Number of waiting vehicles VISSIM

Liang et al. (Liang et
al., 2018)

Position & speed of
vehicles

Cumulative wait time SUMO

Our study Raw pixels
+1/car passing through the
junction and -1/car waiting

at the stop line

Our
Simulator

(Traf-
fic3D)

TABLE 4.2: Summary of recent DRL-based traffic light control research studies.
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4.1.2 Reinforcement Learning-based Signal Control

The classical traffic modelling and analysis tools used by transportation planning agencies (sum-

marized in Table 4.1) struggle to provide tractable policies for signal control infrastructure op-

timization. Traffic dynamics (including imprecision and uncertainty) form a non-linear, com-

plex spatio-temporal system and are required to be modelled using complex dynamical systems.

This inspired the transportation research community to move towards utilizing better-suited meth-

ods for real-time traffic management, including learning-based paradigms such as Reinforcement

Learning (RL) (Sutton & Barto, 2011). To achieve greater real-time responsiveness and constantly

optimize actual traffic flows, RL was first applied to signal control in the 1990s, with the initial

experimentation limited to tabular Q-learning (Thorpe & Anderson, 1996). Traditional RL meth-

ods suffered from limited scalability and optimality in practice. Deep neural networks (DNNs),

in recent years, have proven their effectiveness by significantly improving the performance of

traditional RL methods (Mnih et al., 2013).

The majority of recent research on DRL-based adaptive signal control (summarized in Ta-

ble 4.2) is conducted using relatively simplified traffic state information based on hand-engineered

traffic features (i.e. a vector specifying the presence of vehicles at the intersection and their re-

spective speed information). These features do not render a true picture of the traffic environment.

In contrast, our signal control methodology is end-to-end-trainable and signal control decisions

are taken solely-based on live camera feed rendering an extensive representation of the prevail-

ing traffic state (including key traffic information such as flows, types of vehicles, weather and

lighting conditions, etc.). Close to our work, (Mousavi et al., 2017; Jeon et al., 2018) used a

visual representation of the traffic environment for signal control. However, the simulation envi-

ronment used in both the research studies does not include the visual complexities of urban traffic

(such as vehicles’ 3D positions, their orientations and presence of clutter/complex background),

which impedes the purpose of using visual traffic data for signal control. In contrast, our dynamic

3D-traffic simulation paradigm; Traffic3D (Garg et al., 2019b, 2019c) renders a natural and un-

structured traffic environment for our signal control agent to operate on. Furthermore, most of

the above-mentioned studies implement value-function based (Q-learning) approaches for traffic

optimization. Q-learning is known to have worked well in many applications, but it suffers from

limitations such as an inclination towards finding deterministic policies. However, in a highly

dynamic environment (such as traffic), an effective policy is expected to be stochastic. In contrast,
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in the current work, we implement two other popular RL paradigms; policy gradient (Sutton et al.,

2000) and actor-critic (Konda & Tsitsiklis, 2000).

4.2 Autonomous Traffic Signal Control Methodology

In this section, we describe the implementation of the signal control agent, including state, action,

reward specifications.

4.2.1 Problem Formulation

The objective of this work is to develop an efficient, fully-actuated agent that learns to control

traffic signals in real time-based solely on live footage of the traffic situation of the area the signals

affect. Our agent directly maps RGB images (describing the prevailing traffic state) to actions

(controlling the traffic signals), demonstrating end-to-end learning for real-time adaptive signal

control.

FIGURE 4.1: Possible Signal Phases.

4.2.2 Traffic Model Simulation

As stated previously (in Chapter 3), due to economic and safety concerns, an agent cannot be

trained via DRL to autonomously control traffic signals in the real world. Simulation is consid-

ered as a safe, cost-effective, controlled tool catalyzing protocol development. All the experiments

presented in this chapter are conducted using our traffic simulation environment; Traffic3D (Garg

et al., 2019b, 2019c). We created 3D-intersection scenarios (illustrated in Fig. 3.3) with micro-

scopic traffic properties. Based on real-world traffic specifications (Koonce & Rodegerdts, 2008),
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our traffic environment (including weather and lighting conditions) and vehicle behavior (includ-

ing distribution of maximum speeds, lane and car-following mobility model etc.) are configured.

4.2.3 Traffic Movement Simulation

Traffic movement is defined as the vehicles navigating across an intersection (from an entrance

lane to an exit lane). In this chapter, we illustrate the agent’s performance on four-legged standard

intersections. We define a set of possible vehicle movements (Koonce & Rodegerdts, 2008).

Based on the set of admissible vehicle movements, signal phases are configured (illustrated in

Fig. 4.1). Vehicles follow the fundamental rules of motion (based on their mass, friction and other

forces such as gravity) and react appropriately to their input parameters to navigate through the

road networks. Vehicle spawn rate is regulated to reproduce real traffic data obtained at different

times of day (such as AM rush hours, mid-day quiet hours and PM rush hours) ranging between

very high traffic arrival rates at some instants (5000 cars/hour/lane) and no traffic at all at other

instants (i.e. a situation where no cars are spawned on a road leading to the intersection). Vehicles

can either go straight or turn right/left. Route selection probability is fully parameterizable in our

simulator.

4.2.4 Learning Environment Setup: MDP Settings

At each MDP time-step, a signal control agent interacts with the traffic environment every t sec-

onds (i.e the agent senses the prevailing traffic state using the live camera-feed, based on which it

selects a certain signal phase configuration and implements it for t seconds). The smaller the t,

the more often the agent will be asked to make a signal control decision. In this work, to ensure

greater adaptiveness, we set t to 5s for all our experiments, including the baselines. It implies that

at each MDP step, we have a minimum green signal time duration of 5s. After 5s elapses, based

on the prevailing state of the traffic, the agents may decide to have the same signal phase con-

figuration or change it. Real-world minimum/maximum signal time durations dictated by traffic

regulation rules can also be conveniently accommodated by our simulation model. Following are

the MDP settings for our signal control agent, including state, action spaces and reward design.
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State Space

Our signal control agent operates solely on live camera footage to achieve signal control in real

time. The agent visually perceives the current state of the traffic environment in and around the

intersection it is controlling. For faster computation, we downsize the input images to a com-

pact resolution of 100 x 100, having experimentally verified that this does not impair our agent’s

decision making.

Action Space

At each MDP time-step, our signal control agent selects one of the available phases (illustrated in

Fig. 4.1), which is implemented for a duration of t seconds. We define a set of discrete actions A

such that each computed action corresponds to each phase. For instance, an action a1 corresponds

to a phase p1 (i.e. < a1 7→ p1 >). At each MDP time-step, given the current state of the traffic, the

signal control agent’s goal is to select the signal phase that best serves the existing traffic demand.

Reward Design

As reflected by transportation engineering literature, both delay and throughput are considered as

acceptable metrics to evaluate the overall state of the traffic (Chakroborty & Das, 2017). Through-

put and delay are inversely proportional to each other and optimizing one also optimizes the other.

In this chapter, we focus on optimizing the traffic throughput across the intersections and subse-

quently, reducing the intersection traversal time for vehicles. We define two reward functions for

this task (can be implemented individually or in combination): (1) a positive success reward (i.e.

+1) for every civil vehicle passing safely through the intersection, and (2) a penalty (i.e. -1) for

every civil vehicle waiting at the start of the intersection. Besides civil vehicles, we also include

near-photorealistic emergency vehicles (such as ambulances, police cars and fire-trucks) in our

experiments. We associate a higher reward of (i.e. +5) for their passing through the intersection

and a higher penalty of (i.e. -5) for their waiting at the start of the intersection.

4.2.5 Learning Protocol

To explicitly learn an effective policy πθ(a|s) via DRL that implicitly maximizes reward over all

policies, our signal control agent is supported by a deep convolutional neural network (DCNN) as
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a non-linear function approximator. An action a at time t can be drawn by:

at ∼ π(st|θ) (4.1)

where θ denotes the model parameters and st is the 100 x 100 x 3 RGB image representing the

current observation of the traffic environment. Based on the implemented actions and predefined

reward function, the rewards are observed and gradients are computed, as per Eq. 4.2

∇θJ(θ) ≈
1

N

N∑
i=1

( T∑
t=1

∇θlogπθ
(
ait|sit

))( T∑
t=1

r
(
sit, a

i
t

))
(4.2)

where J(θ) denotes the loss function, T = 100 and N = 10.

A local maximum in J(θ) is searched by ascending the gradient of the policy with respect to

parameters θ. ∇θJ(θ) is the policy gradient and α is a step-size parameter. The policy is updated

in the direction of the gradient (illustrated in Eq. 4.3) to encourage the actions leading to good

outcomes and discourage less desirable ones.

θ ← θ + α∇θJ(θ) (4.3)

FIGURE 4.2: Signal Control Agent’s Network Architecture.

4.2.6 Network Architecture

As Convolutional Neural Networks have demonstrated unprecedented success in accomplishing

visual tasks (such as image classification and object recognition) (Krizhevsky et al., 2012), we
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(A) (B)

FIGURE 4.3: Graphs depicting main experiments’ results; cars’ average junc-
tion travel time versus number of cars observed from the start of the experiment.
(A) Uniform and constant traffic density (left), varying and random traffic tensity
(right) based on a learned policy vs. fixed and adaptive traffic signal control base-
lines. (B) Signal optimization training plot on a rainy day and dimly-lit night vs.

fixed and adaptive traffic signal control baselines.

use a deep convolutional neural network (DCNN) to implement our vision-based signal control

agent. Our DCNN comprises of three convolutional layers (C1 with 16 output channels, C2 with

32 output channels and C3 with 32 output channels) and one fully-connected layer (F4 with 2952

neurons). We train this network with an RMSProp optimizer (Tieleman & Hinton, 2012) with

a learning rate of 0.001. As illustrated in Fig. 4.2, the network takes an RGB image as input

(depicting the current traffic state) and produces action probabilities as output (from which an

action deciding the configuration of signal regimes is sampled). All our experiments in this chapter

are based on this network architecture.

4.3 Main Experiments and Results

The goal is to develop a signal control agent that can independently optimize traffic flows through

intersections in varied conditions. All our experiments (in the current and the following sections)

are based on the network architecture described in Sec. 4.2.6 and illustrated in Fig. 4.2. Traffic

environment specifications, including traffic model and flow details are outlined in Sec. 4.2.2 and

Sec. 4.2.3 respectively. In these set of experiments, we select the following two performance

metrics to evaluate our autonomous signal control strategy;

Junction Travel-Time is defined as the time interval between vehicles arriving at the junction

stop-line and reaching at the end of the junction. We take the moving average of 100 vehicles’

junction travel-time. Lower journey travel-time indicates better signal control.
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Macroscopic Fundamental Diagram (MFD) is an established macroscopic transportation set of

metrics - traffic density (veh/km), traffic flow (veh/hr) and speed (km/hr) (Geroliminis & Daganzo,

2008).

We compare our research findings against the following conventional widely-used signal control

methods:

Standard (non-adaptive) signal control: follows the signal control policy that uses predefined

signal phase regimes (widely used for steady traffic conditions) (Koonce & Rodegerdts, 2008).

Induction loop-based (adaptive) signal control: a loop detects approaching vehicles along each

incoming lane, and an electronic impulse is sent to the signal circuit - switch the red signal to

green.

Following is the set of main experiments analysing our DRL agent’s performance:

4.3.1 Performance in uniform (constant) and varying (random) traffic density

Our DRL-based signal control agent learns an effective policy to optimize the flow of vehicles

through an intersection after approximately half a million time-steps into training. We use the

trained agent (i.e. learned policy) to demonstrate its efficacy in two different test settings (1) Uni-

form traffic generation in all directions. The vehicles are spawned with a fixed density distribution

(1000 vehicles/hour/lane). (2) Varying traffic generation in each of the directions. The vehicles

spawned follow a variable density distribution ranging between very high vehicle arrival rates at

some instants (5000 vehicles/hour/lane) and no vehicles at other instants.

The graph shown in Fig. 4.3 (A) demonstrates our agent’s performance based on average

junction travel-time (y-axis). The number of cars (x-axis) represents the total number of cars

spawned into the traffic scene during the evaluation phase (i.e. 20,000 cars each in uniform

traffic scheme and varying traffic scheme). Ideally, the optimal delay for an individual vehicle

is no delay at all. In order to create a more challenging benchmark to compare our research

approach with, we consider junction travel-time under freeway optimal conditions, i.e. where

each vehicle is able to travel through the junction as soon as it arrives at the start of the junc-

tion with no delay. This is plotted as ‘Under Optimal Freeway Conditions’. Our signal control

agent achieves a level of performance, significantly outperforming the conventionally-used signal

control (adaptive/non-adaptive) baseline methods. These baseline methods fail to continuously

modify the signal regimes based on the dynamically changing traffic flow patterns, as there is no
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learning involved. As seen in Fig. 4.3 (A), our trained agent’s performance does not significantly

change with uniform and varying traffic density distribution. We attribute this performance to our

agent’s high adaptiveness to prevailing traffic conditions, as it sets the green signal for the min-

imum time the regulations stipulate (e.g. 5s in our experiments) and extends it in the following

time-step, if needed, or else switches the signal phase depending on the prevailing traffic distri-

bution. In contrast, as reported in the transportation literature (Chakroborty & Das, 2017), for

real-world signal settings, maximum green time is usually set between 90-120 seconds, this may

lead to implementing the green light for longer than it is needed.

4.3.2 Impact of adverse weather and dim-lighting conditions on the performance

of our DRL-based signal control agent

Adverse conditions (such as bad weather) are known to be amongst the major causes leading to

degradation in the efficiency of road networks; affecting the safety and mobility of travellers. The

present-day transportation infrastructure is primarily designed to operate in normal conditions

(such as a dry clear day) and is generally unable to effectively adapt to handle adverse conditions.

Furthermore, from our vision-based signal control research perspective, real-time visual detection

of traffic flows can be negatively affected by adverse weather and dim-lighting conditions. In our

work, for the first time, we attempt to evaluate the extent to which our DRL-based signal control

agent (operating on visual traffic data) is robust to unfavourable variations in its ambient con-

ditions (weather and lighting). Our simulation platform; Traffic3D allows dynamic illumination

to authentically simulate (illustrated in Fig. 3.3) different moments of the day (such as a sunny

morning, evening dusk and a dimly-lit night) and weather conditions (such as rain and snow).

Figure 4.3 (B) records the performance of our agent in various lighting and weather settings

and contrasts it to the baselines. This graph includes the learning phase, to illustrate the DRL

agent’s performance both during training for the new conditions and after. For our experiment,

we consider rain of 10 mm/h. To sustain high image quality, we take into account the raindrops

falling on the camera lens and have a mechanism in place to remove them. Heavy rain of 10 mm/h

does not negatively affect our agent’s ability to interpret the fundamental traffic scene (i.e. general

junction layout and vehicle distribution). However, when exposed to a dimly-lit night, our agent

starts to learn slowly as the dark pixels significantly impair visibility and the agent’s ability to ef-

fectively perceive the traffic state. After processing an adequate number of data samples, the agent
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(A) (B)

FIGURE 4.4: The MFDs demonstrating our DRL-trained (Policy Gradient) signal
control agent’s performance vs adaptive traffic signal control baseline. (A) Den-
sity vs Flow of all vehicles. (B) Density vs Speed of emergency vehicles against

civil vehicles.

eventually reaches its peak performance and is able to effectively operate on the distorted pixels

caused by low-lighting. Our vision-based DRL agent significantly outperforms both adaptive and

non-adaptive baselines in adverse weather and lighting conditions as these methods do not adapt

to the changing external conditions (such as weather and lighting).

4.3.3 Macroscopic Fundamental Diagram (MFD) (Geroliminis & Daganzo, 2008)

Here, we derive the relationships between established traffic macroscopic variables; (1) density

and flow, and (2) density and speed. To accomplish this task, we collect downstream traffic data

from our DRL-optimized signalized road intersection. After collecting the required traffic data

(vehicle count and speed), we compute traffic density (i.e. number of vehicles per kilometer) and

flow (i.e. number of vehicles per hour). We perform two sets of experiments in this setup (1)

Demonstration of the relationship between density and flow for all vehicles, irrespective of their

type and corresponding relevance (by relevance we highlight the significance of public transport

and emergency vehicles over civil vehicles). (2) Demonstration of the relationship between traffic

density and speed of emergency vehicles (such as ambulances, police cars and fire trucks) versus

civil vehicles. After training the agent to prioritize the movement of emergency vehicles over civil

vehicles, we collect the relevant macroscopic traffic variables and plot the relationship between

combined density (including civil and emergency vehicles) versus emergency and civil vehicles’

speed.

As shown in Fig. 4.4 (A), DRL-optimized intersection allows more efficient movement of ve-

hicles as compared to induction loop-based adaptive traffic signal control. At the critical density
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(A) (B) (C)

FIGURE 4.5: Graphs depicting our sensitivity analysis experiments’ results
(Sec. 4.4). (A) Top-Camera view vs. Front-Camera view. (B) Learning algo-
rithm; Policy Gradient vs. Actor-Critic (C) Positive rewards vs. Positive-Negative

rewards

(i.e. the maximum vehicle traffic that a road segment can effectively accommodate), the cumula-

tive traffic flow through our DRL-optimized traffic signal control system is much higher than the

cumulative traffic flow through the loop-induced adaptive baseline system. This density and flow

relationship establishes our agent’s competence in facilitating vehicles’ swift navigation through

the intersection-based on the extensive state of the traffic perceived using visual stimuli. Fig. 4.4

(B) demonstrates that our DRL-based signal control agent maximizes the cumulative reward by

quickly switching the signal phases to prioritize the movement of emergency vehicles over civil

vehicles (reflected by emergency vehicles’ high cumulative speed as compared to civil vehicles’

speed), given that emergency vehicles are associated with higher rewards than the civil vehicles

(reward regime outlined in Sec. 4.2.4).

From the above results, it is perceivable that DRL-optimized vision-based signal control improves

urban mobility; leading to better utilization of the existing transportation infrastructure.

4.4 Sensitivity Analysis of Important DRL Parameters: Experiments

and Results

When applying DRL to optimize traffic flows through road intersections, knowing a priori which

combination of - algorithm (whether an actor-only (Sutton et al., 2000) or actor-critic (Konda &

Tsitsiklis, 2000)), reward signal and camera orientation (used to capture the visual input data)

will yield a successful/sustainable signal control policy is virtually impossible. We conduct the
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following sensitivity analysis to assess the robustness of our signal control agent to variation in

pertinent DRL parameters used in Sec. 4.3.

As reflected by transportation engineering literature (Chakroborty & Das, 2017), both traffic

throughput and junction travel-time (being inversely proportional to each other) are considered

as viable measures to indicate the overall state of the traffic. To maximize the traffic throughput,

it is paramount to decrease the average time a vehicle spends in an intersection (Au, Quinlan,

Stiurca, Zhu, & Stone, 2010). To have further diversification in our research studies, the perfor-

mance of our signal control agent is evaluated based on traffic throughput in the following set of

experiments.

Traffic Throughput is defined as the number of vehicles that manage to pass through the inter-

section at each time-step. We take the moving average of 100 time-steps. A higher throughput

corresponds to a larger number of vehicles passing through the intersection; indicating superior

signal control.

Following is the set of our sensitivity experiments:

4.4.1 Top-Camera view versus Front-Camera View

Surging development of vision-based autonomous agents (i.e. agents operating on visual inputs)

has pushed the need to devise agents that can process/understand their environment from different

physical perspectives. When operating on visual inputs captured using different camera orienta-

tions, these agents may produce conflicting outcomes (P. Wang, 2016). In this experiment, we

explore how different camera orientations can affect our signal control agent’s ability to perceive

the traffic environment and subsequently, regulate the traffic flows. Given an intersection, along

with its front-view (45o angle) (illustrated in Fig. 3.2 (A)), we also consider its top-view (illus-

trated in Fig. 3.2 (B)) and compare the learning curves. The signal control agent operates with a

policy gradient (PG)-based RL method and a positive-only reward regime (i.e. +1/vehicle passing

through the intersection) for both camera angle settings.

As seen in Fig. 4.5 (A), the agent learning from front-view camera images demonstrates more

stable learning as compared to the agent learning from top-view images, however, both the agents

reach their peak performance around the same time. This revelation reflects that vision-based

autonomous agents’ perception/understanding of their environment depends on the camera angle

with which the input data is captured. However, as the agent rigorously explores its environment
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and gains a breadth of experience, it is able to counteract the impact of less-effective camera

orientation.

4.4.2 Policy-Gradient (Sutton et al., 2000) versus Actor-Critic (Konda & Tsitsiklis,

2000) Reinforcement Learning

To investigate the effectiveness of popular RL methods for our autonomous signal control task,

along with implementing a policy gradient RL (outlined in Sec. 2.4.2) agent, we also implement

an actor-critic RL (outlined in Sec. 2.4.3) agent. As our signal control agent demonstrated better

performance when operating on visual input data captured with front camera-view (shown in

Fig. 4.5 (A)), in this experiment, we consider front camera-view of the traffic environment and a

positive-only (i.e. +1/vehicle passing through the intersection) reward regime.

Fig. 4.5 (B)) demonstrates the learning curves for both the RL algorithms. For the same MDP

settings, policy gradient RL agent learns much better than the actor-critic agent. Policy-Gradient

(actor only) methods are known to be more resilient to fast-changing non-stationary environments,

where a critic (from actor-critic RL) is incapable to keep up with the time-varying nature of the

environment and consequently, is unable to provide any useful information to the actor; thereby

negating the advantages of actor-critic RL algorithm (Grondman, Busoniu, Lopes, & Babuska,

2012).

4.4.3 Positive Rewards versus Positive-Negative Rewards

Designing RL agents’ reward signals that elicit desired behavior in an uncertain environment is

considered a challenging task (Dewey, 2014). In this sensitivity analysis experiment, we evalu-

ate the effectiveness of two different reward signal regimes (1) positive-only reward regime (i.e.

+1/vehicle passing through the intersection), and (2) positive-negative reward regime (i.e. +1/ve-

hicle passing through the intersection and -1/vehicle waiting at the start of the intersection). As our

policy gradient-based signal control agent (illustrated in Fig. 4.5 (B)) indicated better performance

when operating on visual input data captured with front camera-view (illustrated in Fig. 4.5 (A)),

in this experiment, we capture the traffic environment with the front camera-view and implement

a policy gradient-based signal control.

Fig. 4.5 (C) compare the throughput performance of the agent in each of the reward regimes.

The agent with both positive and negative rewards learns much faster than the one with only
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positive rewards. As per our observation, with just the positive rewards as the feedback, the agent

may get stuck in local optima. In contrast, having both positive and negative feedback helps the

agent to determine more effective policies to optimize traffic on a global level.

As deduced from the above sensitivity analysis experiments’ results, to effectively optimize the

traffic flows through intersections, the combination of visual traffic data captured with the front-

camera view, policy gradient RL algorithm and positive-negative rewards work effectively. We

have used this combination of DRL parameters to conduct experiments in Sec. 4.3.

4.5 Summary

In this chapter, we presented an end-to-end trainable, fully-actuated autonomous traffic signal

control agent. To fairly validate our vision-based research idea, we used a novel traffic simulation

environment; Traffic3D (Garg et al., 2019b, 2019c) to conduct our experiments. Compared to

the popular state-of-the-art traffic simulation tools, our simulation platform is relatively more

realistic (in terms of both physical and visual properties), adequately capturing the reality of traffic

scenarios. We believe that the ability to train our signal control agent in a realistic environment

is key in making it possible to deploy the agent in real world settings. Our simulation results

demonstrate that our signal control agent can effectively perceive the traffic situation in and around

an intersection using visual sensory data captured in real time. It continuously modifies the traffic

signal regimes, as per changing observations and is significantly more robust than existing signal

control methods. In contrast to the conventionally-used signal control methods that are more

effective in settings with single dominant traffic flow, our signal control agent optimizes multiple

competing traffic flows that dynamically alter through the day.
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Chapter 5

Multi-agent Deep Reinforcement

Learning for Traffic Optimization

through Multiple Road Intersections

using Live Camera Feed

This chapter addresses the research question 3 (outlined in Sec. 1.1), using Actor-Critic RL algo-

rithm (described in Sec. 2.4.3). In Chapter 4, we presented a fully-adaptive signal control agent

that directly responds to the actual traffic conditions around a single intersection; achieving effec-

tive signal control in the face of complex, imprecise traffic environments. However, RL agents

learn not only by trial-and-error but also through collaboration/cooperation among each other.

Many RL tasks (such as autonomous driving and robotic manipulation) can be naturally modelled

as cooperative multi-agent systems. RL agents attempting to single-handedly solve these tasks

perform poorly, as their joint state and action spaces grow exponentially, leading to dimensionality

explosion. Using RL to achieve coordinated behavior among agents operating in an environment

is considered beneficial for achieving robustness and generality (Sen, Sekaran, Hale, et al., 1994).

In this chapter, to further establish the resilience of our DRL-based signal control approach,

we investigate the utilization of multi-agent DRL to real-time adaptive signal control through a

network of road intersections. The current work, for the first time, establishes network-level coor-

dination between multiple DRL-based signal control agents operating on visual traffic data. The

agents solely operate on camera feed to optimize an aggregate of traffic flows through a network of
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Research Study State Space Algorithm
Reward Scheme (described

in Sec. 5.2.7)
Wiering (Wiering,

2000)
Cumulative wait time Q-learning Global

Kuyer et al.
(Kuyer, Whiteson,
Bakker, & Vlassis,

2008)

Position of vehicles Q-learning Local

Arel et al. (Arel,
Liu, Urbanik, &

Kohls, 2010)
Delay Q-learning Local

Pol et al. (Van der
Pol & Oliehoek,

2016)
Position of vehicles Q-learning Global

Chu et al. (Chu,
Wang, Codecà, &

Li, 2019)

Cumulative delay & total
number of vehicles on

each lane
A2C Global

Our study Raw pixels Actor-critic Local

TABLE 5.1: Summary of relevant reinforcement learning-based multi-intersection
traffic signal control optimization research studies.

intersections). Incorporating the concepts and perspectives from recent work in the field of multi-

agent planning (Kraemer & Banerjee, 2016), (Foerster, Farquhar, Afouras, Nardelli, & Whiteson,

2018), to achieve network-level coordination between individually operating local signal con-

trol agents, we apply an actor-critic (Konda & Tsitsiklis, 2000) RL approach. We implement

a centralised critic that enables global learning, while each actor’s execution is local. To achieve

network-level optimality, the centralised critic operates on all available state information (i.e. con-

catenation of local states of the collaborating signal control agents). In contrast, each actor (i.e.

each participating signal control agent) operates exclusively on its limited local observation of the

environment. We compare our proposed centralised learning method against baseline methods:

(1) fully-decentralised learning (outlined in Sec. 5.3.1), (2) fully-independent learning (outlined

in Sec. 5.3.2), and (3) loop-induced signal control (outlined in Sec. 5.3.3). Our experiment-based

evaluations reveal that our research approach leads to a positive emergence of coordinated behav-

ior between individual signal control agents; resulting in significant performance improvement

over above-mentioned baseline methods.
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5.1 Related Work

Only a handful of studies address signal control optimization through multiple intersections. In

(Wiering, 2000), tabular Q-learning is applied to each intersection in a multiple intersection traffic

setting. This work is further extended in (Chu et al., 2016), in which traffic regions are dynamically

clustered to improve observability. In (Aziz et al., 2018), both Q-learning and SARSA are used,

with traffic state observability enhanced using neighbourhood information sharing. Tantawy et

al. (El-Tantawy et al., 2013) implemented a heuristic communication between tabular Q-learning-

based intersection control agents, in which each message consisted of the estimated neighbor-

ing agents’ signal control policies. Chu et al. (Chu & Wang, 2017) used the max-sum com-

munication for Q-learning-optimized intersections, in which each message signified the impact

of the neighbouring intersection on each local Q-value. Most of these research studies imple-

ment value function-based approaches (Q-learning) for multi-intersection signal control. Value

function-based methods are often criticized for being unstable and in practice are difficult to use.

They are inclined towards finding deterministic policies, whereas, in a dynamic environment like

traffic, an effective policy is expected to be stochastic (Sutton et al., 2000).

Closest to our work (Chu et al., 2019), traffic is optimized through a network of intersec-

tions in a decentralized fashion. The authors devise a fully-decentralized multi-agent signal con-

trol method. In each local agent’s state observation information, observations and fingerprints of

neighboring agents are included such that each local agent is more aware of regional traffic distri-

bution. In contrast, we implement centralized critic and decentralised actors to perform centralised

learning and decentralised execution. Furthermore in (Chu et al., 2019), handcrafted traffic state

features (i.e. cumulative delay of first vehicle and number of vehicles approaching an intersection

within 50m range to the intersection) are used. Our multi-intersection signal control methodology

is end-to-end trainable and, to our knowledge, is the first to depend solely on camera feed for

traffic optimization in real time.

5.2 Our Autonomous Multi-Intersection Signal Control Methodol-

ogy

In this section, we describe the complete implementation of our signal control agents in multi-

intersection settings, including the MDP (state, action, reward) specifications.
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(A)

(B)

FIGURE 5.1: (A) Possible Signal Phases and Vehicle Movements. (B) An illus-
tration of Intersection Grid.

5.2.1 Problem Formulation

Under our research methodology, we consider a multi-intersection road network scenario in which

a set of signal control agents act in parallel. Each signal control agent controls one intersection

in the network by directly mapping RGB images (describing the prevailing traffic state) to actions

(controlling the traffic signals). Our goal is to achieve effective coordination of agents’ actions

such that their joint utility is maximized.
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5.2.2 Traffic Model Simulation

All the experiments presented in this paper are conducted using our novel traffic simulation envi-

ronment; Traffic3D (Garg et al., 2019b, 2019c). We simulate 3D four-way intersection scenarios

with microscopic traffic properties. Instead of modelling the aggregate behaviour of traffic flow,

each vehicle is simulated individually to captures its visual and physical properties with high-

degree of realism. Vehicles follow the fundamental rules of motion (based on their mass, friction

and other forces such as gravity) and react appropriately to their input parameters, to navigate

through the network. Vehicle spawn rate is regulated to mimic different times of day (such as

AM/PM rush hours and mid-day quiet hours).

5.2.3 Traffic Movement Simulation

Traffic movement is defined as the vehicles navigating across an intersection (from an entrance

lane to an exit lane). Based on real-world guidelines, we define a set of possible, non-conflicting

vehicle movements to allow their safe passage through the intersections (illustrated in Fig. 5.1

(A)) (Koonce & Rodegerdts, 2008). Signal phases are configurable and it is possible to have

simultaneous execution of more than one phases. Vehicles can either go straight or turn right/left,

route selection probability is parameterizable in our simulator. Fig. 5.1 (B) illustrates our multi-

intersection network grid. Each intersection is a four-way intersection.

5.2.4 Learning Environment Setup: MDP Settings

At each MDP time-step, concurrently operating signal control agents interact with the traffic envi-

ronment every t seconds (i.e the agents sense the prevailing state of the traffic environment using

the visual data, based on which they configure traffic signals in real time for t seconds). The

smaller the t, the more often the agents will be asked to make signal control decision. In the cur-

rent work, to ensure greater adaptiveness, we set t to 10s, which implies that at each MDP step,

we have a minimum green signal time duration of 10s. After 10s elapses, based on the prevailing

state of the traffic, the agents may decide to have the same signal phase configuration or change it.

Real-world minimum/maximum signal time durations dictated by traffic regulation rules can also

be conveniently accommodated by our simulation model. Following are the MDP settings for our

signal control agent, including state, action spaces and reward design.
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State Space

Each actor (i.e local signal control agent) operates solely on camera footage to achieve signal

control in real time. Actors only perceive the current state of the traffic environment in and around

the intersections that they are controlling. In contrast, the centralised critic operates on the global

state of the traffic (i.e. concatenation of local observations of all actors). For faster computation,

we downsize the input images to a compact resolution of 100 x 100, having experimentally verified

that this does not impair our agents’ decision making.

Action Space

At each MDP time-step, each signal control agent selects one of the available phases, to be im-

plemented for a duration of t seconds. Based on the set of admissible vehicle movements, signal

phases are configured (illustrated in Fig. 5.1 (A)) (Koonce & Rodegerdts, 2008). We define a set

of discrete actions A such that each computed action corresponds to each phase. For instance,

an action a1 corresponds to a phase p1 (i.e. < a1 7→ p1 >). At each MDP time-step, given the

current state of the traffic, the signal control agents share the common goal to select the signal

phases that best serves the existing traffic demand.

Reward Design

To evaluate/optimize the overall efficiency of road networks, both delay and throughput are con-

sidered as acceptable metrics (Chakroborty & Das, 2017). In our work, we focus on optimizing

joint traffic throughput across a network of intersections and subsequently, reducing the average

time a vehicle spends in an intersection. To accomplish this task, we define two reward functions:

(1) a success reward of +1 for every vehicle passing safely through an intersection; and (2) a

penalty of -1 for every vehicle waiting at the start of an intersection.

5.2.5 Network Architecture

Our actor-critic network framework is illustrated in Fig. 5.2. Given the nature of input data (i.e.

vision-based), both our actor and critic networks comprise three convolutional layers (Conv1,

Conv2 and Conv3). Along with the convolutional layers, our critic network includes a linear layer

(Linear4). In contrast, in our actor network, we use long-short term memory (LSTM) as the last

hidden layer to memorize a short history. Traffic flows form a complex spatial-temporal structure,
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FIGURE 5.2: Our Multi-Intersection Actor-Critic Network Framework. We use
network parameter sharing (described in Sec. 5.2.6) to implement one actor and

one critic network, which is shared by all the agents.

resulting in non-stationary MDP if the agents do not have access to any previous data to rely on.

LSTM networks provide an implicit memory that improves performance in partially-observable

environments. As seen in Fig. 5.2, the actor network takes an RGB image as input (depicting the

current traffic state of a signal control agent) and produces action probabilities as output (from

which an action deciding the signal phase is sampled). The critic network takes an RGB image as

input (depicting the current traffic states of all participating signal control agents) and produces

state values as output.

5.2.6 Network Parameter Sharing

Agents may learn successful policies more efficiently using parameter sharing, as it allows simul-

taneous learning, based on all agents’ experiences. Furthermore, parameter sharing enables the

large-scale application of the proposed multi-intersection optimization approach, as it is infeasible

to have a separate actor and critic network for each intersection in a multi-intersection scenario.

In the current work, to improve learning efficiency and economise on training time, the agents

are allowed to share parameters among each other, i.e. we implement one actor network and one

critic network, which are shared by all the agents (illustrated in Fig. 5.2). However, the agents still

demonstrate their respective independent behaviors, as each agent receives different observations

based on the prevailing traffic situation in and around the intersection it is controlling.
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5.2.7 Single Agent Credit Assignment in a Multi-Agent Environment

One of the primary challenges of multi-agent environments is marginalization of each agent’s in-

dividual contribution towards a global reward. In a recent multi-intersection signal control imple-

mentation (Chu et al., 2019), at each time-step, all signal control agents receive the same global

reward (i.e. total aggregated reward through a network of intersections); keeping them oblivi-

ous to their true individual contribution towards network-level traffic optimization. In contrast,

in the current work, the agents operating under both, our proposed centralised learning method

(Sec. 5.2.8) and baseline methods (Sec. 5.3) are allowed to observe their individual local rewards.

From our research perspective, deducing each signal control agent’s individual reward is fairly

straightforward. Almost all real-world traffic intersections are equipped with induction loops or

rely on cameras, which are used to count the vehicles. Since our reward signal includes traf-

fic throughput; thus deducing each signal control agent’s independent contribution towards the

global network reward is possible.

5.2.8 Centralised Signal Control Learning Protocol (our method)

Within urban road networks, following a decentralised framework, any local signal control agent

might be susceptible to myopic signal control decisions, that work effectively locally but fail to

globally optimize traffic on the network level. To avert this possibility we implement an actor-

critic approach such that our critic is centralised; conditioning on the combined observations of

all the actors to output a consensual value estimate. While each actor (i.e. each signal control

agent) acts independently-based on its private, local observation of the traffic environment without

knowing the state of other actors (illustrated in Fig. 5.2). Our actor network (shared to all actors)

represents the policy π, parameterized by θ. Given a team of actors (i.e. signal control agents)

consisting of N agents, let u = {u1, ...., uN} represents all agents’ actions and o = {o1, ...., oN}

represents all agents’ observations. The gradient of the expected return for an agent i, J(θ) =

E[R] is represented as:

∇θJ(θ) = Es∼ρ,u∼π(s)[∇θ log πθ(u|o)V π(o)], (5.1)

where, V π represents a centralised critic network that takes as input the concatenated state

information of all the active agents and outputs a centralised state value (i.e it produces a single
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state-value function after considering the observations of all agents). Based on the following

equation, the policy is updated:

θ ← θ + α∇θJ(θ), (5.2)

where, α is a step-size parameter.

5.3 Baselines for Comparison

We compare our multi-intersection signal control strategy (described in Sec. 5.2.8) with both RL-

based and conventional signal control-based methods.

5.3.1 Fully-Decentralized Signal Control using Augmented State and Local Re-

wards (Chu et al., 2019)

In contrast to our centralised signal control methodology (outlined in Sec. 5.2.8), here we imple-

ment a completely decentralized protocol for traffic optimization through a network of intersec-

tions. Signal control agents communicate with one another in the absence of any central controller.

At each MDP time-step, each signal control agent independently executes an action based on its

local information and the information shared by its neighbors, which increases the observabil-

ity of each local agent. This approach, using information sharing, aims at diffusing local state

observations of each agent across the network of intersections.

5.3.2 Fully-Independent Signal Control using Local State and Local Rewards (Konda

& Tsitsiklis, 2000)

A straightforward method to implement actor-critic DRL for autonomous signal control is to have

each signal control agent control its individual intersection by independently learning its own

policy and the corresponding state-value function. Learning is independent in this setup, without

any central controller or interaction between local agents. At each MDP time-step, both actor and

critic networks operate on the same local observations.
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5.3.3 Loop-Induced Signal Control (no learning involved) (Koonce & Rodegerdts,

2008)

Lastly, we compare our research findings against the standard induction loop-based adaptive sig-

nal control (Koonce & Rodegerdts, 2008). In loop-induced adaptive signal control, a loop detects

approaching vehicles along each incoming lane that are idling overhead (within 50m to the junc-

tion) and an electronic impulse is sent to the signal circuit - to switch the red light to green.

All our baseline methods use same configuration of signal regimes, illustrated in Fig. 5.1 (A)).

5.4 Evaluation Metrics

We define the following performance metrics used to evaluate our research findings;

5.4.1 Traffic Throughput

At each MDP time-step, traffic throughput gives the aggregate number of vehicles that manage to

pass through the network of intersections. Higher throughput corresponds to a larger number of

vehicles passing through the intersections; indicating a superior multi-intersection signal control

method.

5.4.2 Journey Travel-Time

At each MDP time-step, journey travel-time is defined as the time interval between vehicles arriv-

ing at an intersection stop-line and reaching the end of the intersection. Lower journey travel-times

indicates a better multi-intersection signal control method.

5.5 Experiments and Results

We simulated multi-intersection traffic environment with time-variant traffic flows. A view of the

traffic environment used for experimentation is illustrated in Fig. 3.1. To our knowledge, this is

the first study considering the optimization of traffic flows through multiple intersections based on

near-photorealistic visual traffic data. In this section, we empirically investigate the performance

of our multi-intersection signal control strategy (outlined in Sec. 5.2.8) in contrast to various
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(A) (B)

FIGURE 5.3: Graphs demonstrating our centralised signal control method vs base-
lines (fully-decentralised, fully-independent and loop-induced signal control). (A)

Average Throughput. (B) Average Journey Travel Time.

relevant baseline methods (outlined in Sec. 5.3). The evaluation metrics used in all experiments

are outlined in Sec. 5.4.

5.5.1 Centralised signal Control (our method)

Following the framework illustrated in Fig. 5.2 and discussed in Sec. 5.2.8, we implement cen-

tralised learning of decentralised policies. At each MDP time-step, our centralised critic network

acts on the global traffic state i.e. concatenation of local states of all signal control agents. In

contrast, every actor (i.e. every signal control agent) acts on its individual local observation of the

prevailing traffic state in and around the intersection under consideration. As seen in Fig. 5.3 (A)

and Fig. 5.3 (B), average traffic throughput (red line) is highest and average junction travel-time

(red line) is lowest using our centralised signal control strategy. Centralised critic acting on the

global traffic state observation can perceive the overall state of the traffic environment at the net-

work level (i.e. around the network of intersections). With respect to the value function (outputted

by centralised critic network), agents efficiently determine the jointly optimal actions (i.e. signal

control agents harmonize to maximize the total return). Furthermore, since the centralised critic

is aware of the traffic distribution at the network level, this mitigates the known non-stationarity

problem of multi-agent environments. Our results signify that multiple agents operating in the

same environment do not always require to have an explicit communication amongst themselves

to learn coordinated behaviors. This implies that collaboration/cooperation is still possible without
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information sharing among the agents.

5.5.2 Fully-Decentralized Signal Control using Augmented State and Local Re-

wards

In this setup, based on the method discussed in Sec. 5.3.1, we implement fully-decentralised

learning of agent (actor) policies. Each local agent has access to augmented state information,

including regional traffic distribution and cooperative strategy, i.e. observations and fingerprints

(current policy) of neighboring agents. At each MDP time-step, both actor and critic networks

receive as inputs, this augmented state information. As seen in Fig. 5.3 (A) and Fig. 5.3 (B),

both average traffic throughput (brown line) and average junction travel time (brown line) get

worse in a decentralised learning scenario. This indicates that having access to information from

neighboring agents is not always beneficial, as it can interfere in learning. Furthermore, agents

having access to their individual rewards in a decentralised multi-agent environment can become

greedy and tend not to sacrifice for the greater good. Therefore, having a centralised controller

with a wider picture of the environment may be useful. In general, finding a globally optimal

solution for multiple agents operating with partial information of their environment without any

central overseer is considered intractable (Bernstein, Givan, Immerman, & Zilberstein, 2002).

5.5.3 Fully-Independent Signal Control using Local State and Local Rewards

In this setup, based on the method discussed in Sec. 5.3.2, the learning is completely independent

without any central controller or any communication between the agents. Agents only operate

on their local observations. At each MDP time-step, both actor and critic networks are fed with

the same local observations of the traffic environment. As seen in Fig. 5.3 (A) and Fig. 5.3 (B),

independent learning results in both, average traffic throughput (blue line) and average junction

travel time (blue line) getting as worse as in the case of decentralised learning. This indicates

that agents learning independently-based on their local field-of-view are susceptible to myopic

decisions which leads to overall inferior performance of the signal network.

Loop-induced signal control (green line) performs the worst in all cases, as this method fails to;

(1) extensively view the traffic environment due to induction loops’ narrow operational range, and

(2) continuously modify agents’ traffic optimization decisions-based on the dynamically changing

traffic flow patterns, as there is no learning involved.
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5.6 Summary

Multi-agent systems are increasingly finding applications across a wide range of domains, includ-

ing robotics, autonomous driving and telecommunications, among others. Majority of these tasks

involve sequential decision-making and require agents to learn behaviours online. A significant

part of the research on multi-agent learning is based on reinforcement learning methods. RL can

provide natural and robust coordination between agents in multi-agent systems. In this chapter,

we examined the factors that can influence, either positively or negatively, the dynamics of our

DRL-based learning protocol in a multi-agent setting. We introduce a novel formulation of signal

optimization task to facilitate dynamic configuration of effective signal regimes in a multiple-

intersection scenario. To our knowledge, this work presents the first application extending DRL

methods to optimize traffic through multiple intersections-based solely on visual traffic data, with-

out hand-crafted traffic state features. We demonstrate a centralised controller that is able to bring

about a principled learning strategy between the signal control agents, resulting in positive emer-

gence of cooperative behavior among them in a scenario where each agent has access only to the

partial state of the traffic environment.
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Transferable Vision-based Traffic

Signal Control using Deep

Reinforcement Learning

In this chapter, we address the research question 4 (outlined in Sec. 1.1) using a transfer learning-

based approach. Teaching an agent to autonomously act in an unseen, dynamic 3D-environment

is a challenging endeavour. Agents are required to process and derive effective representations of

their high-dimensional environment. Deep Reinforcement Learning agents evolved significantly

over the past few years; exhibiting their potential in achieving mastery in solving complex games

such as Go and Atari. However, generalizability is still considered as a prominent problem in

training these agents to become self-sufficient to the vast environment (such as urban traffic) they

are exposed to. To be able to generalize well and sustain good performance in an unseen diverse

environment, an agent must generalise past experiences to new situations and be resilient to (1)

low-level variations in the environment such as texture, colour and shapes of objects and (2) high-

level variations such as a completely different environment layout. Transfer learning exhibits the

possibility of knowledge transfer between tasks such that an agent’s previously-acquired knowl-

edge/experience while performing a task within either a simulator or the natural environment can

be effectively reused to perform other tasks. Evaluation of an autonomous agent’s knowledge

transfer skills is crucial, as a DRL agent is only capable of acting effectively if it can abstract the

environment’s fundamental features through its individual experience.

Furthermore, a DRL agent can be slow to learn. Since it has no prior knowledge of its intended

environment, it is bound to have a large number of interactions with the environment to learn a
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FIGURE 6.1: Transfer Learning Mechanism Pipeline (pre-trained DNN (Deep
Neural Network) from source task to solve target task).

suitable policy. However, this problem can be alleviated by utilizing previously-learned knowl-

edge and transferring it to solve a new related task. Transfer learning can alleviate the need for

training an agent from the beginning, such that an agent can build on from what it already knows.

In the current work, our goal is to build a generalist signal control agent that can independently op-

erate in a rich traffic environment with dynamically-changing (visually different) conditions (such

as varying weather and lighting conditions), without re-learning from the beginning for each con-

dition. Our transfer learning pipeline is illustrated in Fig. 6.1. Our empirical results demonstrate

our agent’s high transferability/generalizability and accelerated-learning skills. When encounter-

ing a new traffic situation, our single signal control agent leverages previously-learned knowledge

accumulated across a series of experiences to optimize traffic flows.

6.1 Related Work

Knowledge transfer is a key technique employed to facilitate the development of autonomous

agents that operate effectively in multiple-related environments, such that they can efficiently

70



Chapter 6. Transferable Vision-based Traffic Signal Control using Deep Reinforcement Learning

transfer their previously-acquired knowledge to new unseen situations. Transfer learning was pi-

oneered to achieve dimensionality reduction by transferring knowledge from a generative to a

discriminative model (Hinton & Salakhutdinov, 2006). Since then it is being studied extensively

by the AI community (Taylor & Stone, 2011; Silver, Yang, & Li, 2013). However, transfer learn-

ing to ensure reliable generalizability and accelerated-learning for a vision-based signal control

agent has not been previously explored. To our knowledge, the current work, for the first time

demonstrates the use of transfer learning to devise a vision-based signal control agent that can

sustain effective performance when exposed to various dynamic traffic situations (such as sudden

degradation in weather and lighting conditions), while optimizing on learning time. The use of

transfer learning makes our agent readily deployable from simulation to real-life, as well as across

junction layouts, weather and lighting conditions.

6.2 Our Signal Control Agent’s Knowledge Transfer Methodology

In this section, we describe our signal control agent’s knowledge transfer protocol, including MDP

settings - state, action, reward specifications.

6.2.1 Problem Formulation

Here, the objective is to develop a transferable, fully-actuated agent that learns to autonomously

control traffic signals in real time based-solely on live footage of the traffic situation around the

area the signals affect. Traffic distribution, lighting and weather conditions are variable. The

signal control agent should be able to continue operating effectively. Under our transfer learning

research methodology, our signal control agent learns to perform effectively in newly-encountered

traffic conditions by leveraging knowledge gained from former experiences.

6.2.2 Traffic Model Simulation

A practical approach is to deploy the agents to the real world after training them in simulation.

All the experiments presented in this chapter are conducted using our novel traffic simulation

environment; Traffic3D (Garg et al., 2019b, 2019c). For the current work, we use a variety of

3D-traffic scenes, including a clear day, a rainy day, a snowy day and dimly-lit night (illustrated

in Fig. 3.3).
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FIGURE 6.2: Possible Signal Phases and Vehicle Movements.

6.2.3 Traffic Movement Simulation

Traffic movement is defined as the vehicles navigating across an intersection (from an entrance

lane to an exit lane). In this chapter, we illustrate the agent’s transfer performance on four-legged

standard intersections under varying ambient conditions. We define a set of admissible vehicle

movements, based on which signal phases are configured (illustrated in Fig. 6.2) (Koonce &

Rodegerdts, 2008). Vehicle spawn rate is regulated to mimic different times of day (such as AM

rush hours and mid-day quiet hours and PM rush hours). Vehicles can either go straight or turn

right/left. Route selection probability is parameterizable in our simulator.

6.2.4 Learning Environment Setup: MDP Settings

For our transfer learning experiments, at each MDP time-step, the signal control agent interacts

with the traffic environment every t seconds. To ensure greater adaptiveness, we set t to 5 seconds,

which implies that we have a minimum green signal time of 5 seconds, while the maximum green

signal time is decided by our agent depending on the prevailing traffic distribution around the

intersection. Following are the MDP settings for our signal control agents, including state, action

spaces and reward design.

State Space

Our transfer signal control agent operates solely on live camera footage to achieve signal control in

real time. The agent visually perceives the current state of the traffic environment in and around the
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FIGURE 6.3: Signal Control Agent’s Transfer Learning (for fine-tuning) Network
Architecture.

intersection it is controlling. For faster computation, we downsize the input images to a compact

resolution of 100 x 100.

Action Space

Our signal control agent selects one of the available phases (P ) (illustrated in Fig. 6.2, based

on real-world intersection lane rules (Koonce & Rodegerdts, 2008)), which is implemented for a

duration of t seconds. We further define a discrete action space (A) such that each computed action

corresponds to each phase. For instance, an action a1 corresponds to a phase p1; < a1 7→ p1 >.

At each time-step, given the current state of traffic, the goal of our signal control agent is to select

the signal phase that maximizes the traffic throughput.

Reward Design

Throughput and delay (the acceptable traffic state evaluation metrics) are inversely proportional

to each other and optimizing one also optimizes the other. In this chapter, we focus on optimizing

the traffic throughput across the intersections and subsequently, reducing the intersection traversal

time and delay for vehicles; a task for which we use a combination of two reward functions

(1) a success reward of +1 for every civil vehicle passing safely through the intersection and

(2) a penalty of -1 for every civil vehicle waiting at the start of the intersection. Besides civil

vehicles, we also include emergency vehicles (such as ambulances, police cars and fire-trucks) in
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our experiments. We associate a higher reward of +5 for their passing through the intersection and

a higher penalty of -5 for their waiting at the start of the intersection.

6.2.5 Source Task Learning Protocol

To explicitly learn an effective policy πθ(a|s) via DRL that implicitly maximizes reward over all

the policies, our signal control agent is supported by a deep convolutional neural network (DCNN)

for a non-linear function approximation. An action a at time t can be drawn by:

at ∼ π(st|θ) (6.1)

where θ denotes the model parameters and st is the 100 x 100 x 3 RGB image representing the

current observation of the traffic environment. Based on the implemented actions and predefined

reward function, the rewards are observed and gradients are computed, as per Eq. 6.2,

∇θJ(θ) ≈
1

N

N∑
i=1

( T∑
t=1

∇θlogπθ
(
ait|sit

))( T∑
t=1

r
(
sit, a

i
t

))
(6.2)

where J(θ) denotes the loss function, T = 100 and N = 10.

A local maximum in J(θ) is searched by ascending the gradient of the policy with respect to

parameters θ. ∇θJ(θ) is the policy gradient and α is a step-size parameter. The policy is updated

in the direction of the gradient (illustrated in Eq. 6.3) to encourage the actions leading to good

outcomes and discourage the less desirable ones.

θ ← θ + α∇θJ(θ) (6.3)

6.2.6 Transfer Learning Protocol

To evaluate our vision-based agent’s generalizability, we define (a) a source task and (b) a target

task. We train our agent to solve the source task (based on the learning protocol outlined in

Sec. 6.2.5) and transfer its acquired knowledge from the source task to solve the target task. To do

so, we initialize our target task’s deep neural network (DNN) with our pre-trained source task’s

CNN’s parameters (illustrated in Fig. 6.1). The agent is then tuned to solve the target task, based
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on Eq. 6.4,

∇θJ(θ) ≈
1

N

N∑
i=1

( T×i∑
t=1

∇θlogπθ
(
ait|sit

))(T×i∑
t=1

r
(
sit, a

i
t

))
(6.4)

where T = 10 and N = 10. The policy is updated in the direction of the gradient based on Eq. 6.3.

6.2.7 Network Architecture

Our deep CNN comprises of three convolutional layers (C1 with 16 output channels, C2 with 32

output channels and C3 with 32 output channels) and one fully-connected layer (F4 with 2952

neurons). We train this network with an RMSProp optimizer (Tieleman & Hinton, 2012) with

a learning rate of 0.001. As illustrated in Fig. 6.3, the network takes an RGB image as input

(depicting the current traffic state) and produces action probabilities as output (from which an

action deciding the configuration of signal regimes is sampled). All our experiments (source and

transfer) are based on this network architecture.

6.3 Transfer Learning to Build a Self-Sufficient (visually-intelligent)

Autonomous Traffic Signal Control Agent: Experiments and Re-

sults

Reinforcing the consensus amongst AI research community that achieving generality with a single

agent/model is the fundamental aspect of intelligence, we in this section, use our pre-trained signal

control agent to optimize traffic flows in various newly-encountered (never seen before) situations.

In these set of experiments, we use junction travel time as the performance evaluation metric:

Junction Travel-Time is defined as the time interval between vehicles arriving at the junction

stop-line and vehicles reaching at the end of the junction. We take the moving average of 100

vehicles’ junction travel-time. Lower journey travel-time indicates better signal control.

Following is the set of our transfer learning experiments:

6.3.1 Generalizability to different vehicle types/models

Here, our agent learns to prioritize the traversal of emergency vehicles (such as police cars, fire

engines and ambulances) through the intersection. We conduct two experiments in this setup
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(1) With transfer from the source task (signal control on a clear day, outlined in Sec. 4.3.1); in

the target task experiment, we train our agent to effectively recognise and respond to the pres-

ence of emergency vehicles by reusing previously-learned knowledge from the source task. The

source experiment only included the civil vehicles. (2) Without transfer; we initialize our agent

with random neural network parameters to prioritize navigation of emergency vehicles. As seen

in Fig. 6.4(A), the agent equipped with an overall understanding of the traffic environment (via

transfer learning) quickly learns to prioritize emergency vehicles’ swift movement through the

intersection. In contrast, training the agent with random parameters to prioritize navigation of

emergency vehicles demonstrated relatively slow learning.

6.3.2 Generalizability to a dimly-lit night

Since our signal control agent perceives its environment using vision, we believe it is essential

to check our agent’s agility when subjected to dim-lighting (illustrated in Fig. 3.3 (D)). Our ex-

periments in this set-up include (1) With transfer from the source task (signal control, including

emergency vehicles, outlined in Sec. 6.3.1); in the target task experiment, we reuse a previously-

learned policy from the source task. (2) Without transfer; we train our agent with random neu-

ral network initializations on a dimly-lit night. As seen in Fig. 6.4 (B), the agent relying on

previously-acquired skill-set learns to minimize the junction travel time for individual vehicles al-

most instantaneously. In contrast, the agent with the random neural network initializations learns

slowly. The target experiment agent’s basic understanding of the traffic scene and its ability to

learn a clearly structured topology in the regular lattice of pixels from the visual input data, allows

it to quickly adapt to the changing lighting conditions. Moreover, there is no visual obstruction

(such as snow) in the scene which can hinder the agent’s capability to reuse the previously-learned

feature representation of the traffic environment.

6.3.3 Generalizability to a rainy day

Here, our agent learns to optimize traffic flows in the presence of rain (illustrated in Fig. 3.3

(E)). For these experiments, we consider rain of 10 mm/h. To sustain high image quality, we

take into account the raindrops falling on the camera lens and have a mechanism in place to

remove them. In this setup, we conduct two experiments (1) With transfer from the source task

(signal control, including emergency vehicles and dim-lighting, outlined in Sec. 6.3.2); in the
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(A) (B)

(C) (D)

(E)

FIGURE 6.4: Graphs depicting our signal control agent’s performance based on
cumulative junction travel time (y-axis) over the total number of vehicles observed
during the training (x-axis). The lower the junction travel time, the better. We
compare DRL approach for traffic optimization; with (red line) and without (blue
line) transfer learning. Our Learning curves showing vehicles’ junction travel time
include traffic simulation experiments; (A) In the presence of emergency vehicles.
(B) On a dimly-lit night. (C) On a rainy day. (D) On a snowy day. (E) Around a

different junction layout.

target task experiment, we reuse a previously-learned policy from the source task. (2) Without

transfer; we initialize our agent with random neural network parameters to optimize the flow of

traffic on a rainy day. As seen in the graph of Fig. 6.4 (C), the agent making use of learned

policy reduces junction travel time for individual vehicles almost instantaneously. Heavy rain of

10 mm/h has little/no effect on our agent’s ability to interpret the fundamental traffic scene (i.e.

general junction layout and vehicle distribution). In contrast, the agent initialized with random
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neural network parameters does not have any pre-existing knowledge to build on, in consequence,

it learns relatively slowly.

6.3.4 Generalizability to a snowy day

Here, our agent learns to optimize traffic flows in the presence of snow (illustrated in Fig. 3.3 (F)).

In this setup, we conduct two experiments (1) With transfer from the source task (signal control,

including emergency vehicles, as well as dim-lighting and rain, outlined in Sec. 6.3.3); in the

target task experiment, we reuse a previously-learned policy from the source task. (2) Without

transfer; we initialize our agent with random neural network parameters to optimize the traffic

flows on a snowy day. The results shown in Fig. 6.4 (D) indicate negative transfer. The agent

learning via transfer learning performs worse than the agent using the random initializations. We

attribute this performance to the fact that snow, being opaque in nature, causes visibility degrada-

tion and occlusion; significantly modifying the agent’s visual input. This affects the agent’s prior

understanding of the traffic scene and its object localization potential; leaving no points of visual

reference from formerly-possessed knowledge. In contrast, the agent with random initializations

begins learning in the presence of snow and gradually learns to optimize the flow of traffic. This

type of experiment informs us of the requirement to pre-train agents for snowy scenes before

deployment.

6.3.5 Generalizability to a different junction layout

Here, we establish the ease of deployment of our single signal control agent to new junctions

with varied topologies/structures. Our experiments in this set-up include (1) With transfer from

the source task; in the target task experiment (signal control on a 4-way junction, illustrated in

Fig. 3.3 (A)), the agent reuses the previously-learned policy from the source task (signal control

on a 2-way junction, illustrated in Fig. 3.3 (C)). (2) Without transfer; the agent is trained with

random neural network initializations on a 4-way junction. The difference between the 2-way and

4-way junctions includes an altogether different junction layout (2-way junction has two traffic

lights and 4-way junction has four traffic lights). The results of these experiments are shown

in Fig. 6.4 (E). Initially, the agent equipped with a learned policy starts worse than the agent

with random initializations, but it learns an effective policy to optimize traffic flows much faster.
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Owing to the pre-trained agent’s understanding of the basic traffic entities such as vehicles, lane-

markings, it adapts its behavior to the varied junction layout. In contrast, the agent using the

random initializations devotes considerable time to exploring the traffic environment from the

beginning, slowly learns its intrinsic feature representation, before it subsequently optimizes the

traffic flows through the intersection. This is an indication that it is not only feasible but also

desirable to re-use a previously trained agent on a new intersection layout. Traffic3D, our visual

simulation environment, can act as a suitable ground for training such agents prior to physical

deployment.

6.4 Summary

The ability to transfer knowledge between tasks in a vast environment such as traffic has the po-

tential to scale up the domain of reinforcement learning. Combination of deep reinforcement

learning and transfer learning naturally decomposes a complex sequential decision-making task

into a series of relatively less complicated sub-tasks. In this chapter, we examined the bene-

fits of reusing the previously-acquired knowledge to solve new-related tasks in high-dimensional

settings. We experimentally evaluate our agent’s generalisation performance and robustness to

newly-encountered traffic situations. Our research findings reflect that our agent can successfully

transfer the previously-acquired knowledge to effectively generalize to different traffic situations(

such as different traffic densities, the presence of vehicles of different appearance, road behaviour

and priorities, diverse road layouts/geometry, as well as variations in lighting and weather condi-

tions). In our experience, the agent is unable to unlearn the previously-acquired knowledge about

its environment and relearn the dynamics of a new environment if there are any obstructions or

modifications in the frame of reference of environmental observations. This impedes the agent’s

ability to comprehend inputs between source task and target task in the same way.
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Interpretable Signal Control: Analysis

of Deep Reinforcement Learning

Agent’s Performance

In this chapter, we address the research question 5 (outlined in Sec. 1.1), using a visualization

technique; Grad-CAM (Gradient Weighted Class Activation Mapping) outlined in Sec. 2.6. Over

the recent years, deep neural networks (DNNs) astoundingly improved the state-of-the-art and out-

performed humans in various empirical tasks, ranging from speech recognition, computer vision

to training agents to autonomously play complex games (LeCun et al., 2015; Mnih et al., 2015).

Despite these impressive successes, there has been a pervasive issue involving interpretability of

deep neural network architectures. DNNs act as black-box models and theoretical guarantees

demonstrating the viability of these models are scarce. There are open questions around inferring

the decisions taken by these models, the stability of training as well as potential design methodol-

ogy of stable architectures. Especially, to produce intelligent agents that can be successfully taken

out of the laboratory and employed in real world, an intuitive and coherent explanation of DNNs

is of great importance. Considering house price estimation system-based on attributes (such as lo-

cation, road conditions and the number of bedrooms), it is desirable to have some attention drawn

to the factors influencing the house price prediction. For instance, whether or not the surrounding

roads increase the values of the houses.

DRL methods utilize DNNs as function approximators, which are known to generalize well

to high-dimensional input data (such as visual traffic data) but, at the cost of turning into black

boxes. In this chapter, we take a step towards explainable Artificial Intelligence and provide an
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FIGURE 7.1: Our DRL-based (single-intersection) Signal Control Agent’s Net-
work Architecture.

inference of our DNN model used for signal control. Our goal is to identify the parts/regions of the

input that are more significant to the corresponding output. Our visualization results demonstrate

that our signal control agent is able to achieve traffic optimization based on features that are rarely

exploited by conventional traffic data collection methods (such as induction loops (Koonce &

Rodegerdts, 2008)).

7.1 Related Work

Interpretability of deep models is an extensively recognised, but not yet solved problem. In recent

years, many methods have been proposed to interpret deep learning architectures (DNNs) (Koh &

Liang, 2017; Lundberg & Lee, 2017; Zhang, Nian Wu, & Zhu, 2018; Chen, Chen, Ren, Huang,

& Zhang, 2019). However, most of these methods are developed for classification tasks (Liu,

Xuan, Zhang, Stylianou, & Pless, 2019). In contrast, in this thesis, we interpret the signal regime

decisions taken by DRL agents to accomplish effective signal control.

Some of the previous research works have explored DRL agents’ visualization in game-based

benchmarks. Wang et al. (J. Wang, Gou, Shen, & Yang, 2018) created a system; DONViz to

provide interpretation information about DQN models in the form of bar, line and pie charts.

Greydanus et al. (Greydanus, Koul, Dodge, & Fern, 2017) explored the utility of visual stimuli in

making decisions in the Atari domain (Bellemare et al., 2013) using saliency maps. Douglas et al.

(Douglas et al., 2019) attempted in enhancing the understandability of their DRL model to identify
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FIGURE 7.2: Our DRL-based (multi-intersection) Signal Control Agent’s Net-
work Architecture.

the input regions dominating the computation of the corresponding output using a perturbation-

based saliency approach in Pommerman benchmark (Resnick et al., 2018). To our knowledge, no

other research work exists that visualizes DRL agents used for autonomous signal control. Our vi-

sualization results reflect that DRL applied to visual traffic data from road intersections eliminates

the need to have pre-determined hand-engineered features describing the traffic environment.

7.2 Our Visualization Methodology

Our visualization methodology is based on Grad-CAM (Gradient-weighted Class Activation Map-

ping) (Selvaraju et al., 2017). Our method takes as inputs - a pre-trained network (i.e. pre-trained

signal control agent) and an image (depicting the traffic environment). The output is produced in

the form of an attention map (i.e. a heatmap). Our Grad-CAM based visualization method makes

use of the gradient information flowing into the last convolutional layer of the pre-trained CNN to

determine the importance of each neuron for making a certain signal control decision. To obtain

localization map for a particular signal control phase regime decision p, Grad-CAM method first

computes the gradient of the score yp (before softmax) with respect to the feature maps Ak;

gp(A
k) =

∂yp

∂Ak
(7.1)
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where k is the channel index. Then, the gradients are averaged as the neural importance weight

αpk in each channel;

αpk =
1

Z

∑
i

∑
j

∂yp

∂Aki,j
(7.2)

where (i, j) and Z are the spatial index and spatial resolution of the feature map respectively.

Finally Grad-CAM is a weighted sum of feature maps (followed by a ReLU operator);

Hp
Grad−CAM = ReLU(

∑
k

αpkA
k) (7.3)

This gives Grad-CAM implementation, in which the heatmap produced is of the same size as

feature maps.

(A) (B)

(C) (D)

FIGURE 7.3: Images depicting attention-visualization in the presence of emer-
gency vehicles (A) Original image on a clear day. (B) Grad-CAM activation-
firetruck. (C) Original image on a snowy day. (D) Grad-CAM activation-police

car and firetruck.

7.3 Experiments and Results

In this section, we conduct experiments to demonstrate which parts of an image (depicting the

prevailing state of the traffic environment) influence a certain signal regime decision.
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(A) (B)

(C) (D)

FIGURE 7.4: Images depicting attention-visualization on a multi-junction sce-
nario (A) Original image on a multi-intersection setting. (B) Grad-CAM
activation-firetruck and ambulance. (C) Original image on an enhanced multi-

intersection setting. (D) Grad-CAM activation-firetruck and public bus.

7.3.1 Attention-Visualization (single-intersection) on a Clear Day

In this experiment, we visualize the last CNN layer of our pre-trained signal control agent’s neural

network (illustrated in Fig. 7.1). This agent is trained to optimize traffic flows through a single

intersection on a clear day (illustrated in Fig. 3.3 (A)). As seen in Fig. 7.3 (B), our DRL-based

signal control agent prioritizes the movement of emergency vehicles on a clear sky day through

the intersection by configuring the signal regimes accordingly.

7.3.2 Attention-Visualization (single-intersection) on a Snowy Day

Even the smallest of perturbations in the visual input is known to significantly distort the feature

embeddings and consequently affect the output of a neural network (Zheng, Song, Leung, &

Goodfellow, 2016). To investigate our signal control agent’s stability against natural distortions

in the visual input, we train our DRL agent to optimize the flow of traffic in the presence of snow.

In this experiment, we again visualize the last CNN layer of our pre-trained signal control agent’s

neural network (illustrated in Fig. 7.1). This agent is trained to optimize traffic flows through a
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single intersection on a snowy day (illustrated in Fig. 3.3 (F)). Our results indicate that our agent

is able to maintain its good performance on a snowy day (shown in Fig. 7.3 (D)). The performance

of our agent on a clear day and a snowy day are comparable, as the agent operating on a snowy

day begins its learning in the presence of snow and gradually, through its repertoire of experience,

learns to counteract the effect of snow and optimize the flow of traffic in the presence of snow.

7.3.3 Attention-Visualization (multi-intersection) on a Clear Sky Day

Further to ensure our signal control agent’s scalability, we evaluate our agent’s performance on

a multi-intersection setting (shown in Fig. 7.4 (A)). In this experiment, we visualize the last

CNN layer of our pre-trained multi-intersection signal control agent’s actor-network (illustrated

in Fig. 7.2). Owing to our agent’s continuous interaction with the traffic environment, our agent is

able to sustain its good performance on a more complex intersection layout and process the traffic

environment appropriately (shown in Fig. 7.4 (B)).

In another experiment, we use a more enhanced multi-intersection setting (illustrated in Fig. 3.1)

to draw inference on our agent’s signal control decisions. As seen in Fig. 7.4 (D), our DRL-based

signal control method shows activation around emergency and public vehicles to prioritizes their

movement through the intersections.

Our visualization research findings reflect that DRL applied to visual traffic data enables signal

control-based on key traffic features (such as vehicle type and their relevance). It also validates

the benefit of using visual traffic data in providing more flexibility (e.g. larger detection areas)

than typically used induction loops. Furthermore, visualizing the output of DNN paradigms has

the potential of breaking barriers in machine learning research. We expect that our DNN visual-

ization will help transportation engineers gain further trust in applying deep learning paradigms

to autonomous transportation.

7.4 Summary

To have them integrated into the real-world settings, it is paramount to build trustworthy au-

tonomous agents with a high degree of transparency and explainability capabilities such that these

agents have the ability to reflect why they predict what they predict. Also, reliable interpretability
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of these agents is expected to increase human acceptance of the existing neural-nets-based black-

box approaches. In this chapter, we advanced towards explainable Artificial Intelligence to ad-

dress the increasing need for producing human interpretable explanations of autonomous agents’

operation. We translate our DRL agent’s signal control decisions in a human-understandable and

human-verifiable form. We implement a localization mechanism; Grad-CAM to produce visual

explanations of our signal control agents’ decisions. Grad-CAM has been previously used to visu-

ally interpret decisions made by deep models in the domains, including image classification, im-

age captioning and visual question answering. To our knowledge, this work is the first to interpret

DRL-based signal control agents’ decisions. Our visualization results demonstrate the faithful-

ness of our signal control methodology and can help non-machine learning experts to understand

what our signal control agents’ beliefs are while making signal regime decisions. We conclude

this chapter on the note that a truly autonomous agent should not just be intelligent, but it should

also be able to reason about its beliefs and decisions so that it can be trusted and subsequently,

deployed in real-world settings.
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Conclusion and Future Work

Teaching an agent to operate autonomously, effectively in a complex, unfamiliar environment to

accomplish a certain goal has been the Artificial Intelligence community’s longstanding goal. In

this thesis, we develop a deep reinforcement learning agent (DRL) to enhance the performance

of already existing traffic signal control infrastructure. Our DRL agent autonomously config-

ures traffic signal regimes in real time based on the actual prevailing traffic situation. To mimic

human-like learning, our signal control agent operates solely on live camera feed. We tested our

research approach in a variety of traffic scenarios. To realistically frame our research problem

and demonstrate the applicability of our DRL-based signal control agent to dynamically vary-

ing diverse traffic conditions, we created a novel traffic simulation environment; Traffic3D. Our

simulation environment is significantly richer in terms of both physical and visual properties and

adequately captures the characteristics of real-world traffic scenarios. Ability to train signal con-

trol agents in a realistic environment is critical in making it possible to deploy them in real-world

traffic settings. In conclusion, in this thesis, we demonstrate DRL is promising in effectively

achieving autonomous signal control. In this chapter, we conclude this thesis by outlining our

main contributions and avenues for future research.

8.1 Contributions

We summarize the main contributions of this thesis as follows;

8.1.1 A physically and visually intelligent traffic simulation environment

In Chapter 3, we presented our new traffic simulation environment; Traffic3D. The motivation to

create this simulation tool is to fairly validate our vision-based signal control research approach.
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The goal of Traffic3D is to create traffic simulations with a high degree of realism. Our novel

traffic micro-simulation platform supports unique simulation features such as near-photorealism,

complex physical phenomenon, inexpensive collection of diverse traffic data, real-world partial

observability challenges and python support for deep learning applications.

8.1.2 An adaptive signal control agent to optimize traffic flows through single in-

tersections

In Chapter 4, we introduced an end-to-end trainable DRL-based signal control agent that continu-

ously modifies the traffic signal regimes online, as per the changing traffic observations. Equipped

with the ability to perceive the prevailing traffic conditions extensively using high-dimensional

visual inputs, our signal control agent is able to sustain good performance in different traffic

situations, including varying intersection topologies, traffic densities/distribution, vehicle types,

weather and lighting conditions.

8.1.3 Traffic optimization through multiple intersections

In Chapter 5, we presented the first application extending DRL methods to optimize traffic through

multiple intersections-based solely on visual traffic data, without hand-crafted traffic state features.

Our multi-intersection signal control method led to positive emergence of cooperative behavior

among individual signal control agents.

8.1.4 A generalizable and transferable signal control agent

In Chapter 6, we implemented transfer learning to ensure our signal control agent’s generalizabil-

ity and accelerated-learning around new traffic situations. Our agent is able to interpret and extract

salient features from complex high-dimensional traffic environment, to optimize the movement of

vehicles in newly-encountered traffic situations.

8.1.5 Interpretation of signal control decisions (analysis of DRL performance)

In Chapter 7, we visualized the last convolutional layer of the trained DNN to demonstrate which

parts of the visual input influence a certain signal regime decision. Our visualization research

findings reflect that our signal control agent, apart from prioritizing the swift movement of traffic-

based on the prevailing traffic demand captured by wide-range cameras, it also attends to different
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types of vehicles (prioritizes the traversal of emergency vehicles). DRL applied to visual traffic

data enables our agent to configure signal regimes based on key traffic features (such as vehicle

type and their relevance) that would otherwise be impossible or impractical using conventionally-

used traffic data collection methods (such as induction loops, which counts the number of vehicles

on every lane).

8.2 Future Work

DRL has proven to be a powerful machine learning paradigm that has achieved significant success

across a variety of control problems. This thesis covered various research activities, including

creating a 3D-traffic simulation platform to devise intelligent agents, DRL-based autonomous

single-intersection and multi-intersection signal control, transfer learning in signal control and

analysis of DRL performance. There are different open venues for further research; some related

to autonomous signal control and others useful in enhancing the performance of DRL agents in

general. The research activities undertaken in this thesis can be further explored in the following

ways;

8.2.1 Our traffic simulation environment

We created a new 3D-traffic simulation tool; Traffic3D to validate our research approach. While

most of the presently-used traffic simulation environments are pertinent to transportation-specific

research, Traffic3D’s capabilities transcend beyond the realm of transportation. The research com-

munity can use Traffic3D as a learning environment to conduct research across multiple directions,

including, but not limited to semantic segmentation, 3D-navigation, visual question answering

and neural attention mechanisms. As per the application under consideration, the required level

of complexity can be conveniently simulated. In addition to Traffic3D’s current level of function-

ality (discussed in Chapter 3), Unity game engine’s set of properties can be used to develop more

realistic and increasingly complex traffic scenarios in the future. For instance, traffic lights can

be configured to allow pedestrians’ safe passage through intersections and parallel simulation of

multiple copies of the traffic environment can be executed to improve sample efficiency.
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8.2.2 Self-sufficient signal control agent

Our DRL-based signal control agent trained using a diverse set of training data which we gener-

ated using our simulation tool; Traffic3D gains a breadth of experience and effectively optimizes

the movement of vehicles through intersections. However, generalizability is a prominent issue

in training these agents to become self-sufficient to the vast environment they are exposed to. As

future work, potential efforts can be made to explore more effective transfer learning techniques to

develop truly self-sufficient signal control agents that can effectively operate in the vast environ-

ment, including the snowy scene. As shown in Chapter 6, our signal control agent demonstrated

negative transfer on a snowy scene.

8.2.3 Enhanced multi-intersection signal control

Although our centralised multi-intersection signal control methodology worked well (shown in

Chapter 5), but as the number of agents/intersections increases, the centralised critic’s state in-

put dimensionality increases exponentially and is susceptible to single-point-of-failure. As future

work, more effective algorithms can be explored to address the limitations arising from centrali-

sation.

8.2.4 Transfer learning in multi-intersection scenarios

Future research can be pursued to implement transfer learning methods in multi-intersection traffic

scenarios, such that a single signal control agent-based on the proposed signal control strategy

(outlined in Chapter 5) can effectively optimize traffic flows around different network topologies

under varying ambient (weather and lighting) conditions.

8.2.5 Network-to-network knowledge transfer

In Chapter 6, we demonstrated the use the knowledge transfer to achieve signal control in newly-

encountered traffic situations around single intersections. However, transfer of previously-learned

knowledge can also be carried out between a network of intersections. As future work, we outline

another direction of implementing transfer learning in signal control, in which knowledge from

one network of intersections is transferred to another with varied topology.
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8.2.6 Embedding structures to accelerate signal control agents’ training

After interpreting DRL agents’ signal control decisions using attention-visualization (presented

in Chapter 7), as future work, high-dimensional traffic state representation (raw pixels) can be

mapped into a low-dimensional vector space. By doing this, instead of processing high-dimensional

visual inputs, the neural network will specifically pay attention to the salient environmental fea-

tures that influence the signal control decisions. We expect this to optimize the signal control

agents’ training time.
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