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Abstract

Many benefits of cloud computing are now well established, as both enterprise and mo-

bile IT have been transformed by its pervasiveness. Backed by the virtually unbounded

resources of cloud computing, battery-powered mobile computing systems can meet the

demands of even the most resource-intensive applications. However, many existing hy-

brid mobile-cloud (HMC) applications are inefficient in terms of optimising trade-offs

between simultaneously conflicting objectives, such as minimising both battery power

consumption and network usage. To tackle this problem, we propose a novel method

that can be used not only to instrument HMC applications but also to search for its ef-

ficient configurations representing compromise solutions between the objectives. The

method is based on a general purpose HMC framework, which provides scalability, and

make runtime decisions that are based on: 1) changing of the environment (i.e. WiFi sig-

nal level variation), and 2) itself in a changing environment (i.e. actual observed packet

loss in the network). Our experimental evaluation considers two Android-based ap-

plications for smartphones, and a Python-based foraging task performed by a battery-

powered and Raspberry Pi controlled Thymio robot. Analysis of our results shows that

our method can be used for small to medium size HMC applications to achieve energy-

efficient computing systems. Furthermore, HMC applications can achieve better optimi-

sation in a changing environment (i.e. signal level variation) than using static offloading

or running the applications only on a mobile device. However, a self-adaptive decision

would fall behind when the change in the environment happens within the system (i.e.

network congestion). In such a case, a self-aware system can perform well, in terms of

minimising the two objectives and better performance of applications.

Keywords: Mobile-Cloud Computing, Multi-Objective Optimisation, Cloud Robotics,

Self-adaptive Computing Systems, and Self-Aware Computing Systems.
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Introduction

Nowadays, battery-powered mobile devices such as smartphones are used for various

tasks. When they were first introduced, many years ago, they were used mainly for tele-

phony purpose. Today’s mobile phones can not only be used for telephony, but they

are also equipped to be used for a wide range of other applications. A broad category

of these applications includes graphics intensive games, GPS navigation and online so-

cial networks. With the recent advancement of technology in mobile devices, they are

now also equipped with services such as location and context awareness, and the use of

sensors (gyro, accelerometer, heart rate, fingerprint and iris scanner). Moreover, mobile

phones are also used to create and edit multimedia contents (video and audio) and exe-

cute other complex and useful applications. Although enriched with the broad range of

services, mobile devices still cannot be exploited to their full potential due to battery life.

From a user’s point of view, a smartphone can never have enough battery life.

Another group of battery constrained mobile devices are mobile cyber-physical sys-

tems (CPS), e.g., operation robots, delivery drones. They combine the physical world

with cyber components and have been a key research area for more than ten years [114].

The battery power is crucial in mobile robots when they are deployed for a mission.

Moreover, mobile robotic systems have brought significant socio-economic impacts to

human lives over the past few decades [116]. For example, robots deployed for rescue

missions such as firefighting, natural disasters, hostage situations, and explosions. Mo-

bile CPSs built around a robotic environment have been very successful since they have

precision and speed.
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However, due to resource-hungry applications executing on mobile devices (i.e. smart-

phones and robots), they are inherently resource-constrained [113] in computation, en-

ergy, and network bandwidth. In particular, the energy supply from the limited battery

capacity [98, 131] has been one of the most challenging design issues with mobile devices.

When the applications on a mobile device execute, they utilise the device’s hardware

components to perform. The hardware components (i.e., processor, memory, transceiver,

the display of the device) require power to operate, which they get from the device’s bat-

tery. The more these components are used, the more power is consumed. This leads to

short battery life for a mobile device. Therefore, design decisions for mobile applications

have to take consideration of the battery power limitation in the mobile device.

In recent years, there has been a growing interest to bind virtual resources to low-

power mobile devices [26, 100]. To make mobile devices (i.e. smartphones/tablet, robots)

virtually limitless in terms of processing power, energy and storage space, the integration

of mobile applications with cloud [20] is often done. This interdisciplinary domain is

called Mobile-Cloud Computing (MCC) [72]. Using MCC, parts of mobile application

that use high battery power can be offloaded to the cloud. Using the code offloading,

the power consumption can be reduced with the cost of using an available network to

the mobile device. However, as the Internet is now cheaply available to users and also

there are free WIFI offered, in public spaces such as parks, city centres, malls, hotels,

restaurants, in transport services and in universities. Therefore, in this work, we relax

the constraint of the network usage cost.

In MCC, “cloud” can refer to both virtual and real clouds. Virtual cloud refers to the

virtual machine (VM) instances, which are powered by VMWare Workstations or Oracle

VM VirtualBox. They can be installed on a computing system such as desktop computer

for a lab-based environment to provide services to mobile devices. Real cloud refers

to the traditional cloud infrastructure that provides virtually unlimited resources such

as IBM cloud [137], Rackspace [10], Amazon Elastic Compute Cloud (EC2) [2], Google

App Engine [6]. Real cloud also includes multiple cloud deployment models, such as

community, private, public, and hybrid [125].

Mobile cloud computing (MCC) is a distributed and augmented program execution

model, upon which hybrid mobile-cloud (HMC) applications are developed [53]. Such
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applications have the advantage of using the vast majority of services provided by both

mobile and cloud computing. Whereas the fundamental goal of cloud computing is to

provide IT support to institutions in a cost-effective way, MCC concentrates on overcom-

ing mobile devices constraints and enhancing mobile users’ experience. Moreover, the

HMC applications are becoming ever more frequently relied upon. For example, to find

a route between two locations a navigation application installed on a mobile device can

use the stored maps, but to find the real-time traffic on that route the application would

need the cloud service. Some of the advantages of MCC are discussed as follow [125].

1. MCC utilises the computational power of the cloud, therefore, enhances the perfor-

mance of the mobile device’s applications.

2. MCC can extend the battery life of mobile devices, as the applications are partly

executed on the cloud. Therefore, reducing the computational overhead on the

devices.

3. MCC can enable the resource-constrained mobile devices to execute resource-intensive

applications.

In MCC, the battery-power consumption is reduced by using computation offload-

ing [87]. The primary aim of offloading is the migration of computationally-intensive

tasks from a mobile device to execute on the cloud. Traditionally, code-offloading was

not employed in the mobile applications development models since they were intended

to be executed on the device only. In order to offload the computationally-intensive tasks,

a mobile device can connect to the cloud via a wireless network (i.e., WIFI, 3G/4G). From

a connection point of view: the decision to offload to the cloud can be affected by the fol-

lowing two factors.

1. Network delay (latency) due to a long distance in terms of network topology be-

tween a mobile device and the conventional cloud.

2. A high network usage cost, e.g., when an application offloads to the cloud too often

or a large amount of data is transferred between a mobile device and the cloud.

17



Chapter 1. Introduction

In order to overcome the delay caused due to long distance, Mobile Edge Computing

(MEC) has recently emerged [60] and promises to provide low latency due to be in prox-

imity to mobile devices. An Edge device is local to the mobile devices (in terms of net-

work topology) where data is generated and collected. MEC primarily aims to overcome

the problem of latency, which is one of the shortcomings in MCC. Furthermore, due to

highly efficient network operation and service delivery, MEC offers an improved user ex-

perience. Resource-hungry applications/services such as augmented reality, intelligent

video acceleration, and connected cars can benefit from MEC. However, MEC has lim-

ited computing capabilities compared to the conventional cloud computing [94]. Alter-

natively, a virtualised platform called Mobile Fog Computing [28] has recently emerged

that provides computing services between mobile devices and the cloud data centres.

In case of whichever underlying platform being used, the code-offloading of computationally-

intensive tasks can also be affected by a high network usage. Furthermore, the transmit-

ter chip (WIFI, 3G/4G etc.) also uses the battery power when used for code offloading.

As a result, relying too much on code-offloading will also use more battery power. At-

taining minimum battery power consumption and network usage, while not affecting the

overall performance of mobile applications, is considered one of the challenging areas in

mobile-cloud computing [13]. Therefore, we consider hybrid mobile-cloud applications

to have an efficiency trade-off between power consumption and network usage. The effi-

ciency trade-off exists because of the following two factors.

• Performing computationally-intensive tasks on mobile devices can be inefficient in

terms of battery power consumption.

• Transferring data between a mobile device and the cloud can be inefficient in terms

of network usage cost and battery power consumption by the transmitter chip of a

mobile device.

Achieving two or more objectives at the same time might not be possible. For ex-

ample, minimising network usage may prevent the objective of minimising power con-

sumption because the transceiver chip also uses power to send or receive data packets.

We consider the effective partitioning of hybrid mobile-cloud applications as a multi-

objective optimisation (MOO) problem. In multi-objective optimisation, there are more
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than one objectives to be optimised simultaneously, and typically the objectives are con-

flicting with each other. There exists a natural trade-off between the objectives, which cre-

ates a set of Pareto-optimal solutions [41], those that are not dominated by any possible

other solution in the solution space. Therefore, we consider the following two objectives

to optimise.

1. Minimise power consumption: the total power consumption of an application on

a mobile device, during one execution. We will measure it in joules (the unit of

energy).

2. Minimise network usage: the total amount of data transfer (data sent and received)

between a mobile device and the cloud endpoint, during one execution. We will

measure it in KBs.

To optimise the two objectives, we proposed a technique [15, 16, 17] to find and ap-

ply the optimal configurations of an HMC application. The optimal configurations are

considered to be the ones in which the application has minimal battery power consump-

tion and minimal network usage. A configuration is a valid mapping of all distinct and

offloadable modules of an HMC application to be executed on mobile and the cloud

server endpoints. We assume that an application is composed of a set of collaborative

code units called modules (i.e., classes or methods in Java and Python). We annotate the

computationally-intensive modules that are heavily used at the code level. To automati-

cally convert them into offloadable modules, we use a converter tool. By using a simple

HMC application framework, the offloadable modules can be executed both locally on a

mobile device and remotely on the cloud server.

The proposed technique is based on the standard TCP/IP sockets to offload data

to the cloud. It is up to the developer to implement more secure protocols like SSL to

protect the user data during communication. Also, developers when using the proposed

technique may provide a mechanism for users to avoid offloading of certain modules to

the cloud, particularly those modules that contain user’s critical data.

In the end, the proposed solution is general purpose and is currently only limited to

Android-based and Linux-based applications developed for mobile devices. The HMC

framework can be used by developers, service providers and companies to develop
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energy-efficient applications for the users. For example, a service provider (i.e., Voda-

fone) can provide their customers with an alternative option using this framework, which

would minimise the mobile battery consumption.

1.1 Aims, Contributions to Knowledge and Results

This work aims to achieve energy efficient hybrid mobile-cloud (HMC) applications for

Android-based and Linux-based mobile computing systems. The HMC applications ex-

ecute computationally-intensive modules on the cloud to save battery power, therefore,

using network bandwidth. This creates efficiency trade-off between power and network

usage. This work aims to optimise the efficiency trade-off. Also, this work aims to pro-

vide a scalable solution in terms of achieving energy efficient applications proportion to

their size. Finally, the environment in which mobile devices operate can change with

time, i.e., network congestion can cause delays to send/receive data from the cloud. This

work aims to provide a solution so that applications can adapt to a changing environ-

ment.

1.1.1 Contributions

The following paragraphs highlight the main contributions of this work.

Contribution 1: In this work, we propose a novel method that effectively partition mo-

bile applications created for Android-based and Linux-based devices. The aim of the

partitioning is to achieve energy-efficient HMC applications using different configura-

tions. For this to achieve, we use a general purpose framework. The framework has

two versions: for Android-based applications targetting smartphones, and for Python-

based applications targetting mobile robots running a Linux OS distro. Using a configu-

ration, the framework decides at runtime which modules to offload to the cloud. Also,

the framework provides APIs to partition mobile applications. Furthermore, we discuss

the process of partitioning applications, granularity and configurations of HMC applica-

tions in Chapter 3.
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Contribution 2: We provide a solution to optimise the trade-off between power con-

sumption and network usage, using multi-objective optimisation (MOO). We have cre-

ated a workflow, which is based on offline profiling of applications, to find efficient

configurations of the applications. Furthermore, we use statistical tests to achieve ef-

ficient HMC applications in terms of optimising the trade-off between battery power

consumption and network usage. Therefore, the final configurations after the tests are:

1) statistically-significant, and 2) non dominated by other configurations. We achieve this

in Chapter 4.

Contribution 3: We provide a scalable solution to achieve energy efficient HMC ap-

plications. We have proposed a Two-Step search algorithm, which is based on multi-

objective optimisation, to find approximate Pareto-optimal configurations for HMC ap-

plications in a feasible amount of time. We discuss this in Chapter 5.

Contribution 4: Our framework for HMC applications is based on self-adaptation and

self-awareness, which is to make runtime decisions based on a change in the environ-

ment or change within itself in that changing environment. Based on the decisions, the

framework switches between the configurations to optimise the efficiency trade-off and

avoid latency in the network. We have created a workflow that is based on online pro-

filing of the applications to test this behaviour of the framework. We achieve this in

Chapter 6.

1.1.2 Results of Experimental studies

In this work, we carried out experimental studies in order to achieve energy efficient,

scalable, self-adaptive and self-aware hybrid mobile-cloud computing systems. We dis-

cuss the results as follow.

1. Partitioning of applications was achieved using our MC framework. The applica-

tion’s code were modularised into different levels of granularity. We created con-

figurations to represent these modules, and their endpoints for execution. This has

been illustrated in Chapter 3.
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2. Our method is based on multi-objective optimisation and code-offloading tech-

niques. Using which the Pareto efficient configurations (in terms of minimising

the two objectives) were obtained, which consists of different granularity levels.

Furthermore, the results have shown that the reduction in power consumption can

be up to 63% in joules, with the cost of using 1.07 MB of the network. This has been

achieved in Chapter 4.

3. The Two-Step search algorithm, which we developed, can produce better solu-

tions compared to the current state-of-the-art NSGA-II algorithm [42] for small to

medium-scale HMC applications. Small-scale refers to those applications that have

less than 8 number of modules. Medium-scale applications have more than 8 and

less than 15 number of modules. This is shown in Chapter 5.

4. Based on self-adaptation and self-awareness, a system can achieve minimum power

consumption and can also avoid network latency caused by packet loss due to in-

terference, which reduces the network usage. However, the self-adaptive based

decisions struggle when the packet loss is due to other factors such as network

congestion or link failure casing high packet usage. In such a scenario, the self-

aware based decision can achieve minimum power consumption and avoids la-

tency caused by either low signal level or congestion, which minimises the network

usage. This is shown in Chapter 6.

1.2 Thesis Structure

This thesis starts by investigating the context of mobile computing systems, cloud com-

puting and mobile-cloud computing. The practices in computation offloading and vari-

ous approaches towards mobile-cloud applications frameworks are then discussed. These

will be covered in Chapter 2: Background.

In Chapter 3, Achieving Energy-Efficient Applications for Mobile Computing Systems, we

use the foundation built in Chapter 2, to describe partitioning of applications and our hy-

brid mobile-cloud framework. We also introduce Android-based applications and a task

performed by a Raspberry Pi controlled robot. We will use these applications throughout

the thesis. Chapter 4, 5 and 6 will cover the actual findings. Chapter 4, Multi-Objective
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Optimisation of Hybrid Mobile-Cloud Applications: will explore the search-based approach

to find efficient configurations of HMC applications. Chapter 5, Scalable Hybrid Mobile-

Cloud Computing Systems, will explore the scalability of the HMC framework. Chapter 6,

Self-Adaptive and Self-Aware Hybrid Mobile-Cloud Computing Systems, will explore the self-

adaptive and self-aware decision mechanism we used to achieve energy-efficient com-

puting systems. Chapter 7 is the Conclusion in which we provide an overview of what

we have been achieved and possible areas for future work.

1.3 Research Publications

The following publications arose from this work.

1. Peer-reviewed: A. Akbar and P. R. Lewis. Towards the optimization of power and

bandwidth consumption in mobile-cloud hybrid applications. In Proceedings of

the 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC),

pages 213–218, May 2017.

2. Peer-reviewed: A. Akbar and P. R. Lewis. The importance of granularity in mul-

tiobjective optimization of mobile cloud hybrid applications. Transactions on

Emerging Telecommunications Technologies, pages 221–248, Oct 2018.

3. Peer-reviewed: A. Akbar and P. R. Lewis. Self-adaptive and self-aware mobile-

cloud hybrid robotics. In 2018 Fifth International Conference on Internet of Things:

Systems, Management and Security, pages 262–267, Oct 2018.
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Background

In this chapter, we will discuss the background of technologies related to achieving

energy-efficient applications for mobile computing systems. In particular, we will dis-

cuss methods developed to achieve energy-efficiency in resource-constrained mobile de-

vices. Technologies such as cloud, edge and fog computing provide virtual resources,

which can benefit resource-constrained mobile devices. We will discuss the approaches

that have been adopted to address energy efficiency such as multi-objective optimisation

and computation offloading, and give the reader a broader view of all the related areas

and disciplines.

2.1 Cloud Computing

Cloud computing is to provide computing services such as processing, storage capacity,

databases, networking and more over the Internet (“the cloud”). The formal definition of

cloud computing is stated by the National Institute of Standards and Technology (NIST).

It took 15 drafts after which this definition was agreed on 1. Cloud computing is a model for

enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable com-

puting resources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction. The

NIST definition lists five essential characteristics of cloud computing as follow.

1. Cloud computing should provide on-demand self-service. A client can directly change

computing capabilities, such as server time and network storage, without requiring

human interaction.
1https://nvlpubs.nist.gov/ nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
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2. Cloud computing workstations should have broad network access. By using the stan-

dard mechanism, the services and capabilities provided should be accessed over

the network.

3. Cloud computing workstations should have a metering capability. Involving mon-

itoring and controlling resource usage, and providing transparency for both the

provider and client who is utilising the service.

4. Providers of cloud computing services should enable resource pooling. Different

physical and virtual resources, such as processing, memory, and network band-

width, are dynamically assigned to serve multiple clients.

5. Cloud computing needs to have rapid elasticity. In order to scale rapidly outward

and inward commensurate with demand, capabilities of cloud computing can be

elastically provisioned and released.

Cloud computing has gained very high popularity by providing high performing,

flexible, low cost and on-demand computing services [20, 31]. It has evolved and has also

thrived at the same time. Cloud architecture offers three different models for providing

its services as follow.

1. Software as a Service (SaaS) [20]. To provide the cloud capabilities to clients, so

that they can use the provider’s applications running on a cloud infrastructure.

The clients can access applications using different software such as web browsers

or mobile applications.

2. Platform as a Service (PaaS) [20]. To provide the cloud capabilities to clients, so

that they can deploy onto the cloud infrastructure. The clients can also acquire

applications created on the cloud by using programming languages, libraries, ser-

vices, and tools supported by the provider. The clients are restricted to manage or

control the underlying cloud infrastructure. They are only given access to deploy

applications or configure settings for the application-hosting environment.
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3. Infrastructure as a Service (IaaS) [20]. To provide the cloud capabilities to clients,

so that they can manage the computing resources such as deploying operating sys-

tems and applications. The clients can also manage processing, storage, or net-

working capabilities, but are restricted to control the underlying cloud infrastruc-

ture.

As shown in Figure 2.1, technology giant such as Microsoft [8], Amazon [2], IBM [137]

and Google [6] provide cloud-based solutions to their clients in all three layers of the

cloud - IaaS, PaaS and SaaS. Moreover, the clients using the cloud-based services have

access regardless of whether they are at home or workplace. Besides, to develop new

applications on cloud, migrating legacy systems to the cloud or cloud-enabled envi-

ronments has also been considered [134]. Finally, the design outlines such as Service

Oriented Architecture (SOA) [104] are followed, whether developing new cloud-based

applications or migrating the legacy system to the cloud.

Software as a Service
(e.g., GMail, Slack, DropBox)

Platform as a Service
(e.g., Google App Engine, Microsoft Azure)

Infrastructure as a Service
(e.g., Amazon EC2 and EC3)

FIGURE 2.1: Service-oriented cloud computing architecture.

2.2 Mobile Computing

Mobile computing refers to the use of a computing workstation, commonly known as

a mobile device, which has a local storage capacity as well as a wireless network con-

nection based on WiFi (wireless LAN) or cellular (wireless WAN) technology. Mobile

computing devices include, but are not limited to, smartphones (i.e. iPhone), tablet

computers (i.e. iPad) or battery-powered robots. Based on mobility constraints, Satya-

narayanan [113] characterised the mobile devices as follow.

• Mobile devices components (i.e. processor speed, memory size and disk capacity)

are resource-poor relative to static components in desktop computers.
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• Mobile devices are more vulnerable to loss or damage.

• A mobile device may have to experience a low-bandwidth wireless network with

high latency. The chances of low-bandwidth are more likely in remote areas, where

there are gaps in coverage.

• Mobile devices rely on limited battery power.

Mobile devices (e.g., smartphones, robots) are frequently used these days. Their

popularity has increased mainly because of their support for a wide range of applica-

tions/services such as image/video processing, location awareness, context awareness

and sensors. An additional advantage of mobile devices is that they can be used in re-

mote areas, where there is no pre-existing infrastructure but it can be deployed during

emergency situations [126]. Notably, mobile robots that operate in extreme and high-risk

conditions, for example, seal a leak in a nuclear reactor or coordinate search and res-

cue missions when natural disasters such as earthquakes occur. Unlike humans, mobile

robots can be deployed in dangerous sites with little risk.

There are some challenges faced by mobile computing, regardless of the numerous

advantages as we have mentioned above. In mobile computing, the same level of per-

formance as in desktop software systems can be challenging to achieve due to limited

resources (i.e., battery life, computational power) available to the mobile devices [13].

However, with the advent of technologies such as cloud, edge and fog computing, the

applications developed for mobile devices can now access and use their services for

resource-intensive tasks [88]. This can minimise the battery power consumption of a

mobile device while using the available network.

2.2.1 Mobile Cloud Computing

Mobile clients can interact with and use the cloud services provided by vendors (e.g.

Dropbox) using either thin clients (e.g., a web browser) or native mobile applications.

The thin client applications such as Google Chrome are developed using standard web

development languages (e.g. HTML and JavaScript). The native mobile applications

to access the cloud services are developed in mobile platform supported programming
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languages and API’s provided by the cloud service provider. A mobile device that has In-

ternet connectivity (i.e., WiFi, 3G/4G) can access cloud services. As cloud computing has

been involved in expanding the IT infrastructure and services for the last few years, the

recent advancement of technology in mobile devices (e.g. smartphones, tablets, robots)

has also equipped mobile devices in services like; location awareness, context awareness,

and the use of camera and sensors (i.e. gyro, accelerometer, fingerprint, iris). To use the

features of both cloud computing and mobile computing, the prerequisite was met with

the emergence of high-speed broadband and cellular service providers data networks

(i.e. LTE, HSPA+, HSPA) to bring mobile and cloud computing together.

Mobile Cloud Computing (MCC) is a distributed and augmented program execution

model. The mobile applications developed to use MCC are designed in such a way that

the resources of cloud computing are accessed to execute the resource-intensive part of

the applications. Therefore, using MCC the resource limitations in mobile devices can be

reduced. A formal definition of MCC, stated by Dinh et al. [44], is as follow.

’Mobile cloud computing at its simplest refers to an infrastructure where both the data storage

and data processing happen outside of the mobile device. Mobile cloud applications move the com-

puting power and data storage away from mobile phones and into the cloud, bringing applications

and MC to not just mobile users but a much broader range of mobile subscribers’

From the concept of MCC, the general architecture of MCC can be as shown in Fig-

ure 2.2. Mobile devices such as smartphones or robots are connected to the wireless

networks via a base station (e.g., base transceiver station or WiFI access point) to access

the cloud services using Hybrid Mobile-Cloud (HMC) applications. In general, the ser-

vices provided by the cloud are known to be promising solutions for HMC applications.

Some of the advantages are as follow.

1. Extending battery life. Although enriched with the wide range of services, mo-

bile devices still cannot be exploited to their full potential due to battery life. From

a user’s point of view, a device can never have enough battery life. When the

applications on a mobile device execute (mobile computing), they utilise the de-

vice’s hardware components to perform. The hardware components (i.e., proces-

sor, memory, the display of the device) require power to operate, which they get

from the device’s battery. The more these components are used, the more power
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FIGURE 2.2: Mobile Cloud Computing architecture.

is consumed. This leads to short battery life for a mobile device. To minimise the

battery power consumption, the computationally-intensive or resource-intensive

parts of the HMC applications are offloaded to the cloud for execution. As they

execute remotely, the device components are not utilised, and the power is saved.

This prolongs battery life.

2. Improving storage capacity. Like battery life, the storage capacity is also a con-

straint for mobile devices. Services like Dropbox [4], Amazon Simple Storage Ser-

vice [1], Google Photos [7] and Firebase [5] are based on cloud computing that mo-

bile clients can access using MCC to store and share files (i.e. documents, images,

videos).

3. Improving reliability. Data stored on the cloud can effectively improve the relia-

bility. This is because the data and applications are stored on many computers.

The design of HMC application is based on achieving a particular objective, such as

energy efficiency, using storage facilities of cloud, enhancing application performance.
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Achieving one objective may affect others. In other words, the objectives to achieve are

conflicting and form a trade-off. For example, if the objective of an HMC application is to

achieve energy efficiency, then the objective of performance or minimum network usage

may be sacrificed. The objective of energy-efficiency and improving performance can be

achieved by using computation offloading to execute the resource-intensive part of an

application in the cloud [35, 39, 76, 79]. In [15], we proposed a technique that considers

two conflicting objectives:

• minimising battery power consumption by HMC applications

• minimising network usage by HMC applications.

We used multi-objective optimisation and code-offloading techniques to find efficient

partitions of HMC applications that optimise the trade-off between battery power con-

sumption and network usage. As the WIFI networks are now mostly available freely in

many public places such as malls, restaurants, transportations; we relaxed the constraint

of network usage cost.

Besides many advantages of MCC, there are some technical challenges that MCC

face. They exist since MCC is the integration of two different fields, which are cloud

computing and mobile networks. In [44, 77], the challenges faced by MCC are reviewed

with available solutions. We highlight the important ones as follow.

1. Network usage. It is the amount of data transferred between the mobile device

and the cloud server. In MCC, the bandwidth available to mobile devices is al-

ways scarce as compared to wired network counterparts. The 4G technology also

known as LTE [57] helps to reduce the bandwidth gap between wireless and wired

networks. However, the 4G data from the cellular provider may never be free.

Therefore, it is important to minimise network usage in MCC.

2. Service Availability. It is one of the concerns in MCC. Due to certain factors such as

congestions, network failure, wireless interference (out-of-signals), mobile devices

may not be able to connect and send data to the cloud.

3. Latency. In MCC, latency refers to the round trip time of computation offloading to

the cloud and getting back the results. Multiple factors such as offloading data size,

30



Chapter 2. Background

execution delay, network bandwidth and long distance between a mobile device

and the cloud can cause latency.

2.2.2 Mobile Edge Computing

Recently a paradigm shift has occurred in mobile computing due to the increasing pop-

ularity and vision provided by the Internet of Things (IoT) [23] and 5G [58, 71] cellular

communication technologies. From the centralised virtual cloud, mobile computing has

shifted towards Mobile Edge Computing [60] [30]. In Table 2.1, the comparison between

MEC and MCC systems is shown.

TABLE 2.1: Mobile Edge Computing Vs. Mobile Cloud Computing.
Source [95]

Mobile Edge Computing Mobile Cloud Computing
Server hardware Small-scale data cen-

ters with moderate re-
sources [60, 30]

Large-scale data centers
(each contains a large
number of highly-capable
servers) [77]

Server location Co-located with wireless
gateways, WiFi routers,
and LTE BSs [60]

Installed at dedicated
buildings, with size of
several football fields [27]

Deployment Densely deployed by
telecom operators, MEC
vendors, enterprises, and
home users. Require
lightweight configuration
and planning [60]

Deployed by IT com-
panies, e.g., Google and
Amazon, at a few locations
over the world. Require
sophisticated configura-
tion and planning

Distance to end users Small (tens to hundreds of
meters) [71]

Large (may across conti-
nents) [36]

Backhaul usage Infrequent use Alleviate
congestion [123]

Likely to Creaugsneec-
not:gseestion [123]

System management Hierarchical control (cen-
tralized/distributed) [130]

Centralized control [130]

Supportable latency Less than tens of millisec-
onds [71]

Larger than 100 millisec-
onds [39]

Applications Latency-critical and
computation-intensive
applications, e.g., AR,
automatic driving, and
interactive online gam-
ing [60].

Latency-tolerant and
computation-intensive
applications, e.g., on-
line social network-
ing, and mobile com-
merce/health/learning [12].

After 5G cellular communication technology is deployed, relying only on cloud com-

puting would not be enough where the data exchange between end mobile devices and
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remote clouds are stored in centralised locations. Instead, MEC promises to push com-

putation, storage and network control to the edge of the network (e.g. wireless access

points, cellular base stations). As the long distance in terms of network topology be-

tween a mobile device and the conventional cloud remain a significant drawback for

MCC, MEC provides low latency due to be in proximity to mobile devices. In the context

of MEC, an edge device (e.g. access point, BTS) is local to the mobile devices (in terms of

network topology) where data is generated and collected.

However, MEC has limited computing capabilities compared to the conventional

cloud computing [94]. Moreover, security is another critical challenge to the success-

ful deployment of MEC [14]. As the same physical resources are shared among different

users, security concerns are raised. It is possible to transfer the data when using compu-

tation offloading securely, but the encryption and decryption cause more delay execution

of an application, which degrades the application performance.

2.2.3 Mobile Fog Computing

Fog computing [28] is a virtualised platform that provides computing services between

mobile devices and the cloud data centres, typically, but not exclusively located at the

edge of the network. Fog computing is emerged due to the need for making network

edge nodes resource rich. Applications with low latency requirements such as graphics-

intensive online gaming, video streaming and augmented reality are beneficiary of Fog

computing. Similar to Cloud, Fog provides data, compute, storage, and application ser-

vices to end-users. Although both cloud and fog computing promise to provide similar

capabilities, the latter aims to provide low latency with a wider spread and geographi-

cally distributed nodes. While fog computing minimises latency and reduces the amount

of data sent to the cloud, it poses security and privacy concerns [120].

2.2.4 Cloud Robotics

Over the past decades, robotics has emerged as a result of its increased applications to

numerous real-world problems. This includes, but are not limited to, unmanned search

and rescue operations, automated manufacturing, self-driving vehicles, disaster robotics
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and medical robots. In all these applications, the robots used are limited by their on-

board resources (e.g. CPU, memory, storage). To address this problem, researchers have

recently proposed cloud-enabled robotics technology. Backed by the virtually unlimited

and on-demand resources of cloud computing, cloud robotics integrates the advantages

of cloud computing onto robotics.

First coined by James J. Kuffner in 2010 [82], the term ‘Cloud Robotics’ refers to a robot

or automation system that uses the resources provided by cloud computing for either

data storage or computation offloading. For example, a system where all sensing, com-

putation and memory are not integrated into a single stand-alone system.

As discussed in [112], the integration of cloud computing with robotics have several

advantages. We highlight them as follow.

1. The computationally-intensive tasks in cloud robotics such as object recognition,

computer vision and pattern matching are offloaded to the cloud for execution.

Therefore, extending the battery life of mobile robots [128].

2. Cloud-enabled robots have virtually available high storage space to store data.

Many applications in robotics, i.e. simultaneous localisation and mapping (SLAM),

generate a large amount of sensor data that is difficult to store with the limited on-

board storage capacity on most robots [70].

3. Integrating cloud computing to robotics can enable robots to access big data such

as global maps for localisation, object models that the robots might need for ma-

nipulation tasks as well as open-source algorithms and code [75].

2.3 Mobile Applications Partitioning

When designing a hybrid mobile-cloud application, we are faced with a decision about

which module of the application should be executed locally and which one remotely.

In order to integrate a stand-alone application created for a mobile computing system

with the remote computing service (i.e. the cloud), the source code of the application

is partitioned into offloadable modules. This can be achieved by using application par-

titioning algorithms (APAs) [91]. When the partitioning is done during development
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time, the code units (i.e. classes/methods) are annotated and using static analysis of the

code they are converted into offloadable modules automatically with a converter. On the

other hand, when the partitioning is required during execution time, a profiler is used

that decides on the fly which modules to execute on the cloud. Either type of partition-

ing algorithms aims to identify the most computationally-intensive modules for remote

processing [61, 87].

One of the important aspects of APAs is the partitioning granularity attribute, which

indicates the granularity level for partitioning computationally-intensive modules [91].

Gu et al. [62] uses class-level granularity to identify computationally-intensive mod-

ules. Cuervo et al. [39] used method-level partitioning of applications. Moreover, a

thread-level [35] and object-level [122] partitioning have also been used to offload the

computationally-intensive parts of applications to a remote computing server. In [16],

we have shown the static partition (at development time) of application code into differ-

ent levels (class, method and hybrid) of granularity. We highlighted the importance of

granularity for efficient partitioning of the applications. We will explain the process of

partitioning the code in Chapter 3.

2.4 Code Offloading Techniques

Code offloading (also called computation offloading) is a technique used to transfer the

computationally-intensive part of a mobile application to execute on remote locations,

typically a resource-rich cloud computing system [61, 87]. In Mobile Cloud Computing

(discussed in Section 2.2.1), a key challenge is how to achieve an energy-efficient code

offloading [52, 63]. Furthermore, MCC is envisioned to address challenges like extending

battery power of mobile devices. With the emergence of fast fibre broadband and high-

speed wireless networks (i.e. WiFi, 4G or even 5G), MCC approach to address such

challenges.

Code offloading is productive when the battery power consumption of a mobile de-

vice is minimum, and counterproductive when the device wastes more energy executing
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a computational task remotely rather than locally. The experimental study in [111] con-

cluded that code offloading is not always an effective way to save energy. Code offload-

ing might consume more battery power than executing on the mobile device when the

size of the code is small.

Among the different techniques used for code offloading, REST, socket-based and

RMI-based communications are the most popular and frequently used. For the Android-

based mobile applications, since the Java RMI is not supported by Dalvik, a new open

source and lightweight version is implemented called LipeRMI [3, 55]. Moreover, LipeRMI

addresses and minimises the latency and communication issues in Java-based RMI. How-

ever, the experimental study in [32] resulted that LipeRMI is more costly than REST and

socket-based communications.

The decision to use code offloading can be static or dynamic. In the static decision

mechanism, the application code is partitioned at development time. The static partition

has the advantage of low overhead when the parameters are calculated correctly. Ku-

mar et al. [84] shows the static partitioning of code based on total energy consumption

(communication energy and computation energy). They formulate the offloading of a

program based on the trade-off between the communication cost and computation cost.

In the dynamic decision mechanism, the program decides at runtime by adapting to

different runtime conditions. Approaches in [35, 39, 80, 101] relies on making offloading

decisions in a dynamic environment (e.g. wireless interference, network failure). While

dynamic decision mechanism has the advantage to overcome latency, the environment

changes can cause additional problems. For example, the transmitted data may not reach

the destination, or the data executed on the server will be lost when it has to be returned

to the sender [44].

In this work, we have used both static and dynamic decision mechanism for code of-

floading to achieve energy-efficient hybrid mobile-cloud computing systems. The static

decision mechanism is used in offline profiling to find efficient configurations of applica-

tions. The dynamic decision mechanism for offloading is used in online profiling, where

the decisions are made at runtime based on a change in the environment.
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2.5 Optimising Multi-Objective Problems

A multi-objective optimisation problem is a problem of finding a vector of decision vari-

ables, which satisfies constraints and optimises a vector function whose elements repre-

sents the objective functions [38]. These functions form a mathematical description of

performance criteria which are usually in conflict with each other. Hence, the term "op-

timise" means finding such a solution which would give the values of all the objective

functions acceptable to the decision maker.

Mathematically [38], multi-objective optimisation can be described as,

min[f1(x), f2(x), ......., fn(x)] (2.1)

x ∈ S,

where n > 1 and S is the set of constrains defined below

S = {x ∈ Rm : h(x) = 0, g(x) ≥ 0} , (2.2)

As stated in [96], multi-objective optimisation originally grew out of three areas: eco-

nomic equilibrium and welfare theories, game theory, and pure mathematics. In multi-objective

problems, typically there exists no single global solution. Often the aim is to search for

a set of solutions that all satisfy a predetermined definition of an optimum. In the fol-

lowing subsection, we explain the concept of Pareto-optimality that defines the optimal

points.

2.5.1 Pareto Optimality

Pareto optimality is a state when a solution or a set of solutions in the solution space are

achieved so that no other feasible solution reduces at least one objective function without

increasing another one [21]. As in multiple-objective optimisation, there are more than

one objective to be optimised simultaneously. During the process of optimisation, one of

the challenging steps occurs when the objectives are conflicting with each other. There

exists a natural trade-off between the objectives, which creates a set of optimal solutions
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using Pareto-optimal theory [38] [78]. These solutions are popularly known as Pareto-

optimal solutions or non-dominated set of solutions [41]. As they are not dominated by

any possible solution in the solution space, they could be the best solutions achievable. To

represent a Pareto-optimal set or non-dominated solutions on a two-dimensional graph,

an approximation front called Pareto front/Pareto frontier is used [38].

2.5.2 Multi-Objective Optimisation Algorithms

Over the past few decades, multi-objective optimisation (MOO) algorithms have been a

subject of interest to researchers for solving various multi-objective optimisation prob-

lem, in which multiple objectives are treated simultaneously subject to a set of con-

straints [109]. To find the Pareto-optimal solution set of a MOO problem, methods such as

mathematical programming and nature-inspired metaheuristics may be used. Based on

mathematical programming, a MOO problem is scalarized to formulate a single-objective

optimisation problem. The Pareto-optimal solution set of the single-objective optimisa-

tion problem is then treated the Pareto-optimal solutions to the MOO problem [74]. For

example, linear weighted-sum, goal programming and epsilon-constraints are some of

the methods that can be used for mathematical programming based scalarization.

Search-based Software Engineering Using Multi-Objective Optimisation Algorithms

Search-based software engineering (SBSE) is a sub-category of software engineering that

includes all related work where search-based optimisation is applied [66]. SBSE has

been successfully applied to certain areas such as project management [48], software

testing [19], software effort estimation [99].

A search-based MOO problem is defined as; finding (or searching for) optimal or

near to optimal solutions in a pool of candidate solutions. Harman et al. [65] stated

two ingredients of SBSE, a suitable representation of the problem and definition of a

fitness (or objective) function. Representation of the problem is the starting point and is

followed by the process of search, which is guided by the fitness function that correlates

a better and worse solution.

Praditwong et al. [105] used search-based approach to software module clustering.

They considered two software engineering objectives of high cohesion and low coupling
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between different modules of a software system. They used two different multi-objective

optimisation algorithms: 1) Maximum Cluster Approach (MCA) and 2) Equal-size Clus-

ter Approach (ECA). The concept of Pareto-optimality was used as an assessment crite-

rion to determine how good is the Pareto front achieved by the two approaches (MCA

and ECA) against single objective formulation [45]. The single objective formulation was

done because the objectives are often in conflict. Therefore, combining them into a single

objective may result in a suboptimal solution. They used a test-bed of 17 real-world ap-

plications to evaluate the approaches. From the experimental results, it was concluded

that the single objective formulation could not be used for finding a non-dominated

Pareto frontier of optimal solutions. Also, the results were particularly compelling for

their ECA multi-objective approach, which outperformed the MCA approach. Both the

multi-objective algorithms were implemented using Evolutionary Algorithms. In the

following subsection, we will discuss the evolutionary algorithms.

Evolutionary Algorithms

Nature inspired approach that is powered by heuristic search techniques; evolutionary

algorithms are a collection of optimisation algorithms that successfully handle large,

complex and multi-model search spaces [110]. Multi-objective optimisation problems

are more often solved by using multi-objective evolutionary algorithms (MOEAs) [138]

and swarm intelligence based optimisation algorithms (SIOAs) [135]. MOEAs aim for

searching the Pareto-optimal set of solutions in a single run [74, 121].

As a subset of MOEAs, the multi-objective genetic algorithms (MOGAs), such as

the non-dominated sorting genetic algorithm-II (NSGA-II) [42], have been particularly

widely researched in the family of MOO algorithms [37], because they are capable of ef-

ficiently constructing an approximate PF. Traditionally, the direct search algorithms such

as Hill-climbing algorithm have the problem of getting stuck at the local optima. To over-

come such problem the Genetic Algorithms have the advantage.

Genetic Algorithms

Genetic Algorithms (GAs) form a branch of EAs [103]. They are bio-inspired, based

on evolutionary theory and have been used for solving various optimisation problems,
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including MOPs. In GAs terminology, the search step to finding the PS involves the

bio-inspired processes of initialisation, evaluation, selection, crossover, mutation, and

replacement. Typically, GAs uses the following procedures [59]:

• The population composed of individuals (strings) are the encoded versions of the

input rather than directly using the input.

• To guide the search GAs use an objective/fitness function rather than a derivative.

• The search mechanism in GAs is probabilistic rather deterministic.

In GAs terminology, a generation is the iteration of the search, where the quality of the

individual is evaluated. After each iteration, a new generation of individuals is created

by taking advantage of the fittest individuals of the previous generation. The process of

GAs is illustrated in Figure 2.3.

FIGURE 2.3: The flow chart illustrates the procedure of bio-inspired Ge-
netic Algorithms.
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MOO to Reduce Battery Power Consumption in Mobile Devices

To reduce battery power consumption in mobile devices, MOO techniques can be used.

In [89], the authors have presented a tool called GEMMA(Gui Energy Multi-objective

optiMization for Android apps), which minimises the battery power consumption by

using multi-objective optimisation, and Pareto-optimality. GEMMA produce a set of

Pareto-optimal solutions that optimise the trade-off among the following three objec-

tives.

1. Reducing energy consumption

2. Increasing contrast of the GUI

3. Making the GUI attractive

In this work, we are optimising two objectives using a hybrid mobile-cloud appli-

cation framework to reduce battery power consumption. We will discuss HMC frame-

works in Section 2.6. Like GEMMA, we use MOO techniques to optimise the trade-

off between two objectives. Unlike GEMMA, we are using code-offloading to execute

computationally-intensive tasks on the cloud, which minimise the battery power con-

sumption of a mobile device.

2.5.3 Performance Measure of Multi-Objective Optimisation

To assess the outcome/result of different multi-objective optimisation algorithms, dif-

ferent performance indicators have been introduced [136]. Comparing the outcome of

different MOEAs and evaluating it quantitatively is essential because it is usually an ap-

proximation of the PS. In order to measure the performance of the MOEAs, two goals are

considered: 1) convergence of the true Pareto front and 2) distribution of approximated

solutions. Generally, methods that assign each approximation set a vector of real num-

bers that reflect different aspects of quality are well accepted among researchers. The

elements of the vector to represent the performance of MOEAs are called the unary qual-

ity indicators. Over the past few decades, many unary indicators have been introduced

such as hyper-volume indicator [54, 29, 24] and attainment surface [92].
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2.6 Hybrid Mobile-Cloud Frameworks

Hybrid mobile-cloud frameworks aim to integrate mobile applications into the cloud.

The framework helps to partition a mobile application, and using code offloading exe-

cutes resource-intensive modules of the application on the cloud. The design of HMC

frameworks is generally based on achieving one or more than one particular objective(s),

such as energy efficiency, storage, application execution time and bandwidth usage.

Based on objectives, HMC frameworks can be classified into the following categories [77].

2.6.1 Frameworks to Improve Performance

This category includes HMC frameworks that are built with the primary objective to im-

prove the performance of mobile applications. The aim of developing such frameworks

is to execute computationally-intensive components of applications on the resource-rich

cloud. Generally, the lightweight components of applications on a mobile device are of-

floaded to the cloud. This is due to the fact that it takes less time for the computation

to complete on the cloud and return the result, as compared to the execution on mo-

bile devices. Therefore, by minimising the execution time, the frameworks improve the

overall performance of applications. For example, CloneCloud and DAvinCi are HMC

frameworks that improve the performance of applications. They are discussed as follow.

1. CloneCloud: Proposed by Chun et al. [35], it offloads the computationally-intensive

components of application code to a device clone operating in a computational

cloud, to enhance application execution time. Therefore, improving the perfor-

mance of the HMC applications. Using this framework, the mobile device and its

clone on the cloud are needed to be synchronised all the times for consistent ex-

ecution of HMC applications. Therefore, during code offloading, the application

process on a mobile device enters a sleep state and transfers the process state to the

clone. On the cloud side, a new process state is created and overlays the received

information, followed by execution of the clone. When the execution completes,

the process state of the clone’s application is transferred to the mobile device. On

the mobile device, the state is reintegrated into the HMC application which comes

out of the sleep mode.
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To partition an application using the CloneCloud framework, the source code is

analysed first to generate a static flow control graph. The graph is important since

it facilitates the process of partitioning. Based on the graph, the framework creates

migrate-able points (partition). When the application executes and reaches a point,

the framework migrates the process and the application’s state to the clone. How-

ever, generating the migrate-able points are a challenging task as it can affect the

overall performance gain of the application.

Chun et al. tested CloneCloud framework on a testbed containing three different

tasks, i.e., virus scan, image search and behaviour profiling [35]. The results show

that CloneCloud based applications gained 21.2% performance improvement in

terms of execution time. Using CloneCloud has an advantage of when a mobile

device (i.e. a smartphone) is lost or crashed, its data and applications can be re-

covered from the clone. However, the continual synchronisation between a mobile

device and the clone on the cloud may be costly in terms of using battery power

and network.

2. DAvinCi: A cloud-based framework for mobile robots in large environment [22].

DAvinCi (Distributed Agents with Collective Intelligence) is implemented around

Hadoop-based clusters powered with ROS (Robot Operating System) as a messag-

ing framework. It uses Software as a Service (SaaS) model of the cloud to share

sensor data with other robots and also to offload computationally-intensive com-

ponents to processing nodes. The primary objective is to improve the performance

of parallelising the FastSLAM algorithm.

2.6.2 Frameworks to Reduce Energy Consumption

Hybrid mobile-cloud frameworks that are developed to reduce the energy consumption

of mobile devices are designed to utilise cloud resources. Using code-offloading, such

frameworks can achieve minimal energy consumption as the resource-intensive compu-

tational components are executed in the cloud. Therefore, applications use less power

on mobile devices. To reduce energy consumption, two challenges can be faced as listed

below [108].
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• Finding the optimal condition that is suitable for offloading computation to the

cloud.

• Factors that need to be addressed while offloading computation to the cloud.

In [84], the authors address the issues and provide a formula (2.3) that provides when

offloading is useful in terms of reducing energy consumption.

P c ×
C

M
− P i ×

C

S
− P tr ×

D

B
(2.3)

Where:

C = the number of computing instructions to be offloaded,

M = the speed of mobile device (instructions/second),

S = the speed of the cloud server (instructions/second),

P c = the mobile device power consumption (watts),

P i = the mobile device idle power consumption (watts),

P tr = the mobile device transmission power consumption (watts),

D = the bytes of data to be exchanged and

B = the network bandwidth.

With P c, P i, P tr being constant, if the above formula produces a positive number,

offloading reduces energy consumption, otherwise not. However, when mobile devices

use code offloading, the available network bandwidth B is also used. This suggests that

offloading too often also increase the power consumption by mobile devices. Therefore,

it becomes a concern to reduce energy consumption as well as the number of offloads.

2.6.3 Multi-objective Application Frameworks

The purpose of designing multi-objective frameworks for mobile-cloud computing is to

achieve more than one objective simultaneously, mainly energy efficiency in parallel with

performance or network usage of applications. As there exists a trade-off between the

objectives, multi-objective frameworks aim to find compromise solutions between the
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objectives. Also, they are considered more effective to be used in MCC, as they support

several objectives. Below we discuss multi-objective MC frameworks.

1. MAUI: Proposed by Cuervo et al. [39], MAUI maximises the potential for reducing

energy consumption and improving the overall performance through fine-grained

(method-level) code-offloading. It offloads the computation to the cloud, given that

the offloading is effective in terms of improving performance and reducing energy

consumption.

MAUI decision mechanism (profiler) is built using Microsoft .NET runtime to anal-

yse the energy consumption at runtime during local and remote execution of ap-

plications. It uses a history-based approach for predicting the execution time of

methods both locally and remotely. Therefore, when the code-offloading is effec-

tive in terms of reducing the energy consumption of a mobile device, then it is

used.

One of the advantages of MAUI is its use of dynamic partitioning of applications,

which reduce the burden on programmers. Moreover, MAUI targets fine-grained

(method-level) code-offloading instead of a large block of code, which reduces net-

work usage. On the weak sides, MAUI profiler executes on the mobile devices,

which consumes extra processing power, memory and energy. It adds overhead on

mobile devices.

2. ThinkAir [80]: Like MAUI, ThinkAir supports method-level partitioning of appli-

cations. It offloads the computationally-intensive methods of an application to a

clone running in the cloud. The primary objective of offloading to the cloud is

based on objectives such as minimum execution time, reducing energy consump-

tion and the previous history kept by the ThinkAir’s profiler. Moreover, ThinkAir

achieves the desired QoS by executing multiple clones of a smartphone in parallel.

Therefore, reducing delays and improving performance.

The main advantage of ThinkAir is that it reduces energy consumption using code

offloading while taking into account reducing execution delays by doing on-demand

resource allocation and parallelism. The shortcoming of using ThinkAir is that the
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profiler executes on mobile devices. Therefore, incurs additional overhead by using

processing power, memory and energy.

3. Cuckoo [76] is designed for Android-based applications that offload the computationally-

intensive components to Java Virtual Machine (JVM) residing on the cloud. The

objectives are to reduce the energy consumption of HMC applications as well as to

improve their performance considering the execution time. The main advantage of

Cuckoo is that it provides tools for developers to develop HMC applications easily.

Moreover, its automatic mechanism to separate the offloadable components of an

application from mobile device limited components is another big advantage. The

shortcoming of Cuckoo is that it does not support asynchronous callbacks and state

transfer from remote resources.

4. EECOF: Energy Efficient Computational Offloading Framework [115] is designed

to offload lightweight components to the cloud. The objectives are: 1) minimising

power consumption by offloading computationally-intensive components, and 2)

minimising the overhead of runtime offloading components. However, the frame-

work uses runtime profiling on the device, which uses devices resources.

5. In other studies, frameworks or offloading schemes for mobile-cloud applications

were proposed based on achieving multi-objective. Deng et al. [43] and Guo et

al. [64] proposed mobile-cloud frameworks that use code-offloading and are based

on two objectives: minimising power consumption and execution time of mobile

applications. Moreover, studies in [18, 33, 83, 84, 87, 132] are based on multi-

objective that include: reducing applications energy consumption and communi-

cation power during computation offloading. For optimal task offloading Rahman

et al. [107] design a smart city based Cloud robotic framework for minimising time

and energy consumption of resources. However, in this work, a single robot is

solely responsible for offloading decision making. Also, they did not consider the

cost of energy consumption during communication.
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2.6.4 Frameworks Based on Dynamic Offloading

The decision to offload to a nearby infrastructure or cloud is not always straight forward,

particularly when conflicting objectives are considered. In such situations, objectives can

only be achieved when the operating environment is suitable. Therefore, the compu-

tation offloading techniques for mobile-cloud computing has shifted from static to dy-

namic and context-aware in which the decision mechanism is built on when and what

to offload [83]. In dynamic offloading, an intelligent decision mechanism determines

whether offloading is required or not. When the environment is suitable for offloading,

objectives such as battery power consumption, communication overhead and execution

time are achieved.

Based on dynamic code offloading, researchers have proposed HMC frameworks.

Gu et al. [62] proposed HMC framework for adaptive offloading of computationally-

intensive modules. Gonzalo et al. [73] developed an adaptive offloading algorithm based

on both the execution history of applications and the current system conditions. Naqvi

et al. [101] proposed a multi-objective optimisation framework called (MAsCOT), which

employs Probabilistic Graphic Models (PGM) for self-adaptive decision support for code

offloading. Nakahara et al. [100] bi-objective optimisation framework (CoSMOS) analyse

each optimisation parameters (energy consumption and execution time) separately using

cost function and self-adaptive reinforcement. Further to improve runtime computation

offloading decision mechanism, mobile-cloud frameworks based on self-awareness can

be used. Self-awareness can benefit mobile-cloud, fog and edge computing by enabling

it the remote nodes using MC architectures [106]. In [46], the authors have applied self-

awareness to IoT hardware chips.

2.6.5 Middleware Based Frameworks

Hybrid mobile-cloud frameworks enable mobile applications to use the shared pool of

resources provided by the cloud. Different cloud services provider may operate different

platforms. To counter the problem of platform-independent accessibility in MCC, MC

frameworks based on middleware are used. The middleware provides an abstraction

between a mobile device and the cloud and controls every aspect of the communica-

tion in between. In [52], a mobile cloud middleware has been proposed, to perform
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data-intensive processing invocation from mobile devices, and to introduce the platform

independence feature for the HMC applications. Other researchers [25, 118, 129] have

proposed methods that are based on the middleware solution.

In our previous work [15], we used a simple middleware-based framework, which

was based on Google’s Firebase2. Using Firebase or another such kind of system as mid-

dleware comes with many problems that we had highlighted. They work in an event-

driven fashion, which calls back to the thread that starts its on-event handler. For exam-

ple, if the user interface (UI)/main thread is waiting to get the results from the cloud,

the callback from the Firebase handler will be blocked due to the inherent characteristic

of the Android system. In this work, we use a socket-based framework instead, which

work in a suspend-offload-receive-resume fashion.

2.6.6 Cloud-enabled Frameworks for Mobile Robots

As we discussed in Section 2.1, cloud computing offers three types of service models:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service

(SaaS). In the recent past, Chen et al. [34] proposed Robot as a Service (RaaS) that is

based on Service-Oriented Architecture (SOA) of cloud computing. RaaS facilitates the

seamless integration of robot and embedded devices into Web and cloud computing en-

vironments. In RaaS, the integration of cloud with robot services is done using Microsoft

Robotics Developer Studio (MRDS) and Visual Programming Language (VPL). Based

on RaaS, many computationally-intensive robotics and automation systems applications

such as robot navigation by performing SLAM in the cloud [11] and next-view planning

for object recognition [102] can be achieved.

In [90], the authors proposed a comprehensive distributed cloud-enabled robotics

framework. Apart from combining cloud and the robot networks, they also provide ad-

ditional security features in their framework. Arumugam et al. [22] proposed distributed

agents with collective intelligence framework. They showed a pool of heterogeneous

robots works together in large environments. Their implementation of the framework

was based on ROS3, a Robot Operating System, that was used for sensor data collection

2https://firebase.google.com/
3https://http://www.ros.org/
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and communication. In [124], cloud-based formation control of robots on the ground has

been demonstrated. Therefore, improving the performance of mobile robots as well as

providing cloud-based energy efficient alternative.

2.7 Insufficiencies in Available Approaches

In this Chapter, we discussed the background of research carried out and technologies

built around mobile computing, cloud computing, Edge/fog computing, mobile-cloud

computing, offloading techniques, multi-objective optimisation and evolutionary algo-

rithms. We discussed the trends in the current state-of-the-art HMC frameworks using

computation offloading and achieving one or more than one objective. The objectives

mainly are to improve the performance (minimise execution time) and reduce energy

consumption (minimise computation power and communication power) of applications

developed for mobile devices. To achieve the objectives, static computation offloading

can be used. However, due to changing environmental conditions such as weak signal

strength, network link failure, network congestion, static offloading can cause latency

and use more battery power (i.e., communication power for retransmission of dropped

packets). In such cases dynamic offloading decision based on context-awareness, self-

adaptation and self-awareness can be beneficial.

In this work, we propose a method to optimise two objectives in applications cre-

ated for Android-based (i.e., smartphones and tablets) and Linux-based (i.e., Raspberry

Pi controlled robots) mobile computing systems. We consider two objectives to opti-

mise which are: battery power consumption and network usage. The battery power

consumption is the total power required by an HMC application, including computation

and communication power, and power required for other components to operate such as

LCD and memory. The network usage is the wireless network available to the mobile-

devices (i.e., WIFI). Minimising power and network usage creates an efficiency trade-off.

We use a general purpose hybrid mobile-cloud framework that employs code offloading

to optimise the efficiency trade-off.

We modularise the source code of mobile applications using annotations at the class-

level, method-level and mix of class and method level granularity. We use a converter
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that identifies annotated modules in the applications source code and automatically con-

verts them into offloadable modules. Our framework allows for both offline profiling and

online profiling. Offline profiling is to search for efficient configurations that optimise

the trade-off between battery power consumption and network usage. Our framework

is based on self-adaptive and self-aware decision mechanism to make runtime decisions

based on a change in the environment and change within the system itself to avoid net-

work latency. By using online profiling, the framework switches between the efficient

configurations to minimise battery power consumption, network usage and improve the

performance of applications by avoiding network latency. Using a custom workflow, we

use an exhaustive search algorithm to find efficient configurations of HMC applications.

We also do more in-depth statistical-analysis to refine the final configuration set. In the

next Chapter, we discuss the proposed method in more details.
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Modularisation of Applications

Developed for Mobile Computing

Systems

In this chapter, we discuss our method to achieve energy-efficient applications for mo-

bile computing systems (i.e., a smartphone or a robot). In mobile devices, battery power

is often one of the essential resources available. When computationally-intensive ap-

plications are executed on these battery-powered devices, they consume the available

battery power quickly. To lower the battery power consumption, techniques such as

code-offloading [97, 50] can be used in MC frameworks. They enable the HMC applica-

tions to execute remotely (i.e., on the cloud server endpoint) as well as on the mobile

device. From a mobile device (i.e., a smartphone or a robot) point of view, the code-

offloading is useful to minimise the device’s battery power consumption with a trade-off

of using the network and a constraint that it must not degrade the overall performance

of the application.

The HMC application framework has a decision mechanism implemented that choose

at runtime of the applications that which code units are to be offloaded to the cloud. The

code units of mobile applications (e.g, classes or methods) are identified either during

the development stage or after the developmental process is completed. This process

is called modularisation. The identified code units (we called them modules) are made

offloadable so that they can be executed remotely on the cloud server endpoint. The of-

floadable modules are usually composed of the computationally-intensive tasks of the
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HMC applications. As these modules use the hardware components (i.e. CPU, RAM,

WiFi or 3G/4G) of a mobile device, the available battery power is consumed when they

perform the task. For example, as shown in Figure 3.1, an arbitrary Android-based HMC

application. It has two offloadable classes (Class1 and Class2) and four offloadable meth-

ods (method1, method5, method6 and method7). The offloadable modules can be executed

both locally and remotely (i.e., on the cloud server endpoint). The remote execution of

the modules can reduce the battery power consumption of the application with a trade-

off of using the available network.

Class1
method2(args){

}

@Offloadable

method1(args){

C-intensive

}

@Offloadable

method5(args){

C-intensive

}

method3(args){

}

method4(args){

}

Class2
@Offloadable

method6(args){

C-intensive

}

@Offloadable

method7(args){

C-intensive

}

Class3
method9(args){

}
method8(args){

}

FIGURE 3.1: A high level view of a hybrid mobile-cloud (HMC) applica-
tion consists of offloadable modules.

The decision mechanism of the MC Application framework, to execute which of-

floadable modules on the cloud and which on the device, is based on a configuration. We

define a configuration as identifying all the offloadable modules of an HMC application

and representing them in such a way that they can be executed either on a mobile device

or on the cloud. To represent a configuration, we use a binary string of bits, where a zero

represent that the mapped module will execute on a mobile device and one represent
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that the module will execute on the cloud. We create a range of different configurations

for a mobile app or task, which is based on 1) granularity-level of an offloadable module,

2) execution of the offloadable modules across two endpoints (i.e., a mobile device and

the cloud), and 3) the total number of the offloadable modules.

3.1 Granularity of Configurations

Granularity is the extent to which the HMC applications can be partitioned into differ-

ent modules. The partitioning can be done at different levels of granularity: class-level,

method-level, object-level, thread-level, task-level, component-level. In our case studies,

we will be using mobile applications that are developed using Object-Oriented program-

ming. Therefore, we will consider method-level and class-level partitioning of applica-

tions. The computationally-intensive tasks of the apps are, therefore, divided into the re-

sultant partitioned components; we called them modules. The modules are composed of

code units or machine instructions. They might be fine-grained (i.e., methods of classes)

or coarse-grained (i.e., classes of an app). The fine-grained modules comprise of a chunk

of code that might be computationally-intensive or is executed often during runtime of

the app. In both cases, making the fine-grained modules offloadable and executing them

remotely on the cloud can reduce power consumption. The coarse-grained modules are

comprised of one or more fine-grained modules (methods). For example, as we can see

in Figure 3.1, An HMC application has two offloadable coarse-grained modules and four

fine-grained modules. One of the coarse-level modules (Class3) is not-offloadable, as it

has no offloadable fine-grained modules.

We make the modules (i.e. classes and methods) offloadable at the code-level during

the developmental stage by employing the MC application framework’s APIs. During

the runtime, the framework uses a configuration string to find the execution endpoint of

an offloadable module. We create the configurations to represent the offloadable modules

of an HMC application. The total number of distinct configurations for an app depends

on the total number of its offloadable modules and their granularity levels.
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3.2 Modular Configurations

A modular configuration (or simply a configuration) maps the offloadable modules to

their execution points. It is created for executing a HMC application using the hybrid

mobile-cloud framework. To map the offloadable modules of a HMC application to a

configuration, the number at which a module execute during the application runtime is

assigned its position (or index) in the configuration. A module may execute multiple

times during runtime, but its position in the configuration is determined by the number

at which it executes for the first time.

3.2.1 Representation of Configurations

We use a binary string to represent the configuration. Each digit (bit) of the string rep-

resents an offloadable module of the application. The state of a digit value signals the

MC framework to execute its representative module either on a mobile device endpoint

(0) or on the cloud server endpoint (1). Based on the total number of modules and their

granularity level, we can obtain different types of configurations.

Class-level configuration

A configuration is a mapping of offloadable modules of an HMC application to a bi-

nary string. For creating class-level configurations, we consider the offloadable classes of

the application as the modules. In a class-level configuration’s binary string, each digit

represents a class. The state value of a digit in the string guides the underlying HMC

framework about the execution machine. In case the value is zero 0, the mapped class is

executed on a mobile device. In case it is one 1, the mapped class is executed on the cloud

server. For example, for an arbitrary HMC application, having four modules (as shown

in Figure 3.2), a four digit (n = 4) binary configuration string would map the modules

as 1010. In this configuration, the first digit (1) mapped the first offloadable module that

will be executed on the cloud server as its state value is one (same applies to the rest).

A combination of different configurations can be created, and the total number depends

on the number of offloadable modules n. For n = 4, a set of class-level configurations is

thus obtained and its cardinality would be 2n = 16.
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0     0    0    0
0     0    0    1

1     0    1    0

1     1    1    1

.

.

.

.

.

.

Class1     Class2    Class3    Class4

FIGURE 3.2: A class-level configuration set having all possible configura-
tions for four offloadable classes of an application. The cardinality of the

set is: 24 = 16

Method-level configuration

Similar to the class-level configuration, a method-level configuration can also be created.

In a method-level configuration, we aim to map the methods of a HMC application to

the binary digits. The methods should be offloadable modules. The method-level con-

figuration can also be represented as a binary string. For example, a method-level con-

figuration, 10101010, from a set as shown in Figure 3.3. It maps eight (n = 8) modules

of an app. To make the method-level configuration set, the cardinality of the set will be

28 = 256. Each configuration will be a valid combination of mapping the methods.

0     0    0    0
0     0    0    0

1     0    1    0

1     1    1    1

.

.

.

.

.

.

method1     method2    method3    method4

 0    0    0    0
 0    0    0    1

 1    0    1    0

 1    1    1    1

method5     method6    method7    method8

FIGURE 3.3: A method-level configuration set containing all possible com-
bination of configurations for eight offloadable methods of an application.
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Hybrid-level configuration

A hybrid-level configuration has a mixed granularity. To create a hybrid-level config-

uration, we aim to map the offloadable modules in a mixed combination of selected

methods and classes. A binary string can also represent a hybrid-level configuration,

i.e. 1010 : 01011010, as shown in Figure 3.4. Unlike the class and method level config-

urations, the binary string is composed of two parts that are separated by a colon sign

(:). The digits residing on its left side (first part) represent the offloadable classes, where

zero (0) represent the class will be used coarse-grained and one (1) represents the class

will be used fine-grained. The second part of the string (on the right side of the colon) is

a combination of both classes and methods. The digits represent the mapped classes and

methods.

The state value of a digit in the first part signals whether the mapped class will be

executed as a coarse-grained (0) or as a fine-grained (1). The state of a digit in the second

part describes whether the mapped offloadable module (a class or a method) will be

executed on the mobile (0) or the cloud (1). If a class is represented as fine-grained in the

first part then its offloadable methods would be mapped. If it is represented as coarse-

grained then it will be mapped.

For example, let’s assume an arbitrary hybrid-level configuration: 1010 : 01011010.

The first part of the configuration 1010, map four classes. Given that the first class has

three methods and is mapped to be executed as fine-grained “1", all its three methods

are mapped in the first three digits of the second part “010", where a zero represents

executing the method on the mobile device and one is for executing on the cloud. To

make a hybrid-level configuration set, the cardinality of the set will depend on the total

number of offloadable classes and methods of the application.

To make a hybrid-level configuration set, the cardinality of the set will depend on the

total number of offloadable classes and methods of the app.

3.2.2 Collapsible Configurations

We define a collapsible configuration as a configuration that can be collapsed into the

same or a different granularity level configuration. In other words, two or more config-

urations are called collapsible if they are of different or same granularity level, and they
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1  0  1  0

0  0  0  1

0  0  0  1

0  0  0  1

1  1  1  0

class

method

Modules

0  0  0  1  0  0   0  0   0  

 0  0   0  0   1  

 0  0   0  1   0  

 0  0   0  1   1  
.
.
.

 0  1   0  1   1  

.

.

.

.

.

.

.

.

.

.

.

.  0  1   0  
.
.
.

 1  1   1  1   1   1  1   1  1 

FIGURE 3.4: A hybrid-level configuration set containing all possible com-
bination of configurations of an app.

map the same modules to be executed on the same endpoints. Collapsible configura-

tions are identical because during the runtime the same modules are executed on either

a mobile device of the cloud server.

As shown in Figure 3.5, a hybrid-level configuration, 1100:0001110, is identical to an-

other hybrid-level configuration (0011:0111100) a method-level configuration (0001111100)

and a class-level configuration (0110). In first configuration (1100:0001110) the first three

digits (representing three methods of a class) on the left side of the colon are zero, which

is same as the class-level digit in the second configurations (0011 :0111100). In these col-

lapsible configurations, we have assumed four classes. First and third class have three

offloadable methods and second and fourth class have two offloadable methods. These

configurations will execute the same modules on the similar endpoints no matter what

the configuration level is. Even though collapsible representations are equivalent from

a configuration perspective, they may still lead to different battery power consumption

and network usage, due to implementation details. For example, finding the mapped

modules for a hybrid-level configuration will go through many steps of (if-else) state-

ments. On the other hand, for a class-level configuration, it will take relatively less num-

ber of comparisons.
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1  1  0  0 .
.

 0     0   0    1  1    1   1   1    0   0

0     1    1    0

0  0  1  1 .
.  0  1   1  1   1  0   0 

} }

} }

} }
}

}

}

}} } } }
 0  0   0  1   1  1   0 

FIGURE 3.5: A set of four collapsible configurations. Each configuration is
collapsible into another, where the execution endpoint of the offloadable

modules are retained.

3.3 Hybrid Mobile-Cloud Application Framework

A mobile-cloud application framework provides the code-offloading API. We employ a

simple MC application framework similar to the one used in [51]. During the devel-

opment, the suitable modules (methods in classes) for offloading are annotated with

(@Cloud). The offloadable modules should not be using any device limited library

or components (i.e., GPS, Sensors, LCD, Input/Output). These modules might have

computationally-intensive tasks. Annotating the modules with @Cloud is the only man-

ual task that a developer is required to perform. These modules are converted automati-

cally by a converter. We created two different versions of the framework: 1) Java-based,

2) Python-based. They are discussed in the following subsections.
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3.3.1 Java-based Framework

The Java-based framework is used for the HMC applications developed for Android-

based mobile devices. It implements the Java Socket API, which is used for code-offloading

for remote execution of the offloadable modules on the cloud server endpoint. To use the

framework, an annotated Android-based application is first converted to an HMC ap-

plication. A converter tool, available on Github1, can be used to convert the annotated

methods of an application into offloadable modules. This tool generates two copies of an

application: one for running on a mobile device (client) and the second is to execute on

the cloud server endpoint.

We modified the converter so that it can inject some code into the landing (start-

ing) activity of the converted HMC applications. This injected code is to check for the

command-line arguments when the application is started. The configurations are passed

to the HMC applications as command-line arguments. Depending on the configuration

level, the digits set as 1 indicate: 1) all the offloadable methods of the classes will be exe-

cuted on the cloud (class-level), 2) the offloadable methods of the classes will be executed

on the cloud (method-level), 3) the offloadable classes or methods will be executed on the

cloud (hybrid-level).

3.3.2 Python-based Framework

The Python-based implementation of the framework is general purpose, and here is used

for HMC tasks performed by battery-powered robots. In all respects, it is similar to the

Java-based version of the framework. It uses Python’s socket library for communication

between the client and the server and checks for the command-line configuration string

during the start of a task. Using the Python-based version of the framework, we were

able to execute a task performed by a battery-powered robot (3.4.2).

3.4 Case Studies

We will consider two different types of mobile computing systems, throughout this the-

sis, as a testbed: Android-based smartphones and mobile robots. We will be using the

1https://github.com/huberflores/CodeOffloadingAnnotations
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framework and multi-granular configurations on the applications developed for these

computing systems. In the following subsections, we introduce two HMC applications

for Android-based devices and one HMC task performed by a mobile robot.

3.4.1 Android Applications

The first case study is targeting those applications that are created for Android-based

devices (i.e., smartphones, tablets). These are battery powered mobile devices and are

perfect candidates for applying our method of achieving energy-efficient HMC applica-

tions. Also, the Android OS is the most widely used operating system for mobile devices.

It is based on the Linux kernel and developed by Google but later on by Open Handset

Alliance (OHA). Its native language is Java, which is the officially supported language

for Android development. Android OS is a stack of software components, which consists

of five main layers:

1. Linux Kernal: The kernel is considered the heart of any OS. Android is built on the

powerful Linux kernel, which provides basic system functionalities like memory

management, process management, display, camera etc.

2. Libraries: The important libraries such as Webkit, SQLite and OpenGL sit on top of

the Linux kernel.

3. Android Runtime: It consists of an optimised virtual machine for Android called

Dalvik Virtual Machine. The Dalvik VM is where the applications run.

4. Android Framework: This layer provides higher-level services to applications such

as activity manager, telephony manager, notification manager etc.

5. Applications: This is the top layer of the Android architecture. The developers

write applications and install on this layer.

In the following sub-sections, we discuss two Android-based mobile applications that

we will be using to apply our method.
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ImageEffects

ImageEffects is a prototype Android application that we created. The idea was to use a

test application similar to Instagram that does image processing and can also store the

images on a remote file storage server. ImageEffects has built-in image filters to apply to

an image that is taken by using the device’s camera inside the app. After the filter is ap-

plied to the image successfully, it is then saved on a storage server. Mobile battery power

is consumed when performing computationally-intensive tasks, i.e., image processing.

The available WiFi/Data network is used for uploading/downloading images to/from

the remote storage server. Also, battery power is consumed: 1) by the mobile device’s

WiFi chip during the uploading/downloading process, and 2) by the mobile device’s

LCD screen when displaying the application’s UI.

The ImageEffects performs four distinct tasks. All the tasks are carried out in differ-

ent modules (i.e., Java classes and methods) of the application. A sequence diagram is

shown in Figure 3.6, which shows all the tasks and how they are performed. The first

task is to apply a filter to an image, which is to change every pixel of the original im-

age. The second task is to generate a thumbnail of the filtered image, which is scaling

down the image to a lower resolution. The thumbnail is then set to be viewed on the

application’s User Interface (UI). The third task is to upload the image to the storage

server and download it back. The fifth and last task is to calculate the hash codes of the

original filtered image and the downloaded image and compare them to check that the

downloaded image has not been changed or tampered. These tasks are executed in the

background using the AsyncTask library of Android after input from the user.

The ImageEffects has a total number of 4 classes and there a total of 10 methods in

these classes. They are suitable candidates for remote execution as they do not use mo-

bile limited resources. The first and fourth class have three methods each and the second

and third class have two methods each. Different granularity levels of configurations for

ImageEffects can be created by following the approach discussed in section 3.1. For a to-

tal number of 4 class-level modules, n = 4, the cardinality of the class-level configuration

set for ImageEffects will be 2n = 16. For 10 method-level modules, n = 10, the cardi-

nality of the method-level configuration set will be 2n = 1024. Finally, the cardinality

of the hybrid-level configuration set for the ImageEffects will be 2560. We have created
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App UI Filter
Thumbnail
Generator

File Storage Hash Check

ImageEffects

1: Take
Picture

2: Camera Intent

3: Display
Image

4: Filter

5: Apply Filter

7: Generate
Thumbnail

8:Thumbnail of
the Filtered

Image9: Display
Image

6: Filtered
Image

10: Upload to
File Storage

11: Upload
Filtered Image

12: Ack

13: Ack

14: Download
Image

15: Download
the Image

16: Image

17: Check Hash
codes of two

images

18: Ack

19:Ack

ImageEffects

App UI Filter TNG File Storage Hash

1: Take Picture 2: Camera Intent 

3: Display 

4: Filter
5: Apply Filter

6: Filtered Image

7: Generate Thumbnail

8:Thumbnail of the Filtered Image
9: Display 

10: Upload 11: Upload Filtered Image

12: Ack

13: Ack

14: Download
15: Download the Image

16: Image 

17: Check Hash codes of two images

18: Ack

19:Ack

Task 1 Task 2 Task 3 Task 4

FIGURE 3.6: Sequence Diagram of the ImageEffects HMC application -
a prototype and Instagram like the application we developed. The four
distinct tasks of the application are performed in different granularity level
modules, where each module can be executed either on a mobile device or

the cloud server, based on a configuration.

a small Java-based tool, available on GitHub2, which can be used to create all the valid

hybrid-level configurations for a HMC application by providing the number of classes

and methods.

To execute the ImageEffects, first, its methods are made offloadable. As discussed

in Section 3.3, we used custom-made Java annotation to specify the methods in classes

2https://github.com/aamirakbar/Creating-Hybrid-Level-Configurations-for-MC-hybrid-Apps
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that are comprised of the computationally-intensive tasks or are suitable for offloading.

The annotation is placed during development time, before the methods, and is a part

of the code-offloading API implemented in the Java-based MC applications framework

(discussed in Section 3.3.1).

The offloadable modules (methods) are executed either on a mobile device or the

cloud server when the application executes. The decision is based on the applied con-

figuration. The efficiency of the configuration is then measured at the runtime. We will

discuss how we measured the efficiency of the configurations in Chapter 4.

The total number of valid and possible configurations (combining all granularity lev-

els) that can be created for ImageEffects is 3600. As mentioned earlier, there are total of

four offloadable classes and ten methods in ImageEffects and their possible combinations

(2n = 16, 2n = 1024) results in 1040 configurations. Adding the hybrid-level configura-

tions (2560) of ImageEffects will make the total number of these configurations. Some of

these configurations are collapsible and will end up in the collapsible sets, as discussed in

Section 3.2.2. For example, a class-level configuration 0000 is collapsible into a method-

level 0000000000, a hybrid-level 0001 : 00000, another hybrid-level 0111 : 00000000, and

14 other hybrid-level configurations. Similarly, a method-level configuration 0010110111

is only collapsible into a hybrid-level 1110 : 001011011. In Chapter 4, we will discuss

how we filter the collapsible sets for statistically-significant and non-dominated config-

urations. The filtered configurations will make the final configuration set.

Mather

Mather is an open-source Android application (available on GitHub3), which can be used

for expression-based computations. In addition to basic arithmetic, Mather also sup-

ports complex mathematical expression evaluation, user-defined functions and matrices.

Mather is based on the Math.js4 library. When executed on an Android-based smart-

phone, it utilises the device’s CPU for computation. The more complex the expression

to evaluate, the more CPU utilisation and, therefore, more battery power consumption.

To save battery power, the task of mathematical evaluations can be remotely executed on

the cloud server using our Java-based framework. As the code-offloading comes with
3https://github.com/icasdri/Mather
4http://mathjs.org/index.html
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the cost of network usage and power consumption of the WiFi/3G transmitter chip.

Therefore, the framework will be used to find efficient configuration(s) that minimise

the efficiency trade-off between power consumption and network usage.

We analysed the source-code of Mather to find the modules that are suitable for re-

mote execution using code-offloading. Two of its classes (MathParser.java and Math-

Item.java), each having three methods, do all the mathematical evaluations and can be

made offloadable. They are the most suitable fit we found for the remote execution.

We also found that Android’s WebView is used in one of the methods, “eval()",

which is run by the main UI thread. In the Android-based systems, when the main thread

is running, a request from the cloud cannot be completed. For example, when eval()

executes on a mobile device and call another method that is to be executed on the cloud

according to the configuration. The result from the cloud would not be handled as the

main thread will still be running and in a waiting mode. This will cause the application

to enter into ANR (Application Not Responding), which is when the application is using

the UI thread and waiting for response from the cloud server. Therefore, only one third

(75%) of the configurations for Mather are feasible.

For 2 classes (n = 2), the cardinality of the class-level configuration set for Mather will

be 2n = 4, in which only 3 are applicable. As in each of the classes, there are three offload-

able methods. So, for 6 methods (n = 6) the cardinality of the method-level configuration

set will be 2n = 64. The feasible method-level configurations are only 48. Finally, for two

classes and six methods, we apply the valid 32 hybrid-level configurations.

Some of the configurations are collapsible and will end up in the collapsible configu-

ration sets. For example, those configurations which run the modules only on a mobile

device are collapsible and will form a set (i.e., 00, 000000, 01 : 0000, 10 : 0000). Similarly,

these configurations will end up in a same collapsible set, 111000, 01:1000, 10:1110, 10.

In Chapter 4, we will discuss how to measure the efficiency of the configurations cre-

ated for Mather and filter the statistically-significant and non-dominated configurations

from the collapsible sets. The final configuration set will be created after the filtration, in

which the efficient configurations will be picked for Mather.
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3.4.2 Robotics

In the second case study, we will evaluate a task performed by a battery-powered and

a Raspberry Pi controlled Thymio-2 robot as shown in Figure 3.7. In a mobile scenario,

battery power is consumed by performing computationally-intensive tasks. To minimise

the battery power consumption, remote execution of such tasks on the cloud can be done

at the cost of using the network. We will be using our Python-based MC framework (dis-

cussed in Section 3.3.1) for the task performed by the robot to apply the configurations

and then search for the energy-efficient configurations - those that optimise the trade-off

between the battery power consumption and bandwidth usage. The optimisation will be

discussed in Chapter 4.

FIGURE 3.7: A battery powered and Raspberry Pi controlled Themio-II
robot. The robot performs a foraging task. A portable Anker Power-bank
powers the Raspberry Pi. The Robot has its battery, which is charged from
the Raspberry Pi through a USB data cable. A digital multimeter placed in-
line between the Power-bank and the Pi measures the power consumption

of the Pi.

To evaluate our Python-based framework, we employed the work carried out by

Heinerman et al. [68]. Using the API of the framework, we partitioned its code to make it

executable across mobile robots and the cloud. In their work, a battery-powered Thymio-

2 robot evaluates a foraging task online, which is to collect red coloured pucks in an arena

and carry them to a blue shaded target area in the corner of the arena. A Raspberry Pi

Linux-based system, which controls the robot, runs the code of the foraging task (written

in Python language) as shown in Figure 3.7. The controller of the robot is a feed-forward

neural network, which evolves on-the-fly as it performs the task. In the code, they have

implemented a Python-based library, NEAT [119], to optimise an objective function that

assesses the robot behaviour for some time.
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The source code of the foraging task is available online on GitHub5. After analysing

the code, we found a total of 4 classes that are suitable for the remote execution. These

classes are from the NEAT library, which implements an evolutionary algorithm and a

neural network. In these four classes, we found a total of 14 methods suitable for remote

execution.

Next we create the configuration sets for the foraging task. For 4 classes (n = 4), the

cardinality of the class-level configuration set is 2n = 16. For 14 methods (n = 14,) the

cardinality of the method-level configuration set is 2n = 16, 384. For two classes and

fourteen methods, the cardinality of hybrid-level configuration set is 16, 000.

3.5 Summary of Contributions

In this chapter, we discussed partitioning the code units of mobile applications (devel-

oped using Object-Oriented programming paradigm) into different offloadable modules.

We discussed how offloadable modules for two different computing systems (Android-

based smartphones and Raspberry Pi controlled robots) could be represented using class-

level, method-level and hybrid-level configurations. We also presented our general pur-

pose hybrid mobile-cloud application framework for the two computing systems. The

framework uses the code-offloading technique to execute offloadable modules of HMC

applications remotely on the cloud.

Using the HMC application framework, an application’s source code is modularised

or partitioned during development time using a custom-made annotation before meth-

ods (Java and Python). These annotated methods are then converted into offloadable

modules using the code-offloading API provided by the framework. During runtime,

the framework decides whether to execute an offloadable module locally on the device

or offload it to the cloud. The decision mechanism of the HMC application framework is

based on a configuration. A configuration is a binary string that represents the offload-

able modules and their executing endpoints. Based on the level of applications granu-

larities, we consider a configuration one of three types: 1) class-level (coarse-grained), 2)

5https://github.com/jvheinerman/NEATThymio
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method-level (fine-grained) and 3) hybrid-level - mix of coarse and fine grained. We cre-

ate three levels of configuration sets for applications based on the configuration types.

At the end of this chapter, we introduced test beds that consist of two Android-based

applications (ImageEffects and Mather) and one robotic task (foraging). We discussed

partitioning their source code, implementing the MC framework and creating their con-

figuration sets. The offloadable modules of these HMC applications, when executed on

the mobile devices, will consume the battery power. In order to save the battery power,

they will be executed remotely on the cloud endpoint with a cost of using the network

and power consumption of the transmitter chip.

As the following chapter will explore, the aim of using this method is to optimise the

battery power consumption and network usage by 1) applications created for Android-

based mobile devices, and 2) tasks performed by Rasberry Pi controlled and battery

powered robots. In order to optimise the trade-off between minimising power consump-

tion and bandwidth usage, we will be using Multi-Objective Optimisation to get Pareto-

optimal configurations using offline profiling. These configurations are non-dominated

by others concerning either of the two objectives: minimum power and minimum net-

work usage. Executing the HMC applications with these configurations provide an al-

ternative to achieve efficient hybrid mobile-cloud computing (HMCC) systems. In the

next chapter, we will discuss how to create an experimental setup to do offline profiling.

Specifically, we will discuss how to: 1) measure the efficiency of the configurations, 2)

do statistical tests and create the final configuration sets, and 3) find the Pareto-optimal

configurations.
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Multi-Objective Optimisation of

Hybrid Mobile-Cloud Applications

In this chapter, we will discuss a workflow to achieve energy-efficient HMC applications

developed for Android-based and Linux-based mobile computing systems. The work-

flow aims to search for an efficient trade-off between power and network usage by the

HMC applications. Using the method discussed in Chapter 3, the HMC applications

are executed across mobile and cloud endpoints. By instrumenting the applications and

using offline profiling, the efficiency of the configurations is measured.

The workflow is employed to find the Pareto-optimal configurations for the two

HMC Android-based applications (ImageEffects and Mather) and the robotic task (For-

aging). The Pareto-optimal configurations are those that are non-dominated by others,

by considering the two objectives: 1) minimising battery power consumption and 2) min-

imising network usage.

4.1 Evaluating Configurations

The efficiency of a configuration is the recorded power and network usage of a configu-

ration when it is used for a single run of the application using offline profiling. However,

as we will see later in offline profiling, we will execute an HMC app multiple times with

a configuration because the objective functions are stochastic. When an HMC application

executes, battery power and network usage are recorded for the whole execution time.

The two objectives of minimising the battery power consumption and network usage are

conflicting. Therefore, they form an efficiency trade-off [15]. The recorded efficiency of
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each configuration is stored for later analysis. In below subsections, we discuss how we

measure the efficiency of configuration created for the HMC applications.

4.1.1 Battery Power Consumption

Mobile devices operate on a limited supply of power available from the battery. There-

fore, power consumption should be used carefully [93]. The offloadable modules of an

HMC application, when executing on a mobile device, use the device components for

computing. The components draw power from the battery to operate. We denote the

computation power as: PC. Alternatively, the modules can be executed remotely on the

cloud. As stated in [47, 88], an offloadable module executes on the cloud in three phases:

1) the transmitter (RF ) sending phase, 2) the cloud computing phase, 3) the transmitter

(RF ) receiving phase. We assume that the power consumption due to communication

(RF sending and RF receiving) is: PRF. The total power consumption, P T, for a configu-

ration can be found as follow:

P T
(watts) = PC

(watts) + PRF
(watts) (4.1)

When no code-offloading is used, the communication power (PRF) will be zero, and

the total power consumption (PT) will be equal to the total computing power (PC).

Measuring battery power consumption

Battery power is consumed when an HMC application is executed on a battery-powered

mobile device. Power is required for different components of the system to work, i.e.,

CPU, WiFi. To measure the total power consumption of an application as in Equation

4.1, we have employed different ways for Android-based mobile devices and Raspberry

Pi-controlled robots.

Android-based systems

For the Android-based systems, we created a separate dedicated application, which we

called Monitor, that runs on the device and outputs the total power consumption after a

single run of the targeted HMC applications. Since it is important to measure the total
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power consumed by an individual HMC application, we have integrated an open-source

power measuring tool called PowerTutor - available on GitHub1. PowerTutor is based on

component power management and activity state introspection [133]. To estimate the

power consumption of the components, PowerTutor uses PowerBooter; which is an au-

tomated power model construction technique that uses built-in battery voltage sensors

and knowledge of battery discharge behaviour to monitor power consumption while

explicitly controlling the power management and activity states of individual compo-

nents. These components include CPU, WiFi, 3G, GPS, LCD and audio interface. Also,

PowerTutor considers the energy consumption of each application to be independent. In

other words, PowerTutor assumes that, i.e., app A consumes the same amount of energy

with or without app B running. In this way, power consumption is measured (based on

statistics) for each component and each UID/application. By embedding the PowerTu-

tor in our Monitor application, the total power consumption (as stated in Equation 4.1)

is measured during the runtime of an Android-based HMC application.

Python-based tasks for robots

The Raspberry Pi models have no inbuilt current or voltage sensors that could be used

for monitoring its current draw, or battery supply. Therefore, an extra hardware device

such as a multimeter or an onboard electronic shunt must be used [40, 49] for measuring

total power delivered to the device. We used a digital multimeter that is placed inline

between a power bank and the Pi as shown in Figure 3.7. The type of multimeter we

used can measure the power consumption of the Pi every seconds and also is able to

send the recorded readings through a Bluetooth connection - UM24C2. The readings from

the multimeter showed that when the Pi starts executing a task, more power is drawn

from the battery and the consumption increases. Therefore to find out the total power

consumption during the foraging task, we first measure the total power consumption of

the Pi for 5 seconds in the idle state. When the foraging task starts, we measure the total

power consumption for the whole run of the task. In the end, we subtract the power

1https://github.com/msg555/PowerTutor
2https://www.aliexpress.com/item/RD-UM24-UM24C-for-APP-USB-2-0-LCD-Display-Voltmeter-ammeter-battery-charge-voltage-current/

32845522857.html
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consumed at the idle state from the power consumed when the task was running. This

gives us an estimated power consumption of a single run of the task.

4.1.2 Network Usage

Network bandwidth is used when the MC framework is using code-offloading. How-

ever, code-offloading can be inefficient if an HMC application relies too much on it. It

will use maximum network bandwidth as well as consuming battery power (PRF). The

total network usage for a configuration is recorded as total bytes transmitted (Tx) and

received (Rx) between a mobile device and the cloud when an HMC application is ex-

ecuted. Also, network latency is a critical measurement in code-offloading. If packets

are dropping due to low signal strength or there is congestion in the network, then the

performance of the HMC application will be degraded.

Measuring Network Usage

Network bandwidth is used when an HMC application executes its modules remotely

on the cloud server endpoint. To measure the total network bandwidth usage, we have

employed different ways for Android-based mobile devices and Raspberry Pi-controlled

robots. It should be noted that as we will be doing offline profiling to find the efficiency

of configurations of HMC applications and the foraging task using a lab environment,

network latency in such case is observed to be negligible. Therefore, we do not measure

network latency in offline profiling.

Android-based systems

For Android-based smartphones, similar to measuring power consumption, network us-

age is also measured by the Monitor application. The Monitor implements a built-in

Android Library, android.net.TrafficStats, for recording data-sent Tx and data-received

Rx. As the measurements are recorded against the UIDs of all applications running

on a smartphone, we can extract the recorded network usage measurement of a targeted

HMC application by providing its UID in the Monitor application.

70



Chapter 4. Multi-Objective Optimisation of Hybrid Mobile-Cloud Applications

Python-based tasks for robots

For measuring network usage in Linux-based computing systems like Raspberry Pi, a

range of command-line based packet analysing tools can be used. For instance, TCP-

dump3 allows the user to truncate and view TCP/IP and other packets transmitted/received

over a network to which the computer is connected. Similarly, NetHogs4 is a small, very

useful tool to monitor network traffic by process-level. It is feature rich, straightforward

to use and can be easily installed on Linux machines. NetHogs also makes it easy to

identify programs that occupy an important portion of the available bandwidth.

Since all of these packet analysing tools can be used to measure the bandwidth usage

of a mobile device, we choose Tshark5, which is a command-line network packet analyzer

tool. It capture the live network traffic and can be used from inside a Python script. We

were able to measure the total number data transferred between the mobile robot and

the cloud with Tshark by embedding it in a python script, and using the script to capture

only the data traffic of the targeted foraging task. After each run of the task, the script

gives us the total network bandwidth used during the runtime of the foraging task.

4.2 Offline Profiling

In offline profiling, we instrument the HMC applications to search their energy-efficient

configurations using multi-objective optimisation. For this purpose, we wrote a Python-

based script, which implements an exhaustive search algorithm that iterates through all

the possible configurations. As we discussed in Section 3.4, the total number of configu-

rations for ImageEffects are 3600, for Mather are 83 and for the foraging task are 32, 400.

The script runs on a PC and executes the HMC applications on a smartphone and the

foraging task on the Raspberry Pi. One execution of the applications is with one config-

uration from their respective sets. For the whole runtime, the total power consumption,

total network usage and total execution time are measured as discussed in Section 4.1.

Also, executing the HMC applications manually and repeatedly with all of these config-

urations is time-consuming and practically not feasible. Therefore, an automatic process

3http://www.tcpdump.org/tcpdump_man.html
4http://nethogs.sourceforge.net/
5https://www.wireshark.org/docs/man-pages/tshark.html
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is required that executes the apps repeatedly and each time with a new configuration.

In the following subsections, we discuss how to automate the executions of the HMC

applications.

4.2.1 Executing Android-based HMC Applications

The Android-based HMC applications (ImageEffects and Mather) are automatically ex-

ecuted using Python-based script. We used the exhaustive search algorithm, shown in

Algorithm 1, to measure the efficiency of all the configurations. The algorithm repeat-

edly executes the apps in its outer while loop, each time with a new configuration. The

Python script uses an open-source library called AndroidViewClient6 to interact with the

HMC application on the smartphone, which is connected to the PC via a USB cable. This

library provides higher-level operations and the ability to obtain a tree of Android UI

Views present at any given moment on the device or emulator screen and performs op-

erations on it. Alternatively, Android’s library MonkeyRunner can also be used for the

same purpose.

An exhaustive search algorithm is pre-provided with all the configurations (S) for

both HMC applications (ImageEffects and Mather). In each iteration, the Monitor appli-

cation (discussed in 4.1.1 along with an HMC application is launched. A configuration

is passed to them as a command-line argument. During runtime, the script sends inputs

(commands, parameters and touch events) to the views of both launched applications.

After the HMC application completes a single run, it is programmed to terminate. The

script using the ps command finds the HMC application is terminated. The Monitor is

then stopped by sending it the stopping command, and the recorded measurements from

the Monitor for the current configuration are passed to the PC. This process is repeated

until all the configurations are exhaustively applied to find their efficiency.

The Monitor app measures: the total power consumption of all the components

(WiFi, CPU and LCD) the HMC application is using, the total network bandwidth us-

age (Tx+Rx) and the execution time of the app for the current configuration. When the

automation script stops the Monitor app, a string having all the recorded measurements

(config + power + Tx + Rx + data + runtime) for the current configuration is created.

6https://github.com/dtmilano/AndroidViewClient/wiki
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It is then sent to the PC over a socket connection, which is then parsed and the recorded

values are stored in a SQL database on the PC.

Algorithm 1 Exhaustive Search Algorithm Executes MC Hybrid Apps with Configura-
tions and Measures Efficeincy of the Configurations

1: device← connectToDevice()
2: if device == null then
3: return
4: end if
5: S ← ConfigurationSet
6: count← 1
7: while count ≤ n do . n = total number of configurations in S
8: device.shell(Monitor App, S[count])
9: device.shell(HMC App ( α), S[count])

10: while true do
11: app← device.shell(ps | grip α) . α = HMC app
12: if app == null then
13: break
14: end if
15: end while
16: device.touch(x,y) . Stop the Monitor app
17: count← count+ 1
18: end while

4.2.2 Executing Python-based HMC Robotic Task

For the HMC foraging task performed by the Raspberry Pi controlled Thymio robot, we

wrote another automation Python-based script (similar to the one we used for Android-

based systems). The core of the script is composed of an exhaustive search algorithm,

which goes through all the 32, 400 configurations of the task. The script runs on the

PC and executes the foraging task using SSH to the Raspberry Pi. Using the exhaustive

search algorithm, the task is executed repeatedly and each time with a new configuration.

The battery power consumption is recorded using the in-line digital multimeter. The

network usage is recorded using Tshark, as discussed in Section 4.1. The recorded battery

power consumption, network usage and execution time are stored for later usage.

4.3 Finding Statistically Significant Configurations

Statistical test aims to uncover a significant difference between samples (we called a mea-

sured efficiency of a configuration after a single execution of the HMC application as a
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sample). In order to uncover the difference between the the power and data usage of col-

lapsible configurations, we will do the statistical tests. Based on the result of the test, we

will either accept or reject the null hypothesis. As discussed in Section 3.2.2, collapsible

configurations are those that map same modules but having different granularity level.

During the statistical test, we will compare power and data measurements of indi-

vidual runs of HMC applications. This is required because the collapsible configurations

may lead to different battery consumption and network usage, due to their implemen-

tation as discussed in Section 3.2.2. For sample size, say “n”, the efficiency of a config-

uration is measured “n“ times. In this work we will execute the the HMC applications

for multiple times with a each configuration, therefore, we will get a sample size of the

number of times the application is executed.

The sample size is important because a larger sample size will give us more con-

fidence over any expected difference, given the noise in the system. However, as there

exist outliers of measured power or network usage of the executions, their presence leads

to substantial distortions of parameter and statistic estimates when using statistical tests.

Therefore, we first eliminate the outliers from the samples before using the statistical

tests.

4.3.1 Outlier Elimination

We noticed during manual analysis of the data, generated during offline profiling (dis-

cussed in Section 4.2), that for some configurations the power consumption values, of

some samples deviate markedly from others. Therefore, to eliminate such outliers, we

do outlier elimination. Many outlier tests have been proposed [127]. Some of the more

commonly used tests are the Grubbs’ test, Tiejen-More test, Generalized Extreme Stu-

dentized Deviate (ESD) Test. We wrote a Java-based tool that implements Grubbs’ test.

It accesses all the “n” samples of the efficiency of the configurations and applies Grubbs’

test repeatedly until all the deviated power consumption values are removed. It then

takes new measurements to replace the eliminated ones in the samples. Now that we

have the efficiency of all the configurations recorded with no outliers, we can carry out

statistical tests. This will filter the statistically significant configurations in the collapsible

sets.
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4.3.2 Hypothesis Test

Finding statistically significant configurations is important because in the collapsible sets

(discussed in Section 3.2.2) any observed difference between the efficiency of any two

configurations may be due to other factors. In other words, the efficiency of any two col-

lapsible configurations happened to be different due to some uncontrolled variables. For

example, the operating system was doing system related tasks, and the HMC application

took more computation time, or the data packets were dropping due to congestion in the

network. Also, it might be due to any unexpected experimental error. As the uncon-

trolled variables cannot be avoided entirely so, due to their presence, to select efficient

configurations hypothesis testing becomes essential.

A hypothesis cannot be proved, but can only be accepted/rejected based on a statis-

tical test result. So, the test will either accept or reject a null hypothesis. If the probability

value of the test for two configurations is less than 0.5%, the null-hypothesis is then re-

jected. This shows that the configurations are statistically significant. Therefore, to select

the statistically significant configuration, the null-hypothesis should be rejected

We establish the null-hypothesis by assuming that any two configurations in the col-

lapsible sets have no real difference in terms of their recorded power consumption and

bandwidth usage values. The difference in the means of power and bandwidth hap-

pened merely due to the uncontrolled variables. The measured power consumption

data of the samples of the configurations is not normally distributed. Therefore, non-

parametric hypothesis tests are best to apply to such data. We created a Java-based

tool that iterates through all the collapsible sets and applies Wilcoxon rank-sum test [67]

(a non-parametric statistical hypothesis test) to the configurations in each set. The tool

stores the statistically significant configurations from the sets. When the tests are com-

pleted, the tool then searches the non-dominated configurations in the collapsible sets,

as discussed in the following section.
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4.4 Filtering the Configurations

This is the final step in our workflow. To achieve efficient HMC applications, we use a

filter only to pick (if present) the non-dominated configuration(s) along with their sta-

tistically significant configuration(s) in each of the collapsible sets. The rest of the con-

figurations in all the collapsible sets are removed since they are dominated and are not

statistically significant.

4.4.1 Selecting Non-Dominated Configurations

A collapsible set has one or more than one non-dominated configuration(s). They are

more efficient than others in terms of minimum power consumption or network usage.

The Java-based tool (discussed in Section 4.3.2) finds them and stores them in a final

configuration set. This set is composed of: 1) statistically significant and non-dominated

configurations in the collapsible sets, 2) non-collapsible configurations, which were not

part of collapsible sets. The efficient configurations, for the Android-based HMC appli-

cations (ImageEffects and Mather) and the foraging task performed by the robot, are then

searched in their final configuration sets.

4.4.2 Pareto Efficient Configurations in the Final Set

The final configuration set is created that has a mix of configurations of the three gran-

ularity levels. The non-dominated configurations in the final set are the Pareto-optimal

configurations, making a Pareto-front as shown in Figure 4.1. These configurations are

superior to the others when both of the two objectives are considered [117]. Also, these

configurations optimise the efficiency trade-off and provide efficient alternatives to the

HMC application in terms of battery power consumption and network usage.

4.5 Case Studies

In this section, we explain the experiments conducted and their obtained results. To

achieve efficient hybrid mobile-cloud computing (HMCC) systems, we discussed our

technique in Chapter 3. The applications selected as a test-bed for the experiments were

introduced in Section 3.4. In this chapter, we established a workflow, that we use for
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Minimizing Battery Power Consumption (Joules)
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FIGURE 4.1: The efficiency of configurations are plotted in this graph. The
configurations making the Pareto front are the Pareto efficient configura-
tions. The dots represent class-level, method-level and hybrid-level con-

figurations in three different colours.

multi-objective optimisation of the configurations for the HMC applications. We follow

the workflow to carry out the experiments in the following subsections.

4.5.1 Experimental Setup

We created a lab environment to conduct the experiments, which was composed of the

following entities.

1. Two endpoints, one for execution of the mobile application and one for the cloud

application.

2. A desktop PC, which runs: 1) The automation scripts (discussed in Section 4.2) cre-

ated for offline profiling of Android-based HMC applications and robotic foraging

task. 2) The image storing server program for ImageEffects (written in Java). 3) A

Java-based server program that receives the measurements from the Monitor app

and stores them in a SQL database. 4) A Python-based program that implements

Tshark for measuring network usage during code-offloading use by the foraging
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task. 5) A Python-based program to communicate with the digital multimeter and

measures the recorded battery power consumption of the robot.

3. A Small Office or Home Office (SoHo) network which connects the PC and the two

endpoints.

For the Android-based HMC applications (ImageEffects and Mather), we used an

Android-based smartphone “Motorola Moto G4" for the mobile endpoint. For the cloud

endpoint, we set-up an Android-x86 virtual environment on the PC. The HMC applica-

tions and the Monitor application were installed on the endpoints. To send input com-

mands or clicks to the views of the applications via ADB (Android Debug Bridge), the

smartphone was connected to the PC through a USB cable. We execute the automation

script on the PC, which runs the exhaustive algorithm to find the efficiency of all the con-

figurations for the HMC applications. To get n samples of a configuration c, the script

executes each of the HMC applications for a n number of times with the configuration c.

The Python-based script for the HMC foraging task (mobile version) was installed on

a battery powered Raspberry Pi device, which controls a Thymio robot. We executed the

server version of the task on the PC. To use the code offloading, both endpoints were able

to communicate with each other using the SoHo network.

4.5.2 Understanding the Framework Used for Android Applications

Before we jump into the results obtained for the ImageEffects and Mather, it is important

first to understand how the underlying mobile-cloud framework behaves with differ-

ent configurations of the same application. For this purpose, We created a prototype

Android-based HMC application (we call it Proto). The Proto application is build to use

the HMC framework. It consists of two Java classes, where each has two offloadable

methods. Each method evaluates a different and randomly selected arithmetic expres-

sion. These expressions are: 1) Given a number x, method "A" finds factors of all the

numbers from 1 to x, 2) Given a number x, method "B" finds the factorial of x, 3) Given a

number x, method "C" finds the multiplication of: x ∗ x matrix - having randomly gener-

ated numbers from 1 to 100, 4) Given a number x, method "D" evaluates the expression:
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tan(tan(tan(x))). Based on the three levels of granularity (discussed in Section 3.1), a

total of 36 configurations for the Proto app were obtained.

We performed three tests with the Proto app. The computation level of the app was

increased subsequently in each test, which was achieved by increasing the input value of

parameter x in each method. In all the three tests, we obtained 100 samples of the con-

figurations and then filtered the configurations to obtain the final set. The statistically

significant and non-dominated configurations in the collapsible sets and non-collapsible

configurations for the Proto app, for all the three tests, are plotted on 2D graphs in Fig-

ure 4.2. We produced two different dot-graphs (Figure 4.2a and Figure 4.2b) of the tests,

in which the configurations of the Proto app before and after applying the filter are re-

spectively shown. The data points on the graph are the configurations, where the x-axis

value is the mean of the total power consumption and the y-axis value is the mean of the

network usage. We analyse the results in the following subsection.

While the computation level of the Proto app in each test was increasing subse-

quently, the network usage of the app using code-offloading was the same. After the

offline profiling of the Proto app, we have observed the following features from the re-

sults that reflect the behaviour of the framework.

All-zero and all-one configurations

These are the configurations with which an HMC application executes all the offloadable

modules either on a mobile device (all-zero) or offloads (all-one) to the cloud. In all-

zero configurations, the battery power is consumed as the modules execute on a mobile

device and there is no network usage. The all-one configurations come with the cost of

using the network and consuming the battery power by the transmitter chip. We can

see in Figure 4.2a, when the computation level of the Proto app was low (test-1), the

all-zero configurations were more efficient. As the computation level of the application

was increasing (test-2 and test-3), the all-one configurations were turning out to be more

energy-efficient than all-zeros with the cost of maximum network usage. The all-zero

configurations can be seen in cluster-0 of test-1 and test-2, and cluster-1 of test-3. The

all-one configurations can be spotted in cluster-4 of test-1 and test-2, and cluster-3 of

test-3.
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Test 1 Test 2 Test 3

configurations

cluster 0 (All zeros)

cluster 1

cluster 2

cluster 3

cluster 4 (All ones)

cluster 0 (All zeros)

cluster 1

cluster 2

cluster 3

cluster 4 (All ones)

cluster 1

cluster 2

cluster 3

(a)

Pareto front
Pareto front

configurations

Test 1 Test 2 Test 3

(b)

FIGURE 4.2: Plots showing the results obtained from three different pro-
filing tests. The tests were carried out with a prototype Android-based
application (Proto) to understand the underlying mobile-cloud applica-
tion framework. The computation level of the app increases in each test
subsequently. (a) All configurations of the app forming in clusters. We can
see that the configurations are turning into vertical shape clusters from
horizontal after increasing the computation level of the app. (b) The fil-
tered configurations having the Pareto efficient configurations making the

Pareto front.
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Clusters of configurations

We can see in Figure 4.2a, the configurations of the Proto app formed into different clus-

ters after their efficiency was measured. The clusters are formed based on the amount of

battery power consumption and network usage. The configurations that have nearly the

same network usage formed into horizontal type clusters. These configurations have the

same number of modules mapped as one, which is to use code-offloading. As shown in

Figure 4.2a, we can see four clusters of configurations in test-1 and test-2 that are num-

bered on the bases of the number of modules using code-offloading.

When the computation level was low (test-1), the configurations in the clusters were

near to each other. When the computation level was increased (test-2), the distance be-

tween the configurations in the clusters also increased. This is because the modules that

were doing complex computation consumed more battery power and moved to the right

of their clusters. This behaviour is more prominent in test-2 (Figure 4.2a), where the

configurations inside the clusters are more expanded.

When the computation level was maximum (test-3), the clusters of configurations

become more prominent in vertical form rather than the horizontal form as shown in

Figure 4.2a. Those configurations that consumed more battery power are now in the right

cluster (cluster-3). This is because the modules they mapped were more computationally-

intensive. As the third method of the Proto app is x ∗ x matrix multiplication, which is

the most computationally-intensive method. Therefore the configurations with the third

digit set to zero landed into cluster-3. In cluster-1, the configurations that consumed less

battery power are present. These configurations offloaded the computationally-intensive

modules to the cloud. Therefore, they consumed less battery power with the cost of using

more network.

Pareto-optimal configurations

As discussed in Section 4.4.2, the final configuration set for the Proto app for all the

three tests are created. This set contains the statistically significant and non-dominated

configurations in the collapsible sets and the non-collapsible configurations. The final

configuration set is plotted on the 2D graphs in Figure 4.2b. We can see that when the

computation level is low (test-1), running all the modules on the mobile device (all-zero)

81



Chapter 4. Multi-Objective Optimisation of Hybrid Mobile-Cloud Applications

TABLE 4.1: Pareto efficient configurations of the Android-based MC hy-
brid applications obtained are listed. They are obtained as a result of of-
fline profiling of the MC hybrid apps. The number of samples obtained of
the configurations, and the efficiency of each configuration is stated. The

configurations are of different granularities.

MC Hybrid App Configuration Granularity Level Samples Efficiency of Configurations
Runtime (sec) Battery Power Consumption (mJ) Network Bandwidth Usage (KB)

Mean Mean Standard Deviation Mean Standard Deviation
Proto App (Test-1) 00 class 100 2.99 279.645 70.7518 0 0

Proto App (Test-2)
00 class 100 3.02 614.6129 98.5792 0 0

01:010 hybrid 100 3.00 538.8065 83.726 2.2568 0.0871
10:001 hybrid 100 3.00 378.0 74.2911 3.8861 0.0836
10:011 hybrid 100 3.01 344.4839 74.5848 5.6719 0.0997

Proto App (Test-3)
01:000 hybrid 100 9.35 5241.2903 1162.5894 0 0
01:010 hybrid 100 5.99 2204.6774 510.2685 2.3155 0.0682
1010 method 100 5.01 958.9355 158.1123 4.4542 0.0683

01:110 hybrid 100 2.99 504.2258 89.6743 5.84 0.0803

ImageEffects
1010:00000000 hybrid 30 10.03 2666.685 587.5 133.0 0.8

1000:010000 hybrid 30 8.13 1166.69 267.0 669.7 1.3
1011:110000100 hybrid 30 8.02 1066.7 308.9 1065.7 1.4

1000100000 method 30 8.09 967.569 279.3 1201.3 1.5
Mather 01:0000 hybrid 100 20.06 16756.871 3096.783 0 0

001000 method 100 20.12 14737.9677 2970.083 3.072 0.026
10:0110 hybrid 100 20.07 10895.452 2754.441 3.728 0.047

with class-level configuration is the right choice. In other words, there is no need for

using code-offloading or executing the app with fine or hybrid-level granularity config-

urations when the app is not doing too much computation. However, when the compu-

tation level increases (test-1 and test-2), we get a Pareto-front (shown with a red line). The

configurations forming the Pareto-front are the Pareto-optimal configurations. These are

efficient in terms of battery power consumption and network usage. The efficient config-

uration in Test-1 and the Pareto-optimal configurations of test-2 and test-3 of the Proto

app are shown in Table 4.1. We can see a mixed level of granularities of the efficient

configurations, which shows that multi-level granularity is important for achieving op-

timisation in HMC applications.

The mean execution time of the Proto application for the Pareto-optimal configura-

tions is also stated as a runtime in Table 4.1. We can see that as the computation level

increases (from test-1 to test-3), the execution time of the app with all-zero configura-

tions increases. The execution time of the hybrid-level efficient configuration (01 : 110) in

test-3 is same as the class-level efficient configuration (00) in test-1. In other words, with

a maximum computation level (test-3), offloading three out of four modules (01 : 110)

took the same time as running all the four modules (00) on the mobile device and with

less computation level (test-1). This shows that the performance of an HMC application

can be improved while using multi-level granularity for achieving optimisation in HMC

applications.
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Power and Network consumptions per modules running on the cloud

We have tracked the behaviour of the Proto application executing the same number of

modules on the cloud with different configurations, as shown in Figure 4.3. The mean

power consumption and network usage per number of modules offloaded are shown in

Figures 4.3a and 4.3b respectively. We can see in Figure 4.3a, when the computation level

was low (test-1), using code-offloading was energy-inefficient. The power consumption

was increasing per number of modules using code-offloading. However, as the compu-

tation level was increasing (test-2 and test-3), we can see that the code-offloading was

becoming energy-efficient. The high number of modules executing on the cloud was con-

suming less battery power of the mobile device. This implies that running an HMC

application with all-zero configurations, when the computation level of the app is low,

can result in less power consumption than running on all-one configurations. On the

other hand, when the computation level of the app is high. Executing it with all-one

configurations can result in less power consumption than running on all-zero configura-

tions. Moreover, we can see in Figure 4.3a (during test-2) the power consumption using

method-level configurations (fine-grained) is comparatively higher than the class-level

and hybrid-level configurations. This phenomenon is due to the fact that the decision

to offload a method is checked for every offloadable method in each class. On the other

hand, for a class-level configuration there is only one checking point for the whole class.

The network usage of the Proto app, running the different number of modules on the

cloud, for mixed granularity level of configurations is shown in the line graph in Figure

4.3b. The network used by the modules of the app using code-offloading was the same in

the three tests. It is because the input parameter "x" of the methods was an integer value.

Also, the result generated by the modules was an integer value. The small difference

between the network usage, which can be seen in the graphs, is due to the network or

platform overhead.
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4.5.3 Results for the Android-based HMC Applications

In the previous subsection, we have discussed the behaviour of the MC application

framework using a Proto app. Which gave us insight to better understand how the con-

figurations of the two HMC applications (ImageEffects and Mather) will form after ex-

ecuting them using the MC application framework. The total number of configurations

for ImageEffects were 3040. For Mather, we had a total of 83 applicable configurations.

We were able to get 30 and 100 samples of all the configurations of ImageEffect and

Mather respectively. In the below subsections we discuss the results for each of the apps

separately.

Results for ImageEffects

The mean of power consumption and network usage of the configurations of ImageEf-

fects are plotted on a 2D graph and shown in Figure 4.4a. We can see the configurations

forming into two vertical-type clusters, which is similar to the behaviour of clusters of

configurations, discussed in Section 4.5.2. The configurations that consumed more bat-

tery power are in the right-side cluster. The majority of these configurations are those

that execute the modules involved in the image processing task on the mobile device.

We can also see that the all-zero configurations, which use no code-offloading, are at

the bottom of the graph. These configurations used a small amount of network - only

for uploading/downloading images to the image server. The all-one configurations are

in the left side cluster, except the method-level (1111111111), as they remotely execute

the modules and consumed less battery power. The all-one method-level configuration

(1111111111) is near the top of the right side cluster. This is due to the flip-flop pattern of

data send and receive over the network for the maximum time (in the case of 1111111111

is ten times), which use more battery power and network overhead. The flip-flop pattern

in all-one class-level configuration (1111) is the lowest (four times). Therefore, we can

see it uses less network than other all-one configurations.

The filtered configurations in the collapsible sets along with non-collapsible configu-

rations are shown in Figure 4.4b. We can see the Pareto-optimal configurations forming

the Pareto-front. They are also listed in Table 4.1. These configurations are efficient in

terms of minimum network usage and battery power consumption. Also, we can see
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that they are of different granularity level (method-level and hybrid-level), which shows

that multi-level granularity is important for optimisation of HMC applications.

Figures 4.4c and 4.4d show the power and consumption of multiple granular configu-

rations. We can see that running a maximum number of modules on the cloud consumed

less power and network for class and hybrid-level configurations. The method-level con-

figurations, due to the flip-flop pattern, consumed more data and power when running

maximum modules on the cloud. However, they are efficient in terms of battery power

consumption when running between one and five modules on the cloud.

Results for Mather

Mather evaluates mathematical expressions as discussed in Section 3.4.1. For the exper-

imental purpose, we evaluate a 10 ∗ 10 matrix multiplication. The results obtained are

plotted on graphs in Figure 4.5, where the all-zero and all-one configurations are also

labelled. As in the Proto app and ImageEffects, the all-zero configurations of Mather are

also at the bottom as they do not use the network for code-offloading. The filtered config-

urations in the collapsible sets along with the non-collapsible configurations are shown

in Figure 4.5b. We can see the Pareto-optimal configurations form the Pareto-front and

these configurations are also stated in Table 4.1. They are of the method and hybrid-level

of granularities. The resultant shape of the Pareto front for Mather is a concave shape.

While this is not typically expected for min-min problems, it is possible here, since;

1. For Mather only 75% of the configurations were feasible, which means that the

search-space was restricted.

2. The two objective functions are not independent. This dependency is due to the

fact that the transmitter also uses power when sending or receiving data. So when a

configuration sends/receives more data, it also uses more power and will be shifted

towards the upper-right of the graph. This can result in a concave Pareto front.

The Figures 4.5c and 4.5d shows the power consumption and network usage by num-

ber of modules offloaded to cloud with multiple granular configurations respectively.

Due to the fact that all the configurations in search space for Mather were not applicable,

the power consumption forming a saw-tooth effect per number of modules on cloud.
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All Zeros

All Ones

(a)

configurations

Pareto Front

(b)

(c) (d)

FIGURE 4.4: Plots showing configurations for ImageEffects HMC applica-
tion. (a) All configurations of mixed granularity forming in two vertical
shape clusters. The configurations running the computationally-intensive
modules of the app are in the right side cluster. (b) Filtered configurations
in the collapsible sets along with the non-collapsible configurations. The
Pareto efficient configurations making the Pareto front are also shown. (c)
Battery power consumption and (d) network usage per number of mod-
ules running on the cloud. Each line represent different granularity level

of the configurations running the modules.

4.5.4 Results for Robotic Task

For the HMC foraging task, performed by Thymio robot, we did preliminary offline pro-

filing first. This includes taking 30 samples of all of its class-level configurations and

1 sample of all of the method and hybrid-level configurations. As the total number of

method-level and hybrid-level configurations were 16, 384 and 16, 000 respectively, it
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is not feasible to exhaustively search them in a limited amount of time. From the one

sample of method and hybrid-level configurations (taken during preliminary profiling),

we then select the best 150 configurations on the bases of minimum battery power and

network usage. We took 29 more samples of the selected configurations, resulting in a

total of 30 samples. These configurations (all of class-level, selected 150 method-level

and hybrid-level) are plotted in Figure 4.6a. We can see the all-zero configurations of

All ones

All zeros

(a) All feasible configura-
tions of mixed granularity for

Mather application.

configurations

Pareto Front

(b) Filtered configurations
in the collapsible sets along
with the non-collapsible
configurations. The Pareto

front is labeled.

(c) Battery power consump-
tion per number of modules

running on the cloud.

(d) Network usage per num-
ber of modules running on

the cloud.

FIGURE 4.5: The results obtained from offline profiling of the Mather (an
HMC application) are plotted in these graphs.
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mixed granularity at the bottom of the plot, as they are not using the network due to

code-offloading.

To achieve an efficient HMC foraging task, we applied the filter to these configura-

tions (discussed in Section 4.4). We divided these configurations into collapsible sets, in

which we only picked the non-dominated configuration(s) along with their statistically-

significant configuration(s) if they were present. In the end, we created a final set of

configurations by combining all the collapsible sets along with the configurations which

were not collapsible. The configurations in the final set are plotted in Figure 4.6b, which

also shows the Pareto front. The non-dominated configurations in the final set are the

TABLE 4.2: Offline profiling of the mobile-cloud foraging task carried out
by a Raspberry Pi controlled Thymio robot. The number of samples ob-
tained of the configurations and their mean and standard deviation of bat-
tery power consumption and network bandwidth usage along with total

samples and their average execution time are stated.

Configuration Granularity Level Samples Runtime (secs) Battery Power Consumption (Joules) Network Bandwidth Usage (kB)
Mean Mean Standard Deviation Mean Standard Deviation

1011:001000000001 Hybrid 30 32.6 0.2849 0.0113 38.2503 0.0695
00100000000000 Method 30 32.6 0.2958 0.018 15.9743 0.0971
00000000000000 Method 30 32.6 0.3061 0.0136 0 0

Pareto-optimal configurations, listed in Table 4.2. These configurations are superior to

the others when the objectives are considered [117]. Also, these configurations optimize

the efficiency trade-off and provide efficient alternatives to the HMC application in terms

of battery power consumption and network usage. As offline profiling was carried out

in a place near to the wireless base station with no interference, the mean runtime of all

the configurations was the same.

The Figures 4.6c and 4.6d shows the power consumption and network usage by some

modules offloaded to the cloud with multiple granular configurations respectively. We

can see that the method-level and hybrid-level modules on the cloud are not complete

for the full number of modules. It is because we select 150 number of method-level and

hybrid-level configurations in the preliminary profiling, in terms of minimum power and

network usage.
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4.6 Limitations of the Approach

In this chapter, we have discussed a workflow to obtain energy efficient configurations

of HMC applications. The following are some of the limitations.

1. The workflow is using HMC application framework that are build for Android-

based and Linux-based applications. Other mobile OSs such as IOS for iPhones or

All-zero

(a) Configurations of mixed
granularity for the foraging

task.

Pareto Front

(b) Filtered configurations
in the collapsible sets along
with the non-collapsible
configurations. The Pareto

front is labeled.

(c) Battery power consump-
tion per number of modules

running on the cloud.

(d) Network usage per num-
ber of modules running on

the cloud.

FIGURE 4.6: The results obtained from offline profiling of the HMC for-
aging task, performed by a battery powered and Raspberry Pi controlled

Thymio robot, are plotted in these graphs.
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iPads are not supported by the framework.

2. The offline framework discussed in this chapter, we have used exhaustive search

algorithm to find the Pareto-optimal configurations. For HMC applications that

have more than 15 offloadable modules, the exhaustive search algorithm will be

time consuming to use in the offline profiling.

3. The HMC application framework works only for applications using Object Ori-

ented Programming paradigm. Other paradigms such as functional programming

and procedural programming are not supported.

4.7 Summary of Contribution

In this chapter, we discussed a workflow that can be used to achieve energy-efficient

hybrid mobile-cloud applications. The workflow uses multi-objective optimisation to

find a balance between the two conflicting objectives we consider: minimising battery

power consumption and minimising network usage. We discussed how the objective

functions are measured to obtain the efficiency of configurations. The statistical tests

are done to filter statistically significant and non-dominated configurations in which the

Pareto-optimal configurations are obtained. The Pareto-optimal configurations optimise

the efficiency trade-off between power consumption and network usage.

We applied the workflow on two Android-based HMC applications (ImageEffects

and Mather) and a foraging task performed by a battery-powered and Raspberry Pi con-

trolled Thymio robot. Using offline profiling the Android-based applications and the

robotic task was instrumented to find the efficiency of their configurations. Python-

based scripts that implement exhaustive search algorithms were used to automatically

and repeatedly executes the applications and the task. To understand the behaviour of

the MC framework and to use the workflow to optimise the efficiency trade-off, we eval-

uate the obtained results with a Proto application we created. From the results analysis,

we highlight the following main contributions.

1. Using the hybrid mobile-cloud framework (discussed in Section 3.3) in line with the

workflow, can achieve energy-efficient mobile computing systems (smartphones
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and robots). The efficiency trade-off between power consumption and network

usage was optimised for Android-based HMC applications and Python-based tasks

performed by mobile robots.

2. Computation offloading is energy effective when computationally-intensive mod-

ules are offloaded to the cloud. The total power consumption, including computing

and communication power, is low in this case.

3. Computation offloading is in-effective when less computationally-intensive mod-

ules are offloaded to the cloud. In this case, the total power consumption is lower

when they are executed on mobile devices.

4. The mobile applications that have low computation level will result in the forma-

tion of horizontal type clusters of configurations that execute the same number of

modules on the cloud when code offloading is used. On the other hand, mobile

applications having high computation level will result in the formation of vertical

type clusters of configurations.

5. The efficient configurations obtained for the HMC applications had mixed granu-

larity levels. This shows that the granularity level is important to consider during

code offloading, to achieve energy-efficient hybrid mobile-cloud applications.

As mentioned in Section 4.2, the exhaustive search algorithm was used during offline

profiling. The time it takes to exhaustively search the configurations depends on the

total number of modules. Therefore, the larger the configuration set the more time the

exhaustive search will take to find the efficient configurations. Estimated time for more

than 20 modules would be more than a month for one execution for all configurations.

Also, the exhaustive search algorithm searches for every configuration of any level of

granularity, which takes a long time. Therefore, evolutionary algorithms such as Genetic

Algorithms (GAs) and a more intelligent search algorithm can be implemented. The

GAs take less time to converge, albeit to approximate optimal solutions. They will be

discussed in the next chapter.
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Scalable Mobile-Cloud Hybrid

Computing Systems

In this chapter, we will discuss search algorithms that could be used to find approximate

to Pareto-optimal solutions and provide scalable options for HMC applications in terms

of their size proportion to their offloadable modules. For a large number of offloadable

modules, using the exhaustive search algorithm (to find Pareto-optimal configurations) is

not a feasible option, regarding the time it takes to search the configuration sets. There-

fore, depending on the time constraint, it may be suitable to get an approximation to

the Pareto-optimal configurations in a reasonable amount of time. Multi-objective op-

timisation (MOO) algorithms represent a viable alternative to find this Pareto-optimal

approximation set in one run potentially. We will use two multi-objective optimisation

algorithms, which will be applied in this work: NSGA-II [42] and Two-Step search algo-

rithm. We will compare the performance of these algorithms in terms of the quality of

the algorithms’ outcomes.

5.1 Challenges in Scaling Up

In order to find the Pareto-optimal configurations, we previously have used the exhaus-

tive search algorithm in the offline profiling discussed in Section 4.2. The problem is that

the exhaustive search algorithms enumerate all configurations present in the set in order

to determine the energy-efficient configuration(s). If the total number of configurations

is large, the time to complete the exhaustive search will be high. To give an estimation:
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• For a total of 83 configurations of Mather (discussed in Section 3.4.1), the offline

profiling took around two weeks to run the exhaustive search algorithm 30 times

independently.

• For a total of 3, 600 configurations of ImageEffects (discussed in Section 3.4.1), the

offline profiling took more than a month to run the exhaustive search algorithm 30

times independently.

• For a total of 32, 400 configurations of the HMC foraging task (discussed in Sec-

tion 3.4.2), the offline profiling took more around a month for only one run of the

exhaustive search algorithm.

TABLE 5.1: The number of configurations increases exponentially when
the offloadable modules increases.

Modules Configurations
8 256
14 16,384
20 1,048,576 million

The total number of possible configurations increases exponentially (2n) when the

number of offloadable modules, n, are increased for an HMC application. As stated in

Table 5.1, it would take too much time to search efficient configurations for 20 offloadable

modules. Such problems for which no known algorithm can find a solution to exact

optimum in feasible amount of time are called NP-hard [56]. Therefore, to find Pareto-

optimal configurations for the HMC applications performing robotic tasks, exhaustive

search algorithms are best to use for only a small configuration sets.

5.2 Approaches to Scale Up

The term “scaling up” is used in different ways. Broadly, it refers to “doing more”. For

example, adding more resources to an existing system to reach a desired state of perfor-

mance. In the case of our workflow, scaling up is required so that an approximation to

the Pareto-optimal configurations by a search algorithm, in a reasonable amount of time,

can be achieved. To potentially find this Pareto-optimal approximation set in one run,

we discuss in the following subsections two search algorithms.
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5.2.1 Two-Step Search

The applications designed for mobile devices (smartphones, robots) use the available

device-limited libraries or resources such as GPS, sensors. Some classes that use them

are not fit for offloading to the cloud as a whole. This results in very few numbers of

classes that are fit for offloading either fully or partly. On the other hand, the methods in

offloadable classes are usually in a high number. Therefore, the class-level configuration

set in HMC applications, comparatively smaller than the method and hybrid-level, can

be searched exhaustively in feasible time.

We design the Two-Step search algorithm to explore the configuration sets of HMC

applications in two searching steps: 1) The first step aims to explore the class-level con-

figuration set exhaustively to obtain the best class-level configurations. 2) The second

step aims first to search the collapsible method and hybrid-level configurations of the

obtained class-level configurations in step 1 and then randomly search their neighbour

configurations.

The class-level configurations obtained in step 1 are the Pareto-optimal. We create

their collapsible method-level and hybrid-level configurations. The neighbour configu-

rations are obtained by flipping the bits of the collapsible configurations randomly. Fig-

ure 5.1 illustrates how the Two-Step search algorithm works. The circles represent the

limit of the neighbour search space.

Algorithm 2 presents the pseudocode for the Two-Step search. It starts by generat-

ing the class-level configurations, taking the number of class-level offloadable modules.

In the first step, the efficiency of the generated class-level population is measured using

offline profiling (in line 2). It finds the power and network usage by running HMC appli-

cations with the configurations. After the profiling is finished, it calculates fronts based

on minimum power and network values of the configurations. The non-dominated so-

lutions represent the Pareto-optimal approximation set.

For selecting the the best configurations from the class-level population, we apply

the crowding distance [42] of NSGA-II to rank the configurations (in line 4). Crowding

distance is widely used in MOO to measure the density of solutions surrounding a par-

ticular solution in an already sorted population according to each objective function.

Alternatively, clustering of solutions using Euclidean distance between solutions can be
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Method-level
Configurations

Hybrid-level
Configurations

Class-level 

Configurations

FIGURE 5.1: Two-Step search algorithm. The class, method and hybrid-
level configuration sets are shown. The red dots in the class-level set rep-
resent the best configurations searched in the first step. The blue dots
in method-level and red dots in hybrid-level configuration sets are the
collapsible configurations of the respective best class-level configurations.
The circles represent the neighbour configurations of the collapsible best

configurations that can be searched.

used, which would require a very large amount of computation. Using the crowding dis-

tance metric, the computation is done in a fast manner. The selection starts with the best

non-dominated front and iterates through all fronts. A configuration presenting a high

crowding distance value is selected (in line 5). We select the best 5 configurations from

the population as the elitist class-level configurations. In general elite means choosing

the best of anything considered collectively. The selected elitist configurations are the

best in the population considering the power and network usage.

The second step of the Two-Step search algorithm starts with finding the method and

hybrid-level configurations (lines 6 and 7) of the elite class-level configurations of the

first step. They are then used to execute the HMC application, which is profiling the app

using these configurations (lines 8 and 9).

The Two-Step algorithm is used for the experimental work explained in the case stud-

ies section later in this chapter. In the experimental work, we will be expecting an ap-

proximation to the Pareto front we had in exhaustive search algorithm.
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Algorithm 2 Two-Step Search Algorithm

1: pop← Population(MODULES) . First Step
2: PROFILE(pop, “classLevel")
3: pop.findfronts()
4: pop.findCrowdingdistance()
5: elitePop← pop.findClasslevelElitistPop()
6: methodLevelPop← findMethodLevelPop(elitePop) . Second Step
7: hybridLevelPop← findHybridLevelPop(elitePop)
8: PROFILE(methodLevelPop, “methodLevel")
9: PROFILE(hybridLevelPop, “hybridLevel")

10: procedure PROFILE(pop, granularityLevel)
11: robot← connectToDevice()
12: for each config ∈ pop.configs do
13: power, net, execT ime← getMeasurements(robot, config, granularityLevel)
14: pop.saveMeasurements(config, power, net, execTime)
15: end for
16: end procedure

5.2.2 Evolutionary Algorithms (NSGA-II)

NSGA-II, a Non-dominated Sorting Genetic Algorithm II, is a fast elitist population-

based algorithm for Multi-objective Optimisation [42]. It has the following features:

1. It uses an elitist principle, i.e., the elites of a population are given the opportunity

to be carried to the next generation.

2. It uses an explicit diversity preserving mechanism (crowding distance).

3. It emphasises the non-dominated solutions.

In the Two-Step search algorithm, we have used NSGA-II in the second step. It starts

by creating a population of individuals (i.e configurations). We used the binary represen-

tation of individuals as discussed in Chapter 3. As the representation does not carry the

information of how many offloadable methods are in a class, we implemented this infor-

mation in the algorithm. To select the parents in each generation, we used the tournament

selection. To create a child, we used Uniform Crossover operator. With the crossover prob-

ability as 0.5, each gene (bit) is selected randomly from one of the corresponding genes

of the parent chromosomes. We used Flip Mutation which works by flipping a gene (bit).

With a very low mutation probability 0.2, it involves changing 0 to 1 and 1 to 0. We will

discuss the genetic operators used in our implementation of NSGA-II in more details in
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the case study section of this chapter. For a comprehensive revision of the algorithm fea-

tures, refer to [42]. Using offline profiling (discussed in Section 4.2), we implemented the

NSGA-II algorithm in the Python script.

5.3 Case Studies

In the case studies, we will compare the outcomes of the two multi-objective optimisa-

tion algorithms (NSGA-II and Two-Step) discussed in Sections 5.2.2 and 5.2.1, respec-

tively. Performance assessment includes both the quality of the outcome as well as the

computational resources needed to generate this outcome. Concerning the latter aspect,

the number of fitness evaluation will be the same for both algorithms. As to the quality

aspect, comparing solutions in the presence of multiple criteria, the Pareto dominance

concept must be used. However, when comparing two sets of solutions, some solutions

in either set can be dominated by solutions in the other set, and some solutions can be

incomparable.

As both algorithms contain randomness, due to the stochastic nature of the algo-

rithms, for obtaining a well-based judgement related to the quality performance, it is

necessary to perform any test over many algorithm runs. Therefore, to obtain meaning-

ful statistical significant results, we executed both algorithms ten times, each time with a

different seed for random number generator for both method and hybrid-level configu-

ration sets.

To compare the quality of the solution sets produced by these two MOO algorithms,

we used two different unary indicators: 1) hypervolume indicator (S-metric) [29] and 2)

attainment surface [92]. These indicators are discussed in the following sub-sections.

5.3.1 Hypervolume Indicator

The hypervolume is a unary value, which is calculated as the sum of the areas formed

by points on the non-dominated front and a chosen reference point (w). Figure 5.2a

shows the area of the bi-dimensional region enclosed by a set of non-dominated points

and a reference point (W) considering a minimisation problem. It is a well-known qual-

ity measure in evolutionary multi-objective optimisation to evaluate the performance
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of search algorithms [29, 24]. Hypervolume takes into account the diversity as well as

the convergence of the non-dominated solutions. The reference point (W) represents

some upper boundary of the region within all feasible points lie. The basic idea is that,

for a bi-dimensional minimisation problem, the larger the area dominated by one non-

dominated set in the objective space, the better the set is. To compare the performance

of the two MOO algorithms, we will calculate the hypervolume of the obtained Pareto-

optimal approximation set for each algorithm after each run.

Hypervolume

W

N o n - d o m i n a t e d  
S o l u t i o n s

f1

f2

(a)
f1

f2

20

40

60

80

Attainment Surface

(b)

FIGURE 5.2: In (a) the hypervolume for a minimisation problem, calcu-
lated as the area enclosed by the non-dominated solutions and a chosen
reference point (w), is shown. It computes the size of the region that the
non-dominated points dominates. In (b) the attainment surface is created
for a number of non-dominated solutions for a minimisation problem. It
provides a description of the distribution of the obtained non-dominated

set using the notion of goal-attainment.

5.3.2 Attainment Surface

The attainment surface corresponds to a region in the objective space which is attained

by (dominated by or equal to) the good solution(s) returned by a MOO algorithm. It is

formalised in the concept of the k%-attainment surface. Figure 5.2b shows the results

obtained from arbitrary multiple runs of a MOO algorithm describing the distribution of

the obtained non-dominated set using the notion of goal-attainment. The best attainment

surface is the limit between the region attained by at least one run and the objective vec-

tors never attained by any run. Whereas the worst attainment surface delimits the region
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attained by all runs. The graphical visualisation of attainment surface is a powerful tool

providing a good insight into the algorithm performance. Lopez et al. [92] developed

graphical tools for the analysis of bi-objective optimisation algorithms that plot the at-

tainment surface of the solution sets. We will use the tool in R to plot the probabilistic

distribution of the configurations along the Pareto front, obtained by the two algorithms.

The tool calculates the empirical attainment function (EAF), which provides a summary

of the outcomes of the ten different runs of each algorithm. By plotting and compar-

ing the EAFs of the two algorithms, we will be able to pinpoint several performance

behaviours.

5.3.3 Android Applications

The Android-based hybrid mobile-cloud applications (ImageEffects and Mather) were

both used as test-bed applications for the exhaustive search algorithm. As discussed in

Section 4.5, using the exhaustive search algorithm we were able to get the Pareto-optimal

configurations for both these applications. As a rule of thumb [69], the objective functions

evaluation was kept to 30 for each configuration using the exhaustive search algorithm.

In this case study, we will only consider the ImageEffects - an HMC Android-based

application, because of its high number of method-level configurations (1, 024) and hybrid-

level configurations (2, 560). For the Mather, the configuration set (having a total of 83

configurations) can easily be searched exhaustively to find the energy-efficient configu-

rations.

For the NSGA-II implementation, we empirically chose some parameters based on

results in the literature. The parameters were set as population size = 20, number of gen-

erations = 30 and the tournament population size = 10. The genetic operator parameters

were set as crossover probability = 0.5 and mutation probability = 0.2. We executed both

MOO algorithms (NSGA-II and Two-Step) ten times, and the number of objective func-

tion evaluation was kept the same (600) for both algorithms in each run. We compare the

results of both algorithms with the result of the exhaustive search algorithm in terms of

the hypervolume and attainment surface indicators in the following subsections.
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Result of Hypervolume Indicator for ImageEffects

Figure 5.3 shows the mean hypervolume values of the method-level and the hybrid-level

configurations, for the ten runs of NSGA-II throughout the generations. We can see that

the algorithm has fully converged for both configuration sets.
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FIGURE 5.3: The mean hypervolume obtained for ten runs of NSGA-II
throughout the generations. The dots represent the mean hypervolume
level of the ten runs for the number of generations. The two lines are for
the method-level and the hybrid-level configuration sets created for the

ImageEffects.

To compare the performance of the two MOO algorithms and the exhaustive search

algorithm in terms of the obtained non-dominated solutions, we have calculated the hy-

pervolume in each run. For this comparison, we randomly chose ten runs of the exhaus-

tive search algorithm from the results obtained previously (discussed in Section 4.5.3).

The box-and-whisker plot in Figure 5.4 shows the distribution of hypervolume values

for the method-level configuration set. We can see that the exhaustive search algorithm

finds near to true Pareto-optimal configurations, where the median of the hypervolume

for ten runs is 0.98. There is variance in the obtained hypervolume values, where the

standard deviation is 0.02. This is because of the noisy nature of the objective functions.

The medians of the hypervolume for both MOO algorithms are nearly at the same

level (median for NSGA-II = 0.91 and median of Two-Step = 0.93). However, as we can

see the underlying distributions are very distinct. It indicates a better consistency in the

hypervolume values (for the ten runs) for the Two-Step algorithm when compared with

NSGA-II.
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FIGURE 5.4: A box-and-whisker plot showing the hypervolume distribu-
tion of ten independent runs of Exhaustive search, NSGA-II and Two-
Step algorithms. The non-dominated configurations obtained by the al-
gorithms were for the method-level configuration sets created for the Im-

ageEffects.

The box-and-whisker plot in Figure 5.5 shows the distribution of hypervolume val-

ues for the hybrid-level configuration set. Given the ten runs, the exhaustive search finds

near to the Pareto-optimal configurations, as the resultant median is “0.99” with a stan-

dard deviation of “0.007.

The medians of the hypervolume for both MOO algorithms are nearly at the same

level (median for NSGA-II = 0.984 and median of Two-Step = 0.989). However, as we can

see the underlying distributions are very distinct. It indicates a better consistency in the

hypervolume values (for the ten runs) for the NSGA-II algorithm when compared with

Two-Step.

Result of Attainment Indicator for ImageEffects

To visualise the behaviour of the exhaustive search and the two MOO algorithms (NSGA-

II and Two-Step), we plotted the attainment surface of the non-dominated solutions ob-

tained by these algorithms. The attainment surface illustrates wherein the objectives

space and by how much the outcomes differ for the method-level and hybrid-level con-

figuration sets.

Figures 5.6a, 5.6b and 5.6c show the attainment surface of the obtained non-dominated

method-level configurations by exhaustive, NSGA-II and Two-Step search algorithm re-

spectively. Additional to the best and the worst attained surface, we have also shown
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FIGURE 5.5: A box-and-whisker plot showing the hypervolume distribu-
tion of ten independent runs of Exhaustive search, NSGA-II and Two-
Step algorithms. The non-dominated configurations obtained by the al-
gorithms were for the hybrid-level configuration sets created for the Im-

ageEffects.

the attainment surface with other percentiles (20%, 40%, 60%, 80%). We can see that the

attainment surface of method-level configurations obtained by the Two-Step search al-

gorithm is more compact concerning all percentiles compare with NSGA-II algorithm.

Similarly, in the case of hybrid-level configurations, the attainment surface obtained

by the Two-Step search algorithm is even more compact with respect to all percentiles as

shown in Figure 5.7.

Figure 5.6d points out the differences between exhaustive and NSGA-II, while Figure

5.6e points out the differences between exhaustive and Two-Step algorithms; the differ-

ence is with respect to their corresponding EAFs. The value of the EAF indicates the

probability of attaining an area in the objective space. The performance of an algorithm

will be considered better than the other if its EAF value at a particular area is larger than

the other. The grey level represents the magnitude of the difference. From the figures,

we can see that in the two MOO algorithms, Two-Step search performs better in terms of

finding good solutions towards minimisation of network usage in method-level config-

uration sets as well as in the hybrid-level configuration set as shown in Figures 5.7d and

5.7e.
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5.3.4 Robotics

In this case study, we will consider the HMC foraging task performed by a battery-

powered and Raspberry Pi controlled robot as a test-bet to compare the performance of

the two MOO algorithms in terms of hypervolume and attainment surface indicators. We

will use the method-level and hybrid-level configuration sets of the foraging task. The

total number of configurations in the method-level set are 16, 384 and in the hybrid-level

set are 16, 000. For the NSGA-II implementation, we empirically chose some parameters

based on results in the literature. The parameters were set as population size = 10, num-

ber of generation = 30 and the tournament population size = 5. The genetic parameters

were set as crossover probability = 0.5 and mutation probability = 0.2.
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FIGURE 5.6: Ten independent outcomes obtained for the method-level
configuration set of ImageEffects by the three different algorithms. With
respect to six quartiles: In (a) the attainment surface of exhaustive search
is shown, in (b) the attainment surface of NSGA-II is shown, and in (c)
the attainment surface of Two-Step is shown. The location of the differ-
ence between the EAFs of exhaustive search and NSGA-II (d) and exhaus-
tive search and Two-Step (e) is shown where the gray level represents the

magnitude of the difference.
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FIGURE 5.7: Ten independent outcomes obtained for the hybrid-level con-
figuration set of ImageEffects by the three different algorithms. With re-
spect to six quartiles: In (a) the attainment surface of exhaustive search is
shown, in (b) the attainment surface of NSGA-II is shown, and in (c) the
attainment surface of Two-Step is shown. The location of the difference
between the EAFs of exhaustive search and NSGA-II (d) and exhaustive
search and Two-Step (e) is shown where the gray level represents the mag-

nitude of the difference.
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Result of Hypervolume Indicator for the foraging task

We run each algorithm ten times, and the hypervolume was calculated for each obtained

non-dominated solutions for both algorithms. The reference point used was the same

in all obtained solutions in both algorithms. The box-and-whisker plots in Figure 5.8

and Figure 5.9 show the distribution of hypervolume values for the method-level and

hybrid-level configuration sets, respectively.
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FIGURE 5.8: A box-and-whisker plot showing the hypervolume distribu-
tion of ten independent runs of NSGA-II and Two-Step MOO algorithms.
The non-dominated configurations obtained by the algorithms were for

the method-level configuration sets created for the foraging task.
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FIGURE 5.9: A box-and-whisker plot showing the hypervolume distribu-
tion of ten independent runs of NSGA-II and Two-Step MOO algorithms.
The non-dominated configurations obtained by the algorithms were for

the hybrid-level configuration sets created for the foraging task.
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For the method-level configuration set, the medians of the hypervolume for both al-

gorithms are nearly at the same level. However, the underlying distributions are very

distinct. It indicates a better consistency in the hypervolume values (for the ten runs)

for the Two-Step algorithm when compared with NSGA-II. Given the amount of time

(two weeks) that both algorithms took to generate these results, we can say that the Two-

Step algorithm performed well. If the time constraint is removed, the NSGA-II might

perform better by increasing its number of generations. As we can see in Figure 5.10,

the mean hypervolume value, corresponding to the mean hypervolume value for the ten

runs throughout the generations, has not fully converged for the method-level configu-

ration set.

For the hybrid-level configuration set, it is evident from Figure 5.9 that the Two-Step

algorithm performed better than the NSGA-II. In the case of NSGA-II, the distribution of

the hypervolume values shows a large spread. Similar to the method-level configuration

set, the mean hypervolume value has not fully converged as shown in Figure 5.10.
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FIGURE 5.10: The mean hypervolume obtained for ten runs of NSGA-II
throughout the generations. The dots represent the mean hypervolume
level of the ten runs for the number of generations. The two lines are for
method-level and hybrid-level configuration sets created for the foraging

task.

Result of Attainment Indicator for the foraging task

For the foraging task, to visualise the behaviour of the two MOO algorithms (NSGA-II

and Two-Step) and illustrate where in the objectives space and by how much the out-

comes differ for the method-level and hybrid-level configuration sets, we plotted the
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attainment surface of the non-dominated solutions obtained by the two algorithms.

Figures 5.11a and 5.11b show the attainment surface of the obtained non-dominated

method-level configurations by NSGA-II and Two-Step search algorithm respectively.

Additionally to the best and the worst attained surface, we have also shown the attain-

ment surface with other percentiles (20%, 40%, 60%, 80%). We can see that the attain-

ment surface of method-level configurations obtained by the Two-Step search algorithm

is more compact for all percentiles. Similarly, in the case of hybrid-level configurations,

the attainment surface obtained by the Two-Step search algorithm is even more compact

for all percentiles as shown in Figure 5.12.

Figure 5.11c points out the differences between the two algorithms concerning their

corresponding EAFs. The value of the EAF indicates the probability of attaining an area

in the objective space. The performance of an algorithm will be considered better than

the other if its EAF value at a particular area is larger than the other. The grey level rep-

resents the magnitude of the difference. From the figure, we can see that the Two-Step

search algorithm performs better in terms of finding good solutions towards minimi-

sation of network usage that was not good towards the minimisation of power usage.

On the other hand, the NSGA-II performs better towards high-quality configurations for

the minimisation of power consumption and also slightly for the minimisation of both

objectives.

5.4 Summary of Contributions

In this chapter, we discussed a solution to scale up the method of achieving energy-

efficient HMC applications. The scale-up strategy is composed of using evolutionary

algorithms, such as NSGA-II, and an intelligent Two-Step search algorithm; which we

introduced for searching efficient configurations for HMC applications. The analysis of

the obtained results provided some key facts regarding how much an HMC application

for Android-based smartphones or a task for mobile robots can be scalable, proportional

to the number of their offloadable modules, to produce efficient configurations that op-

timise the trade-off between power and network usage. Some key findings in line with

the main contributions are enumerated as follow.
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FIGURE 5.11: Ten independent outcomes obtained for the method-level
configuration set by the two different MOO algorithms. In (a) the attain-
ment surface of Two-Step is shown with respect to six quartiles. In (b) the
attainment surface of NSGA-II is shown with respect to six quartiles. In
(c) the location of the difference between the EAFs of the two algorithms
is shown where the gray level represents the magnitude of the difference.

1. For small-scale HMC applications, the exhaustive search algorithm is appropri-

ate to use for finding the Pareto-optimal configurations. In the Two-Step search

algorithm, we used an exhaustive search to find Pareto-optimal class-level config-

urations (in the first step) because of a small number (4) of class-level offloadable

modules for both ImageEffects and foraging task. The total number of configura-

tions were 16 for which the exhaustive search algorithm took around 30 minutes

to complete. However, in case of the offline profiling (discussed in Section 4.2), the

110



Chapter 5. Scalable Mobile-Cloud Hybrid Computing Systems

Power Consumption (joules)

N
e
tw

o
rk

 U
sa

g
e
 (

K
B

)

(a)

-

Power Consumption (joules)

N
e
tw

o
rk

 U
sa

g
e
 (

K
B

)

(b)

(c)

FIGURE 5.12: Ten independent outcomes obtained for the hybrid-level
configuration set by the two different MOO algorithms. In (a) the attain-
ment surface of Two-Step is shown with respect to six quartiles. In (b) the
attainment surface of NSGA-II is shown with respect to six quartiles. In
(c) the location of the difference between the EAFs of the two algorithms
is shown where the gray level represents the magnitude of the difference.

exhaustive search took more than a month to find the Pareto-optimal configura-

tions for the total number of configurations (32, 400) in all the three sets (class-level,

method-level and hybrid-level) combined of the foraging task. According to our ex-

periments, offloadable modules between 2 to 8 would lie the so-called small-scale

HMC applications. The class-level and method-level configurations of Mather are

2 and 6 respectively and can be considered a small-scale HMC application.

2. For medium-scale HMC applications, the exhaustive search algorithm will take a
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significant amount of time to complete and, therefore, would not be practical to

use. In this case, evolutionary algorithms, such as NSGA-II, are appropriate to use,

which can approximate the Pareto-front solutions in a reasonable amount of time.

For the ImageEffects and Foraging task, where the number of class-level configu-

rations for both is equal to 16, and the combined method-level and hybrid-level

configurations are equal to 3, 584 and 32, 384, both the Two-Step and NSGA-II were

feasible to use. They took about one week for the ImageEffects and two week time

for the foraging task, for the ten independent runs to complete. According to our

experiments, offloadable class-level modules less than 8 and method-level modules

higher than 8 would lie the so-called medium-scale HMC applications. ImageEf-

fects and foraging task both can be considered medium scale HMC applications.

For both of these two HMC applications, the Two-Step algorithm performed better

than NSGA-II.

3. For large-scale HMC applications, the Two-Step search algorithm would not be

practical to use as the exhaustive search in step 1 would not complete in a feasible

amount of time. For such applications, finding a scalable solution is an open re-

search question that we will leave for future work. According to our experiments,

offloadable class-level and method-level modules higher than 8 would lie the so-

called large-scale HMC applications.
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Self-Adaptive and Self-Aware

Hybrid Mobile-Cloud Computing

Systems

So far we have discussed achieving energy-efficient and scalable HMC applications de-

veloped for Android-based smartphones and Raspberry Pi controlled robots. They use

code-offloading and multi-objective optimisation techniques to optimise the trade-off

between battery power consumption and network usage. We created a workflow and

instrument the applications to measure the efficiency trade-off, using offline profiling

discussed in Section 4.2. The results of the offline profiling produced Pareto-efficient

configurations. In this chapter, we will discuss how these configurations can be used

together on-the-fly, while not compromising the performance of the HMC applications

in terms of power consumption and execution time. We will discuss in particular about

runtime decision mechanisms by employing self-adaptivity and self-awareness in our

HMC framework. The runtime decision of the framework will be based on (1) changing

of the environment (i.e. change in WiFi signal level with time), and (2) itself in a chang-

ing environment (i.e. actual observed packet loss in the network). Also, we will discuss

a workflow that can be employed that can be used for online profiling.
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6.1 Runtime Optimisation

In Chapter 4, we discussed how to instrument the HMC applications to measure the

battery power and network usage during one complete run of the applications using of-

fline profiling. In the case studies, discussed in Section 4.5, we carried out experiments

to obtained Pareto efficient configurations of two Android applications and one robotic

task. These configurations are energy-efficient and describe which modules of the appli-

cations should run on the device or the cloud. The offline profiling was carried out in a

controlled lab environment where the mobile device was operated in the best coverage

location of the wireless base station (i.e. WiFi router). As there were no obstacles in the

middle that could obstruct the WiFi signals, there was no wireless interference during

the communication between the device and the cloud. However, in real life, the external

conditions change with the time and can affect the application’s execution. For exam-

ple, the mobile device moves to a location where it is: 1) subject to wireless interference,

or 2) receiving good signals but there is a congestion in the network. In both scenarios,

there will be packet loss during communication between the device and the cloud, which

will result in network latency. The performance of applications will degrade when us-

ing code-offloading if there is latency in the network. By enabling the HMC framework

with self-adaptivity and self-awareness makes it able to monitor its operative context to

take run-time decisions, which is to use the right configuration and, therefore, avoid the

network latency.

6.1.1 Self-Adaptive Hybrid Mobile-Cloud Computing (HMCC) Systems

Self-adaptivity can enable hybrid mobile-cloud applications to modify their behaviour

at run-time, in response to the changing environment and make better decisions on how

to use the available resources [100]. In the context of HMCC systems (i.e. smartphones

and robots), as the mobile device moves, the WiFi signal level degrades over time. This

is because of wireless interference caused by factors such as obstacles in the middle of

the communication channel between a mobile device and the base station. The signal

degradation can cause packet loss, which results in network latency. The packet loss in
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the network (if high) can cause long socket-wait time plus TCP retransmission at both

endpoints (mobile and cloud).

We consider the WiFi signals as the changing environment, which changes across the

network coverage area. In order to avoid network latency due to the low signal level,

the MC framework is modified so that it can monitor the signal levels continuously and

based on which makes self-adaptive decisions at runtime. If the signals are good, the

framework will switch to a configuration that is using code-offloading. If the mobile

device moves to an area where the receiving signal level is bad, then by using the self-

adaptive decision mechanism the framework will switch to the all-zero configuration

keeping the computation on the device. For example, if the signal level is degraded

(low) enough to cause latency due to packet loss, the framework will switch to run on

such a configuration that does not use the code-offloading.

Using the self-adaptivity in the proposed solution, the framework made decision

based on the Wifi signal level changes. The signal level is monitored continuously, and

when it is low enough and below a threshold the HMC application would switch to a

configuration to execute all the modules on a mobile device. The signal level is monitored

continuously by the application. Therefore, with the self-adaptive decision mechanism,

battery power consumption of the device is minimised.

6.1.2 Self-Aware Hybrid Mobile-Cloud Computing (HMCC) Systems

In line with the definitions from Lewis et al. [85, 86] and Kounev et al. [81], we consider

an HMCC system to be self-aware when it gathers knowledge, not just about the envi-

ronment, but about itself in that environment, on an ongoing basis. It is then able to use

this knowledge to drive its decision making at runtime. In a mobile-cloud (MC) scenario,

the availability of a high-quality network connection is one of the key requirements for

the mobile device to make effective use of code offloading [125]. While a self-adaptive

system observing the environment may base decisions on environmental factors such as

signal strength (as discussed above), self-awareness instead allows offloading decisions

to be based on monitoring the device’s behaviour within that environment, specifically in

this case, its success in communicating over the network. We operationalise this here by

enabling the device to monitor the level of packet loss while running the code-offloading.
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When this is low, the self-aware MC framework offloads code. When the packet loss is

sufficiently high, then the code is run on the device. By observing the actual runtime

impact of attempting to run the offloaded code, the device is no longer required to use

estimates, based on externally observable proxy features (i.e. signal strength).

6.2 Online Profiling

We use online profiling of the HMC applications (introduced n Section 3.4) to measure

the power consumption, network usage and execution time while the external environ-

ment is changing with time. The difference between offline and online profiling is that in

offline profiling we instrument the the HMC applications to find the efficient configura-

tions. In the online profiling, the environmental keeps changes during the runtime and

factors such as network delay and congestion add latency and effect the code-offloading

of HMC applications. Online profiling aims to validate the self-adaptive and self-aware

decision mechanism of our framework. For online profiling, we have created a controlled

lab environment which can be used to instrument applications and keep changing the ex-

ternal operating environment. The lab environment is discussed as follow.

6.2.1 Experimental Setup

We created a lab-based controlled setup for online profiling. While a mobile device re-

mains stationary during the online profiling, we used a bunch of tools to simulate the

packet loss on an intermediate node between the mobile device and the cloud server in

a wireless network.

As shown in Figure 6.1, a mobile device such as an Android smartphone or a Rasp-

berry Pi controlled robot can be connected to a PC via a USB cable of accessed via SSH.

We wrote Python-based scripts that automates the workflow for online profiling. The

workflow is to execute the HMC applications on the mobile device and measure the

power consumption, network usage and execution time during the runtime. During

the code-offloading, the data packets between a mobile device and the cloud server are

passed through the PC (an intermediate node), which controls the flow of the packets.

This is to simulate the latency in the wireless network. The offline profiling is performed
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for static offloading, no offloading, self-adaptive and self-aware decision mechanisms of

the framework.

Server
PCMobile Device

(Smartphone/Robot)

USB Cable

Wireless Connection

FIGURE 6.1: A mobile device (an Android smartphone or a Raspberry Pi
controlled robot) connected to a PC. Scripts running on the PC execute the
HMC applications on the mobile device and controls the flow of packets

between the mobile device and the server.

6.2.2 Network Latency

The delay of data packets in a network, incurred during communication of a message,

from a source node to its target node is called latency. It is usually measured as a round

trip delay, which is the time taken for data to reach the target node and come back again

to the source node. An HMC application, using code-offloading, sends a limited amount

of data to the cloud (using TCP/IP network) and then wait to receive an acknowledge-

ment before sending more data. If there is latency in the network, the MC application

will experience long socket-wait time and will retransmit the TCP packets with the cost

of using more battery power and network usage. Following are the two broad categories

that can cause latency in the network.
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Wireless Interference

Wireless interference causes signal level to degrade and typically comes from factors such

as physical barriers, i.e. concrete, metal, mirror, wood and water. Other factors like fre-

quency interference can also cause the signals to degrade. This happens when another

signal crosses the path of the signals coming to the mobile device on a similar band-

width and corrupt it. An example is a microwave oven, as they operate on the 2.4GHz

spectrum. This spectrum is also used by most mobile devices such as smartphones and

Raspberry Pi controlled Thymio Robot.

The wireless signal is always stronger and more reliable near to a wireless access

point. As shown in Figure 6.2, the mobile devices (S1 and N1) closer to the access point

(N1) have a good signal level. As the mobile devices move away from the access point,

the signal level degrades due to interference. The rate of packet loss increases with a

decrease in the signal level. This causes latency and, therefore, affects the execution of

the HMC application in case static code-offloading is used.

S4

S3

S1

S2

R1

R4

R3R2

N1 N2

N3

N4

Server

Good
Fair
Poor
No Signals

Signal Level

Coverage Area

FIGURE 6.2: Mobile devices in good proximity to a wireless access point
have good signals. Wireless interference degrades the signals and causes

packet loss as a mobile device moves away from the access point.
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S4
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R1

R4

R3R2

N1 N2

N3

N4

Server
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Poor
No Signals

Signal Level

Link failure

Coverage Area

FIGURE 6.3: A link failure or network congestion can cause packet loss
and latency when code-offloading is used.

Network Congestion and Network Failure

In a wireless network, a link failure can occur due to different reasons such as accidental

cable cuts, a human or software error. A link failure can result in runtime errors, i.e.,

“the host is unreachable" exception of Java Socket library. This causes packet loss and

results in latency. Other factors that can cause latency include network congestion. The

congestion in a network is due to overloaded network broadcast domain where too many

hosts are making requests at the same time and using the available bandwidth over its

limits. Due to which packet loss happens and results in latency.

In the context of HMC applications, latency due to the network congestion or a link

failure can deter the performance of the application. Mobile devices in good proximity

to the access point can also suffer from network congestion or link failure. As shown in

Figure 6.3, a link failure between N3 and N4 will affect all devices connected to N1 that

are using static code-offloading.
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6.3 Case Studies

In the case studies, we will evaluate the HMC applications (ImageEffects, Mather and the

Foraging task) using online profiling. We will be particularly looking into how the HMC

applications perform when there are packet losses causing latency in the network, in

terms of the execution time and power consumption. The applications will be executed

using the following four different modes. Using no offloading, using static offloading,

using self-adaptivity and using self-awareness.

1. Executing an HMC application using no code-offloading. This is to execute with

all-zero configuration.

2. Executing an HMC application using static code-offloading. This is to execute with

any configuration that uses one or more modules to offload to the Cloud.

3. Executing an HMC application using self-adaptive decision mechanism of the frame-

work. The execution will switch between modes one and two during execution.

4. Executing an HMC application using self-aware decision mechanism of the frame-

work. The execution will switch between modes one and two during execution.

6.3.1 Robotic Foraging Task

As discussed in Section 6.2.1, we created a lab-based controlled environment using which

we can execute the foraging task and perform online profiling. As we can see in Figure

6.1, the robot performing the task can be accessed from the PC. An automation script

that runs on the PC accessing the Raspberry Pi via SSH to perform the task and record

its power consumption, network usage and its overall execution time. We consider the

signal level variation, caused by factors such as wireless interference and network con-

gestion (discussed in Section 6.2.2), as the changing environment while performing the

foraging task. We operationalise the change in signal level in a Python script that exe-

cutes on the Raspberry Pi.

In the script, we used a list of numerical values that represent signal levels (from good

to low in dBm). The script broadcast one value each second, which represent the current

signal level of the wireless network. Doing so we were able to simulate the movement
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of the robot in the coverage. One cycle of the signal level variation takes 60 seconds

to complete. The cycle starts from a good signal level of −32dBm (upper level) and

decreases until a poor signal level of −90dBm (lower level) is reached. It then starts

increasing back to the upper level and then repeats. The data between the robot and the

server is passed through the PC as shown in Figure 6.1. The PC (acting as an intermediate

node) controls the flow of the packets. A script running on the PC receives the current

signal level, which is broadcast from the script on the Raspberry Pi. As the signal level

degrades, it causes packet loss. We imposed the packet loss at the Linux kernel-level

on the PC, which is aligned with the change in the signal level. For this to achieve, we

used Linux Traffic Control “tc" and Network Emulator “Netem" [9] command-line tools

to randomly drop a proportion of packets.

We modelled the packet loss with respect to the signal level as: 1) from −32dBm to

−70dBm the packet loss is 0%, 2) from −71dBm to −80dBm the packet loss is 20%, 3)

from−81dBm to−85dBm the packet loss is 50% and lastly 4) from−86dBm to−90dBm

the packet loss is 80%. We estimate these measurements by using Wireshark to observe

the packet loss for the signal level while moving the robot away from the access point in

the network coverage area.

Offline profiling at different signal levels

The offline profiling (discussed in Section 4.2) for the foraging task was carried out while

keeping the robot under the footprint of good signals (averaging around −32dBm) from

the access point. As the robot moves around the network coverage area, the signal level

changes and in some cases might degrade enough to cause a large amount of packet loss.

For the self-adaptive decision mechanism to switch between no offloading and static

offloading modes during the runtime, we need to find the signal thresholds for switch-

ing. We performed experiments using offline profiling at different signal levels. For each

of the two Pareto efficient configurations that use code-offloading (1011 : 001000000001

and 00100000000000), we executed the foraging task for 30 independent runs each time

at 7 different signal levels (mean of the signal levels) ranging from −53dBm to −90dBm.

For the all-zero configuration 00000000000000, as there is no network usage, there wont

be any changes of power consumption at different signal levels. Therefore, we did not
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do the profiling and kept it the same as before. The average battery power consump-

tion, network usage and execution time at these different signal levels are measured and

shown in Figures 6.4a, 6.4b and 6.4c respectively.

Determining the threshold for self-adaptive switching

We can see in Figure 6.4a, the battery power consumption in case of configurations

1011:001000000001 and 00100000000000 changes concerning a change in the signal level.

The signal degrades from a better (−32dBm) to a poor (−80dBm) level, during which

1011 : 001000000001 performed better than 00100000000000 and 00000000000000. Below

the signal level of −80dBm is an unstable network zone. In this zone, the power con-

sumption can either increase very high (due to TCP retransmission) or decrease very low

(due to latency). As shown in Figure 6.4b, with the configuration 00100000000000 the

execution suffered from a long socket-wait (latency) at signal level −87dBm (unstable

zone). While the mobile was suffering from packet loss at the receiving end, the cloud

was continuously retransmitting packets and using more network, as shown in Figure

6.4c. Similarly, execution with 1011 : 001000000001 suffered from TCP retransmission

at the signal level of −83dBm in the unstable zone. This caused high delay and high

network usage as shown in Figures 6.4b and 6.4c respectively.

Based on the above analysis, we choose the threshold for the self-adaptive switching

at a signal level of −80dBm. As shown in Figure 6.4a, the static offloading configura-

tion “1011 : 001000000001" performed better above −80dBm and the all-zero configura-

tion 00000000000000 is better below −80dBm in terms of battery power consumption.

Therefore, the self-adaptive decision mechanism of the framework while executing the

foraging task will use this static offloading configuration on and above−80dBm and will

switch to all-zero, when the signal level is below −80dBm.

Online profiling: Foraging Task

As discussed in Section 6.2.2, the rate of packet loss increases due to factors like wireless

interference, link failure and network congestion. The packet loss causes latency in the

network and, therefore, can affect the execution of the foraging task if the mode of static

code-offloading is being used. As a result, at the mobile endpoint, long socket-wait time
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FIGURE 6.4: Plots showing the results of profiling the Pareto efficient con-
figurations for the foraging task at different signal levels. (a) Mean power
consumption of 30 runs at different signal levels. (b) Mean network usage
of 30 runs at different signal level. (c) Mean execution time of 30 runs at

different signal levels.
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will cause more delay to the completion of the task. At the cloud, long socket-wait will

cause the mobile to retransmit the TCP packets with the cost of using more battery power

and network usage. We consider the following two scenarios, which are intended to

capture two contrasting types of environment that might be encountered by a robot.

1. In the first scenario, we will consider zero congestion in the network. As shown in

Figure 6.5, the congestion is kept at zero during the task execution.

2. In the second scenario, we introduce a high degree of network congestion (100%)

at certain times, when the packet loss is 100%, as shown in Figure 6.7. During the

congestion, the self-adaptive approach will not switch to all-zero configuration, as

the signal level would still be good (from −50dBm to −70dBm).

Results and Analysis

To evaluate the performance of the runtime decision mechanism of the framework us-

ing self-adaptivity and self-awareness, we executed the foraging task for an increased

time duration compared to the offline profiling. The task was executed on the robot and

during the runtime the proposed self-aware and self-adaptive approaches were used by

the task. The corresponding battery consumption cost has been included in the results.

For each of the two scenarios discussed previously, we obtained results for the following

four modes of execution.

1. Using no code offloading, which is executing the task with all-zero configuration

“C3".

2. Using static code offloading, which is executing the task with the configuration that

uses code-offloading “C1".

3. Using self-adaptive approach of the framework.

4. Using self-aware approach of the framework.

The measurements for the two online scenarios using the four execution modes are

listed in Table 6.1. The execution of the task withC3, which does not use code-offloading,
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C1

Self-Adaptive

Self-Aware

FIGURE 6.5: Plots showing results of the first scenario in which the robot
moves around the coverage area of the wireless network and perform the
foraging task. While roaming, the signal level changes because of wireless
interference and causing packet loss and resulting latency. In this scenario,
we are ignoring packet loss due to other factors like network congestion or
link failure. The cumulative mean of battery power consumption during
the execution is plotted over time. The lines end show the completion of
the task. The modes of execution using the self-adaptive and self-aware
decisions achieve better optimisation in a changing environment (signal
level variation). The mode of execution using static code-offloading C1
is affected by network latency. The mode of execution using no code-

offloading C3 used more power to complete the task.

is used as the same in both scenarios. We can see that the network usage was zero in this

execution. The executions of the task with C1, which uses code-offloading, suffered from

high latency in both scenarios. The network usage was high, which shows that extra data

was used due to latency or congestion that was dropping the packets. In the two online

profiling scenarios, the execution of the task was limited to only one. Therefore, as we

can see in Table 6.1, the mean values of power and network usages are from only one
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FIGURE 6.6: Plots showing results of the first scenario in which the robot
moves around the coverage area of the wireless network and perform the
foraging task. While roaming, the signal level changes in a random pat-
tern because of wireless interference and causing packet loss and result-
ing latency. In this scenario, we are ignoring packet loss due to other fac-
tors like network congestion or link failure. The cumulative mean of bat-
tery power consumption during the execution is plotted over time. The
lines end show the completion of the task. The modes of execution us-
ing the self-adaptive and self-aware decisions achieve better optimisation
in a changing environment (signal level variation). The mode of execu-
tion using static code-offloading C1 is affected by network latency. The
mode of execution using no code-offloading C3 used more power to com-

plete the task.

sample of their measurements. Also, we can see that the standard deviations values are

zero.

Furthermore, we have used two different lab-based setups to execute the foraging

task. In the first setup, the signal level degrades and improve in a continues order. This
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FIGURE 6.7: Plots showing results of the second scenario in which the
robot moves around the coverage area of the wireless network and per-
form the foraging task. While roaming, the signal level changes because of
wireless interference and causing packet loss. Also, we introduce packet
loss of 100% that is caused by factors such as congestion in the network or
a link failure. The cumulative mean of battery power consumption during
the execution is plotted over time. The lines end show the completion of
the task. The mode of execution using the self-aware decision mechanism
out-performed the self-adaptive, C1 and C3 modes of executions in terms
of using less power and complete in less time. It is because the robot moni-
tored the packet loss by observing its runtime impact i.e., avoiding latency.

represents that the mobile device is moving away and then coming towards the WIFI

access point, while there are no other obstacles in the middle to cause interference. In

the second setup, the signal level drops and improve randomly on the receiving mobile

device. This represents that there are obstacles in the middle causing interference. More-

over, the simulation time was further increased in the case of random signals because

the application also takes time to switch between configurations. Since the signals were
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FIGURE 6.8: Plots showing results of the second scenario in which the
robot moves around the coverage area of the wireless network and per-
form the foraging task. While roaming, the signal level changes randomly
because of wireless interference and causing packet loss. Also, we intro-
duce packet loss of 100% that is caused by factors such as congestion in
the network or a link failure. The cumulative mean of battery power con-
sumption during the execution is plotted over time. The lines end show
the completion of the task. The mode of execution using the self-aware
decision mechanism out-performed the self-adaptive, C1 and C3 modes
of executions in terms of using less power and complete in less time. It is
because the robot monitored the packet loss by observing its runtime im-

pact i.e., avoiding latency.

dropping/improving randomly, the number of switching were high in this case.

In scenario one, the mode of execution using the self-adaptive or self-aware decision

mechanisms resulted with consuming less battery power (with the cost of using the net-

work) compare to the mode in which no code offloading is used C3. This is shown in
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TABLE 6.1: Offline and online profiling of a mobile-cloud hybrid foraging
task performed by a Rasberry Pi controlled Thymio robot. The number of
executions per Pareto efficeint configurations and the mean and standard
deviation of battery power consumption, network usage and execution

time are stated.

Profiling Configuration Granularity Level Executions Execution Time (secs) Battery Power Consumption (Joules) Network Usage (kB’s)
Mean Mean Standard Deviation Mean Standard Deviation

Offline
C1 = 1011:001000000001 Hybrid 30 32.6 0.2849 0.0113 38.2503 0.0695

C2 = 00100000000000 Method 30 32.6 0.2958 0.018 15.9743 0.0971
C3 = 00000000000000 Method 30 32.6 0.3061 0.0136 0 0

Online (Scenario One)
C3 Method 1 251 0.4046 0 0 0
C1 Hybrid 1 368 0.29 0 486.539 0

Self-adaptive (C1, C3) Hybrid, Method 1 259 0.3793 0 192.117 0
Self-aware (C1, C3) Hybrid, Method 1 264 0.3885 0 169.51 0

Online (Scenario Two) C3 Method 1 251 0.4046 0 0 0
C1 Hybrid 1 415 0.4529 0 502.065 0

Self-adaptive (C1, C3) Hybrid, Method 1 298 0.4232 0 312.917 0
Self-aware (C1, C3) Hybrid, Method 1 255 0.3733 0 163.314 0

Figures 6.5 6.6. Using self-adaptive and self-aware decisions during runtime the execu-

tions did not suffer from latency as happened in the case of C1, which is executing the

task with static code-offloading. This is because the framework would switch to all-zero

configuration (C3) when the signal level was low and causing packet loss. Therefore, ex-

ecution with static code offloading using configuration C3 took more time to complete.

In scenario two, the execution of the task with the self-adaptivity or self-awareness

again performed better than C1 by taking less time to complete. However, with the

self-adaptivity, the execution suffered from latency due to packet loss caused by the net-

work congestion as shown in Figures 6.7 and 6.8. The mode of execution with the self-

awareness performed better by avoiding the packet loss caused by both network conges-

tion and low signal level due to interference. The self-aware decision mechanism con-

sumed less battery power than C3 and less network usage than C1 and the self-adaptive,

and also finished in good time.

It should be noted that in the lab setup that uses random signal drop/improve (Fig-

ures 6.6 and 6.8) the power consumption of executions using self-adaptive and self-aware

approaches is very less than the lab setup where the signals drop/improve were contin-

ues (Figures 6.5 and 6.7). This is because the executions were mostly using code offload-

ing as there were very occasional time slots where the packet loss was more than 50%.

129



Chapter 6. Self-Adaptive and Self-Aware Hybrid Mobile-Cloud Computing Systems

6.3.2 Android Application: ImageEffects

We implemented the self-adaptive and self-aware decision mechanisms in our Android-

based MC hybrid framework. The aim was to evaluate how they can perform on Android-

based mobile devices in terms of avoiding network latency and battery power consump-

tion. We performed online profiling for the ImageEffects (the Android-based MC hybrid

application). As shown in Figure 6.1, a mobile device, i.e. an Android-based smartphone

connected to a PC via USB cable, can be accessed from the PC to automate the execution

of the ImageEffects installed on the mobile device. A Python-based script, running on

the PC, automate the execution of ImageEffects and controls the packets flow from the

smartphone to the server passing through the PC (an intermediate node). We used the

Motorola G4 Android smartphone for the experimental study. As discussed in Section

4.1.1, the Monitor application was employed to measure battery power consumption,

network usage and execution time of one complete run of the ImageEffects.

To simulate the change in the WiFi signal level as the mobile device moves in the

coverage area of a wireless network, we created an application that runs on the mobile

device. The application has a cycle of signal levels starting from a good level and going

down to a weak signal level. This application broadcast the signal levels per second. The

Monitor and ImageEffects applications can receive the broadcasts using the Android’s

built-in Broadcast Receiver. Doing so we were able to profile the network latency. In the

experimental study, we evaluated the runtime behaviour of ImageEffects corresponding

to network latency caused by wireless interference and congestion.

Determining the threshold for self-adaptive switching

In Chapter 4, we discussed the offline profiling of ImageEffects, which was done under

the footprint of good signals (averaging around −30dBm) from the access point. How-

ever, as the signal level decreases, the network becomes unstable which can affect the

execution of MC hybrid applications when static offloading is used. Therefore, the self-

adaptive decision mechanism required the signal threshold. Below the threshold, the

execution will switch to all-zero configuration and will not be using the code-offloading.

To determine the threshold of signal level for the adaptive switching, we carried out

offline profiling at three different signal levels ranging from good to poor.
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TABLE 6.2: Offline and online profiling of the mobile-cloud hybrid
Android-based application: ImageEffects. The number of executions per
configurations and the mean and standard deviation of battery power con-

sumption, network usage and execution time are stated.

Profiling Configuration Granularity Level Executions Execution Time (secs) Battery Power Consumption (Joules) Network Usage (kB’s)
Mean Mean Standard Deviation Mean Standard Deviation

Offline
zero = 1010:00000000 Hybrid 30 10.03 2666.68 587.5 133.0 0.8

one = 1000:010000 Hybrid 30 8.13 1166.69 267.0 669.7 1.3
two = 1000100000 Method 30 8.09 967.57 279.3 1201.3 1.5

three = 1011:110000100 Hybrid 30 8.02 1066.7 308.9 1065.7 1.4

Online (Scenario One)
zero Hybrid 1 514 245.78 0 14529.95 0
one Hybrid 1 491 257.74 0 75608.73 0
two Method 1 542 267.1 0 82570.3 0

three Hybrid 1 667 361.19 0 119269.87 0
Self-adaptive (zero, one, three) Hybrid 1 446 239.37 0 67171.84 0

Self-aware (zero, one, three) Hybrid 1 458 235.51 0 70142.41 0
Online (Scenario Two) zero Hybrid 1 514 245.78 0 14529.95 0

one Hybrid 1 605 290.96 0 78170.29 0
two Method 1 704 304.47 0 93699.91 0

three Hybrid 1 598 279.18 0 73114.5 0
Self-adaptive (zero, one, three) Hybrid 1 565 226.35 0 74042.41 0

Self-aware (zero, one, three) Hybrid 1 436 216.53 0 60669.72 0

As shown in Figure 6.9, we have plotted the battery power consumption, network

usage and the execution time of the offline profiling at different signal levels. The four

Pareto efficient configurations (listed in Table 6.2) of ImageEffects were used. The mea-

surements from all-zero configuration (zero) were kept the same as before. We can see in

Figure 6.9a that the zero configuration has the highest power consumption at all signal

levels but has less network usage. Also, the execution with zero configuration will not be

affected by the network latency as shown in Figure 6.9c. On the other hand, as the signals

become poorer the execution with configuration “two" become more expensive in terms

of using the battery power. In the unstable network zone (below−80dBm), the execution

time with configuration “two" was more than the configurations using “one" and “three"

modules to offload to the cloud. Based on this analysis, we have chosen the following

switching thresholds for the self-adaptive decision mechanism for the Android-based

MC framework.

1. In the coverage area when the signals are robust, above −60dBm, the framework

will use the static code-offloading execution mode by employing configuration

“three".

2. The framework will use configuration “one" at and below −60dBm.

3. In the unstable network zone, below −80dBm, the framework will use configura-

tion “zero" to execute the tasks of ImageEffects.

131



Chapter 6. Self-Adaptive and Self-Aware Hybrid Mobile-Cloud Computing Systems

(a) (b)

(c)

FIGURE 6.9: Plots showing the results of profiling the Pareto efficient con-
figurations at different signal levels. (a) Cumulative power consumption
of 30 runs. (b) Cumulative network usage of 30 runs. (c) Cumulative exe-

cution time of 30 runs.
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Online profiling: ImageEffects

We discussed network latency caused by factors such as wireless interference and net-

work congestion in Section 6.2.2. To evaluate the runtime behaviour of ImageEffects in

the presence of network latency, we will use the lab-based controlled environment for

the online profile. We increased the execution time of ImageEffects completing the tasks.

We consider the following two scenarios, which are intended to capture two contrasting

types of environment that might be encountered by smartphone.

1. In the first scenario, we will consider zero per cent congestion in the network. As

shown in Figure 6.10, the congestion is kept zero during the application execution.

2. In the second scenario, we introduce a high degree of network congestion (100%),

where the packet loss is 100%, as shown in Figure 6.11. During the congestion, we

assume that the self-adaptive approach will likely be unable to switch to all-zero

configuration as the signal level would still be good (from −60dBm to −65dBm).

Results and Analysis

In the online profiling, the battery power consumption, network usage and execution

time for both scenarios were measured and listed in Table 6.2. The ImageEffects was

executed on the mobile device and during the runtime the proposed self-aware and self-

adaptive approaches were used. The corresponding battery consumption cost has been

included in the results. The execution with configuration “zero", which does not use

code-offloading, is used as the same in both scenarios. In both scenarios, we obtained

results for the following four modes.

1. Using no code offloading, which is executing the task with the “zero" configuration.

2. Using static code offloading, which is executing the task with the configurations

that offload “one", “two" and “three" modules.

3. Using self-adaptive approach of the Android-based framework.

4. Using self-aware approach of the Android-based framework.
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FIGURE 6.10: Plots showing results of the first scenario in which Image-
Effects, an Android-based MC hybrid application, is used while moving
around the coverage area of a wireless network. During runtime, the
signal level changes due to wireless interference and, therefore, causing
packet loss that results in latency. In this scenario, we are ignoring packet
loss due to other factors such as network congestion or link failure. Cu-
mulative battery power consumption during the execution is plotted over
time. The lines end show the completion of the task. The modes of ex-
ecution using the self-adaptive and self-aware decisions achieve better
optimisation in a changing environment (signal level variation) in terms
of completion time. The mode of execution using static code-offloading
“two" and “three" were greatly affected by network latency. The mode of
execution using no code-offloading “zero" used nearly the same power as

self-adaptive and self-aware, but take more time to complete.

We can see in Figure 6.10 that in the case of scenario one, the self-adaptive and self-

aware both were completed in less time than execution with “zero" configuration. These

executions consumed nearly similar battery power. The mode of executions using static

code offloading was affected by wireless interference.
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FIGURE 6.11: Plots showing results of the second scenario in which Image-
Effects, an Android-based MC hybrid application, is used while moving
around the coverage area of a wireless network. While roaming, the sig-
nal level changes because of wireless interference and causing packet loss.
Also, we introduce packet loss of 100% that is caused by factors such as
congestion in the network or a link failure. Cumulative battery power con-
sumption during the execution is plotted over time. The lines end show
the completion of the task. The mode of execution using the self-aware de-
cision mechanism out-performed the other modes of executions in terms
of avoiding latency and completed in less time, as it monitored the packet

loss by observing its runtime impact.

In scenario two, the execution mode using the self-aware decision mechanism per-

formed better than others in terms of avoiding the network latency caused by interfer-

ence. The execution mode using self-adaptive decision mechanism suffered from latency

due to packet loss caused by the network congestion as shown in Figure 6.11.
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TABLE 6.3: Offline and online profiling of the mobile-cloud hybrid
Android-based application: Mather. The number of executions per con-
figurations and the mean and standard deviation of battery power con-

sumption, network usage and execution time are stated.

Profiling Configuration Granularity Level Executions Execution Time (secs) Battery Power Consumption (Joules) Network Usage (kB’s)
Mean Mean Standard Deviation Mean Standard Deviation

Offline
zero = 01:0000 Hybrid 100 20.06 16.75 3.1 0 0
one = 001000 Method 100 20.12 14.74 2.97 3.07 0.03
two = 10:0110 Hybrid 100 20.07 10.89 2.75 3.73 0.05

Online (Scenario One)
zero Hybrid 1 492 37.53 0 0 0
one Method 1 520 35.62 0 58.94 0
two Hybrid 1 515 44.09 0 129.16 0

Self-adaptive (zero, one, two) Hybrid and Method 1 490 34.74 0 92.19 0
Self-aware (zero, one, two) Hybrid and Method 1 496 33.64 0 108.07 0

Online (Scenario Two) zero Hybrid 1 808 60.2 0 0 0
one Method 1 1046 77.73 0 117.99 0
two Method 1 1053 78.12 0 249.13 0

Self-adaptive (zero, one, two) Hybrid and Method 1 963 79.79 0 198.42 0
Self-aware (zero, one, two) Hybrid and Method 1 797 57.51 0 197.86 0

6.3.3 Android Application: Mather

As discussed in the previous case study (ImageEffects), we used the same workflow for

Mather to perform online profiling. We consider the same two lab-based scenarios. In the

first scenario, the wireless interference caused the number of packet loss due to latency

as shown in Figure 6.12. In the second scenario, the congestion in the network along

with the wireless interference caused the number of packet loss due to network latency

as shown in Figure 6.13. We increased the time of execution in order to understand

the effect of different network condition with time. In both scenarios, the execution of

Mather was done for the four modes of the MC framework. 1) Using no code-offloading

(zero). 2) Using static code-offloading (one and two). 3) Using the self-adaptive decision

mechanism. 4) Using the self-aware decision mechanism. The measurements recorded

for both scenarios are listed in Table 6.3.

Results and Analysis

The Mather was executed on the mobile device and during the runtime the proposed self-

aware and self-adaptive approaches were used. The corresponding battery consumption

cost has been included in the results.

In scenario one, the modes of executions using zero configuration, self-adaptive and

self-aware completed in nearly the same time as can be seen in Figure 6.12. These execu-

tions were not affected by the latency. In scenario two, the self-aware mode of execution

outperformed all others in terms of using less battery power. It also completed in less

time than others, as shown in Figure 6.13.
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FIGURE 6.12: Plots showing results of the first scenario in which Mather,
an Android-based HMC application, is used while moving around the
coverage area of a wireless network. During runtime, the signal level
changes due to wireless interference and, therefore, causing packet loss
that results in latency. In this scenario, we are ignoring packet loss due
to other factors such as network congestion or link failure. Cumulative
battery power consumption during the execution is plotted over time.
The lines end show the completion of the task. The modes of execu-
tion using the self-adaptive and self-aware decisions achieve better op-
timisation in a changing environment (signal level variation) in terms of
both power consumption and completion time. The mode of execution
using static code-offloading “one" and “two" were affected by network
latency. The mode of execution using no code-offloading “zero" com-
pleted in nearly the same time as self-adaptive and self-aware, but it con-

sumed more power.

6.4 Limitations of the Approach

In this chapter, we used self-adaptive and self-aware decision mechanism of the HMC

application framework to make runtime decisions. In the case studies, we discussed ex-

perimental results in which we used online profiling. We discuss some of the limitations
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FIGURE 6.13: Plots showing results of the second scenario in which
Mather, an Android-based HMC application, is used while moving
around the coverage area of a wireless network. During runtime, the sig-
nal level changes because of wireless interference and causing packet loss.
Also, we introduce packet loss of 100% that can be caused by factors such
as congestion in the network or a link failure. Cumulative battery power
consumption during the execution is plotted over time. The lines end
show the completion of the task. The mode of execution using the self-
aware decision mechanism out-performed all other modes of executions
in terms of avoiding latency and completed in less time, as it monitored

the packet loss by observing its runtime impact.

of the approach as following.

1. The self-adaptive and self-aware decision mechanisms only take into consideration

the signal level and packet loss as the changing factors. Other factors such as CPU

usage can added in the future work. For example, when the OS is using too much

processing power for system related tasks, the decision mechanism would decide

to offload the code to the cloud.
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2. During execution of the HMC applications, in the lab environment,To validate the

idea of energy-efficient, scalable, self-adaptive and self-aware mobile-cloud hybrid

computing systems, we presented our technique and discussed the experimental

results. However, this work can be extended in some areas. We discuss some future

direction as follow.

In this work, we have considered applications developed using Object Oriented

Programming paradigm for mobile devices. We modularise their code based on

classes and methods. We create configurations of applications which are coarse-

grained (class-level) or fine-grained (method-level). However, there are other types

of programming paradigms that are also used to develop application software, i.e.,

functional programming and procedural programming. Moreover, cross-platform

mobile applications are developed using HTML, Javascript and XML etc, where

the concept of OOP (i.e., classes) is not followed. This is one area that is strongly

recommended to be explored in the future.

Secondly, in this work, as we have mentioned in Chapter 3, the programmers of

an HMC application annotate the code manually during the development time.

This is done to identify offloadable modules in the code. A converter application

is then used to analyse the source code and inject the offloading interface for the

modules that were annotated. In future work, static analysis of the applications

can be used to automatically find which modules are suitable for code offloading.

The computationally-intensive modules can be identified by techniques such as the

number of lines of code in a module, data types used in a module, the number of

times a loop will execute etc.

Thirdly, we have used multi-objective optimisation to minimise two objectives, bat-

tery power consumption and network usage, using offline profiling. The future

work could extend the multi-objective optimisation to more than two objectives.
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For example, the objectives of minimising delay and maximising application’s per-

formance could be added to offline profiling. Moreover, the experimental work us-

ing offline profiling can be extended to other underlying technologies, e.g., mobile-

edge and mobile-fog. Currently, we have only considered mobile-cloud as the un-

derlying technology.

Fourthly, the Two-Step search algorithm, which we proposed in this work, con-

verges in a feasible amount of time for small to medium size applications. For

large scale applications, where the offloadable class-level and method-level mod-

ules are higher than 8, it would not be practical to use the Two-Step algorithm. This

is because the exhaustive search in step 1 would not complete in a feasible amount

of time. Instead, a fast search algorithm such as NSGA-II can be used in future

work.

Fifthly, the self-adaptive and self-aware decision mechanisms only take into con-

sideration the signal level and packet loss as the changing factors. Other factors

such as CPU usage can be added in the future work. For example, when the Op-

erating System is using too much processing power for system-related tasks, the

HMC application will switch to a configuration that offloads the code to the cloud.

Furthermore, in future work, a formal method/algorithm can be implemented for

the self-adaptive and self-aware approaches. Also, the framework can be evaluated

with other contextual factors such as resource usage, code type, cloud-side context

and using a non-WIFI network (e.g., LoRa/LoRaWAN, NB-IoT, SigFox) we have

used a WIFI network, where the signal level is monitored by the HMC applica-

tions. In situations such as a mobile device is tethered to another device via a cable

to use its network, the self-adaptive decision mechanism of the framework will not

work.

6.5 Summary of Contributions

In this chapter, we discussed a method to optimise the efficiency trade-off and avoid

network latency during runtime of HMC applications created for Android-based smart-

phones and robots operated by Linux-based computing systems. The runtime decisions
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are made using self-adaptivity and self-awareness in the HMC framework. Using a

workflow for online profiling of the HMC applications, we were able to simulate the

change in the operating environment in a lab-based controlled setup.

The self-adaptive switching was based on an evaluated signal level threshold. The

mobile devices (Android smartphone and Thymio robot) executing the HMC applica-

tions were able to switch between the Pareto efficient configurations. When the signal

level was good, the framework would switch to a configuration that executes maximum

number of modules on the cloud. In case of weak signal level, the framework would

switch to a configuration that executes all modules on the device.

The self-aware decision mechanism was based on monitoring the packet loss by the

mobile device within itself instead based on the change of the signal level. With a high

amount of packet loss, the framework would switch to the Pareto efficient configuration

that would execute all modules on the device. With zero to a small amount of packet

loss, the framework would switch to other configurations that use code-offloading.

The analysis of our experimental study provided some key facts regarding online

optimisation. Some key findings in line with the main contributions are enumerated as

follow.

1. By simulating a scenario in which a mobile device was moving into the network

coverage area experiencing a change in signal level. We observed that using the

self-adaptive and self-aware decisions performed better than using static offloading

and no offloading, in terms of completion time and optimising the efficiency trade-

off.

2. By simulating a scenario in which a mobile device was moving into the network

coverage area experiencing: 1) a change in signal level, and 2) network latency

caused due to congestion in the network. We observed that the self-aware decision

mechanism performed better than the self-adaptive, static offloading, and no of-

floading - in terms of optimising the efficiency trade-off and execution time. As the

mobile device was monitoring the packet loss by observing its runtime impact, it

avoids the latency caused by network congestion.
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Conclusion

This PhD research was motivated by the primary issue of achieving energy-efficient

mobile-cloud hybrid computing systems. The mobile applications, nowadays, are resource-

rich and demand high computation power. When they execute on a mobile device, the

hardware components of the device use the battery power. From a user point of view,

a device never has enough battery power. In order to extend the battery life between

charges, the computationally-intensive modules of mobile applications can be offloaded

to the resource-rich cloud. Therefore, the computation power, which an application is

supposed to consume from the battery of a mobile device, can be saved.

In this work, we have proposed a method to achieve energy efficient mobile-cloud

hybrid applications created for Android-based (i.e., smartphones and tablets) and Linux-

based (i.e., Raspberry Pi controlled robots) computing systems. We have considered the

following two objectives.

1. Minimising battery power consumption: It is the total power consumption of an

MC hybrid application, including computation and communication power, and

power required for other components to operate such as LCD and memory. We

measured this in joules.

2. Minimising network usage: It is bandwidth usage of the wireless network available

to the mobile-devices (i.e., WIFI). We measured this in KBs.

The above two objectives are conflicting in nature because using computation offload-

ing consumes power by transmitter chip on mobile devices. Therefore, minimising the

two objectives creates a efficiency trade-off. We consider the effective partition of mobile

applications as a multi-objective optimisation problem.
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In this work, we have considered three testbed applications (developed using object-

oriented programming paradigm): ImageEffects (Android-based), Mather (Android-based)

and a foraging task (Python-based). We targetted two computing systems: 1) Android-

based smartphones, and 2) Raspberry Pi controlled robots. In order to execute the appli-

cations on these computing systems, we first modularise the applications. It is the parti-

tioning of code units into different offloadable modules. We represent these offloadable

modules using class-level, method-level and hybrid level configurations. A configura-

tion is a binary string that maps the offloadable modules to their machine where they

will be executed during runtime of the application. We have presented our general pur-

pose mobile-cloud hybrid application framework for the two computing systems. Our

framework is based on the code-offloading technique to execute the offloadable modules

of the MC hybrid applications remotely on the cloud using configurations. Based on

the level of applications granularities, we consider a configuration one of three types: 1)

class-level (coarse-grained), 2) method-level (fine-grained) and 3) hybrid - mix of coarse

and fine grained. We create three levels of configuration sets for applications based on

the configuration types.

In order to optimise the trade-off between power consumption and bandwidth usage,

we created a workflow that uses multi-objective optimisation. The workflow automates

the execution of the applications, and with an exhaustive search algorithm, it searches

for efficient configurations using offline profiling. We used offline profiling to instrument

the MC hybrid applications, which was measuring the power and network usage during

runtime using the configurations. At the end of the offline profiling, the efficiency of all

the configurations created for the MC hybrid applications was recorded.

To further improve the search for efficient configurations, we used statistical tests

on the efficiency of configurations. We only obtained a final set of configurations that

include: 1) Non-dominated configurations in the collapsible sets that are also statistically

significant, and 2) other non-collapsible configurations. In the end, we find the Pareto-

optimal configurations in the final set, which optimise the efficiency trade-off. Executing

the MC hybrid applications with these configurations provide an alternative to achieve

efficient mobile-cloud (MC) hybrid computing systems. From the results analysis, we

also find out that increasing or decreasing the computation level of mobile applications
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has an impact on battery power consumption. Furthermore, the following observations

were taken from the results.

1. Computation offloading is energy effective when computationally-intensive mod-

ules are offloaded to the cloud. The total power consumption, including computing

and communication power, is low in this case.

2. Computation offloading is in-effective when less computationally-intensive mod-

ules are offloaded to the cloud. In this case, the total power consumption is lower

when they are executed on mobile devices.

3. The mobile applications that have low computation level will result in the forma-

tion of horizontal type clusters of configurations that execute the same number of

modules on the cloud when code offloading is used. On the other hand, mobile

applications having high computation level will result in the formation of vertical

type clusters of configurations.

4. The efficient configurations obtained for the MC hybrid applications had mixed

granularity levels. This shows that the granularity level is important to consider

during code offloading, to achieve energy-efficient mobile-cloud hybrid applica-

tions.

However, the exhaustive search algorithm used during offline profiling can take longer,

depending on the total number of offloadable modules for an application. Since the num-

ber of configurations depends on the number of modules, the larger the configuration

set (or modules), the more time the exhaustive search will take to find the efficient con-

figurations. Estimated time for more than 20 modules would be more than a month.

Therefore, we proposed a solution to scale up the method of achieving energy-efficient

mobile-cloud hybrid applications. The scale-up strategy is composed of using evolution-

ary algorithms, such as NSGA-II, and an intelligent Two-Step search algorithm; which

we introduced for searching efficient configurations for MC hybrid applications. They

take less time to converge, albeit to approximate optimal solutions. From the experimen-

tal study, we obtained the following key facts.
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1. For small-scale MC hybrid applications, the exhaustive search algorithm is appro-

priate to use for finding the Pareto-optimal configurations. In the Two-Step search

algorithm, we used an exhaustive search to find Pareto-optimal class-level config-

urations (in the first step) because of a small number (4) of class-level offloadable

modules for both ImageEffects and foraging task. The total number of configura-

tions were 16 for which the exhaustive search algorithm took around 30 minutes to

complete. However, in case of the offline profiling, the exhaustive search took more

than a month to find the Pareto-optimal configurations for the total number of con-

figurations (32, 400) in all the three sets (class-level, method-level and hybrid-level)

combined of the foraging task. According to our experiments, offloadable modules

between 2 to 8 would lie the so-called small-scale MC hybrid applications. The

class-level and method-level configurations of Mather are 2 and 6 respectively and

can be considered a small-scale MC hybrid application.

2. For medium-scale MC hybrid applications, the exhaustive search algorithm will

take a significant amount of time to complete and, therefore, would not be practi-

cal to use. In this case, evolutionary algorithms, such as NSGA-II, are appropriate

to use, which can approximate the Pareto-front solutions in a reasonable amount

of time. For the ImageEffects and Foraging task, where the number of class-level

configurations for both is equal to 16, and the combined method-level and hybrid-

level configurations are equal to 3, 584 and 32, 384, both the Two-Step and NSGA-II

were feasible to use. They took about one week for the ImageEffects and two week

time for the foraging task, for the ten independent runs to complete. According

to our experiments, offloadable class-level modules less than 8 and method-level

modules higher than 8 would lie the so-called medium-scale MC hybrid applica-

tions. ImageEffects and foraging task both can be considered medium scale MC

hybrid applications. For both of these two MC hybrid applications, the Two-Step

algorithm performed better than NSGA-II.

3. For large-scale MC hybrid applications, the Two-Step search algorithm would not

be practical to use as the exhaustive search in step 1 would not complete in a fea-

sible amount of time. For such applications, finding a scalable solution is an open
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research question that we will leave for future work. According to our experiments,

offloadable class-level and method-level modules higher than 8 would lie the so-

called large-scale MC hybrid applications.

Since in the real world, the environment in which mobile devices operate changes

randomly. To cope with the conditions such as weak signal strength, network link fail-

ure, network congestion, static offloading can cause latency and use more battery power

(i.e., communication power for retransmission of dropped packets). In such cases a dy-

namic offloading decision is beneficial. Therefore, in addition to offline profiling, where

static code offloading is used, our framework can also be used for online profiling as

it is based on self-adaptive and self-aware decision mechanism. In the online profiling,

the framework switches between the efficient configurations, based on a change in the

environment and change within the system itself, to minimise battery power consump-

tion, network usage and improve the performance of applications by avoiding network

latency.

We were able to simulate the change in the operating environment, in a lab-based

controlled setup, by using a workflow for online profiling of the MC hybrid applica-

tions. When the signal level was good, the framework would switch to a configuration

that executes a maximum number of modules on the cloud. In case of a weak signal

level, the framework would switch to a configuration that executes all modules on the

device. The analysis of our experimental study provided some key facts regarding online

optimisation. They are enumerated as follow.

1. By simulating a scenario in which a mobile device was moving into the network

coverage area experiencing a change in signal level. We observed that using the

self-adaptive and self-aware decisions performed better than using static offloading

and no offloading, in terms of completion time and optimising the efficiency trade-

off.

2. By simulating a scenario in which a mobile device was moving into the network

coverage area experiencing: 1) a change in signal level, and 2) network latency

caused due to congestion in the network. We observed that the self-aware decision
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mechanism performed better than the self-adaptive, static offloading, and no of-

floading - in terms of optimising the efficiency trade-off and execution time. As the

mobile device was monitoring the packet loss by observing its runtime impact, it

avoids the latency caused by network congestion.

The proposed approach to achieve energy-efficient HMC applications can be used

by developers of applications. Using the offline profiling they will be able to find the

Pareto-optimal configurations of their application. They can then use those configura-

tions to deploy with the HMC application. By using the framework, the self-adaptive

and self-aware decision mechanisms will chose the configurations during runtime of the

application.

In the end, we hope that the proposed method will provide researchers and develop-

ers insights to developing energy-efficient mobile-cloud hybrid alternative to Android-

based and Python-based computing systems.

7.0.1 Future directions

To validate the idea of energy-efficient, scalable, self-adaptive and self-aware mobile-

cloud hybrid computing systems, we presented our technique and discussed the exper-

imental results. However, this work can be extended in some areas. We discuss some

future direction as follow.

In this work, we have considered applications developed using Object Oriented Pro-

gramming paradigm for mobile devices. We modularise their code based on classes

and methods. We create configurations of applications which are coarse-grained (class-

level) or fine-grained (method-level). However, there are other types of programming

paradigms that are also used to develop application software, i.e., functional program-

ming and procedural programming. Moreover, cross-platform mobile applications are

developed using HTML, Javascript and XML etc, where the concept of OOP (i.e., classes)

is not followed. This is one area that is strongly recommended to be explored in the

future.

Secondly, in this work, as we have mentioned in Chapter 3, the programmers of an

HMC application annotate the code manually during the development time. This is done
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to identify offloadable modules in the code. A converter application is then used to anal-

yse the source code and inject the offloading interface for the modules that were anno-

tated. In future work, static analysis of the applications can be used to automatically find

which modules are suitable for code offloading. The computationally-intensive modules

can be identified by techniques such as the number of lines of code in a module, data

types used in a module, the number of times a loop will execute etc.

Thirdly, we have used multi-objective optimisation to minimise two objectives, bat-

tery power consumption and network usage, using offline profiling. The future work

could extend the multi-objective optimisation to more than two objectives. For example,

the objectives of minimising delay and maximising application’s performance could be

added to offline profiling. Moreover, the experimental work using offline profiling can be

extended to other underlying technologies, e.g., mobile-edge and mobile-fog. Currently,

we have only considered mobile-cloud as the underlying technology.

Fourthly, the Two-Step search algorithm, which we proposed in this work, converges

in a feasible amount of time for small to medium size applications. For large scale appli-

cations, where the offloadable class-level and method-level modules are higher than 8,

it would not be practical to use the Two-Step algorithm. This is because the exhaustive

search in step 1 would not complete in a feasible amount of time. Instead, a fast search

algorithm such as NSGA-II can be used in future work.

Fifthly, the self-adaptive and self-aware decision mechanisms only take into consider-

ation the signal level and packet loss as the changing factors. Other factors such as CPU

usage can be added in the future work. For example, when the Operating System is using

too much processing power for system-related tasks, the HMC application will switch to

a configuration that offloads the code to the cloud. Furthermore, in future work, a formal

method/algorithm can be implemented for the self-adaptive and self-aware approaches.

Also, the framework can be evaluated with other contextual factors such as resource us-

age, code type, cloud-side context and using a non-WIFI network (e.g., LoRa/LoRaWAN,

NB-IoT, SigFox)

Sixthly, the proposed HMC framework is only limited to use by the developer or

service provider to develop applications. In future work, a client-server infrastructure

can be developed so that everyone can directly upload any application to the server. The
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server will be using tools to optimise and scale the application to HMC application using

the framework. The user can then use the HMC version of the application, which would

provide an energy-efficient alternative.
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Glossary

battery-power consumption The power usage by a mobile device to execute an applica-

tion. 17

computationally-intensive tasks Those tasks performed by a mobile device during ex-

ecution of applications that require do complex computation, therefore, consumes

high battery power.. 17

computation offloading Computation or code offloading is a technique to execute part

of mobile applications on a remote server or the cloud.. 17

configurations Throughout this thesis, a configuration would refer to a binary string

that represent the offloadable modules of an HMC application.. 19

GPS Global Positioning System. 15

HMC Throughout the thesis, HMC would refers to hybrid mobile-cloud application(s).

2, 16

hybrid-level configurations A hybrid-level configuration or sometimes refer as hybrid

configuration is which can run an HMC application in both fine and coarse grained

level of granularity.. 60

latency The delay caused during transmission of data in a network. In other words, the

round trip time from the browser to the server.. 17

MCC Throughout the thesis, MCC would refers to mobile-cloud computing paradigm.

16

MOO Throughout the thesis, MOO would refers to Multi-Objective Optimisation. 18

multi-objective optimisation Optimising two or more objectives.. 18, 20
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Glossary

network usage It is the amount of data sent and received during one execution of an

application.. 17

Pareto-optimal solutions Those solutions that are not dominated by any other solutions

in the solution set. They provide a compromise between the objectives.. 18

resource-hungry Limited amount of resources available to an application or a mobile

device. Other similar terms like resource-constrained or resource-limited are also

used.. 15

166


	Abstract
	Introduction
	Aims, Contributions to Knowledge and Results
	Contributions
	Results of Experimental studies

	Thesis Structure
	Research Publications

	Background
	Cloud Computing
	Mobile Computing
	Mobile Cloud Computing
	Mobile Edge Computing
	Mobile Fog Computing
	Cloud Robotics

	Mobile Applications Partitioning
	Code Offloading Techniques
	Optimising Multi-Objective Problems
	Pareto Optimality
	Multi-Objective Optimisation Algorithms
	Search-based Software Engineering Using Multi-Objective Optimisation Algorithms
	Evolutionary Algorithms
	Genetic Algorithms
	MOO to Reduce Battery Power Consumption in Mobile Devices

	Performance Measure of Multi-Objective Optimisation

	Hybrid Mobile-Cloud Frameworks
	Frameworks to Improve Performance
	Frameworks to Reduce Energy Consumption
	Multi-objective Application Frameworks
	Frameworks Based on Dynamic Offloading
	Middleware Based Frameworks
	Cloud-enabled Frameworks for Mobile Robots

	Insufficiencies in Available Approaches

	Modularisation of Applications Developed for Mobile Computing Systems
	Granularity of Configurations
	Modular Configurations
	Representation of Configurations
	Class-level configuration
	Method-level configuration
	Hybrid-level configuration

	Collapsible Configurations

	Hybrid Mobile-Cloud Application Framework
	Java-based Framework
	Python-based Framework

	Case Studies
	Android Applications
	ImageEffects
	Mather

	Robotics

	Summary of Contributions

	Multi-Objective Optimisation of Hybrid Mobile-Cloud Applications
	Evaluating Configurations
	Battery Power Consumption
	Measuring battery power consumption
	Android-based systems
	Python-based tasks for robots

	Network Usage
	Measuring Network Usage
	Android-based systems
	Python-based tasks for robots


	Offline Profiling
	Executing Android-based HMC Applications
	Executing Python-based HMC Robotic Task

	Finding Statistically Significant Configurations
	Outlier Elimination
	Hypothesis Test

	Filtering the Configurations
	Selecting Non-Dominated Configurations
	Pareto Efficient Configurations in the Final Set

	Case Studies
	Experimental Setup
	Understanding the Framework Used for Android Applications
	All-zero and all-one configurations
	Clusters of configurations
	Pareto-optimal configurations
	Power and Network consumptions per modules running on the cloud

	Results for the Android-based HMC Applications
	Results for ImageEffects
	Results for Mather

	Results for Robotic Task

	Limitations of the Approach
	Summary of Contribution

	Scalable Mobile-Cloud Hybrid Computing Systems
	Challenges in Scaling Up
	Approaches to Scale Up
	Two-Step Search
	Evolutionary Algorithms (NSGA-II)

	Case Studies
	Hypervolume Indicator
	Attainment Surface
	Android Applications
	Result of Hypervolume Indicator for ImageEffects
	Result of Attainment Indicator for ImageEffects

	Robotics
	Result of Hypervolume Indicator for the foraging task
	Result of Attainment Indicator for the foraging task


	Summary of Contributions

	Self-Adaptive and Self-Aware Hybrid Mobile-Cloud Computing Systems
	Runtime Optimisation
	Self-Adaptive Hybrid Mobile-Cloud Computing (HMCC) Systems
	Self-Aware Hybrid Mobile-Cloud Computing (HMCC) Systems

	Online Profiling
	Experimental Setup
	Network Latency
	Wireless Interference
	Network Congestion and Network Failure


	Case Studies
	Robotic Foraging Task
	Offline profiling at different signal levels
	Determining the threshold for self-adaptive switching
	Online profiling: Foraging Task
	Results and Analysis

	Android Application: ImageEffects
	Determining the threshold for self-adaptive switching
	Online profiling: ImageEffects
	Results and Analysis

	Android Application: Mather
	Results and Analysis


	Limitations of the Approach
	Summary of Contributions

	Conclusion
	Future directions


