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We show how light can be controllably transported by light at microscale dimensions. We design a
miniature device that consists of a short segment of an optical fiber coupled to transversally oriented input-
output microfibers. Awhispering gallery soliton is launched from the first microfiber into the fiber segment
and slowly propagates along its mm-scale length. The soliton loads and unloads optical pulses at designated
input-output microfibers. The speed of the soliton and its propagation direction is controlled by the
dramatically small, yet feasible to introduce, permanently or all-optically, nanoscale variations of the
effective fiber radius.
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Transportation of objects by other objects, both at the
macroscale and microscale, is an evident constituent of
the evolution of nature in general and living beings in
particular. At the macroscale, we travel and carry things
from one place to another and use machines to make it
easier and faster [1]. At the microscale, human-guided
transportation and manipulation of objects is of great
multidisciplinary importance, with applications ranging
from medical and life science to nanomaterial science,
bionanotechnology, and nanoelectronics [2].
In microphotonics, addressed in this Letter, we can

separate the micro-objects under study into those consti-
tuted of matter (e.g., waveguides, microresonators, and
micro or nanoparticles) and those constituted of light (e.g.,
optical waves, pulses, and localized states). Consequently,
at the microscale we distinguish the transportation and
manipulation of (a) matter by matter, (b) light by matter,
(c) matter by light, and (d) light by light.
There are numerous examples of matter micro or

nano-objects being controllably transported and manipulated
by other matter micro or nano-objects. The developed
approaches often resemble the manipulation of macroscopic
objects with mechanical, electromechanical, and magnetic
tools [2]. In particular, at the atomic-scale dimensions, the
transportation and manipulation of atoms and nano-objects
are possible with an atomic force microscope [3] [Fig. 1(a)].
Transportation of light by material micro-objects is possible

as well. For example, microlasers and optical microresonators
are used to confine and manipulate light at the microscale
[4–6] [Fig. 1(b)]. They are commonly considered at rest with

respect to the laboratory system of reference [4,5,7].
Generally, the translation of a microresonator with constant
speed does not affect the behavior of localized states residing
in it [8]. However, accelerated translation, vibration, and
rotation can significantly perturb the resonant states [9–13].
In the simplest case, light confined in a microresonator can be
transported mechanically using a “truck” in the form of a
translation stage. In another example, controlling the pertur-
bation of an eigenstate in a rotating microresonator allows one
to use it as a miniature gyroscope [11,12].
In turn, light in the form of optical tweezers can confine

and manipulate matter micro-objects [14,15]. For example,
light waves can localize microparticles close to their
antinodes by the gradient and scattering forces [Fig. 1(c)].
In addition, propagation of light through nonlinear media

FIG. 1. Matter by matter, light by matter, matter by light, and
light by light transportation at the microscale. (a) An atomic force
microscope (AFM) tip translating atoms at the solid surface.
(b) An optical microresonator translating an optical eigenstate.
(c) An optical tweezers translating micro-objects. (d) An optical
soliton translating an optical eigenstate.
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allows the manipulation of light itself, e.g., the modification
of its spectrum and self-localization at the microscale.
Examples of current significant interest include frequency
comb generation [16,17], optomechanical processes [18],
and the formation of solitons [17,19–21]. Conventionally, for
telecommunication applications, broadband picosecond
and subpicosecond temporal solitons are used [19,20].
Broadband solitons have been studied in application to
frequency comb generation [16,17]. Slow broadband sol-
itons with picosecond durations have been demonstrated in
photonic crystals [22,23]. Slow narrowband solitons, which
may have much a smaller propagation speed, can be realized
in periodic microstructures provided that the soliton central
frequency is close to the band gap edge [24–26].
However, can we use light as optical tweezers for light? Is

it possible to confine and translate light controllably and all
optically at the microscale? The natural approach to answer
this question is to consider a soliton as a moving micro-
resonator that can confine and transport weaker light and
thus be used as a micro-truck for light [Fig. 1(d)]. This may
be possible since the electric field E of a soliton propagating
along an optical fiber induces a change in the refractive index
Δn ∼ jEj2 due to the nonlinear Kerr effect [19,20].
Therefore, the soliton field (as well as the field of any other
sufficiently strong optical pulse) can act as a moving
effective potential well that traps and transports an optical
signal. This idea is conceptually different from the phenom-
ena of nonlinear manipulation of light by light noted in the
previous paragraph (e.g., formation, transformation, and
interaction between solitons). In contrast, in the process
described below, the soliton acts as an optical tweezers that
(i) should not affect or be affected by the optical pulse it
carries and (ii) is able to grab and release the carried pulse at
request. Three decades ago, transportation of a localized
optical state by an optical soliton was proposed [27,28]. This
beautiful idea did not attract much attention because a
realistic device that enables the all-optical transportation
of a relatively weak state of light, including its loading and
unloading, had not been suggested to date.
In this Letter, we describe a microdevice where relatively

weak optical pulses and eigenstates are transported between
input and output ports by a soliton (Fig. 2). The device
consists of an uncoated optical fiber segment (FS) coupled
to three transverse input-output microfibers: MF0, MF1,
and MF2. In our model, a whispering gallery soliton (WGS)
is formed by the resonant excitation of a whispering gallery
mode launched by the MF0 inside the FS. The WGS slowly
propagates along the surface of the fiber and further
slows down near MF1, where a relatively weak whispering
gallery pulse or eigenstate (WGE) is loaded. Similar to the
slow linear propagation of whispering gallery modes
realized in surface nanoscale axial photonics (SNAP)
technology [29–32], we engineer the nanoscale variation
of the fiber effective radius (corresponding to the sub-GHz
variation of the cutoff frequency) so that the soliton can

slow down and stop, as well as reverse its propagation
direction. In particular, the WGS can continue its
propagation to MF2 where the WGE is unloaded, or turn
back before reaching MF2 and unload the WGE back into
MF1. Furthermore, we suggest that the required dramati-
cally small variation of the fiber parameters along its length
can be introduced all-optically.
A pulse with central angular frequency ωs is coupled into

the FS from MF0 forming a whispering gallery mode,
which is enhanced due to the constructive self-interference.
As a result, a WGS with central frequency ωs is formed. It

is assumed that ωs is close to the cutoff frequency ωðcutÞ
s ðzÞ

of the FS, which is slowly varying along the FS axis z.

Because of the proximity of ωs and ωðcutÞ
s ðzÞ, the axial

speed of the created WGS is small and, for this reason,

sensitive to a small variation of ωðcutÞ
s ðzÞ. Similarly, the

central frequency of a weak WGE, ωe, different from ωs, is
close to a slowly and weakly varying cutoff frequency

ωðcutÞ
e ðzÞ. Because of the small cutoff frequency variations

ΔωðcutÞ
s;e ðzÞ ¼ ωðcutÞ

s;e ðzÞ − ωs;e assumed here, the expression
for slowly propagating whispering gallery modes can be
factorized as Rms;eps;e

ðrÞeims;eφψ s;eðz; tÞe−iωs;et where ms;e

and ps;e are azimuthal and radial quantum numbers.
Consequently, the propagation of a narrow bandwidth
WGS with central frequency ωs and a WGE with frequency
ωe ≠ ωs along the fiber axis coordinate z is determined by
their amplitudes ψ sðzÞ and ψeðzÞ. These functions are
defined by a system of coupled nonlinear Schrödinger
equations, which are similar to those commonly used in
nonlinear fiber optics [19,27,28] where the temporal
and spatial coordinates are interchanged [24,25,33,34].
Assuming jψsðzÞj ≫ jψeðzÞj, we have

(a)

(b)

FIG. 2. Illustration of the conveyance of a weak optical pulse by
a soliton. MF0, MF1, and MF2 are the input-output microfiber
waists of biconical tapers coupled to the optical fiber segment.
WGS is a whispering gallery soliton, and WGE is a relatively
weak whispering gallery pulse or eigenstate transported by the
WGS. MF0 serves as the WGS source, and MF1 and MF2 serve as
stops where the WGE is loaded and unloaded.
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i∂tψ s ¼ −
1

2
κs∂2

zψ s þ
�
ΔωðcutÞ

s ðzÞ þ iγs þ κs
X2
j¼0

Dsjδðz − zjÞ −
ωsn2
nsAss

jψ sj2
�
ψ s þGsðtÞδðz − z0Þ; ð1aÞ

i∂tψe ¼ −
1

2
κe∂2

zψe þ
�
ΔωðcutÞ

e ðzÞ þ iγe þ κe
X2
j¼1

Dejδðz − zjÞ − 2
ωen2
neAse

jψ sj2
�
ψe þ GeðtÞδðz − z1Þ: ð1bÞ

Here κs;e ¼ c2=ðn2s;eωs;eÞ, c is the speed of light, ns and
ne are the refractive indices of the FS at frequencies ωs and
ωe, n2 is its nonlinear refractive index, δðzÞ is the delta
function, and Ass, Ase are the effective mode areas defined
in [19] and the Supplemental Material [35]. The terms
GsðtÞδðz − z0Þ and GeðtÞδðz − z1Þ in Eqs. (1a) and (1b)
determine the soliton and weak pulse sources at micro-
fibers, which are specified below. Parameters Dsj and Dej
are the coupling of the FS to microfibers at frequencies ωs
and ωe determined in Ref. [31]. For a single input-output
microfiber with a source, Eq. (1a) coincides with that
obtained previously in [34].
To estimate the characteristic parameters of our device,

we assume that the FS is uniform. Then Eqs. (1a) and (1b)
can be solved analytically [19] yielding for WGS:

jψ ð0Þ
s ðz; tÞj2 ¼ Pssech2

�
z − vst
Ls

�
; Ps ¼

c2Ass

nsn2ω2
sL2

s
;

ð2Þ
where Ps is the soliton peak power, Ls is the
soliton characteristic width, and vs is the soliton

velocity. After the substitution of jψ ð0Þ
s ðz; tÞj2 from Eq. (2),

Eq. (1b) describes the propagation of the WGE
along the FS with time-dependent cutoff frequency

ωðcutÞ
e ðzÞ − Δωmax

e sech2ðz − vst=LsÞ, where

Δωmax
e ¼ 2c2ωeAss

nensω2
sL2

sAse
¼ 2Ps

ωen2
neAse

: ð3Þ

Equation (3) determines the maximum variation of
the cutoff frequency caused by the WGS. Assuming that
the WGE has the same speed as the WGS, we look for the

solution of Eq. (1b) in the form ψ ð0Þ
e ðz; tÞ ¼ ΦðxÞeiαxþiβt,

which depends on the dimensionless relative coordinate
x ¼ z − vst=Ls. Then ΦðxÞ satisfies the equation

d2ΦðxÞ
dx2

þ ðϵ − ηsech2xÞΦðxÞ ¼ 0; η ¼ 2neω2
eAss

nsω2
sAse

;

ð4Þ
where ϵ¼L2

s=c4½2n2eωec2ðΔωeþβÞ−v2sn4eω2
e�. Parameter

ϵ can be tuned by varying Δωe ¼ ωðcutÞ
e − ωe. The eigen-

values ϵm of Eq. (4) corresponding to the localized states
ΦmðxÞ are

ϵm ¼ −ðξ −mÞ2; ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ 1=4

p
− 1=2; ð5Þ

and the index m ¼ 0; 1;…; ½ξ�. The integer part of ξ, [ξ], is
the total number of localized eigenstates that the WGS
can support. If η < 2, then Eq. (4) has a single eigen-
state Φ0ðxÞ ¼ sechξx. For small values of η, we have
ξ ≈ 2η, ϵ0 ≈ 4η2, and the characteristic width of this
eigenstate is xw ¼ 1=η, which corresponds to the WGE
axial width zw ¼ Ls=η.
Figure 3 shows three exemplary voyages of a WGE

transported by a WGS along a silica FS with radius
r0 ¼ 20 μm found by numerical solution of Eqs. (1a)
and (1b) [35]. This figure includes three examples with
the cutoff frequency variations shown in Figs. 3(a1)–3(a3),
corresponding to the acceleration, slowing down, and
stopping of WGS between MF1 and MF2. We design the
FS profile to satisfy the condition of adiabaticity, which
ensures that the shapes of WGS and WGE are not altered
significantly during the propagation. In addition, the speed
of theWGS near MF1 andMF2 is set to enable loading, safe
transporting, and unloading of the WGE. The central
frequency of the input source in Eq. (1a) generating the
WGS at MF0 is set to ωs=2π ¼ 225 THz. In order to arrive
at the minimum possible WGS speed, this frequency is
assumed to coincide with the value of the FS cutoff
frequency at MF0. The characteristic width, speed,
and duration of the created soliton is Ls ∼ 50 μm,
vs ∼ 0.5 mm=ns, and Ts ∼ 100 ps. The frequency of the
plane wave entering the FS from MF1 and forming the
WGE is set to 195 THz plus a small shift to match one of
the possible eigenfrequencies of the WGS-formed potential
well. Attenuations of WGS and WGE are set to γs;e ¼
3 MHz (corresponding to a Q factor ∼2 × 108 at frequency
ω=2π ¼ 190 THz [36,37]. Other parameters of our devices
are described in the Supplemental Material [35]. The height
of the potential well formed by the WGS found from
Eq. (3) is Δωmax

e =2π ∼ 2.6 GHz, while the WGS maximum
power is Ps ∼ 70 kW. From Eq. (5), this potential well can
only support a single WGE. For the WGS to survive and in
order to minimize the WGE perturbation during its loading
and unloading, it is critical to minimize the WGS coupling
to MF1 and MF2 while keeping the WGE coupling
large. This can be achieved by appropriate phase matching
the microfiber-WGE coupling at frequency ωe and phase
unmatching the microfiber-WGS coupling at frequency ωs
[38]. In our modeling, we set Ds1 ¼ Ds2 ¼ 0.005i μm−1

and De1 ¼ De2 ¼ 0.05i μm−1, where the latter correspond
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to characteristic experimentally observed values [31,39].
We found that the real parts of these coupling parameters
with the same order of magnitude do not noticeably modify
the WGE [blue curve in Figs. 3(e1) and 3(e2)]. This is the
reason why they are set to zero.
Figures 3(b1)–3(b3) show the propagation of the WGS

considered in the examples. In Fig. 3(b1), the WGS
speed in the intervals between input-output microfibers

is 4.7 × 105 m=s ¼ 0.0016c and decreases to 0.9 ×
105 m=s ¼ 0.0003c near MF1 and MF2 for loading and
unloading the WGE. Figure 3(b2)shows the propagation of
the WGS when its speed is reduced to 1.3 × 105 m=s ¼
0.00044c in between microfibers. In Fig. 3(b3), only MF1
is present. The variation in the cutoff frequency introduced
is such that the WGS stops at some distance (2.5 mm away
from MF1 in the simulation) and returns back to MF1 to

(a1) (a2) (a3)

(b1)

(c1)

(d1)

(e1) (e2)

(d2)

(c2)

(b2) (b3)

(c3)

(d3)

(e3)

FIG. 3. Transportation of a WGE by a WGS. (a1)–(a3) Variation in the cutoff frequency introduced to control the speed of the WGS in
the three cases considered (solid blue, dashed red, and dash-dotted green curves). (b1)–(b3) Evolution of WGS. (c1)–(c3) Variation of
the WGS peak power as it propagates along the fiber. (d1)–(d3) Evolution of WGE positioned at the ground state of the WGS-induced
quantum well. (e1),(e2) Variation of the normalized maximum of the WGE jψ̄eðz; tÞj2 as it propagates along the fiber for different
coupling coefficients with microfiber MF2 (red curves: Ds2 ¼ 0.005i μm−1 and De2 ¼ 0; blue curves: Ds2 ¼ 0 and De2 ¼ 0.05 μm−1;
green curves: Ds2 ¼ 0.005i μm−1 and De2 ¼ 0.05i μm−1). (e3) Same as (e1) and (e2) but only MF1 is present in this case.
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unload the WGE (see [29] for the analog dispersionless
propagation of a linear pulse). Figures 3(c1)–3(c3) show
the variation of the WGS power during its propagation. The
simulations show the leakage of the WGS due to coupling
with the microfibers. This effect is taken into account by the
delta function in the fourth term of the right-hand side in
Eq. (1a). In order not to destroy the WGS due to its leakage
through MF1 and form an almost pure first order soliton
ideal for transportation of signals between MF1 and MF2,
the WGS original power was made high enough. Finally,
Figs. 3(d1)–3(d3) and 3(e1)–3(e3) describe the loading,
transport, and unloading of the WGE corresponding to the
ground eigenstate of the WGS-formed quantum well. In
order to load this eigenstate into the WGS-formed quantum
well, we tuned the frequency of the input wave to match the
frequency of this eigenstate. The detuning of the ground
WGE eigenfrequency δω=2π from the FS cutoff frequency
is 0.88 GHz. Notice that a relatively small couplingDs2 still
contributes to the WGE dissipation into the FS. The latter is
found by setting De2 ¼ 0 [red curves in Figs. 3(e1)–3(e3)].
Taking this dissipation into account, we find that,
for the De2 ¼ i0.05 μm−1 chosen, more than 70% of the
WGE power is unloaded into MF2. Obviously, the amount
of unloaded power can be improved by increasing De2.
Generally, the evolution of a WGS-trapped WGE pulse
with frequencies distributed within the quantum well
bandwidth (rather than coinciding with its eigenvalue)
can be quite complex [40–42].
Thus, as in the case of slow linear propagation of

whispering gallery modes [29–32], the speed of a slow
WGS can be controlled by the dramatically small variation
of the cutoff frequency along the optical fiber length. Such
a WGS can serve as a moving optical microresonator—a
soliton micro-truck—enabling programmed transportation
of optical pulses and eigenstates, including their loading
and unloading. Various other examples of transportation of
a weak signal by solitons, as well as by optical pulses
having power below the soliton formation threshold, can be
considered. Of special interest is the investigation of
nonadiabatic processes during the transportation of a
WGE [43] and its loading and unloading. The characteristic
peak power and duration of a WGS propagating along a
silica fiber considered here are 100 kW and 100 ps,
respectively. Such strong pulses may result in fiber damage
([35] and [44–46]). Therefore, further optimization of the
carrier pulse parameters and speed may be required.
However, according to our estimates [35], these pulses
do not introduce a significant temperature variation. For
chalcogenide and hydrogenated amorphous silicon (a-Si:H)
fibers, which have a larger nonlinearity, the peak power of
the WGS can be 2 orders of magnitude smaller [47,48]. As
is well-known from quantum mechanics [49], the one-
dimensional potential well induced by a WGS can always
hold at least one optical eigenstate despite its shallowness.
One of the intriguing conclusions of our findings is that the

WGS speed can be fully controlled by an unexpectedly

small variation of the cutoff wavelength ΔωðcutÞ
s ∼ 1 GHz,

which, for the fiber radius r0 ∼ 20 μm, corresponds to an

effective radius variation of r0Δω
ðcutÞ
s =ωs ∼ 0.1 nm. The

fabrication precision achievable in SNAP technologies
[29,32] makes the introduction of such dramatically small
variations feasible. Furthermore, these variations can be
induced all-optically. In fact, the amplitude of mechanical
vibrations of an optical microresonator, which are induced
by whispering gallery modes, can be tuned up to 10 nm
[50]. For the microresonator with radius r0 ∼ 20 μm
considered in [50], this corresponds to a cutoff frequency
variation exceeding 10 GHz. Launched through the same or
additional control input-output microfibers, these modes
can temporary induce the required variation of the cutoff
wavelength. In this case, the behavior of the WGS (or a
carrier pulse with power below the soliton threshold) and
WGE are determined by the same Eq. (1) pair, where the

cutoff frequency variations ΔωðcutÞ
s;e ðz; tÞ now depend on

time t. Thus, the device described here potentially enables
the all-optically controlled transportation of light by light at
the microscale.

This research was funded by EPSRC Grant No. EP/
P006183/1. M. S. is grateful to A. A. Fotiadi and S. K.
Turitsyn for useful discussions.

*Corresponding author.
m.crespo@aston.ac.uk

[1] D. Teodorović and M. Janić, Transportation Engineering:
Theory, Practice and Modeling (Elsevier, New York, 2016).

[2] Y. Sun and X. Liu, Micro- and Nano-Manipulation Tools
(John Wiley & Sons, New York, 2015); Z. Zhang, X. Wang,
J. Liu, C. Dai, and Y. Sun, Robotic micromanipulation:
Fundamentals and applications, Annu. Rev. Control
Robotics Autonomous Syst. 2, 181 (2019); M. Makulavi-
cius, O. Balitskyi, R. Urbonas, A. Dzedzickis, V. Bučinskas,
A. Petronis, M. Kovalenko, I. Morkvenaite-Vilkonciene, Y.
Sun, and X. Liu, Recent advances in mechanical micro- and
nanomanipulation, in Automation 2020: Towards Industry
of the Future. AUTOMATION 2020. Advances in Intelligent
Systems and Computing, edited by R. Szewczyk, C.
Zieliński, and M. Kaliczyńska (Springer, Cham, 2020),
pp. 248–256, https://doi.org/10.1007/978-3-030-40971-
5_23.

[3] G. Binnig, C. F. Quate, and C. Gerber, Atomic
Force Microscope, Phys. Rev. Lett. 56, 930 (1986);
B. Voigtländer, Atomic Force Microscopy, 2nd ed. (Springer
International Publishing, New York, 2019); N. Santos and
F. A. Carvalho, Atomic Force Microscopy, 1st ed. (Humana
Press, Louisville, KY, 2019).

[4] K. J. Vahala, Optical microcavities, Nature (London) 424,
839 (2003).

[5] A. B. Matsko, Practical Applications of Microresonators in
Optics and Photonics, 1st ed. (CRC Press, Boca Raton, FL,
2009).

PHYSICAL REVIEW LETTERS 126, 153901 (2021)

153901-5

https://doi.org/10.1146/annurev-control-053018-023755
https://doi.org/10.1146/annurev-control-053018-023755
https://doi.org/10.1007/978-3-030-40971-5_23
https://doi.org/10.1007/978-3-030-40971-5_23
https://doi.org/10.1007/978-3-030-40971-5_23
https://doi.org/10.1007/978-3-030-40971-5_23
https://doi.org/10.1103/PhysRevLett.56.930
https://doi.org/10.1038/nature01939
https://doi.org/10.1038/nature01939


[6] F. Monticone and A. Alù, Metamaterial, plasmonic and
nanophotonic devices, Rep. Prog. Phys. 80, 036401 (2017).

[7] M. R. Foreman, J. D. Swaim, and F. Vollmer, Whispering
gallery mode sensors, Adv. Opt. Photonics 7, 168 (2015).

[8] Nevertheless, such translation can change the measured
output signal as, e.g., in the case considered in this
Letter when the resonator is moving with respect to the
input-output waveguide. The output signal in this case
depends on the relative speed of the resonator (Doppler
effect).

[9] T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and
K. J. Vahala, Temporal Behavior of Radiation-Pressure-
Induced Vibrations of an Optical Microcavity Phonon
Mode, Phys. Rev. Lett. 94, 223902 (2005).

[10] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, and
L. Maleki, Whispering-gallery-mode resonators as fre-
quency references. II. Stabilization, J. Opt. Soc. Am. B
24, 2988 (2007).

[11] W. Liang, V. S. Ilchenko, A. A. Savchenkov, E. Dale, D.
Eliyahu, A. B. Matsko, and L. Maleki, Resonant micro-
photonic gyroscope, Optica 4, 114 (2017).

[12] Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, and K. Vahala,
Observation of the exceptional-point-enhanced Sagnac effect,
Nature (London) 576, 65 (2019).

[13] X. Jiang and L. Yang, Optothermal dynamics in whispering-
gallery microresonators, Light Sci. Appl. 9, 24 (2020).

[14] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu,
Observation of a single-beam gradient force optical trap for
dielectric particles, Opt. Lett. 11, 288 (1986).

[15] P. Zemánek, G. Volpe, A. Jonáš, and O. Brzobohatý,
Perspective on light-induced transport of particles: From
optical forces to phoretic motion, Adv. Opt. Photonics 11,
577 (2019).

[16] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Micro-
resonator-based optical frequency combs, Science 332, 555
(2011).

[17] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L.
Gorodetsky, Dissipative Kerr solitons in optical micro-
resonators, Science 361, eaan8083 (2018).

[18] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[19] G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic
Press, New York, 2012).

[20] Y. S. Kivshar and G. Agrawal, Optical Solitons: From
Fibers to Photonic Crystals (Academic Press, New York,
2003).

[21] Y. V. Kartashov, B. A. Malomed, and L. Torner, Solitons in
nonlinear lattices, Rev. Mod. Phys. 83, 247 (2011).

[22] P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong,
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