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Abstract: Pharmaceutical applications of 3D printing technologies are growing rapidly. Among these,
vat photopolymerisation (VP) techniques, including Stereolithography (SLA) hold much promise for
their potential to deliver personalised medicines on-demand. SLA 3D printing offers advantageous
features for pharmaceutical production, such as operating at room temperature and offering an
unrivaled printing resolution. However, since conventional SLA apparatus are designed to operate
with large volumes of a single photopolymer resin, significant throughput limitations remain. This,
coupled with the limited choice of biocompatible polymers and photoinitiators available, hold back
the pharmaceutical development using such technologies. Hence, the aim of this work was to
develop a novel SLA apparatus specifically designed to allow rapid and efficient screening of
pharmaceutical photopolymer formulations. A commercially available SLA apparatus was modified
by designing and fabricating a novel resin tank and build platform able to 3D print up to 12 different
formulations at a single time, reducing the amount of sample resin required by 20-fold. The novel
SLA apparatus was subsequently used to conduct a high throughput screening of 156 placebo
photopolymer formulations. The efficiency of the equipment and formulation printability outcomes
were evaluated. Improved time and cost efficiency by 91.66% and 94.99%, respectively, has been
confirmed using the modified SLA apparatus to deliver high quality, highly printable outputs,
thus evidencing that such modifications offer a robust and reliable tool to optimize the throughput and
efficiency of vat photopolymerisation techniques in formulation development processes, which can,
in turn, support future clinical applications.

Keywords: 3D printing; stereolithography; digital light processing; solid oral dosage forms; formula-
tion development; personalised medicine; cost effectiveness; lean production; sustainability

1. Introduction

Three-dimensional (3D) printing is defined as a set of manufacturing technologies
used to make parts by adding material in a layer-by-layer fashion [1]. Due to its appealing
features, 3D printing has received great interest from the pharmaceutical field, especially
following the 2015 FDA approval of the first 3D-printed drug product, Spritam. Since then,
interest has aroused fast and, so far, several 3D-printing technologies have been used,
understood, and improved [2], and particular emphasis has been posed on its potential
applications in delivering personalised medicine [3]. This particular use has been motivated
by the intrinsic flexibility of 3D printers, that are able to fabricate solid oral dosage forms
with bespoke properties potentially with no need to alter the formulation [4], in contrast
to conventional tableting techniques which are not customizable at reasonable costs and
only have limited geometries achievable. For example, the recently FDA-approved T19
rheumatoid arthritis drug, designed as a chronotherapeutic drug delivery system targeting
the circadian symptoms of the disease, achieves its particular release profile thanks to the
complex inner geometry fabricated through 3D printing [5]. Such an approach would
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complement the standard mass production of medicines, embracing a highly patient-centric
method foreseen to revolutionise pharmacotherapy [6].

Promising 3D printing applications currently rely on Fused Deposition Modelling
(FDM), Selective Laser Sintering (SLS) and vat photopolymerisation (VP) techniques [7].
Each of these technologies differ in the way the layers are built; for example, in FDM a drug
loaded filament is thermally extruded into the desired geometry, while in SLS thin layers of
powdered raw material are sintered by a laser [8]. VP techniques, such as Stereolithography
(SLA) and Digital Light Processing (DLP) instead operate through light-induced curing of
photosensible resins [8].

Formulation of solid oral dosage forms with different 3D printing methods mainly
affect features such as drug release, mechanical properties, and external appearance.
FDM and related techniques have been used for a wide range of applications and al-
lowed the manufacturing of variously engineered solid dosage forms [9–12], while SLS has
been investigated for its power to fabricate rapidly disintegrating tablets [13–17]. SLA and
DLP 3D printing have been instead used to fabricate controlled release dosage forms,
hydrogels and polypills [7,18–23].

While FDM currently stands as a frontrunner in the advanced development of 3D-
printed solid oral dosage forms, its disadvantages should be considered as, for example,
process limitations restrict the number of drugs that can be used due to potential process-
induced thermal degradation [24,25]. This is especially true considering that FDM is
generally coupled with hot-melt extrusion, thus doubling the incidence of thermal challenge
and chance of stability issues [26]. Furthermore, developing drug-loaded filaments with
satisfactory mechanical properties for extrusion and 3D printing can be challenging [27].
Similarly, heat-induced degradation could also affect SLS 3D-printed products due to
the rise in temperature caused by the sintering activity of the laser [7]. Additionally,
the required feed-stock material can suffer from flowability issues, particularly when the
powder is thinly spread at the completion of each layer [28].

Such limitations are not shared by VP techniques, as both SLA and DLP do not rely
on heat for fabrication and do not require powders. Instead, each layer is manufactured by
either a laser beam (SLA) or a digital projector screen (DLP) inducing the polymerisation
of a drug-loaded resin. VP is also a very accurate process with high printing resolution,
enabling the fabrication of solid oral dosage forms with greater patient acceptability over
other techniques such as FDM and SLS [7,29,30].

However, pharmaceutical applications of VP technologies still account for the smaller
share and remain underdeveloped [7,31]. This is particularly dependent upon throughput
limitations related to the impossibility of printing simultaneously using low volumes of
different resins [21], thus making formulation development processes time consuming and
cost inefficient. Although some discontinuous methods to overcome this limitation have
been suggested [32], the overall process needs to be improved.

Furthermore, limitations are posed by the lack of materials suitable for VP; commer-
cially available photopolymer resins have been designed mainly for engineering purposes,
where tough and resistant structures are needed with high crosslinking observed in the
polymerised networks [33,34]. However, from a pharmaceutical perspective, such mechan-
ical attributes are not desirable as orally administered dosage forms should completely
break down to release their drug content and to then be eliminated with no risk of leaving
tablet fragments in the gastrointestinal tract [35]. Additionally, despite the existence of
biocompatible commercially available resins designed for special applications, such as
dentistry [36,37], only a limited number of photopolymer formulations have been inves-
tigated for pharmaceutical applications [20,22,32,38]. Such limitations, therefore, lay the
foundations for an extensive screening of photopolymer formulations and their respective
evaluation. SLA and DLP 3D printers currently on the market are designed to operate using
large volumes of a single resin at any one time [21] allowing for large prints, which can be
advantageous in prototyping and similar applications. This is not required or desirable
in pharmaceutical formulation development and, consequently, without addressing such
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aspects, developing novel formulations would require an unnecessarily large amount of
resin resulting in a less than economical process.

Hence, the aim of this work was to design and fabricate a novel SLA apparatus able
to 3D print solid dosage forms using low volumes and multiple formulations at the same
time, with the view to maximising throughput and cost-effectiveness of the technique.
Lean production principles of avoiding waste related to ‘inventory’, ‘overproduction’
and ‘waiting’ were followed as a general guideline to identify critical areas to address to
improve the technique for pharmaceutical applications [39]. Furthermore, the purpose
of developing a novel SLA apparatus arrangement was to employ a high throughput
screening of novel pharmaceutical photopolymer resins to address the lack of formulations
for VP technologies. Screened formulations were evaluated based on their printability
outcomes with the view to develop a pool of multi-purpose, drug-loadable resins that can
be flexibly used to deliver safe, effective, and personalised dosage forms.

2. Materials

Clear resin V4.0 (Formlabs Inc., Somerville, MA, USA) was purchased as a commer-
cially available photopolymer for SLA 3D printing. Clear silicon glue was purchased from
Loctite (Henkel Corp., Düsseldorf, Germany). Aluminium tape was acquired from 3M,
USA. Propan-2-ol was obtained from Fisher Scientific, Loughborough, UK. A 150 (width)
× 150 (depth) × 100 (height) mm H30-6082-T6 aluminium alloy block was purchased
from John Keatley Metals (KeatleyMetals Ltd., Birmingham, UK). Polyethylene glycol
diacrylate (PEGDA–MW 250, 575 and 700) and N-vinyl-pyrrolidone were used as reactive
oligomers and monomer, respectively. Diphenyl 2,4,6-trimethyl benzoyl phosphine oxide
(TPO) was used as photoinitiator at a concentration of 1%, 0.5%, 0.1% and 0.05% (w/w).
Polyethylene glycol 300 (PEG 300), propylene glycol and glycerol were selected as liquid
non-reactive fillers at a concentration of 12.5%, 25% and 50% (w/w). All chemical reagents
were purchased from Sigma-Aldrich, Gillingham, UK.

3. Methods
3.1. Stereolithography Apparatus

A Form 2 SLA 3D printer (Formlabs Inc., Somerville, MA, USA) was used as a
desktop stereolithography apparatus to manufacture all the formulations presented in this
work. The Form 2 3D printer is equipped with a 405 nm laser and has a build volume
of 145 (width) × 145 (depth) × 175 (height) mm. The feedstock material consists of a
photopolymer resin contained in a 200 mL vat. Printed objects are formed on a build
platform made of aluminium and plastic, with a build area of 21,025 mm2 and a weight of
635.18 g.

3.2. Design and 3D Printing of a Modified Build Platform Prototype and Resin Tank

An attachment consisting of twelve compartments to be inserted onto the original
resin tank was designed on TinkerCAD (Autodesk Inc., San Rafael, CA, USA). In contrast
to the original 200 mL resin tank, each compartment was designed to contain 10 mL
of photopolymer resin. To match the novel resin tank, a modified version of the build
platform featuring twelve build spots (12BP) was also designed using TinkerCAD. Each spot
has a build area of 400 mm2, allowing the fabrication of single tablets up to 20 mm in
diameter. The modified build platform and the resin tank insert were 3D printed with the
Form 2 using Clear resin photopolymer; each print was setup using PreForm 2.20.0–Beta
1 (Formlabs Inc., Somerville, MA, USA). The 3D printing of the build platform required
401.38 mL of photopolymer resin and took 31 h and 1 min to be completed. The resin
tank insert required 156.33 mL of photopolymer resin and was completed in 9 h and
52 min. Both the modified parts were 3D printed at a resolution (layer thickness) of
100 µm. Following the 3D printing process, each part was placed in propan-2-ol and
cleaned in a sonic bath for 20 min to remove any uncured resin. All the necessary supports
were removed after drying for 10 min at room temperature. The twelve 3D printed
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compartments were finally fixed to the silicone layer on the original resin tank using silicone
glue, while each spot of the 3D printed 12BP was covered with 75 µm thick aluminium tape
with an adhesion strength of 12N/cm to allow easy removal of printed tablets.

3.3. Design and Fabrication of An Aluminium Multi-Build Platform

A twelve spots aluminium build platform (aluminium 12BP) was designed using
SolidWorks (Dassault Systèmes, Vélizy-Villacoublay, France), based on the design of the
3D printed prototype, manufactured through computer numerical control (CNC) milling
and finally bead blasted to provide a rough finishing aimed to increase objects’ adherence
while printing and to facilitate their release once fabricated; the support fixing the build
platform to the SLA apparatus was designed using TinkerCAD and 3D printed with clear
resin photopolymer.

3.4. Tablet Uniformity Testing

The original build platform (BP), the 3D printed 12BP and the aluminium 12BP were
connected to the SLA apparatus and used to fabricate cylindrical tablets to evaluate the
influence of different build platforms on tablet uniformity. Three batches of twelve tablets
each were 3D printed on each platform. All tablets manufactured at this stage were com-
posed of Clear Resin photopolymer V4.0 (Formlabs Inc., Somerville, MA, USA). After 3D
printing, ten tablets per batch were randomly picked to carry out tablet uniformity tests.
Measurements were taken for tablet weight, thickness and diameter. Tablets were designed
using TinkerCAD. A conventional cylindrical geometry with a diameter of 12.0 mm and
a thickness of 4.0 mm was selected and tablets were printed both directly on the build
platform and oriented to 45◦ using printing supports to evaluate the impact of scaffolds
on tablet uniformity. Tablet thickness and diameter were measured using a digital caliper;
tablet weight was measured on a precision balance. Statistical analyses were performed
using SPSS Version 26.0.0.0 (IBM Corp., Armonk, NY, USA).

3.5. Formulation of Photopolymer Resins and 3D Printing

Cylindrical tablet CAD files were uploaded as stereolithographic files (.stl) using
PreForm 2.20.0–Beta 1 and set to be printed directly on the build platform. In total,
156 photopolymer formulations were designed based on different combinations of PEGDA
250, PEGDA 575, PEGDA 700, N-vinyl-pyrrolidone, PEG 300, glycerol, propylene glycol
and TPO, as described in Table S1. Then, 10 mL of each formulation was prepared by
mixing the liquid photopolymers and eventual fillers with the powdered photoinitiator,
and stirred for 12 h or until complete dissolution of all the ingredients and were kept away
from light sources. Then, twelve formulations per time were loaded in the novel resin tank
for 3D printing. Each run took 4.37 h to be completed at a resolution of 25 µm, 1.95 h at
50 µm and 1.1 h at 100 µm.

3.6. Printability Evaluation

Photopolymer formulations’ printability outcomes were evaluated according to a
six-point arbitrary scale (Figure 1). A printability score (PS) from 1 to 6 was assigned to
each formulation based on visual inspection. An extra score was assigned to formulations
providing 3D printed tablets with a well-defined lower edge. This was introduced to
differentiate between formulations showing overcuring only in the first layers rather than
the whole tablet. Inclusion criteria were then based on formulations reaching a printability
score of 5 and/or showing a defined edge (*) after printing a cylindrical test tablet.
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3.7. Novel SLA Apparatus Cost-Effectiveness

The total time required to screen 156 formulations using the novel SLA apparatus,
as well as the volume of formulation samples needed and the cost per each formulation
prepared, was noted. A cost-effectiveness comparison between the two SLA apparatus was
carried out by calculating the time required to screen one formulation at a time using the
original apparatus and the costs for preparing 200 mL of each photopolymer formulation
as required by the original capacity resin tank of 200 mL.

3.8. Resin Recovery Efficiency Evaluation

The original BP and the aluminium 12BP were weighed separately. Each platform
was then connected to the 3D printer and a print was initiated. Once the platform was
completely lowered in the resin tank and covered in photopolymer resin, the print was
aborted to allow the BP to home. As soon as the initial position was reached, a timer
was started and the platform collected to be weighed again at given timepoints (Figure 2).
The experimental procedure was carried out at room temperature. The volume of resin
adhered to the build platform at each timepoint was calculated using Equation (1):

Vn = (wn − wi)/ρ (1)

where Vn indicates the volume of resin adhering to the build platform at the n-time point,
wn is the weight of the build platform at the n-time, wi is the initial weight of the build
platform and ρ is the resin relative density.

The economic loss relative to the wasted resin at the n-timepoint was calculated using
Equation (2):

Economic loss (
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4. Results and Discussion
4.1. Stereolithography Apparatus Evolution

In order to address throughput limitations of conventional vat polymerisation ap-
paratus equipped with a single, large-volume resin tank, the first step in modifying the
commercial SLA apparatus was the design of twelve resin compartments and a build
platform featuring twelve separate build areas (12BP) (Figures 3 and 4). The dimensions
were selected to be the minimum dimensions to allow for tablet printing and resin-depth
changes upon submersion of the printing platform.
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The CAD files for the novel components were then sent to the 3D printer to be
manufactured. The resin tank inserts were fixed onto the original resin tank and tested for
being watertight by alternately filling the compartments with a green-coloured solution
and leaving them overnight to assess any leaks from the filled compartment to the next
ones (Figure 5A,B), while the 3D printed 12BP was covered with aluminium tape to allow
for ease of removal of printed dosage forms (Figure 5C).
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Subsequently, after the 3D printed 12BP was shown to be firmly connected to the
printer and compatible with the novel twelve-vats resin tank, a final version of the build
platform made of aluminium (aluminium 12BP) was fabricated through CNC milling and
fixed to the SLA apparatus using a 3D printed joint, which was easily replaceable in the
case of breakage (Figure 6). Aluminium was selected due to its similarity to the original
component and its density of 2.70 g/cm3 [40]. The fully assembled aluminium 12BP final
weight was 625.15 g, resulting in a 1.58% decrease in weight compared to the original BP.
Such weight was estimated before manufacturing and maintained by drilling holes in the
aluminium block (visible in Figure 6A) to obtain a finished product whose weight could
not damage the moving parts of the SLA apparatus.
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was selected to optimise the adhesion of objects during the 3D printing process and to facilitate their release at the end of
the print.

With the novel resin tank and build platform in place, a commercial stereolithography
apparatus was converted into a piece of equipment able to print multiple formulations
at a single time with a fraction of the material originally required (Figure 7). Such novel
apparatus was designed with the intention to conduct the high-throughput screening of
photopolymer formulations aimed to identify printable candidates to produce solid oral
dosage forms.
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Figure 7. Comparison of (A) the original Form 2 SLA apparatus and (B) the novel SLA apparatus
developed. The modified SLA apparatus allows operation with up to twelve different photopolymer
formulations simultaneously. Each vat has been designed to contain 10 mL of resin formulation.

The modified apparatus’ reliability was assessed by printing cylindrical tablets using a
commercially available resin photopolymer. Twelve tablets were printed on the aluminium
12BP, with and without supports (Figure 8). The printability score (PS) assigned to both
the types of fabricated tablets was 5*, indicating a successful print with accurately defined
edges in all cases.
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4.2. Tablet Uniformity Testing

Three batches of twelve tablets each were fabricated using the original BP, the 3D
printed 12BP and the aluminium 12BP. Each batch was 3D printed with and without
supports to evaluate their impact on tablet uniformity. Results for the uniformity of weight,
thickness and diameter are shown in Figure 9.
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Considering a theoretical value for tablet weight of 0.493 g, estimated from tablet
volume and resin density, the percent relative error (%Er) calculated for the original BP,
the 3D printed 12BP and the aluminium 12BP was 32.67%, 24.50% and 6.90%, respectively,
for tablets printed directly on the build platform, while the relative standard deviation
(RSD) was 2.15%, 5.91% and 4.56%, respectively. However, the introduction of printing
supports resulted in the fabrication of more accurate and precise batches, as shown by a
decrease in the %Er and RSD, respectively, to 8.81% and 0.61% (original BP), 10.05% and
0.46% (3D printed 12BP), 5.64% and 0.61% (aluminium BP12).

A similar trend was observed when evaluating tablet thickness; when comparing the
original BP and the 3D-printed 12BP, there was a %Er of 21.57% and 15.52%, with an RSD
of 2.22% and 5.77%, respectively, when printing without supports. As per tablet weight,
introducing printing scaffolds lowered the %Er and the RSD, respectively, to 1.46% and
0.69% (original BP), 2.44% and 0.62% (3D printed 12BP). However, tablets printed using the
aluminium 12BP showed a %Er and RSD, respectively, of 0.94% and 0.54% (with supports),
−0.71% and 4.34% (without supports), indicating better uniformity performances when
the aluminium 12BP was used.

A more uniform pattern was observed when evaluating tablet diameter. In fact,
the %Er observed considering a theoretical diameter of 12 mm was 0.44% (RSD = 0.18%),
−0.19% (RSD = 0.20%) and 0.29% (RSD = 0.15%) with the original BP, the 3D printed 12BP
and the aluminium 12BP, respectively, when printing with supports. Printing tablets directly
on the build platform led instead to a %Er of −0.07% (RSD = 0.70%), 0.63% (RSD = 1.23%)
and 0.26% (RSD = 0.78%) with respect of the original BP, the 3D printed 12BP and the
aluminium 12BP.

A multivariate analysis of variance (MANOVA), coupled with a Tukey post hoc test,
was performed to evaluate the effect of the build platform used evidenced a statistically
significant difference (p < 0.05) in tablet weight, thickness and diameter when the 3D
printed 12BP was compared to the original BP and tablets were printed directly on the BP.
Comparing weight and thickness uniformity results of unsupported tablets fabricated with
the aluminium 12BP and the original BP also resulted in a statistically significant difference
(p < 0.05), while no difference (p > 0.05) was observed for tablet diameter.

The results firstly suggest that tablet thickness is the most susceptible factor to inhomo-
geneity; since it is generally observed that the tablet thickness is higher than the expected
value, it is likely that this also led to a gain in weight and, therefore, inhomogeneity in
tablet weight uniformity. In particular, high differences were related to the use of the
3D-printed 12BP. A potential explanation can be found in the loss of structural integrity



Pharmaceutics 2021, 13, 616 10 of 16

observed in the 3D printed 12BP over time (Figure 10). The clear resin photopolymer used
to manufacture the 3D printed 12BP suffers, in fact, from significant limitations in terms of
mechanical properties and tends to deform over time and light exposure [41–43]. Even a
minimal change in the BP geometry could eventually result in a print with poor dimension
accuracy. As aluminium does not share such a limitation, this would explain the significant
improvements in tablet uniformity when the aluminium 12BP was used.
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Secondly, it was found that introducing printing supports considerably improved
tablet uniformity when using the original BP and the 3D printed 12BP. In comparison with
the original BP, no statistically significant difference (p > 0.05) in weight and thickness
uniformity was observed for tablets fabricated on the 3D printed 12BP. Supported tablets
printed on the aluminium 12BP also showed no significant difference in terms of uniformity
of thickness and diameter when compared to results obtained from tablets produced on
the original BP. Such improvements are compatible with the general recommendation to
use printing supports for fabricating objects with minimum risk of size inaccuracies [44].

However, it should be considered that printing scaffolds require extra material to be
fabricated and are a primary source of waste (Table 1).

Table 1. Weight of 3D-printed tablets and relative supports produced using the original BP and the
3D-printed 12BP. Measurements were taken before and after supports were removed from tablets
(n = 10). Material waste percentage is expressed as the ratio of support weight over initial weight.

Material Waste Assessment Original BP 3D Printed 12BP

Initial weight (g) 16.096 16.280

Supports weight (g) 12.544 16.701

Material waste percentage (%) 43.799 50.638

4.3. Resin Recovery Efficiency Evaluation

At the completion of each print, the BP is automatically lifted and later removed by
an operator to collect the fabricated dosage forms, while any uncured resin remaining on
the platform is removed and disposed of. Attempts to manually recover resin adhered
to the BP using metal tools could result in accidentally recovering partially cured resin
debris, or in scratching the aluminium surface with risk to contaminate the feedstock
material. Although manual removal determines most of the final resin loss, the amount of
material wasted, and its related cost, have not been defined before. As a variable amount of
recoverable resin drops from the BP into the resin tank as soon as a print is finished, it was
hypothesized that the time the platform was left in the 3D printer before being removed was
a critical parameter to estimate the final material wastage. In fact, the longer the BP remains
connected to the SLA apparatus, the more photopolymer resin is recovered and saved.
Therefore, the impact of the time the BP is left in the 3D printer after a print is completed
on the amount of resin eventually wasted was investigated (Figure 11). Both the original
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SLA apparatus and its modified version were compared to assess potential differences in
their capacity to generate time-dependent resin waste. Cost implications of such waste
generation were also assessed.
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Figure 11. Comparison of photopolymer resin waste generated by adherence onto the original BP and the aluminum 12BP
over a period of one hour. The straight curve indicates the economic loss using the original SLA apparatus. The dashed curve
indicates the economic loss using the modified SLA apparatus. Error bars indicate standard deviation of the measurements
(n = 3).

Measurements were taken at 14 time points covering a period of 1 h. At t = 0 s,
16.63 mL of resin adhered to the original BP, while only 3.28 mL were recorded on the
aluminum 12BP. At t = 3600 s, the amount of adhered material was quantified as 5.92 and
1.76 mL for the original BP and the aluminium 12BP, respectively.

According to the results, it can be stated that, if the BP is left in the SLA apparatus
at the end of a print for an increasing amount of time, a clear effect on reducing resin
waste is observed. Furthermore, the aluminium 12BP used in the novel SLA apparatus has
proven to reduce the amount of adhering resin by 70.27%, in comparison to the original
BP; avoiding such waste would allow for the saving of enough material to produce an
additional 11 and 3 tablets (based on a 0.5 mL tablet volume) using the original and the
modified SLA apparatus, respectively.

From a cost point of view, the effect of time on material saving, as well as differences
between the use of the original and the modified SLA apparatus, are evident (Figure 11).
The economic loss due to the resin adhering on the build platforms just returned in position
after a print (t = 0 s) was quantified as GBP 2.00 for the original SLA apparatus versus
GBP 0.39 for the modified version. By leaving the platform above the tank until the end
of the experiment (t = 3600 s), wasted resin value decreased to GBP 0.71 and GBP 0.21 for
the original and the modified build platforms, respectively. It should be noted that the
suggested model was based on the use of a commercial photopolymer resin not intended
for pharmaceuticals applications. The lack of commercially available resins designed
for pharmaceutical manufacturing necessitates the on-site production of photopolymer
formulations consisting of polymers, photoinitiators, active pharmaceutical ingredients and
other excipients, which eventually increase the final cost per mL. For example, considering
the highest cost per mL for the formulations discussed in this work (Table S1), and assuming
comparable materials’ behaviour, GBP 4.16 worth of photopolymer resin would be wasted
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at t = 0s using the original SLA apparatus, while the resin loss using the modified build
platform would be quantified as GBP 0.82 at the same timepoint. Recovering photopolymer
resin from the build platforms for one hour would instead decrease the value of wasted
material to GBP 1.48 and GBP 0.44 using the original and the modified SLA apparatus,
respectively.

Ultimately, our findings aim to suggest a potential solution to minimise photopolymer
resin wastage by avoiding the immediate removal of the build platform after the completion
of dosage forms of 3D printing. This would, in fact, allow a certain amount of resin
to be time-dependently recovered and reused, with no need of operator intervention.
While the effect of time and the type of BP used have been evaluated, other factors, such as
photopolymer resins’ viscosity and surface tension, should also be investigated, in order to
establish a solid model to universally predict material wastage and identify the amount of
time providing the highest recovery.

In fact, it is likely that the production of personalised dosage forms in clinical settings,
such as hospital pharmacies, will have higher costs than the mass production of drugs at an
industrial level, and it is, therefore, necessary to maximise process cost-effectiveness [45].

4.4. High-Throughput Screening of Pharmaceutical Photopolymer Formulations
4.4.1. Novel SLA Apparatus Cost-Effectiveness Evaluation

The modified SLA apparatus was used to carry out a printability screening of 156 phar-
maceutical photopolymer formulations. The total time required for the screening, formula-
tions amount needed, and the related costs are reported in Table 2. A comparison of the
same parameters estimated considering the use of the original apparatus is also delineated.

Table 2. Cost-effectiveness comparison of the two SLA apparatus used to screen 156 pharmaceutical
photopolymer formulations.

Apparatus Used Time (h) Sample Required (L) Materials Cost (GBP)

Modified SLA Apparatus 96.42 1.56 292.21

Original SLA Apparatus 1157.00 31.20 5844.19

The developed modified SLA apparatus proved to dramatically reduce both the
time and the sample amount required to conduct systematic screening of photopolymer
formulations. In particular, the use of the novel SLA apparatus resulted in a 91.66%
reduction in the amount of time needed to complete the screening, and 95% less raw
materials being used.

These results make the introduction of the modified apparatus into formulation
development processes a promising tool to enhance the application of SLA 3D printing
in pharmaceutics, which has been limited until now. Furthermore, our aim was to bridge
the gap between general use SLA equipment and those designed for research applications,
with the view of developing SLA 3D printers specifically designed for pharmaceutical
purposes in the future.

4.4.2. Printability Outcomes Evaluation

Based on the inclusion criteria, the whole set of photopolymer formulations screened
was classified in four groups (Figure 12). Out of the 156 formulations tested, 96 provided
a PS 6=5 indicating poor printability outcomes (Figure 12, group A), while the remaining
60 formulations met the eligibility criteria by reaching a PS = 5 or showing defined edges (*)
with at least one printing resolution, making up a pool labelled as Printable Formulations
(PF, n = 60) (Figure 12, group B).
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Figure 12. Group classification of photopolymer formulations screened. Group A indicates formula-
tions with PS 6=5 (n = 96); group B reports formulations with a PS = 5 or PS = * at least at one printing
resolution (n = 60); groups B1 (n = 35) and B2 (n = 5) list formulations with a PS = 5* at least at one or
at each printing resolution used, respectively.

Formulations included in group B were then subclassified into groups B1 (n = 35;
formulations reaching PS = 5* at least for one printing resolution) and B2 (n = 5; formula-
tions reaching PS = 5* at each printing resolution). Formulations belonging to groups B1
and B2 were jointly labelled as Best Formulations (BF, n = 40).

A detailed table, including the composition of each formulation, the printability score
assigned at each resolution, and the group to which it belongs, is shown in Table S1.

The effect of 3D printing resolution on printability outcomes was also investigated
(Figure 13). Selecting a resolution of 25 µm resulted in 43.3% of group B formulations
being classified as BF, followed by 30.0% and 33.3% selecting a resolution of 50 and 100 µm,
respectively. In total, 33.3% of group B formulations were instead classified as PF when
screened at 50 µm, while a reduction to 28.3% and 20.0% was observed when printing at 25
and 100 µm, respectively. Overall, of all the formulations classified in group B, 71.7% met
targeted printability criteria using a printing resolution of 25 µm, whereas a decrease in
printing resolution to 50 and 100 µm also reduced the fraction of formulations providing
satisfactory outcomes to 63.3% and 53.3%, respectively.
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It should, however, be considered that printing with a resolution of 25 µm increases
printing time by 55.38% and 74.83% compared to using a layer thickness of 50 and 100 µm,
respectively. Despite the better results observed using higher resolution, the increase in
production time should not be underestimated. The implementation of SLA 3D printing in
clinical settings to produce personalised dosage forms will in fact be possible if the overall
efficiency of the process is optimised, reducing costs and production times, and ensuring
the safety and efficacy of the printed medicines [45,46]. It is, therefore, essential to identify
novel formulations, designed to provide best printability even at low resolution.

Our systematic screening has shown how modifying a commercial SLA apparatus
allows us to address the limitation of identifying printable resin formulations with a
significant reduction both in terms of time and costs. Furthermore, the application of the
modified SLA apparatus in a clinical scenario would allow for the printing of multiple
formulations at the same time to provide patients with their personalised medicines in
reasonable time.

5. Conclusions

A commercial SLA apparatus was modified into a novel, multimaterial device specifi-
cally designed to address the limitations of SLA 3D printing in pharmaceutical applications.
The novel SLA apparatus was tested by carrying out a high-throughput screening to iden-
tify pharmaceutical photopolymer formulations with satisfactory printability and was
proved to considerably reduce the time and economic resources needed. Furthermore,
potential areas of wastage were identified and solutions to address them were described
with the view to enhance SLA 3D printing feasibility at a clinical level. In conclusion,
the novel apparatus’ power to 3D print different formulations at the same time may not
only be advantageous at a formulation development stage, but also in clinical scenarios
where different solid oral dosage forms can be produced together using the same 3D printer,
making access to personalised medicines to patients more achievable.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13050616/s1, Table S1: % w/w composition of the 156 photopolymer formula-
tions prepared and screened. Printability score assigned per formulation at each printing resolution
tested and the classification group of each formulation are reported. Costs/mL per formulation are
described in the right column.
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