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Thesis Summary 
 
The oxidative modification of lipids containing polyunsaturated fatty acids results in a 

wide diversity of reactive products, including short-chain aldehydes, which can covalently 

modify proteins, a process called lipoxidation, and affect their function. The detection of 

lipoxidation adducts is extremely challenging due to their low abundance, so there is a need 

for new detection methods. Using the model proteins lysozyme and human serum albumin, 

five reporter ions for acrolein modification, eight for 4-hydroxyhexenal and one for 2-

chlorohexadecanal were found by LC-MS/MS-based label-free method. Subsequently, a 

targeted multiple reaction monitoring method was developed as a potential tool for the 

identification and characterization of these modifications of human serum albumin in 

biological samples. Comparison between three different chromatographic methods for the 

separation of intact proteins unmodified or modified by short-chain aldehydes demonstrated 

that anion exchange chromatography was the best method for protein isoform separation 

while reverse phase chromatography was the best for the separation of lipoxidized proteins. 

To understand the cellular effects of lipoxidation by small aldehydes, two cellular 

proteins were studied. The Cys328-mediated effect of short-chain aldehydes on vimentin 

organization was evaluated by confocal microscopy, which showed that aldehydes caused 

vimentin aggregation around the nucleus, and Cys328 was important in both assembly of 

the filament network and as a target for lipoxidation. The effect of short-chain aldehydes on 

the glycolytic enzyme pyruvate kinase was also studied, and this protein was found to be 

highly susceptible to modification; under pathophysiological concentrations acrolein, 

malondialdehyde and 4-hydroxyhexenal were able to inhibit its activity in a time- and dose-

dependent manner. Similar inhibition was observed in breast cancer cells, altering cellular 

metabolism and suggesting that these aldehydes may contribute to mechanisms of 

tumorigenesis. Overall, this work has improved the analytical tools for detecting protein 

lipoxidation, as well as understanding of its functional effects. 
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1.1. Lipids and lipid peroxidation products 

1.1.1. Lipids 

Lipids are a group of biomolecules that embraces a diversity of molecules with different 

structural features and different functions. Lipids are described as amphipathic small 

molecules that may originate entirely or in part by carbanion based condensation of 

thioesters (in the biosynthesis of fatty acyls, glycerolipids, glycerophospholipids, 

sphingolipids, saccharolipids, and polyketides) or by carbocation-based condensations of 

isoprene units (for prenol and sterol lipids). These eight lipid categories are further 

subdivided on the basis of chemical structures (Figure 1.1) [1]. 

 

Figure 1.1. Lipid categories according to the LIPID MAPS lipid-classification system. 

Fatty acids are carboxylic acids with aliphatic chains between 4 and 28 carbons long, 

which can be either saturated or unsaturated. Saturated fatty acids have no double bonds 

and therefore are less susceptible to oxidative damage. Palmitic acid (16:0) is one of the 

most common saturated fatty acid in cells and in fatty foods. 

Unsaturated fatty acids have up to 5 double bonds and are susceptible to oxidation. 

Polyunsaturated fatty acids can be divided into two groups: ω3 and ω6 according to the 

position of their double bonds (the number of carbons from the CH3 end) [2]. The carboxylic 

acid (COOH) is considered the beginning of the chain while the methyl (CH3) is the end of 

the chain. The ω3 fatty acids have a double bond at the third carbon atom from the end of 

the carbon chain [3]. The ω3 essential fatty acids for humans are α-linolenic acid (ALA, 
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18:3), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6) (Figure 

1.2) [4]. Humans get these fatty acids through the diet from fish and plant sources. Linolenic 

acid is the dietary precursor of longer ω3 polyunsaturated fatty acids (PUFA) as EPA and 

DHA [5]. Some studies relate the ingestion of ω3 fatty acids with beneficial effect to health 

including mediating inflammation [6]. The oxidation of EPA produces E-resolvins, and 

oxidation of DHA leads to several other beneficial lipid mediators such as D-resolvins, 

protectins and maresins. All of these lipid mediators are known for their pro-resolution role 

in inflammation [7]. 

ω6 Fatty acids have a double bond at the sixth carbon atom from the methyl end. These 

are known for their pro- and anti-inflammatory roles. During inflammation, ω6 fatty acids are 

converted to eicosanoids that bind to receptors and initiate reactions promoting cell repair 

[8]. As for ω3, some of the ω6 fatty acids are also classified as essential since humans 

cannot synthesize them. Linoleic acid (LA, 18:2) is an essential fatty acid and it is precursor 

for other ω6 fatty acids including the arachidonic acid (AA, 20:4) (Figure 1.2). This fatty 

acid is involved in a variety of inflammatory processes since it is the precursor of pro-

inflammatory molecules. Via the enzymatic action of COX1/2 and 5-lipoxygenase, AA it 

gives rise to prostaglandins and leukotrienes respectively [9]. 

 

 

Figure 1.2. Structure of three ω3 and two ω6 unsaturated fatty acids. Example of ω3 fatty acids 

are linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and of ω6 

fatty acids are linoleic acid (LA) and arachidonic acid (AA). 

 

Fatty acids can be found as free molecules but mostly they are found esterified to a 

glycerol appearing as, for example, phospholipids. Phospholipids (PL), are the major 

component of a cell membrane due to their characteristic amphipathicity [10] and are 

responsible for maintaining membrane stability and integrity [11]. This lipid category 

includes glycerophospholipids and sphingolipids. Glycerophospholipids, commonly referred 

to as phospholipids, come from phosphatidic acid and have an ester linkage at the sn-2 and 
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sn-1 positions to two fatty acids as well as a polar head linked to glycerol third carbon by a 

phosphodiester bond [12]. Depending on the polar head, phospholipids can be divided into 

six categories. These are phosphatidic acids (PA), phosphatidylcholines (PC), 

phosphatidylethanolamines (PE), phosphatidylserines (PS), phosphatidylglycerols (PG) 

and phosphatidylinositol (PI) (Figure 1.3). 

 

 

Figure 1.3. Structure of glycerophospholipids. R1 and R2 represent fatty acyl chains esterified to 

the glycerol. X correspond to the different polar heads. 

Sometimes, instead of an ester bond, the fatty acids are linked to glycerol by a vinyl 

ether bond; plasmalogens are the phospholipids characterized by the presence of an ester 

linkage at the sn-2 position but a vinyl ether linkage at the sn-1 position (Figure 1.4). These 

molecules are resistant to the action of phospholipases since they only recognize and 

cleave ester bonds. 

  

 

Figure 1.4. Structure of glycerophospholipids holding an ether bond instead of an ester bond. 

A-plasmalogens with a vinyl ether bond; B- ether lipid (Platelet-activating factor (PAF)). 

Several studies have reported the importance of a specific lipid environment for the 

correct functioning of membrane proteins [12]. Although some proteins depend on being 

surrounded by a specific lipid shell, some multimeric proteins specifically bind individual 
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lipids that are important for the structure of these protein complexes [13]. Recent studies 

suggest that lipids can also act as protein co-factors modulating their activity [14]. Under 

several pathophysiological conditions, an imbalance occurs between oxidative and anti-

oxidative species and lipids containing polyunsaturated chains are susceptible to oxidative 

damage caused by these species generated during oxidative stress. 

 

1.1.2. Overview on oxidants and oxidative stress 

Oxidative stress results from a redox imbalance and consequent increase in oxidative 

species such as partially reduced oxygen and nitrogen species (PROS and RNS). In normal 

conditions, these species have important roles in signaling, detoxification of xenobiotics and 

phagocytosis. However, in pathophysiological conditions an excess of these oxygen and 

nitrogen species can cause cellular damage and oxidative modifications of biomolecules 

such as lipids, proteins and DNA [15, 16]. Reactive oxygen species can be free radicals 

such as superoxide (O2
•-) and the hydroxyl radical (•OH), which are the most unstable and 

reactive oxygen species and can cause significant damages. They can also be non-radical, 

such as hydrogen peroxide (H2O2), which is a selective oxidant that can form other, more 

reactive oxidant species [17]. One place where ROS can be generated is in mitochondria 

during oxidative phosphorylation. During this process, electrons can accumulate and be 

transferred to oxygen molecules resulting in the production of (O2
-) [18]. This radical is polar 

and does not diffuse through cell membranes, so is generally less damaging than another 

ROS. However, it can generate H2O2 by spontaneous dismutation or enzymatically by 

superoxide dismutase (SOD). H2O2 is relatively non-polar and soluble so it does diffuse into 

the membrane and can cause damage outside the site of formation making it more toxic. 

Additionally, O2
•- can generate the hydroxyl radical (•OH), peroxinitrite (ONOO-) and singlet 

oxygen (1O2) [19, 20]. In the presence of a transition metal, such as iron, H2O2 can give rise 

to the hydroxyl radical by the Fenton reaction, with oxidation of Fe2+ to Fe3+ [21]. •OH is the 

most reactive oxygen species of all those found in biological systems, since there are no 

enzymes capable of detoxifying this radical. There are two further mechanisms to generate 

•OH. These are the decomposition of water that generates •OH and •H and the reaction of 

O2
- with H2O2 in the presence of transition metal such as iron (Fe2+) and copper (Cu2+), 

Haber-Weiss reaction. However, in vivo, it is mostly generated by the Fenton reaction [22]. 

Figure 1.5 shows the different mechanisms involved in the generation of reactive oxygen 

species. 
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Figure 1.5. Mechanisms of generation of reactive oxygen species. 

Free radicals can cause damage to important biomolecules, namely proteins, lipids, and 

DNA, changing their structure and thus being responsible for loss of function or even 

resulting in the formation of new deleterious species. Lipids are one of the major targets 

of oxidation in biological systems [23]. The development and progression of several 

diseases including age-related illnesses such as Alzheimer’s disease, Parkinson’s disease, 

multiple sclerosis, cardiovascular diseases, atherosclerosis, diabetes, liver and lung 

diseases have been associated with lipid peroxidation (LPO) [24-26]. Therefore, efforts 

have been made to understand the mechanism of lipid peroxidation and prevent its 

deleterious effects. 

 

1.1.3. Lipid peroxidation: mechanisms and products 

As previously mentioned, lipids are primary targets of the attack by PROS. Lipid 

peroxidation leads to the formation of a variety of oxidized products, produced by 

modification of polyunsaturated fatty acyl chains (PUFAs) [23]. While the enzymatic 

oxidation is regulated by receptors and intracellular signaling, the nonenzymatic oxidation 

results in new products with new bioactivities being formed, some of which may be 

deleterious to cells and tissues. In enzymatic lipid peroxidation, the oxidized products are 

generated by enzymes including lipoxygenases (LOX) and cyclooxygenases (COX), found 

in all mammalian species. In this case the lipid oxidation products often have a role in 

immunity and homeostasis. These biologically active oxidized phospholipids can initiate and 

modulate many cellular events [27]. For example, oxidized phospholipids (OxPL) can 

modulate the fate of an inflammatory response by intervening in the processes by removing 

apoptotic cells [28]. Nowadays, the importance of oxidized lipids as key players in the onset 

of cardiovascular diseases is well recognized and oxidized lipids, especially non-enzymatic 
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lipid peroxidation products, are considered as possible biomarkers for cardiovascular 

disease [29].  

On the other hand, non-enzymatic lipid peroxidation is a chain reaction by which lipids 

are modified by free radicals such as O2
•- (superoxide radical), OH• (hydroxyl radical), 

HO2
• (perhydroxyl radical) and RO• (alkoxy radicals) at carbon-carbon double bonds. Lipids 

can also be modified by non-radical forms of oxygen such as H2O2 (hydrogen peroxide) 

and 1O2 (singlet oxygen) as well as by hypochlorous acid (HOCl), product of the neutrophil 

enzyme myeloperoxidase. Figure 1.6 gives an example of the attack of OH• on a 

phosphatidylcholine, one of the main constituents of cell membranes. This process can be 

divided into two phases: first an hydrogen in abstracted from a carbon by the oxygen-based 

radical and then an oxygen is inserted in the lipidic chain resulting in a lipid peroxyl radical 

or hydroperoxide [20]. 

 

 

Figure 1.6. Lipid peroxidation mechanism. Hydrogen-atom abstraction by alkoxyl radical; oxygen 

addition to carbon radical; peroxyl radical rearrangement. 
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Lipid peroxidation starts with the attack of a free radical to generate a C-centred radical 

(L) (1), which then reacts with molecular oxygen to generate a lipidic peroxyl radical (LOO•) 

(2), which rearranges as shown above and the peroxyl radical is capable of propagating the 

chain reaction (3) [30]. It is also able to react internally to generate cyclic endo peroxidases 

as well as allowing other cleavage reaction that generate lipid peroxidation breakdown 

products which can also promote further oxidation [31]. To break the chain reaction, a 

reaction needs to occur between two radicals, or an antioxidant molecule intervenes [32]. 

 

1.1.4. Fatty acid free-radical oxidation products 

During lipid oxidation, new oxidised products are generated with different numbers of 

oxygen molecules bound to the acyl chain, therefore increasing the lipid molecular weight. 

These products are the so-called long chain oxidation products. However, the alkoxyl 

radicals can undergo β-cleavage generating short-chain oxidation products that can be 

either aldehydes or carboxylic acids (Figure 1.7) [33]. 

 

Figure 1.7. Schematic explanation of long and short chain lipid peroxidation products. 

Polyunsaturated fatty acids, either free or esterified, are particularly prone to undergo 

peroxidation, with linoleic and arachidonic acids as common examples of fatty acids that 

are oxidizable. The oxidation of these results in a great diversity of products that are 

structurally different from the non-modified lipid presenting a new shape, polarity and 

consequently biological activity. The oxidation of linoleic acid results in the formation of 9-, 

11- and 13-hydroperoxides due to the locations of the carbon radical (Figure 1.8). The 11-

HPODE is only formed in the presence of good H-donor such as alpha-tocopherol since the 

loss of oxygen at C11 is much faster than any other position [34]. Therefore, 9-HPODE and 

13-HPODE are the most common hydroperoxides resulting from linoleic acid peroxidation 

[35]. The main carbon chain of the fatty acid is preserved during the formation of the 
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hydroperoxides, the primary products, however prolonged peroxidation causes 

rearrangement or degradation and secondary oxidation products can be formed. 

 

Figure 1.8. Formation of hydroperoxides from linoleic acid. Following hydrogen abstraction, 

oxygen adds to all three reactive carbon positions (C9, C11 and C13). Other oxidative species can 

result from the rearrangement, further oxidation or breakdown of these hydroperoxides, including 

HNE. Adapted from [23]. 

Linoleic acid is the most abundant fatty acid in LDL and atherosclerotic plaques [36]. 

Oxidized linoleic acid products have been found in LDL and plasma of atherosclerotic 

patients [36] and the degree of oxidation was dependent on its severity [37]. These species 

are signaling molecules which recruit monocytes/neutrophils to atherosclerosis lesions [38].  

For example, 9-hydroxyoctadecadienoic acid (9-HODE) is pro-inflammatory and it has been 

reported in atherosclerosis [38], cardiac diseases such as infarction and coronary heart 

disease (CHD) [39], and it is known to induce PPARϒ-regulated apoptosis in monocytes, 

which LA itself cannot replicate the same effect [40]. Understanding the mechanisms behind 

the HODEs signaling may contribute to novel therapeutic approaches to these diseases. 

The arachidonic acid is another commonly oxidized ω-6 fatty acid. As mentioned above, 

AA is responsible for inflammatory processes by being the precursor of prostaglandins and 

leukotrienes. While these are products of enzymatic lipid oxidation, free radical 

autooxidation of AA can also occur and several oxidized products can be formed (Figure 

1.9). 
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Figure 1.9. Major pathways of free radical oxidation of arachidonic acid. The primary oxidation 

products are hydroperoxides. Only 11-HpETE shown here as example for simplicity, however there 

are six hydroperoxyl radicals generated from free radical oxidation of arachidonic acid. Secondary 

oxidation products are generated by further oxidation, decomposition or reduction of the 

hydroperoxides. Adapted from [23]. 

In comparison with LA, AA is more susceptible to oxidation due to a higher number of 

bisallylic positions and six major hydroperoxyeicosatetraenoates (HPETEs) can be formed, 

as well as their reduced analogues, the hydroxyeicosatetraenoates (HETEs). In Figure 1.9, 

only one of the six hydroperoxides is shown (11-HPETE) and its multiple reaction pathways 

which occur by cyclization [41, 42]. Arachidonic acid is substrate for prostaglandin 

generation by cyclooxygenase and lipoxygenase enzymes. Isoprostanes are prostaglandin-

like compounds generated from non-enzymatic free radical oxidation of arachidonic acid, 

and can be used as reliable markers for lipid peroxidation and oxidative stress in biological 

systems [43-45] due to their stability, specificity to lipid peroxidation and detection in free 

form or esterified in all biological fluids [46]. High levels of isoprostanes have been detected 

in urine from smokers [47], obese [48], diabetic [49], hypercholesterolemic [50] and 

Alzheimer’s disease patients [51]. 

Linoleic and arachidonic acid are both ω-6 fatty acids , however oxidation of ω-3 fatty 

acids, such as EPA and DHA, is also biologically important since these fatty acids have 

been associated with protective roles against inflammation. In fact, studies have shown that 

consumption of these lower the risk of cardiovascular diseases [52-54]. Nevertheless, 
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oxidation of ω-3 fatty acids generates a wide range of products and some of these have 

recently been reported as reactive against other biomolecules, therefore questioning the 

beneficial properties of ω-3 PUFAs [55, 56]. For example, DHA is an important source of 

PUFAs in tissues and has six double bonds making it highly susceptible to oxidation [57, 

58]. The wide range of oxidation products of these fatty acids include 4-hydroxy-hexenal 

(HHE) and 4-hydroxy-7-oxo-5-heptenoic acid (HOHA), both shown to be deleterious to 

proteins by generation of the adducts ethylpyrrole (EP) and 2-carboxyethylpyrrole (CEP), 

respectively [59] (Figure 1.10). The chemistry and analysis of the aldehydes formed by the 

oxidation of either ω-3 or ω-6 fatty acids are discussed in the next section of this introduction. 

 

Figure 1.10. Schematic representation of the formation of HHE and HOHA from DHA. 

Hydrolysis of DHA generates HOHA which in turn produces CEP-protein adduct. Oxidative cleavage 

of DHA also forms HHE which generates a similar protein modification, EP-protein adduct. Adapted 

from [59]. 

 

1.2. Aldehydes as short chain lipid peroxidation products 

Aldehydes are an example of PUFAs short-chain oxidation products [20, 23, 60]. As 

mentioned in the previous section, these can be generated by the decomposition of PUFAs 

through enzymatic or non-enzymatic mechanisms. Linoleic and arachidonic acids, both ω-

6-polyunsaturated fatty acyl chains, are good sources of aldehydes by cleavage of a C-C 

bond. The mechanisms by which a carbon-carbon bond can be cleaved are broadly 

classified into (i) reduction of hydroperoxide to an alkoxyl radical in the presence of a 

transition metal followed by β-scission; (ii) Hock rearrangement of a hydroperoxide and 

migration of a C-C to a C-O bond and cleavage; (iii) cyclization to form a dioxetane and 

subsequent cleavage (Figure 1.11). Similarly, ω-3-polyunsaturated fatty acyl chains, for 
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example docosahexaenoic acid, can also undergo fragmentation and give rise to many 

reactive aldehydes. The insertion of additional oxygen molecules can give rise to some 

variants of these mechanisms. If three O2 are added to the chain to form a 

hydroxyhydroperoxide, it can undergo β-scission or an  epoxyhydroperoxide can undergo 

Hock cleavage [23, 61-63]. 

 

 

Figure 1.11. Mechanisms of carbon-carbon bond cleavage. (i) reduction of hydroperoxide to an 

alkoxyl radical in the presence of a transition metal followed by β-scission; (ii) Hock rearrangement 

of a hydroperoxide and migration of a C-C to a C-O bond and cleavage; (iii) cyclization to form a 

dioxetane and subsequent cleavage. Adapted from [63]. 

These aldehydes have a carbonyl group or an α, β-unsaturated carbonyl, and may have 

other substitutions such as chlorination or hydroxylation, depending on the nature of the 

oxidant. Aldehydes can be classified on the basis of their chemical structure into alkanals, 

alkenals and γ-substituted-alkenals. This system of classification also focuses on their 

different reactivity towards biomolecules. 

 

1.2.1. Alkanals 

Alkanals are saturated carbon chains containing an aldehyde group. These are the 

simplest and least polar aldehydes. Several alkanals, varying in chain length from three to 

nine carbons, have been identified as lipid peroxidation products from linoleic and 
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arachidonic acid, both ω-6 fatty acids. Identification of these was performed by comparison 

of their retention time to aldehyde standards on a high-performance liquid chromatography. 

Butyraldehyde (butanal), hexenal and nonanal have been reported as the major alkanal 

generated by lipid peroxidation [64] (Figure 1.12).  

 

Figure 1.12. Structure of the three most common alkanals to occur as lipid peroxidation 

products. 

Hexanal was shown to be the most abundant aldehyde of all of the identified, even 

compared with 4-hydroxy-2-nonenal (HNE), a well-known aldehyde discussed later in this 

introduction in the substituted aldehydes section [64]. Still, there is a lack of studies on the 

biological reactions and effects of these aldehydes, which may be due to their lower 

reactivity and toxicity compared with other aldehydes. Their functional group, a single 

carbonyl group, only allows them to react with amine groups by Schiff base formation, for 

example with amino acids such as lysine. Even though alkanals have low reactivity, some 

studies have reported their role in disease. Hexanal, heptanal and nonanal were found in 

bronchoalveolar lavage fluid of animals after exposure to ozone [65]. The ozonation process 

in human samples was also studied and shown to produce aldehydes as lipid ozonation 

products in human lungs. Mostly hexanal and nonanal were identified, but the increase in 

these aldehydes was unrelated to airway inflammation [66]. Additionally, a study on 

oesophageal and gastric adenocarcinoma identified an increase in aldehydes such as 

butanal, pentanal, hexanal, heptanal, octanal and nonanal in cancer patients exhaled breath 

by selected ion flow tube mass spectrometry (SIFT-MS) [67]. POVPC, a 

phosphatidylcholine with a five carbon chain alkanal esterified at the sn-2 position, has been 

detected in atherosclerotic plaque by LC-MS/MS and can form adducts with ApoB100 on 

LDL [68, 69]. 

 

1.2.2. Alkenals 

Alkenals are aldehydes with a double bond in the carbon chain. Due to the structure of 

the PUFAs from which these are derived, alkenals from lipid peroxidation are often α,β-

unsaturated (double bond between carbons 2 and 3). Previous studies have listed some of 

these as products of ω-6 fatty acids peroxidation [24, 64]. Many unsaturated aldehydes with 

chain length from 3 to 9 carbon have been identified, with propenal (acrolein), 2-heptenal, 

2-octenal and 2-nonenal appearing in relatively higher amounts than the others [64] (Figure 

1.13). 
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Figure 1.13. Structure of the most common alkenals to occur as lipid peroxidation products. 

The shortest alkenal identified as an oxidation product is propenal, also known by the 

common name acrolein. With only three carbons, it is by far the strongest electrophile and 

therefore the most reactive, especially with thiol groups on proteins [70, 71]. Acrolein can 

be formed by combustion of organic matter, in tobacco smoke and from food processing 

[72, 73]. It can also be produced endogenously by the oxidation of non-lipids such as 

methionine, threonine, spermine, spermidine and glycerol [71]. In addition, there is evidence 

of lipid peroxidation of fatty acids as a source of acrolein in vivo [60, 71, 74], however the 

mechanisms still remain unclear. Previous reports proposed a mechanism for the formation 

of acrolein from the centre of the arachidonic aliphatic chain after it undergoes two β-

cleavages [60], even though this has been debated recently [60]. Supporting the hypothesis 

of acrolein being a lipid peroxidation product is a study where acrolein was detected by 

ELISA from arachidonic acid autoxidation samples [74]. Acrolein is known to be involved in 

pathophysiological processes. For example, acrolein is capable of modifying the p50 

subunit of NF-κB disrupting the regulation of gene expression. NF-κB is responsible for the 

expression of genes which regulate the antioxidant defence, apoptosis, and inflammatory 

and immunological responses, therefore its modification by acrolein may cause 

immunosuppression [75]. Some other signalling pathways have also been shown to be 

modified by acrolein, including nuclear erythroid-2 related factor 2 (Nrf2), ARE-dependent 

genes and PTP1B, which lead to increased oxidative stress and cellular damage. Exposure 

to acrolein can also cause membrane damage, increased membrane permeability and lead 

to functional defects or cell death [76, 77]. Acrolein accumulation creates an additional 

oxidative stress, increasing membrane permeability with time and eventually results in cell 

lysis [78]. It also impairs the mitochondrial respiratory function, increasing oxidative stress 

and stimulating PROS production and decreasing concentration of antioxidants such as 

GSH [79-82]. Tobacco smoke is a source of acrolein, which constitutes 50 to 60% of the 

total vapor phase electrophiles with a concentration in smoke ranged from 3 to 220 
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μg/cigarette [83]. Therefore, the mouth and respiratory tract are commonly exposed to 

acrolein and the estimated concentrations of it in the airway can be as high as 80 μM [84], 

which is increased in smokers in comparison with healthy subjects. Inhaled acrolein has 

been linked to lung injury [85] and cardiovascular diseases [86, 87]. A recent study reported 

that acrolein can harm the vocal fold epithelial barrier integrity and may lead to inflammation 

by the invasion of xenobiotics [88]. The popularity of e-cigarettes continues to grow as these 

have been sold as a safer alternative to tobacco. However, recent studies have detected 

the presence of acrolein in aerosols from e-cigarettes [89, 90]. The formation of aldehydes 

from vaping has been associated with the decomposition of propylene glycol and glycerol 

present in the e-liquid. Nevertheless, their quantity may also vary according to the power 

output or the composition of flavouring compounds [91]. Besides, these were reported to be 

4 to 6-fold lower than for tobacco [92] but long-term follow up studies are needed to confirm 

the effect of e-cigarettes in health. 

Crotonaldehyde (2-butenal) is a simple α,β-unsaturated aldehyde similar to acrolein. 

Although is it is much less toxic, it can still modify proteins and DNA in vivo [93]. 

Crotonaldehyde reacts with deoxy guanosine to form adducts with DNA which were showed 

to be involved in tumour formation. This modification was shown to generate unique 

epitopes that may trigger autoantibodies in cancer patients [94]. 2-Butenal, and the five 

carbon analogue 2-pentenal, come from the oxidative breakdown of ω-3 unsaturated fatty 

acids. In contrast, 2-heptenal, 2-octenal and 2-nonenal come from the breakdown oxidation 

of ω-6 unsaturated fatty acids. These longer alkenals are less reactive towards proteins 

than acrolein or crotonaldehyde perhaps due to their insolubility in water, which would 

favour the nucleophilic attack. However, immunoreactivity assays and liquid 

chromatography coupled to mass spectrometry (LC-MS) were used to detect protein 

modification by 2-nonenal, found preferentially on lysine residues [95]. 2-nonenal has a 

characteristically unpleasant greasy and grassy odour and is a major contributor to the 

unpleasant cardboard flavour in aged beer. Analysis of body odour components also 

showed 2-nonenal to be present in increasing amounts in the body odours of older people 

[96]. 2-nonenal is generally less reactive than other 2-alkenals and therefore has received 

less attention. Nevertheless, there is evidence of inhibition of enzymes such as platelet 

membrane-bound phosphotyrosine phosphatase [97] and liver microsomal glucose-6- 

phosphatase [98] by this aldehyde.  

 

1.2.3. Substituted aldehydes 

Lipid peroxidation can also form more complex aldehydes from the breakdown oxidation 

of unsaturated fatty acids. These species not only contain a carbonyl group (CHO) and an 
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α,β-unsaturation (C=C) but also contain an additional functional group at the C4 position, 

including  hydroperoxyl (-OOH), epoxy, hydroxyl (4-hydroxyakenals) or keto (4-oxo-

alkenals). Due to their highly reactivity and toxicity to biomolecules, α,β-substituted-alkenals 

have received the most attention in terms of their biological effects. The C3 position is 

especially susceptible to nucleophilic attack, allowing the formation of adducts with thiols 

and amines. Their bi-reactive nature is particularly important because it enables these 

compounds to crosslink proteins, which may contribute to the pathophysiology of diseases 

related to lipid peroxidation, such as Alzheimer’s disease [99, 100]. The 4-hydroxy-alkenals 

are a well-known type of lipid oxidation products and include 4-hydroxy-2-hexenal (HHE), 

4-hydroxy-2-nonenal (HNE) and 4-hydroxydodeca-2,6-dienal (HDDE) (Figure 1.14).  

 

Figure 1.14. Structure of the most common hydroxyalkenals to occur as lipid peroxidation 

products. 

HHE is a product of ω-3 PUFAs oxidation while HNE is a product of ω-6 PUFAs 

oxidation, via 15-hydroxyeicoatetraenoic acid (15-HpETE) or 13-hydroperoxylinoleic acid 

[101]. HDDE is a product of 12-HpETE, which if generated enzymatically by 12-

lipoxygenase [101]. HNE can also be an enzymatic product of ω-6 PUFAs by the action of 

15-lipoxygenase (15-LOX) on arachidonate [102]. Several reviews have detailed the non-

enzymatic processes of HNE generation by oxygen radical-dependent reactions [23, 62, 

63]. HNE was discovered in the 1960s [70] and nowadays is considered a useful biomarker 

of lipid peroxidation [100]. HNE is highly reactive, which translates into a higher number of 

studies regarding its biological effects. HNE is known to be involved in the pathophysiology 

of Alzheimer’s disease, cancer, cardiovascular diseases, diabetes, liver disease and 

Parkinson’s disease. It has been suggested as a signalling molecule. MAPK, JNK, p58, 

PKC β and δ, and Nrf2 are some of the signalling pathways found to be modulated by HNE 

[103], and a detailed review of the signalling pathways modulated by HNE has also been 

published previously [104]. Figure 1.15 summarises the key signalling pathways that can 

be modulated by HNE. These signalling processes probably involve HNE reaction with 

signalling proteins, altering their activity usually by its inhibition [103]. The severity of the 
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effect of HNE on these mechanisms is dependent on HNE concentrations, with higher levels 

of HNE leading to more deleterious outcomes, including cell death [105].  

 

Figure 1.15. Schematic summary of signaling proteins known to be modified by HNE. 

It has been demonstrated that Nrf2 binds to UPC3 (mitochondrial uncoupling protein 3) 

promoter in response to HNE, resulting in an important mechanism of protection of the heart 

under oxidative stress conditions. The Nrf2 pathway was shown to increase uncoupling 

proteins (UCP3) expression promoting cell survival [106]. However, HNE can also modulate 

mechanisms that lead to harmful consequences. For example, the modification of Src by 

HNE has been shown to be related to important cellular dysfunction. Src is the first proto-

oncogene involved in cellular proliferation and differentiation that is ubiquitously expressed 

non-receptor protein tyrosine kinase. It was reported that HNE can activate Src through 

three different mechanisms: i) EGFR is activated by HNE inducing activation of Src; ii) 

PTP1B is inhibited by HNE, increasing EGFR-induced Src activation; and iii) HNE directly 

activates Scr by modification of a cysteine residue [107]. The modification of Src by HNE 

leads to a constitutive activation of Src promoting survival, angiogenesis and proliferation 

which under cancer conditions helps a tumour to grow, demonstrating the connection 

between increased levels of HNE and cancer progression. Another protein involved in 

tumorigenesis that was shown to be regulated by HNE is the peroxisome proliferator-

activated receptor (PPAR). There is evidence that under high glucose, Nox activity is 

increased leading to an increase in ROS formation. This generates oxidative stress that 

induces lipid peroxidation and consequently HNE production. In turn, HNE activates PPARα 

and PPARβ/δ augmenting Nox expression and activity [108]. Hyperglycaemia can also 

activate PPAR through a different mechanism. It is known that high glucose accelerates 

atherosclerosis. This disease is characterised by monocytes being transformed into 

macrophages which them progress to become lipid-laden foam cells [109]. The foam cells 
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release HNE that activates PPARδ in endothelial cells leading to an increase in thioredoxin 

interacting protein (TXNIP) expression and consequent cellular senescence [110]. Some 

studies have reported specific amino acids that appear to be modified by HNE leading to 

dysfunction. His71 and Cys177 were identified as major sites for HNE modification in CDK2 

on colorectal cancer cells. These specific modifications inhibit the kinase activity, 

contributing to cell cycle arrest [111]. TRA DNA-binding protein (TDP-43) can also be 

modified by HNE, and it was reported to be directly modified on cys173, cys175 and cys198. 

This results in its solubilisation and mislocalization from nucleus to cytoplasm, consistent 

with what had been previously observed in sporadic amyotrophic lateral sclerosis (ALS) 

[112]. These findings show the importance of knowing the specific amino acid residues 

modified on each protein and relating those modifications to a specific function of the protein 

that could be used for the diagnostics or prognostics of diseases.  

The ω-3 essential fatty acids produce a different range of lipid oxidation products. The 

HHE is formed by decomposition of oxidized docosahexaenoic acid (DHA) [113, 114]. Only 

few studies have been reported on HHE, still there is evidence of it causing severe 

peritonitis, retinal or liver damage when injected [115] and causing apoptosis via modulation 

of NFkB signalling pathways [114]. However, lower levels of HHE have been shown to have 

protective effects against oxidative stress-induced cytotoxicity in vascular endothelial cells 

by stimulating the expression of antioxidants through the activation of Nrf2 [116, 117]. 

HDDE has also been found in human plasma although at lower concentrations that HHE or 

HNE, suggesting this aldehyde in produced in vivo [115, 118]. Previous studies on reactivity 

of 4-hydroxyalkenals comparing the reactivity of HHE, HNE and HDDE with 

phosphatidylethanolamine showed that HDDE was the most reactive [101], possibly due to 

a longer aliphatic chain which increased hydrophobicity, and suggests higher reactivity 

towards polar molecules such as phospholipids [101]. 

The same oxidation and cleavage mechanisms that generate 4-hydroxy-alkenals can 

also generate 4-oxo-alkenals such as 4-oxo-2-nonenal (ONE) and 4-oxo-2-hexenal (OHE) 

[119-122] (Figure 1.16). 

 

Figure 1.16. Structure of the most common oxoalkenals to occur as lipid peroxidation 

products. 

Studies on ONE concluded that it is an even more reactive protein modification and 

cross-linking agent than HNE [123], depending on the mechanism of adduct formation. 

While the rate of Michael addition with cysteine and histidine residues is higher, the rate of 
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Schiff base formation is slower [123]. There is increasing biological interest in studying ONE 

as an oxidative stress marker, since it was demonstrated to covalently link to human serum 

albumin, the main protein found in human blood [124], and histones [125]. Attention on OHE 

has also increased as its mutagenic properties were demonstrated by the ability to form 

adducts with nucleosides [120, 126]. 

The hydroxy-alkenals and oxo-alkenals discussed above can be further oxidized to the 

more stable carboxylic acid form by the action of aldehyde dehydrogenases, generating 

species such as 4-hydroxyhexenoic acid (HHA), 4-hydroxynonenoic acid (HNA) and 4-

hydroxydodecadienoic acid (HDDA). These products of the three aldehydes can be 

measured in human urine samples [118, 127]. Since HNE comes from ω-6 fatty acids, HHE 

from ω-3 fatty acids and HDDE is a lipoxygenase product, differential increases in their 

corresponding carboxylic acids in urine may be a marker of the type of mechanism of lipid 

peroxidation involved in a specific pathophysiological condition [127]. 

Bis-aldehydes are another significantly important short-chain oxidation product and, like 

4-hydroxy-alkenals, are bifunctional and can also be a source of cross-linking between 

proteins, lipids and DNA [128]. The best known is malondialdehyde (MDA), commonly used 

marker of oxidative stress in clinical samples due to its reactivity and toxicity [129, 130], 

although it has been much criticized in this respect (Figure 1.17).  

 

 

Figure 1.17. Structure of two bis-aldehydes known to occur as products of lipid peroxidation.  

MDA is generated by the decomposition of oxidised arachidonic acid through enzymatic 

or non-enzymatic mechanisms. Enzymatically, MDA can be generated as a side product of 

the synthesis of thromboxane A2, by a well stablished mechanism [131]. The nonenzymatic 

generation of MDA is less well studied. During cyclization of peroxyl radicals, a new free 

radical is formed which can cyclize again to form bicyclic endoperoxides and undergo 

cleavage to produce MDA [132]. The reactivity of MDA has been well-characterized 

previously [133]. MDA can be metabolized once formed, but it can also react with other 

biomolecules [129]. At physiological pH, MDA occurs in the enolate form with low reactivity, 

but when the pH drops, MDA reactivity increases. The main product of MDA reaction with 

DNA is pyrimido-[1,2-α]-purin-10(3H)-one deoxyribose (M1D), which has been shown to 

induce mutations on mammalian cells [129]. Due to the bis-aldehyde property, MDA can 

react further, creating an interstrand crosslink in DNA leading to potent biological effects 

[134]. There is also evidence of MDA being responsible for DNA-histones crosslinking but 

the biological importance of this is still to be shown [128]. Proteins can also be modified by 
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MDA, especially on nucleophilic amino acid residues, such as lysine, histidine and arginine. 

There is evidence that MDA-modified lysines in apoB from oxidised low density lipoproteins 

(oxLDL) are involved in atherosclerosis inflammatory processes [135, 136]. Apart from 

direct modification of proteins, MDA can also interfere with protein synthesis by modification 

of eElongation factor 2 (eEF2), which catalyses the movement of the ribosome along the 

mRNA in protein synthesis. Hence, MDA is more than just a product of lipid peroxidation; it 

has its own toxicity towards biomolecules and needs to be considered as an important 

molecule to study when looking for pathophysiological explanations of diseases. Glyoxal is 

another bis-aldehyde, analogous to MDA but with a two carbon chain (Figure 1.17). There 

is limited evidence of this aldehyde being a lipid peroxidation product, and the more 

common source of glyoxal is the oxidation of glucose, especially in diabetes mellitus  [60, 

137]. Other less well known bis-aldehyde lipid peroxidation products are 2,4-decadienal, a 

product of oxidized fatty acids and trans-2-butene-1,4-dial, a product of further oxidation of 

the former [119]. However, it is still not clear if these aldehydes are actually lipid peroxidation 

breakdown products in vivo. 

 

1.2.4. Chloroaldehydes 

Oxidizing compounds resulting from oxidative stress are most commonly derived from 

partially reduced oxygen species, as discussed previously in this report. These can react 

with other small molecules or ions such as halides generating, for example, reactive chloride 

species (RClS) by reaction with the biologically abundant chloride ion. The production of 

hypochlorous acid (HOCl) is catalysed by the enzyme myeloperoxidase (MPO) [138]. MPO 

is present in human neutrophils, monocytes and some macrophages [139-141]. In 

inflammation, MPO is activated and produces mainly HOCl, a strong oxidizing and 

chlorinating agent, from the oxidation of Cl- using H2O2 as a co-substract [138]. HOCl reacts 

with unsaturated lipids at the double bond by an electrophilic addition of chloronium ion (Cl+) 

to form chlorohydrins or α-chloro-β-hydroxy derivatives [142]. Additionally, phospholipids 

with an amino group in the polar head can also be chlorinated. Plasmenyl phospholipids, 

containing a vinyl ether bond, are the most susceptible to attack by HOCl [143], and this 

reaction give rise to α-chloroaldehydes (Figure 1.18). 
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Figure 1.18. Plasmalogens are targets of HOCl at the alkene chain, at the amine polar head 

(highlighted in blue) and at the vinyl ether bond (highlighted in red). The latter is the responsible 

for the production of α-chloro-aldehydes. 

Although only a small amount of plasmalogens have been shown to be modified by 

chlorination, which is not enough to disrupt the membrane, alteration in plasmalogen 

content in specific membranes may have an effect on membrane protein function, making 

this modification worth studying [138]. As discussed before, plasmalogens are 

phospholipids with a vinyl ether-linked aliphatic chain at the sn-1 position. Hypochlorous 

acid attack leads to cleavage of the vinyl ether to yield an α-chlorofatty aldehyde and a 

lysolipid [143]. The free α-chloroaldehyde derived from the reaction of the vinyl ether with 

hypochlorous acid is the major halogenated lipid, and a precursor of other halogenated 

lipids [144]. An excess of HOCl can lead to a secondary oxidative modification of the 

lysolipid, leading to the complete degradation of the plasmalogen into a chlorohydrin 

derivative [145] or glycerophosphorylcholine with the release of the fatty acid at the sn-2 

position [146].  

Several studies have investigated the biological targets of α-chloroaldehydes. α-

chlorohexadecanal and α-chlorooctadecanal have both been detected as plasmalogen 

oxidation products in activated neutrophils [138] and have been found to be elevated 

significantly in atherosclerotic lesions in cardiovascular disease [147], and in mouse brain 

following systemic injection of endotoxin [148]. It was previously shown that 2-

chlorohexadecanal bound to LDL is able to reduce nitric oxide production through inhibition 

of endothelial nitric oxide synthase (eNOS) activity, decreasing eNOS mRNA stability [149].  

2-chlorohexadecanal is metabolized by oxidation to 2-chlorohexadecanoic acid or by 

reduction to 2-chlorohexadecanol [150]. These are also known to play biological roles, such 

as increase COX2 expression and prostacyclin production through increased NFkB 
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signaling in human coronary artery endothelial cells [151]. This study shown that α-

chloroaldehydes can be involved in pro-inflammatory pathways, therefore making it 

important to understand the mechanisms underlying such roles. α-chloroaldehydes have 

also been shown to be involved in cell death pathways as the apoptosis of microvascular 

endothelial cells is related to α-chloroaldehydes stimulating PROS production, caspase 3 

activation, ATP depletion and decreasing cell-cell barrier function [152]. A potential 

mechanism by which α-chloroaldehydes could cause these changes in cells is the adduction 

with amines in proteins and lipids. However, their reactivity is still not very well established 

compared to other lipid oxidation products. The reaction of α-chloroaldehydes with proteins 

is discussed in the next section 1.3. 

 

1.3. Post-translational protein modification by aldehydes 

Protein lipoxidation is described as the modification of proteins by lipid peroxidation 

products modifying the side chain of amino acids [153]. In fact, introduction of carbonyl 

groups into amino acids residues is a hallmark of oxidative damage to proteins. To note that 

direct oxidation proteins can also generate carbonyl groups, as this modification is not 

exclusive of lipoxidation. Lipoxidation occurs mainly on the nucleophilic residue cysteine, 

histidine, arginine and lysine [154]. This leads to the formation of a wide variety of adducts. 

Compounds containing aldehydes or ketones can react with amines (e.g. on lysine) to form 

Schiff base adducts by loss of water, whereas those containing an α, β-unsaturated moiety 

can also form Michael adducts by a nucleophilic addition reaction of the protein sidechain 

at the β-carbon. Bi-functional lipid oxidation products, such as dialdehydes or 

hydroxyalkenals, can react with proteins and still present free carbonyls, which can be 

exploited in some detection procedures or further react and give rise to intra or inter protein 

crosslinking.  

 

1.3.1. Mechanism of adduction 

Schiff bases, named after Hugo Schiff, are formed when a primary amine reacts with an 

aldehyde or a ketone [155]. A Schiff base is an analogue of an aldehyde where the carbonyl 

group (C=O) is exchanged by an imine (C=N). It can be synthesized from an amine and a 

carbonyl compound by nucleophilic addition forming a hemiaminals followed by dehydration 

to generate an imine (Figure 1.19A). In proteins, lysine residue side chain contains a NH2 

that reversibly reacts with aldehydes giving rise to aldehyde-protein adducts. Alkanals only 

react with proteins by forming a Schiff base, since their only reactive group is the carbonyl. 

Originally defined by Arthur Michael, Michael addition is a nucleophilic addition of a 

nucleophile to an α,β-unsaturated carbonyl [156]. The mechanism of this reaction is 
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displayed in Figure 1.19B. The nucleophile reacts with the electrophilic alkene in a 

conjugate addition reaction. Eventually, a proton is abstracted from the protonated base by 

the enolate to form the final adduct. In proteins, the thiol group of cysteines and the amine 

group of lysines can react reversibly with aldehydes, giving rise to aldehyde-protein 

adducts. Alkenal and α,β-unsaturated aldehydes having a C-C double bond react with 

proteins by Michael addition. 

 

Figure 1.19. Mechanism of adduction of short-chain aldehydes to proteins. (A) Schiff’s base 

formation mechanism. The example includes butanal as the electrophile and the amino acid lysine 

as the nucleophile. This reaction is a condensation and therefore loses water. (B) Michael addition 

mechanism. The example is acrolein as the electrophile and cysteine as the nucleophile. 

 

1.3.2. Aldehyde-protein adduction: Structure and Evidence 

As adducts can rearrange, to provide evidence for their formation requires good 

understanding of the multiple structures that these can form. The reaction of amino acids 

with 2-alkenals have been most studied for acrolein (Figure 1.20).  
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Figure 1.20. Products formed by reaction of acrolein with amino acid side chains. Where 

reactions occurred by Michael addition, only lysine adducts are shown but as indicated in the 

figure, these can also happen on a cystine, histidine or arginine residue. 

Acrolein has been shown to react with cysteine, lysine and histidine residues of proteins. 

It was previously shown that the primary product of acrolein reaction with proteins is a β-

substituted propanal by Michael addition. However, more than one molecule of acrolein can 

react with the same amino acid residue. For example, two acrolein molecules can attach to 

one lysine side chain, forming the piperidine, N-(3-formyl-3,4-dehydropiperidino)-lysine 

(FDP-lysine) [74]. Crotonaldehyde, 2-pentenal and 2-hexenal can generate a similar 

product, suggesting that this type of adduct is common between alkenals reacting with 

proteins. Another type of condensation adducts that can be generated after lysine adducts 

with 2-alkenals are the pyridinium adducts, N-(2-methylpyridinium)lysine (MP-lysine) for 

acrolein and N-(5-ethyl-2-methylpyridinium)lysine (EMP-lysine) for crotonaldehyde [157, 

158]. In the case of 2-nonenal, an analogous lysine-pyridinium adduct N-3-[(hept-1-enyl)-4-

hexylpyridinium]lysine (HHP-lysine) is formed [95]. Similar adducts have been reported for 

2-hexenal and 2-octenal [159, 160]. Protein amino acid residues can also react with more 

complex aldehydes such as 4-hydroxy-2-alkenals. The most studied of this aldehyde group 

is 4-hydroxy-2-nonenal (HNE) (Figure 1.21).  
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Figure 1.21. Products formed by reaction of 4-hydroxy-nonenal with amino acid side chains. 

It is known that HNE as well as other 4-hydroxy-2-alkenals react with thiol groups on 

cysteines by Michael addition (a) [70, 161]. Moreover, HNE can also form Michael adducts 

with the imidazole group of histidine residues. In the first stage, the imidazole reacts with 

the unsaturation on 4-hydroxy-2-alkenals leaving the adduct with a free carbonyl group. 

This can afterwards undergo cyclization to form a cyclic hemiacetal [162] or crosslinking 

with other proteins or even inside the same protein [163]. For cyclization to occur, the 

hydroxyl at the aldehyde fourth carbon reacts with the carbonyl group to form the 

hemiacetal. Another amino acid residue that can be modified by HNE is lysine. Similar to 

the modification on histidine, HNE forms Michael adducts with lysine and generates a 

pyrrole adduct (b) [164]. The amino group of lysine reacts with the C3 of HNE by Michael 

addition. The free carbonyl group on the first carbon of HNE can further react with the same 

lysine reside forming a 1:2 HNE:amine. This can undergo oxidation and intermolecular 

cyclization to form the adduct 3-hydroxy-3-imino-1,2-dihydropyrrole-lysine (c).  

Another common aldehyde addition product occurs from adducts from saturated 

aldehydes bearing two carbonyl groups such as glyoxal and malondialdehyde (Figure 

1.22).  
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Figure 1.22. Products formed by reaction of glyoxal or malondialdehyde with amino acid side 

chains. 

Glyoxal is responsible for the formation of carboxymethyllysine (CML) as well as lysine-

lysine crosslinked dimers, resulting in intra or intermolecular crosslinking [165, 166]. A less 

common amino acid residue to form adducts is arginine. However, it was reported glyoxal 

reacts with arginine residues to form an imidazole [167]. Malondialdehyde (MDA) is known 

for specifically modifying lysine residues on proteins resulting in the Schiff base adduct N-

(2-propenal)lysine [168]. As explained for the other aldehyde adducts, the MDA adduct has 

a carbonyl group free to react with another amino acid residue again by Schiff base 

formation. Again, this results in intra or intermolecular protein crosslinking [169]. ONE is 

another bis-aldehyde capable of reaction with nucleophilic amino acid residues such as 

lysine, histidine, cysteine and arginine [170]. The first group to react is the double bond via 

Michael addition resulting in a 4-oxononanal adducts. Due to the lower stability of this 
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product, further reactions occur to more stable adducts. From the reaction with lysine the 

adducts are dihydrofuran, dihydropyrrole and 4-ketoamide derivatives [171], from reaction 

with arginine the adduct is a substituted imidazole [172] and from reaction with cysteine and 

histidine the adducts are furan derivatives [173, 174].  

 

1.3.3. Reversibility and detoxification of aldehyde-protein adducts 

Protein carbonylation by reaction with aldehydes, by Michael addition and Schiff-base 

formation, are not completely stable and can be reversible [175, 176]. In the presence of 

lower levels of short-chain aldehydes, these can modify a protein but readily be followed by 

its “decarbonylation”. This reversible protein damage may reflect a reversible signaling 

mechanism [177-179]. 

Abundant proteins like human serum albumin can protect other proteins from 

modification by aldehydes by acting as carbonyl scavengers using their surface and easily 

accessible nucleophilic residues [180]. Antioxidants can also quench carbonyl species 

preventing the formation of protein-aldehyde adducts and promoting their excretion [181]. 

Glutathione (GSH) and other thiol-containing proteins, such as thioredoxin (Trx) are 

effective in decreasing protein carbonyls and may be regulating this decarbonylation 

process [177, 179]. Previous in vitro studies have shown Michael adducts to be reversible 

in the presence GSH [180] which thiol residue conjugates with aldehydes not only protecting 

other residues from its modification but also enabling it excreted [181, 182] (Figure 1.23). 

Even though dialdehyde such as glyoxal and malondialdehyde cannot react by Michael 

addiction, it has been suggested that these can also be quenched by GSH as a cyclic adduct 

can be formed with the glutamate residue [183]. For α,β-unsaturated aldehydes, such as 

HNE, carnosine is another highly selective scavenger as it reacts by both Michael addition 

and Schiff-base formation involving both functional groups of these aldehydes [175]. To 

characterize and detect these scavenger-aldehyde adducts in biological samples is critical 

since scavengers of carbonyl species are being suggested as good therapeutic target for 

inflammatory diseases [184]. 

 

Figure 1.23.  Diagram illustrating the reversibility of protein modification by reactive carbonyl 

species and the detoxification of these by thiol-containing compounds such as glutathione. 
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1.4. Detection methods for aldehydic oxidation products 

To understand the biological significance of each lipid oxidation product, it is important 

to have reliable and sensitive methods to identify and quantify them. While some lipid 

oxidation products are stable, the aldehydes mentioned in the section above are highly 

reactive and therefore harder to detect. Aldehydes can be identified either in the free form 

or more likely as covalent adducts with proteins, DNA or aminophospholipids. 

Consequently, quantifying free aldehydes in complex clinical samples can represent a 

challenge and may not reflect the extent of their formation. However, the analysis of 

aldehydes as protein adducts also has its own challenges due to the number of possible 

products. To know the exact aldehydes formed, their targets and the masses of their 

modifications is usually required for the analysis. 

 

1.4.1. Analysis of free aldehydes and their metabolites 

Methods for the detection of free aldehydes and their quantification include 

spectrophotometric methods and gas or liquid chromatography coupled to mass 

spectrometry [185, 186]. The simplest approach is the direct spectrophotometric 

measurements; for example, HNE absorbs in the UV range at 220 nm [187]. However, a 

better approach would be to use aldehyde-reactive probes which allows their specific and 

sensitive detection and increase the stability of the aldehyde. The TBARS assay for 

malondialdehyde is extensively used due to its simplicity and low cost [188], but even when 

combined with other techniques such as HPLC, it has poor specificity among other 

limitations [129, 130]. 2,4-dinitrophenylhydrazine (DNPH), which gives a 

dinitrophenylhydrazone product with an absorbance at 380 nm [189], is often used to detect 

carbonyl groups on proteins by ELISA or western blotting.  

A disadvantage of the use of probes is the lack of specificity and consequently 

chromatographic separation is required pre-column or post-column derivatization by 

reverse phase HPLC [190]. Gas chromatography can also be used but requires the sample 

to be volatile and it is usually coupled to mass spectrometry. Free HNE can be converted 

to pentafluorobenzyl oximes (PFBO) by reaction with pentafluorobenzyl hydroxylamine, 

followed by formation of trimethylsilyl ethers and the PFBO-TMS derivatives of HNE 

analysed by GC coupled to electron-capture negative-ion ionization (NICI) MS. This method 

was previously used to detect HNE in patients with thyroid dysfunction or migraines [191], 

and a similar method was also used to analyse MDA and HNE in human serum samples 

[186]. GC coupled to NICI-MS and PBFO derivatization were also used to detect α-

chloroaldehydes [192, 193]. In contrast, LC-MS requires minimal samples manipulation 

prior to analysis[186]. Several approaches have been used for the analysis of aldehydes by 
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LC-MS usually following DNPH derivatization to stabilize them [194]. For example, this 

approach allowed the detection of MDA, crotonaldehyde (CRT), benzaldehyde (BNZ), 

hexanal (HXL), HHE, HNE, 2,4-nonadienal and 2,4-decadienal in animal feed [195]. 

It is known that free aldehydes are metabolized and detoxified, therefore the analysis of 

their metabolites may help get a better representation of the aldehyde in vivo. HNE can be 

detoxified by conjugation to glutathione [196], as previously mentioned, and metabolized to 

1,4-dihydrononane-mercapturic acid, which has been detected in urine [197]. 2,4-

decadienal (DDE) can be oxidized to 2,4-decadienoic acid and cysteine-conjugated 2,4-

decadien-1-ol, and both have been found in cell culture models and urine from mice by LC-

MS [198]. The carboxylic acids of HHE, HNE and HDDE were detected by NICI-MS in 

human urine for aging and diabetes [118]. Similarly, α-chloroaldehydes can be converted 

to the PFB ester form and analysed by GC coupled to NICI-MS [152] or can form adducts 

with GSH and be detected by LC-MS [199].  

 

1.4.2. Analysis of aldehydes as adducts with macromolecules 

The analysis of free aldehydes has several disadvantages as their high reactivity readily 

results in formation of adducts with a variety of biological molecules. Hence a large 

proportion of the aldehydes formed are likely to exist as adducts. Consequently, a full 

understanding of the roles of these aldehydes depend on analysis of the adducts formed 

through Schiff base reactions and Michael additions or rearrangement of these products, 

as described in 3.2. Although adducts with DNA bases are known to occur and are thought 

to contribute to the mutagenicity of acrolein and crotonaldehyde, most attention has focused 

on detecting the formation of adducts with proteins. The structures of a substantial number 

of protein adducts have been elucidated, and examples are shown in Figure 24-26. To this 

end, two main approaches exist: antibody-dependent techniques, and proteomic methods 

including protein identification and sequencing by mass spectrometry. These two 

approaches may also be combined. 

 

1.4.3. Antibody-based methods 

The development of antibodies against the adducts formed from MDA, HNE and others 

have increased in the past thirty years [200, 201]. These have been validated for ELISA, 

western blotting, immunocytochemistry and immunochemistry. The antibodies and antisera 

available for HNE have been previously reviewed [63]. A monoclonal antibody against 

acrolein adducts with proteins has also been developed [202, 203]. Another antibody 

against the same immunogen was shown to recognize acrolein-modified albumin with 

limited cross-reactivity with other albumin adducts [204]. A monoclonal antibody has been 
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raised against nonenal-modified keyhole limpet hemocyanin, and it was able to recognize 

the Nε-3-[(hept-1-enyl)-4-hexylpyridinium] lysine (HHP-lysine), a novel nonenal-lysine 

adduct [95]. Antibodies against aldehyde adducts with DNA bases have also been 

developed and have been developed and validated for FACS-based assay and ELISAs 

[205]. These antibodies have demonstrated the occurrence of adducts of aldehydes in 

tissues and, especially anti-HNE antibodies, have been applied to western blotting for 

lipoxidation identification [206]. Some antibodies such as anti-DNP have been broadly used 

for carbonyl-containing proteins [207], however carbonyls can arise from other modification 

than aldehydes, and even aldehydes only add a carbonyl group to the protein when reacted 

by Michael addition. Additionally, several of the antibodies available are polyclonal which 

decreases its specificity and increases cross-reactivity. Specificity is therefore the limitation 

of the antibody-based methods for aldehyde adducts detection. Antibody-based method 

have been recently reviewed by our group [31]. 

 

1.4.4. Protein analysis by mass spectrometry 

Mass spectrometry (MS) is a powerful analytical technique for protein research. MS is 

used for identification, quantification and characterization of proteins [208]. The advance in 

instrumentation and the coupling with separation techniques such as liquid chromatography 

has moved the proteomics field forward and allowed analysis of hundreds of proteins in 

parallel to be a common experiment. Mass spectrometry (MS) measures the mass-to-

charge ratio (m/z) of ionized analytes. The main methods for ionization are electrospray 

ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). ESI generates 

ions from large and complex molecules in solution which makes MS a preferential ionization 

method to the analysis of molecules like proteins [209]. On the other hand, for MALDI the 

proteins are embedded within a matrix in a solid state and ions are generated by pulses of 

laser light [210]. The ions generated by ESI are more multiply-charged than MALDI, 

supporting the use of ESI over MALDI for large molecules analysis. Oxidative modifications 

of proteins alter their composition, and change their m/z ratio and potentially their ionization 

conditions [211]. Two different MS approaches can be applied to the analysis of proteins: 

top-down proteomics, which analyses intact proteins and their fragmentation within the 

mass spectrometer; and bottom-up proteomics, which analyses peptides from proteins 

digested with proteases prior to MS analysis.  

 

1.4.4.1. Sample preparation 

Bands or spots from western blotting or SDS-polyacrylamide gels stained with 

coomassie can be excised for protein analysis [212, 213]. Bottom-up approach requires the 
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proteins to be digested in-gel or in-solution, prior to MS analysis. Both protocols for protein 

digestion may cause artefacts to proteins such as oxidation of methionine and tryptophan 

or carboxymethylation of cysteine, which can interfere with interpretation of results [214]. 

The most commonly used protease is trypsin, which cleaves within the polypeptide chain 

on the carboxyl side of lysine or arginine residues, except when either is followed by proline, 

or an adjacent negatively charged residue that masks their positive charge [215, 216]. To 

increase the sequence coverage, alternative proteases can be used in combination with 

trypsin. Additionally, if the residues lysine and arginine are modified by lipoxidation as 

described above, the trypsin would miss these as cleavage sites, generating longer 

peptides that do not ionize as well and give low ion intensity, increasing the challenges with 

their detection [217]. Therefore, combination of different proteases could help overcome 

this limitation, including chymotrypsin (large hydrophobic), Asp-N (N-terminal to asp), Glu-

C (N-terminal to Asp and Glu) and others [218]. New digestion methods, such as SMART 

digestion (Thermo), a kit for in-solution digestion designed for fast and highly reproducible 

digestion of proteins, may help to minimize sample handling. In this protocol, there is no 

need to perform additional steps of denaturation, reduction and alkylation, decreasing the 

causes of artefacts. Addition of surfactant can also improve sample digestion and therefore 

sequence coverage, such as ProteaseMax (Promega) [219] and Rapigest (Waters) [220], 

which are MS-compatible additives.  

 

1.4.4.2. Enrichment and labelling approaches 

Label-free MS analysis of post-translational modification of proteins is challenging due 

to the low stoichiometric levels of modified protein in the complex mixture, and thus it is 

difficult to identify them among other more abundant signals. This limitation can be 

overcome by enrichment tools that can be applied to bottom-up approaches, increasing its 

sensitivity and specificity [221]. 

The most commonly used enrichment technique for carbonyl formations is the biotin 

hydrazide label, which is then enriched by avidin capture. Chavez et al. introduced a biotin-

tagged aldehyde reactive probe (ARP) that reacts with protein aldehydes forming a C=N 

bond on the carbonyl group resulting in a stable biotinylated oxime derivative followed by 

detection by western blotting or mass spectrometry [222]. This approach has been applied 

to enrich lipoxidation adducts of cardiac mitochondria, for which acrolein, HHE, HNE and 

ONE modifications among others were reported [223]. ARP-streptavidin for enrichment can 

either be used at the level of modified protein or modified peptides after proteolytic digestion 

[224]. The protein targets and modification sites identified in these enrichment studies can 

be useful to develop targeted assays. The same group also developed an alternative 
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method for relative quantification of site-specific carbonyl adducts, involving d0/d4-succinic 

anhydride labelling followed by enrichment using hydrazine-functionalized beads [225]. It 

was reported that HHE Michael adducts were the most abundant, but acrolein, HNE and 

ONE adducts to cystine, histidine and lysine were also reported. Comparison between 

carbonyl-labelling reagents indicated that 2,4-dinitrophenylhydrazine (DNPH), biotin 

hydrazide (BHZ) and O-(biotinylcarbazoylmethyl) hydroxylamine (ARP) were selective for 

aliphatic aldehydes and ketones and that better results are obtained from enrichment of 

peptides after digestion rather than labelling of the whole protein [226]. Therefore, biotin 

affinity with MS peptide analysis can provide information on a variety of protein 

modifications in clinical samples. However, this approach had limitations such as detection 

of carbonyls resulting from direct attack of free radicals on proteins instead of aldehydes 

from lipid peroxidation, and it would only enrich adducts generated by Michael addition 

bearing a carbonyl group and it will miss Schiff base adducts. 

A novel approach to determine targets of small reactive aldehydes involves the chemical 

synthesis of an aldehyde analogue with an alkyne or azido termini, which allows their 

adducts to be selectively extracted from biological samples [227]. For example, alkynyl 

analogues of HNE can form adducts with protein that can be label with azido-biotin tags by 

Cu+-catalysed cycloaddition (Click chemistry). Using this technique it was found that heat 

shock proteins 70 and 90, and the 78-kDa glucose-regulated protein, were selectively 

adducted by HNE [228].  

Yet, labelled methods also have disadvantages such as being expensive and an 

additional step in the analytical workflow. Additionally, most of the labelling probes rely on 

the detection of the carbonyl group which would not be present in the case of a Schiff-base 

formation resulting in non-detection of this type of modification on proteins. Other limitation 

of labels such as biotin is the low throughput and the difficulty in localising the modification 

by MS since the ionisation and peptide fragmentation can be compromised by the labelling 

[211]. Therefore, novel label-free methods with better sensitivity and specificity are needed 

to push the study of aldehydic protein modifications further.  



58 

 

1.4.4.3. Separation 

Chromatography is a separation technique whereby molecules in a mixture applied onto 

a stationary phase are separated from each other by a mobile phase. Differences in 

adsorption, partition, affinity or molecular weight separate proteins/peptides in the mixture, 

since some remain longer in the stationary phase while others elute rapidly into the mobile 

phase [229]. Chromatographic methods coupled to mass spectrometry improve protein 

analysis by adding a separation step to reduce the diversity and complexity of proteins and 

peptides present in biological samples prior to MS analysis. The resolving power of the 

chromatography reduces the ion-suppression effect in MS and allows low abundance 

species such as post-translationally modified proteins and peptides to be detected [230]. 

Liquid chromatography coupled to mass spectrometry (LC-MS) is the most common 

analytical technique used in proteomics. LC has a broad selection of stationary and mobile 

phases that can be chosen and adapted to each study. The choice of appropriate LC 

method makes it possible to enrich low-abundance proteins presented in a complex sample. 

Reverse-phase, ion-exchange and size exclusion are the most commonly used liquid 

chromatography methods [231, 232] (detailed information on each method is available in 

the introduction of chapter 5). An advantage of LC is the ability to directly introduce the 

separated proteins or peptides into the mass spectrometer through electrospray ionization 

(ESI) for analysis [233]. The separation of peptides and proteins is key in both top-down 

and bottom-up MS approaches. 

 

1.4.4.4. Intact protein and top-down proteomics 

The analysis of intact protein by mass spectrometry is used to determine the mass of 

the protein, and changes in mass that can be indicative of post-translational modifications. 

Both ionization techniques mentioned above can be used, but ESI is more common as it is 

usually able to give better mass accuracies since it generates many different charges, giving 

rise to a higher number of peaks in the spectrum [234]. Nevertheless, multiple charging only 

works for a limited number of proteins in the mixture until the signals start to overlap and it 

becomes a challenge to deconvolute the data. This approach provides information on the 

total extent of modification on the whole protein and has been previously applied to detect 

several modifications on histones [235], glutathionylated haemoglobin [236], electrophilic 

modifications [237, 238] and characterization of monoclonal antibodies [239]. Top-down MS 

involves fragmentation of intact protein within the mass spectrometer and analysis of the 

fragment produced to determine the specific sites and nature of modification. Even though 

this approach has great potential for mapping lipoxidation modifications, it requires high-

resolution instrumentation and is limited by their sensitivity [240]. The combination of 
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different techniques is useful to understand the extent and better characterize lipoxidation, 

since these can complement each other and provide more and better information on protein 

modification. For example, a top-down approach was used to investigate the formation of 

adducts between ubiquitin and several aldehydes including MDA and HNE and to asses an 

order of reactivity of these, while a bottom-up analysis of the tryptic peptides of the same 

samples allowed mapping of the modification sites [241]. 

 

1.4.4.5. Bottom-up proteomics 

In contrast to top-down, bottom-up approach involves the digestion of protein to peptides 

as described in 4.2.2.1. This approach is routinely performed by LC-MS and is 

advantageous in complex protein mixtures as it has the potential to identify low abundance 

proteins. The presence of post-translational modification requires confirmation by tandem 

MS to sequence the peptide and localize the specific site and nature of modification [211] 

and this can be performed by various types of tandem MS experiments including untargeted 

or semi-targeted/targeted approaches [242] (Figure 1.24). Untargeted techniques have 

commonly been applied to individual proteins due to the challenges of implementation in 

complex samples. However, to develop targeted and semi-targeted approaches, the 

selection of peptides to be fragmented has to be carried out by preliminary untargeted MS 

scan [243].There have been significant efforts to develop new targeted and semi-targeted 

methods based on diagnostic ions for oxidative modification, but these require prior 

knowledge on the modified peptide and its fragmentation pattern. 

 

 

Figure 1.24. Schematic representation of various types of tandem mass spectrometry 

experiments. (A) Product ion scanning generates fragment ion spectra for the identification of the 
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amino acid sequence of specific peptides. The first analyzer (MS1) selects one precursor ion at a 

time, then the selected ion undergoes CID in the collision cell, and the fragments are analyzed by 

the second analyzer (MS2). This process is repeated for different precursors. (B) Precursor ion 

scanning sets the second analyzer (MS2) to transmit only one specific fragment. MS1 is scanned to 

detect all the precursor ions that generate this fragment. (C) Neutral loss scanning scans both 

analyzers to detect the mass difference of ions passing through MS1 and MS2, such difference 

corresponds to a neutral fragment lost in the collision cell. (D) MRM involves a series of one precursor 

ion and one specific fragment for that precursor being selected by MS1 and MS2, respectively. The 

instrument cycles through a series of transitions (precursor-fragment pair) which is particularly useful 

to detect specific analytes in complex samples. Adapted from [244]. 

1.4.4.6. Untargeted or Shotgun Mass Spectrometry Approach 

Untargeted approaches can also be referred to as shotgun or discovery approaches 

(Figure 1.24A). After digestion, the peptides are analysed by MS and the peptide mass 

fingerprint used to identify the proteins present by matching with theoretical masses of 

peptides in a database, since the large dataset generated would be too difficult to manually 

analyse [245]. The most common search engines and their advantages and disadvantages 

have been previously reviewed by our group [211]. These search engines have the option 

to include in the search the masses of specific post-translational modifications as variable 

modifications [246]. However, the number of modifications being search at once is limited 

due to the increase in false positive identifications [69, 243]. Even though these softwares 

are often able to detect the oxidative modifications, validation of the MS/MS data by de novo 

sequencing is essential to confirm the presence and location of the modification [247]. The 

fragmentation of peptide ions needs to be understood as this constitutes the basis for 

peptide identification and de novo sequencing validation [248]. The Roepstorff and Fohlman 

system [249] covers the cleavage of every single bond in a protonated peptide and the 

products are named A, B and C ions if the charge is retained on the N-terminal fragment or 

X, Y and Z if it is retained on the C-terminal fragment and the subscript numbers indicate 

the residues involved, counting from the relevant terminal (Figure 1.25). These 

nomenclature has been superseded by the Biemann system [250] which includes fragment 

ions generated by cleavage of side-chain groups. In this system the lettering is italicized 

lower case and the ion charge, and the hydrogens gained are implicit. More recently, 

another nomenclature system for peptide ion fragmentation was proposed to overcome 

some of the ambiguity in labelling fragment ions [251]. 
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Figure 1.25. Roepstorff and Fohlman nomenclature system for protonated peptide 

fragmentation. 

This approach allowed protein modification by HNE to be detected in Down syndrome 

cases in which 2D electrophoresis was carried out prior to MALDI-TOF peptide analysis 

and Mascot used for database search [252]. Using a similar approach, HNE modifications 

were found on complex I subunits in mitochondria from diabetic kidney, where two types of 

electrophoresis were used; the blue native polyacrylamide gel electrophoresis (BN-PAGE) 

and the denaturing SDS-PAGE, followed by protein digestion, separation by LC and peptide 

mapping by mass spectrometry [253]. Another study on ApoE by MALDI-TOF/TOF MS 

detected several acrolein adducts, for example the aldimine adduct with an increase in 

mass of 38 Da at Lys149 and Lys155, a propanal adduct with 56 Da at Lys135 and Lys138, 

MP-lysine adduct at Lys64, Lys67 and Lys254 and FDP-lysine at Lys68 [254]. Acrolein-

modified ApoE has impaired binding to LDL receptor and heparin, possibly due to changes 

in folding proving the biological importance of lipoxidation. A label-free LC-MS/MS approach 

was used to investigate the sites of modification of chymotrypsin, cytochrome c, β-

lactoglobulin and RNase A upon treatment with 2,4-dodecadienal [238]. A reporter ion at 

m/z 286 was detected and deduced to correspond to the presence of a lysyl-pyridinium 

adduct. Such diagnostic ions can be used to develop semi-targeted (precursor ion 

scanning) or targeted (single or multiple reaction monitoring) mass spectrometry 

approaches for the detection of these modifications.  

 

1.4.4.7. Targeted and semi-targeted approaches 

Reporter ions are diagnostic for a specific analyte of interest, usually products from the 

fragmentations of the peptide. These are discovered by untargeted MS data analysis and 

have been used in the development of label-free methods [255]. While for semi-targeted 

methods the fragmentation product is the report ion, but the precursors are unknown, for 

targeted methods both precursor and fragment ions are fixed and used as reporters. Both 

methods increase the specificity for oxidative post-translational modifications, including 
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aldehyde adduction to proteins, and relative quantification can be achieved using relevant 

reporter ions.  

Precursor ion scanning (PIS) (Figure 1.24B) and neutral loss scanning (NLS) (Figure 

1.24C) are tandem MS routines which enables molecules to be identified by characteristic 

fragmentation ions. These are both examples of semi-targeted approaches. In PIs the 

second analyser is fixed to detect a specific fragment ion and the first analyser is scanning 

for precursor ions that generate this ion upon fragmentation. Immonium ions are internal 

fragments generated by the combination of a and y type cleavage and are reporter ions for 

each amino acid residue. The modified amino acid residue gives rise to a modified 

immonium ion, which has been the most commonly used reporter ion for protein 

modification [256, 257]. In neutral loss scanning, the diagnostic fragment it is not charged 

so its generation is detected by scanning in both analysers a mass offset corresponding to 

the mass of that fragment. For example, protein adducts of HNE can be monitored by 

neutral losses of 138 Da and 156 Da, for Schiff base and Michael adducts respectively [258, 

259]. 

Targeted approaches include single reaction monitoring (SRM) and multiple reaction 

monitoring (MRM) (Figure 1.24D). For these, both precursor ion and product ion masses 

are fixed for analysis of an analyte of interest [260]. The peptides are filtered by the first 

quadrupole (Q1) based on the precursor ion m/z, followed by fragmentation of the peptides 

into product ions in a collision cell. The product ions are then filtered in Q3 based on the set 

product ion m/z value. The fragmentation from the m/z of  the precursor to the m/z of the 

product ion is referred to as a transition and the success of an MRM experiment depends 

on the selection of the most appropriate transitions. Therefore, to develop an MRM routine, 

prior knowledge of the analytes is required. As this is not a discovery technique, its most 

common application is as a MS-based quantification tool [261, 262]. For example, HNE-

modified HSA can now be quantified in plasma by a novel MRM routine that monitors two 

modified peptides each containing amino acid residues that were previously shown to be 

highly susceptible to HNE modification [263]. Another MRM method was developed to 

detect the presence of the enzyme CYP37A1 modified by isolevuglandin iso[4]LGE2 in 

human retinal samples, which was developed based on bottom-up MS data that identified 

three specific lysine residues for the adduction [264]. A similar approach was able to detect 

isoketallysine-lactam adducts in dendritic cells by stable isotope dilution MRM [265]. 

Methods for detection of isolevuglandins adducts in vivo is important since these cannot be 

detected as the free form in tissue due to high reactivity [266]. 
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1.4.5. Quantification of aldehydes in human plasma or serum 

The quantification of free aldehydes in serum may depend on their rate of production, 

breakdown, detoxification and adduction to macromolecules [267]. Additionally, adduct 

formation is a reversible reaction, unless reduction or cyclization happen, which may affect 

quantification. The concentration of free aldehydes has been measured in a number of 

diseases such as diabetes, rheumatoid arthritis and lung cancer. Different techniques result 

in different basal levels of aldehydes in health subjects, noting therefore a lack of consensus 

on these concentrations in plasma. HNE concentrations have been reported to be 80-960 

nM while MDA varies from 0.36 to 15 μM and ACR from 42 to 1260 nM in healthy subjects 

[31]. The quantification of these aldehydes has been previously reviewed [186] and it has 

been discussed that storage time can affect these concentrations by artefact formation 

[268]. Overall, a small increase in plasma aldehyde concentration is detected in case of 

disease, although larger increases have been reported in diabetics with an ACR and MDA 

concentrations of 6.35 μM and 25.6 μM, respectively [269]. Nevertheless, these 

concentrations should be interpreted carefully since aldehydes such as acrolein can have 

sources other than lipid peroxidation [71]. 

 

1.4.6.  Metabolomics by Nuclear Magnetic Resonance (NMR) 

During inflammatory diseases and cancer, cells change extensively their metabolism to 

meet the new metabolomic requirements [270]. Aldehydes can also cause alterations in 

metabolome by interaction with enzymes or metabolites themselves. Glycolytic enzymes 

are targets for reaction with lipid peroxidation aldehydic products. For example, HNE was 

reported to inactivate glyceraldehyde-3-phosphate dehydrogenase (GAPDH)  by covalent 

binding primarily to amino acid residues on the surface of the enzyme in a time-dependent 

manner [271]. Similarly, acrolein cellular toxicity has been related to inactivation of GAPDH 

[272]. Other glycolytic enzymes such as pyruvate kinase and phosphofructokinase are also 

sensitive to cellular redox balance and to inactivation by aldehydes [273].  

The proteomic studies reported above were performed by LC-MS/MS and reported 

specific sites of modification and mechanisms of inactivation. However, metabolomic 

studies can provide additional information on the mechanism of action. The study of the 

metabolomic state of a cell is important to understand the effect of protein modifications on 

metabolic pathways. Even though the most successful approaches for metabolomics are 

mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy [274], NMR 

offers many advantages over MS. These include the quantification of metabolites in 

biological samples or cell extracts without complex sample preparation and the ability to 

analyse compounds that would be difficult to ionize for MS analysis. Using stable isotope 
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labels, NMR is also able to elucidate metabolic mechanisms by tracer-based metabolism 

approach, which allows changes in metabolites to be assigned to particular pathways [275]. 

The most important nuclei in biomolecular NMR studies are 1H (proton), 13C, 15N, and 31P. 

Proton is the most sensitive and one-dimensional (1D) 1H NMR is the most widely used 

approach in metabolomics, but signal overlap might be a problem in metabolite 

identification. Two dimensional (2D) NMR, as well as the use of standards, can overcome 

ambiguous identification of metabolites in complex mixtures [276]. The combination of MS 

and NMR has been previously reviewed [277] and many improvements in metabolites 

characterization reported, both in their identification and quantitation. While MS quantifies 

isotopic labelling distribution, NMR gives the specific labelling position, information which is 

not always available from MS/MS data.  
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1.5. Aims and hypothesis of the work presented in this thesis 

Short-chain lipid peroxidation products such as aldehydes are highly reactive and able 

to modify proteins. Lipoxidation products occur in inflammatory pathologies, thus the 

importance of their study as potential diagnostic and prognostic markers of disease. Mass 

spectrometry based approaches are becoming increasingly important in lipidomic and 

proteomic research. However, there is still a need to improve the methods currently used, 

in particular the methods for detection of lipoxidation products. Subsequently, the biological 

implication of these products is still not completely understood. With this lack in knowledge 

in mind, the objectives of the thesis were as follows: 

• Detection of reporter fragmentation ions by MS of proteins and peptides modified by 

aldehydic short-chain lipid peroxidation products (chapter 2); 

• Development of targeted MS methods using reporter ions for the detection of 

lipoxidized proteins and peptides (chapter 2); 

• Alternatives to 2-chlorohexadecanal synthesis and comparison of their reactivity with 

the reactivity of other aldehydes towards proteins and peptides (chapter 3); 

• Test and comparison of chromatographic methods for native protein separation and 

lipoxidized proteins and peptides separation (chapter 4); 

•  Assessment of the effect of aldehyde adducts on the glycolytic enzyme pyruvate 

kinase activity and structure, determine the hotspots for modification by MS and 

analysis of the impact of the aldehydes in the cellular metabolism. The hypothesis 

was that the aldehydes were able to modify the enzymes altering its function and 

interfering with the normal cellular metabolism (chapter 5); 

• Assessment of the cellular structural changes by confocal microscopy monitoring of 

the Cys328-mediated effect of small aldehydes on vimentin network and monitoring 

the ability of the cells to reorganize the network 24 hours after treatment (chapter 6). 
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Chapter 2. A mass spectrometry approach for the 

identification and localization of small aldehyde 

modifications of proteins
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2.1. Introduction 

Oxidative stress results from a redox imbalance and consequently a relative increase in 

oxidative species [17]. Free radicals cause damage to biomolecules including proteins, 

lipids and DNA, changing their structure and possibly their function. Lipids are a major target 

of oxidation in biological systems [23]. Polyunsaturated fatty acids (PUFAs), for example 

present in membrane phospholipids, are highly susceptible to oxidation due to the multiple 

unsaturation in the carbon chain [23]. Lipid peroxidation leads to the formation of a variety 

of oxidized products. Oxidized lipids are known to be key players in the development and 

progression of inflammatory and age-related diseases such as Alzheimer, Parkinson, 

multiple sclerosis, cardiovascular diseases, atherosclerosis, diabetes, liver and lung 

diseases [29, 278, 279]. Oxidised lipids can undergo fragmentation and give rise to short-

chain oxidation products such as aldehydes [20, 23, 60]. Mechanism of formation and 

chemistry of these products are detailed in section 1.2. 

Acrolein (ACR) and 4-hydroxy-hexenal (HHE) are two short aldehyde that are models 

of alkenals and substituted alkenals respectively. Acrolein, with only three carbons, is the 

shortest alkenal identified as lipid peroxidation products. It is also the most reactive specially 

with thiol groups from proteins [70, 71], and besides being a product of lipid peroxidation, it 

is also present in tobacco smoke and processed foods [72, 73]. It has been linked with 

inhibition of cell proliferation, enhancement of apoptosis, and disruption of gene expression 

necessary to regulate inflammation and antioxidant defense [75, 76, 80, 280]. HHE is one 

of the major lipid peroxidation products of ω-3 PUFAs such as docosahexaenoic acid (DHA) 

[113] and it has been reported as the most prominent hydroxy-alkenal in human plasma 

[113, 114]. It has been linked with causing apoptosis via NFkB signalling pathways [114] 

and its reactivity has been compared with the reactivity of better known aldehydes such as 

HNE [101, 115]. However, lower levels of HHE have also been shown to protect against 

oxidative stress by stimulating the expression of antioxidants via Nrf2 activation [117].  

Lipoxidation is the modification of proteins and peptides by reactive lipid oxidation 

products, including short-chain aldehydes [281]. Typical reactions of aldehydes with 

nucleophilic amino acid residues is detailed in section 1.3. Lipoxidation adducts have been 

found in several inflammatory diseases such as atherosclerosis [282] and Alzheimer’s 

disease [283]. Human serum albumin has been identified as a major target of lipoxidation 

due to its abundance in plasma and nucleophilic residues such as Cys34, His146 and 

Lys199 [284]. This suggests that most of the reactive carbonyl species (RCS) such as 

aldehydes can be found as albumin adducts in plasma [285, 286]. A half-life in plasma of 3 

weeks makes albumin and its lipoxidation adducts a good biomarker of systemic oxidative 

stress since these adducts would have been formed in the weeks prior to measurement 
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[287, 288]. Aldehyde-albumin adducts have been detected in disease such as chronic renal 

failure [289]; HNE adducts have been reported in type 2 diabetes mellitus [290], while 

acrolein adducts have been found in brain infarction [291] and ischaemia-reperfusion 

damage [286]. Therefore, new methods for the detection of these adducts in plasma are 

needed to improve the diagnosis and monitoring the extent of diseases. 

The detection of free aldehydes is extremely challenging due to their short-life, high 

instability and high reactivity in plasma [285, 292]. Moreover, the detection of these as 

adducts in biological samples is as challenging due to their low abundance [281, 285]. 

Several techniques have been used, including antibodies, chemical probes and mass 

spectrometry, as described  more extensively in section 1.4 [23, 31, 285]. Mass 

spectrometry can detect these adducts by the change in the mass-to-charge ratio (m/z) of 

proteins and peptides and enables identification, characterization and localization of the 

modified amino acid [263, 293]. The fragmentation pattern of peptides depends on the 

excitation method used and low energy ionization, such as collision-induced dissociation 

(CID) and electron capture dissociation (ECD) [294], are the most commonly applied to 

proteins and peptides identification as these enable charge-induced cleavage of the peptide 

backbone and yield primarily b- and y-type fragment ions, as described in section 1.4.2., 

which allow for their de novo sequencing. However, in more complex samples the data 

output is much greater, making the identification of modifications difficult and time-

consuming. To help overcome this, the information on the lower mass range of the 

fragmentation spectra can be used to identify reporter ions specific for each modification.  

This region contains immonium and related ions which are fragments of a single amino acid 

and their characteristic mass indicates which amino acids are present in a sequence. In 

case of a modification on a specific amino acid, its respective immonium and related ions 

are also found to be modified and can be used as report ions which are modification and 

amino acid specific [257]. These reporter ions can therefore be used to develop semi-

targeted mass spectrometry approaches such as precursor ion scanning (PIS), neutral loss 

scanning (NLS) or multiple reaction monitoring (MRM), simplifying the analysis [31, 295-

297]. 

Multiple reaction monitoring (MRM) is a targeted high-resolution MS/MS method that 

can be used to quantify selected protein-aldehyde modification in complex biological 

samples such as plasma. MRM involves “bottom-up” analysis of proteins that have been 

enzymatically digested, usually by trypsin, into peptides [211] using a triple quadrupole 

mass spectrometer. During MRM, the peptide masses are filtered in two stages based on 

defined m/z values. Initially, the peptides filtered by the first quadrupole (Q1) based on the 

set precursor ion m/z values. Q2 fragments the peptides as a collision cell into fragments 

ions (product ions), which are then subsequently filtered by Q3 based on the set product 
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ion m/z values. The fragmentation from the precursor to the product ion m/z values makes 

a transition and the selection of the most appropriate transitions determines the success of 

an MRM experiment. A fully validated MRM method is a powerful tool for protein 

quantification with higher selectivity than the alternative shotgun MS/MS approach [261]. 

For example, Cys34 and Lys199 were found to be the most reactive residues in HNE-

modified human serum albumin and so a novel MRM approach was designed to quantify 

the levels of HNE-modified HSA in plasma using two modified peptides, each containing 

one of these most susceptible residues [263]. 

In this study, liquid chromatography coupled to tandem mass spectrometry was used to 

investigate protein modifications caused by acrolein and 4-hydroxy-hexenal, two short-

chain aldehydes which have been less studied. Two proteins were used as models for the 

study of small aldehyde lipoxidation: lysozyme (14,306 Da), rich in lysine and cysteine 

residues, and human serum albumin (66,437 Da), the most abundant human plasma 

protein. The first aim was to generate adducts in vitro and characterize them by LC-MS/MS 

in order to localize the modified amino acid residues and possibly identify reporter ions for 

these modifications. The second aim was to develop a targeted MRM approach using these 

report ions to selectively identify and quantify albumin-aldehyde adducts. Firstly the method 

was tested with in vitro modified HSA and later validated for its suitability to identify albumin-

aldehyde adducts in human plasma in vitro aldehyde-treated to determine whether the 

method is appropriate for use with biological samples.
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2.2. Material and Methods 

2.2.1. Chemicals 

All reagents were purchased from Sigma-Aldrich Chemical Co. (Dorset, UK) unless 

otherwise indicated. All solvents were of LC-MS grade and ultrapure water (Type 1) was used 

for buffers and reactions. Formic acid and dithiothreitol (DTT) were purchased from 

ThermoFisher Scientific (Runcorn, UK). 

 

2.2.2. Treatment of lysozyme or human serum albumin with aldehydes in vitro 

Lysozyme (1 mg/mL) was first reduced with 100 mM DTT. This step was omitted for HSA, 

which was used in its native form (1 mg/mL). Acrolein was added to the protein solution at 4, 

8 or 14 mM and allowed to react for 2 hours at room temperature. HHE was added at 8 or 16 

mM and allowed to react for 2 hours at 37 ⁰C. To stabilize adducts, 50 mM NaBH4 was added 

to the reaction and left for 1 hour at room temperature. For direct infusion mass spectrometry 

analysis, excess DTT was removed from the reduced lysozyme samples prior to the reaction 

with the aldehydes using Microcon Ultracel YM-10 centrifugal concentrators 10,000 MWCO 

(Millipore, Massachusetts, USA), according to the manufacturer’s protocol. 

 

2.2.3. Direct infusion MS analysis of modified lysozyme 

Modified lysozyme samples were dissolved in 50% acetonitrile, 0.5% formic acid in water 

and analysed by direct infusion into a 5600 TripleToF mass spectrometer (Sciex, Warrington, 

UK) using loop injection directly into a 2 μL/min flow rate of the same solvent and introduced 

into the source via a 20 μm i.d. steel capillary mounted on a standard nanospray source with 

a spray voltage of 2.4 kV, a source temperature of 150 ⁰C, declustering potential of 100 and a 

curtain gas setting of 25. Data was summed for 3-5 minutes and deconvoluted using the Bio 

Tool Kit plugin and PeakView 2.2 software (Sciex, Warrington, UK) with a step size of 0.5 Da 

at high (30,000) resolution and Gaussian smoothed with a 3 point window. 

 

2.2.4. Plasma collection and aldehyde treatment 

Ethical approval for the use of plasma from healthy volunteers was obtained from Aston 

University Ethics Committee (Project #954). Blood was collected by venepuncture from three 

healthy volunteers after overnight fasting and informed consent and collected into 50 mL tubes 

containing 0.1% EDTA. The blood was then centrifuged at 1,800 x g for 10 minutes at 5 ⁰C. 

The supernatant was removed and centrifuged again at 15,000 x g for 10 minutes to obtain 

clear plasma. The plasma from all three volunteers was pooled (as these were all control 

samples and the number of individuals limited) and diluted to 1:4 with 25 mM ammonium 
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bicarbonate, followed by treatment of acrolein with the same conditions used to treat HSA 

described above. Treatment with HHE was performed at a ratio of 1:10, at 37 C for 2 hours. 

 

2.2.5. Protein in-gel digestion 

The reaction products from above were separated by 15% SDS-polyacrylamide gel 

electrophoresis followed by staining with Coomassie blue to visualize the bands prior to further 

processing.  The separating gel (15 %) was prepared by adding 2.8 mL ddH2O, 3 mL of 40 % 

acrylamide/bis-acrylamide, 2 mL of 1.5 M Tris pH 8.8, 80 μL of 10 % SDS, 8 μL of TEMED and 

80 μL of 10 % APS. The stacking gel (4 %) was prepared by adding 3.1 mL ddH2O, 0.5 mL of 

40 % acrylamide/bis-acrylamide, 1.25 mL of 0.5 M Tris pH 6.8, 50 μL of 10 % SDS, 5 μL of 

TEMED and 50 μL of 10 % APS. The coomassie-stained bands present in the gel were excised 

and tryptic digestion was performed according to Verrastro et al., 2016 [298]. The gel pieces 

were washed with 500 µL of 100 mM NH4HCO3 and then with 100 mM NH4HCO3/50% 

acetonitrile. 10 µL of 45 mM DTT in 150 µL NH4HCO3 were added to the gel pieces and left 

incubating at 60 °C for 30 mins for reduction. Cysteine alkylation was performed by adding 10 

µL of 100 mM iodoacetamide and left to react at room temperature for 30 min in the dark. The 

gel pieces were then washed in 100 mM NH4HCO3/50% acetonitrile and incubated in 50 µL of 

100% acetonitrile for 10 min. The gel pieces were then dried completely using a vacuum 

centrifuge and resuspended in 25 µL of 0.1 µg/µL trypsin prepared in 25 mM ammonium 

bicarbonate. 25 µL of 25 mM ammonium bicarbonate was added to the trypsin digests and the 

digestions were incubated overnight at 37 °C. The gel pieces were pelleted by centrifugation 

and the supernatant was collected into a fresh tube. Further peptide extraction from the gel 

pieces was performed by adding 20 µL 5% formic acid and incubating at 37 °C for 20 mins, 

followed by addition of 40 µL acetonitrile and incubation for 20 mins at 37 °C. The gel pieces 

were pelleted by centrifugation, and the supernatant was removed and combined with the first 

supernatant. The peptide extracts were dried in a vacuum centrifuge for storage and 

resuspended in 30 µL H2O/acetonitrile (98:2, %) with 0.1% formic acid prior to MS analysis. 

 

2.2.6. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Analysis 

Peptides were separated and analysed using an Ultimate 3000 system (Thermo Scientific, 

Hemel Hempstead, UK) coupled to a 5600 TripleTOF (ABSciex, Warrington, UK). The analysis 

was performed as previously described by Verrastro et al., 2016 [298]. Briefly, the peptide 

solution was loaded onto a C18 trap column (C18 PepMapTM, 5 μm, 0.5 x 5mm, Thermo 

Scientific, Hemel Hempstead, UK) before separation on a nano-HPLC column (C18 

PepMapTM, 5 μm, 0.075 x 150mm, Thermo Scientific, Hemel Hempstead, UK) at 300 μL/min 

using a gradient elution running from 2% to 45% aqueous acetonitrile, 0.1% formic acid over 
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45 minutes. Ionization of the peptides was achieved with spray voltage set at 2.4 kV, a source 

temperature of 150 ⁰C, declustering potential of 100V and a curtain gas setting of 25. Survey 

scans were collected in positive mode from 350 to 2000 Da using high-sensitivity TOF-MS 

mode. Information-dependent acquisition (IDA) was used to collect MS/MS data using the 

following criteria: the 10 most intense with +2 to +5 charge states and a minimum intensity of 

200 cps were chosen for analysis, using dynamic exclusion for 12 s and standard rolling 

collision energy settings. 

 

2.2.7. Multiple reaction monitoring (MRM) 

The acrolein-treated HSA and plasma peptides were resuspended in 50% acetonitrile, 

0.5% formic acid in water. Peptides were separated and analysed using an Ultimate 3000 

system (Thermo Scientific, Hemel Hempstead, UK) coupled to a 5500 triple quadrupole (Sciex, 

Warrington, UK). The peptide solution was loaded onto a C18 column (C18 PepMapTM 100, 5 

μm, 300 μm  x  25 cm, Thermo Scientific, Hemel Hempstead, UK) column at 5 μL/min using a 

gradient elution running from 2% to 45% aqueous acetonitrile, 0.1% formic acid over 45 

minutes. Ionization of the peptides was achieved with a spray voltage set at 5.5 kV, a source 

temperature of 150 ⁰C, declustering potential of 70 V. MS/MS analysis was carried out in MRM 

scanning mode, using the chosen transitions to fix the precursor ion and product ion m/z values 

at the first and third quadrupole, respectively. The total scan time was 0.7 seconds, dwell time 

ranged between 20 and 70 depending on the transitions and collision energy was set at 35 V 

at the second quadrupole for all transitions except  for the transitions using diagnostic ions, for 

which it was set as 41 V for m/z 509.3 → 168.1 and 55 V for m/z 566.3 → 159.1 and m/z 600.4 

→ 142.1. Method parameters such as collision energy and dwell time required optimization to 

improve the sensitivity of the method. Collision energy was firstly calculated as 𝐶𝐸 =

(𝑠𝑙𝑜𝑝𝑒) 𝑥 (𝑚 𝑧)⁄ + (𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡), where slope and intercept were dependent on the peptide 

charge. This shows how this parameter depends on the mass and charge of the peptide and 

that some peptides fragment more easily than others [299]. The dwell time is the duration in 

which each m/z ion signal is collected. Increasing the dwell time improved sensitivity, however 

resulting in fewer points collected across each peak [300]. The dwell time for each transition 

also depended on the number of transitions being monitored in the method at once, as 

increasing the number of transitions would mean decreasing each dwell time to get the same 

total scan time. Practical dwell-time settings range between 10 ms for good sensitivity and 100 

ms for excellent sensitivity [300]. 
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2.2.8. Database Searches 

The Mascot® probability based search engine (Matrix Science, London, version 2.4.0) was 

used to interrogate the SwissProt 2017-07 primary database. Mascot uses probability based 

scoring for protein identification using an adaptation of the MOWSE algorithm [301]. LC-MS 

.wiff files of each sample were searched for protein identification and oxidative post-

translational modifications (oxPTMs). For protein identification, variable modifications of 

methionine oxidation and carbamidomethyl cysteine were used. For the analysis of the 

lipoxidation products, the initial searches additionally used a variable modification list including 

reduced and unreduced ACR (mass changes of 56.06 Da, 58.08 Da, 40.06 Da, 94.11 Da, 

56.06 Da, 76.09 Da) or HHE (mass changes of 114.14 Da, 93.13 Da, 78.11 Da) adducts at 

cysteine, lysine and histidine residues. Other parameters for the searches were as follows: 

Enzyme: Trypsin; Peptide tolerance: ±0.6 Da; MS/MS tolerance: ±0.6 Da; Peptide charge 

state: +2, +3; Max Missed cleavages: 1; #13C: 0; Quantitation: None; Instrument: ESI-QUAD-

TOF; Data format: Mascot Generic; Experimental mass values: Monoisotopic; Taxonomy: 

Chordata. All data identifying modifications were manually validated before inclusion.
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2.3. Results 

2.3.1. Lysozyme as a model system to study lipid-protein adducts 

In the work reported in this section, the modifications of lysozyme by acrolein were 

evaluated as a model of lipid-protein adducts that may occur in inflammatory diseases. In 

order to increase the efficiency of the reaction between the protein and the aldehyde, the 

disulfide bonds on the lysozyme where reduced with dithiothreitol (DTT). Although lysozyme 

is known to have a single free cysteine residue, the reduction results in eight other cysteine 

residues available to react with the aldehyde from the reduction of 4 disulfide bonds. 

Therefore to increase the potential for reaction between the protein and the aldehyde, the 

disulphide bonds were first reduced with DTT and the results are shown in Figure 2.1. After 

deconvolution of the charge state envelope, the native lysozyme was observed at a mass 

of 14, 306 Da (Figure 2.1A). The incubation of lysozyme with 10 and 100 mM DTT resulted 

in the reduction of one (at m/z 14,308 Da) and three (at m/z 14,312 Da) disulfide bonds, 

respectively (Figure 2.1B and Figure 2.1C). A DTT concentration of 200 mM was required 

to reduce the protein completely, with a mass after deconvolution of 14,314 Da (4 disulfide 

bonds reduced and a mass increase of 8 Da over the native form) (Figure 2.1D). The 

charge state envelope shifts to lower m/z range with increasing DTT treatment 

concentrations as the protein unfolds and becomes more highly charged. All subsequent 

reactions for adduct formation were conducted on lysozyme reduction with 100 mM DTT 

which typically reduced 2-3 disulfide bonds, as the higher concentration required for full 

reduction could interfere with the aldehyde treatments.  
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Figure 2.1. Reduction of intact lysozyme by DTT treatment. The left hand panels correspond to 

unprocessed (raw) MS data showing the charge state envelope for the protein, and the right hand 

panels show deconvoluted data giving the mass of the intact lysozyme. Lysozyme was treated for 

30 mins at room temperature with varying concentrations of DTT: (A) control treatment in the absence 

of DTT; (B) 10 mM DTT treatment; (C) 100 mM DTT treatment; (D) 200 mM DTT treatment. 
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Peaks corresponding to reduced acrolein adducts of intact lysozyme were observed at 

mass increase of 58 Da, consistent with formation of a Michael adduct and subsequent 

stabilization by borohydride reduction. The optimal conditions for formation of acrolein-

protein adducts were investigated. The DTT-reduced lysozyme was reacted with acrolein 

for different time lengths and at a range of different concentrations. First, the time-

dependent effect was investigated with lysozyme incubated with 4 mM acrolein for 1 to 6 

hours. The formation of acrolein adducts was then analysed by direct infusion mass 

spectrometry (Figure 2.2). 

 

Figure 2.2. Deconvoluted ESI-MS spectra of lysozyme obtained after reaction with acrolein at 

4mM. Treatment for 1 h showing no adducts being formed (A). Treatment for 2 h (B), 4 h (C) or 6 h 

(D) showing the formation of several acrolein Michael adducts, each adding 58 Da (n=3). 

Reduced native lysozyme was identified at m/z 14,310 Da. The peak spacing between 

the acrolein adduct peaks was 58 Da, suggesting that lysozyme was modified by Michael 

addition of acrolein. Figure 2.2 shows that after one hour reaction, no adducts were formed 

(A), while after two (B), four (C) and six (D) hours reaction some adducts appeared to be 

formed in a time-dependent manner. Reaction with acrolein at 4 mM for 2 h (Figure 2.2B) 

gave rise to a maximum of 4 adducts while reaction for longer than 2 h (Figure 2.2C-D) 

resulted in more extensive modification with up to 8 adducts being formed. Both 4 and 6 

hour reactions resulted in the same number of modifications, so it seems that no more time 

is required beyond 4 h for 4 mM acrolein treatment. Therefore, the next step to evaluate the 

aldehyde concentration effect was performed at 2 and 4 hours, selected as the optimal time 

points. 
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To evaluate the concentration-dependent effect of acrolein-treatment, lysozyme was 

reacted with acrolein at 8 mM and 14 mM and left to react for 2 or 4 hours, as explained 

above. Any adducts were then stabilized by reaction with sodium borohydride for one hour 

and the deconvoluted MS spectra obtained for each condition are shown in Figure 2.3. 

 

Figure 2.3. Deconvoluted ESI-MS spectra of lysozyme. Spectra obtained after reaction with 

acrolein for 2 hours at 8 mM (A) and 14 mM (B), and for 4 hours at 8 mM (C) and 14 mM (D). (n=3). 

The aldehyde concentration increases resulted in an increase of the ratio 

modified/unmodified lysozyme, as the native lysozyme peak intensity decreased. Since the 

number of adducts did not increase, these might suggest that other complex modifications 

are happening that are not being analysed, including protein cross-linking. It is also possible 

to see that 8 mM acrolein for 2 h (Figure 2.3A) provides the best conditions for the formation 

of the different adducts while higher concentration or time length resulted in a more 

complete modification of the protein where only 6 to 8 adducts can be seen (Figure 2.3B-

D). Leaving the protein and the aldehyde reacting for longer resulted in an extension of the 

reaction towards the modification increasing the number of adducts and the protein with 

lower modification is no longer present. From these optimization steps, 8 mM was chosen 

as the optimal aldehyde concentration and 2 hours as the optimal time of reaction for the 

formation of these aldehyde-protein adducts, and these were the conditions used in further 

experiments. 
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To determine the specific amino acid residues modified, a bottom-up proteomic 

approach was carried out by tryptic digestion of the modified protein and LC-MS/MS 

analysis of the peptides. Lysozyme was modified by acrolein (4, 8 and 14 mM) for 2 hours 

before separation by 15% SDS-PAGE (Figure 2.4). 

 

Figure 2.4. SDS-PAGE (denaturing gel electrophoresis) results for lysozyme. Untreated and 

treated lysozyme with 4 mM, 8 mM or 14 mM acrolein for 2 hours. Gel stained with Coomassie blue 

staining. The highlighted sections boxed in white were cut for further analysis: (1) 15-20 kDa; (2) 25-

30 kDa; (3) 40-45 kDa. 

The molecular weight of lysozyme is 14 kDa, which means untreated and acrolein 

treated lysozyme should appear in the highlighted section 1 in Figure 2.4, around the 

markers 15 to 20 kDa. There are two bands within this region but due to the difficulty to 

separate them, these were studied together. The second and third sections contain a band 

at approximately double or triple the molecular weight of lysozyme and could represent 

protein cross-linking. However, this could also represent protein agglomerates that were not 

disrupted by the SDS. To confirm the nature of the band in highlighted section 2, another 

gel was run with the band from the first gel cut and placed in the sample well of the second 

gel. It was possible to see that the bands appear around the 26 kDa marker in the second 

gel and no bands corresponding to the monomer molecular mass appeared, confirming the 

protein cross-linking hypothesis and that the proteins present in those bands were 

covalently linked rather than just being a protein agglomerate. Further analysis is required 

in order to determine if acrolein was responsible for the cross-link. Interestingly, the fourth 

lane in the gel displayed in Figure 2.4 (2h, 14mM) shows bands in highlighted section 2 

and 3 but the band at the lysozyme molecular weight seemed to disappear. This can be 

correlated with spectrum in Figure 2.3B, where native lysozyme peak disappeared and a 
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new range of peaks appeared that do not correspond to simple acrolein adducts, which may 

also be related to the protein cross-linking. Gel bands from Figure 2.4 were excised from 

the gel, digested with trypsin and analysed by LC-MS/MS for characterization and 

localization of the acrolein modifications. Due to the difficulty in separating the two bands at 

15-20 kDa, these were cut and analysed together. Trypsin cleaved lysozyme at lysine (K) 

and arginine (R) amino acid residues and the digested peptides were then separated by 

liquid chromatography and analysed by MSMS. Initially MASCOT software [246] was used 

to identify peptides modified with acrolein, and each potential modification was also 

confirmed by manual analysis of the MS/MS spectrum (Figure 2.5). This bottom-up 

approach allowed the identification of 5 peptides from lysozyme modified by acrolein, based 

on the peptide molecular weight, mass/charge ratio and charge of the peptide ion, ion score, 

and LC retention time. The majority of acrolein adducts occurred at cysteine residues, 

although some lysine adducts were also identified (Table 2.1). 

 

Table 2.1. Modification of lysozyme by acrolein. 

Modified 

Residues 
Lysozyme modified peptides (a 

b) 

Mass of 

modified 

peptide 

m/z 

(charge) 

Ion 

score 

Rt 

(min) 

Cys6 C
6

+56
ELAAAMK

13
 891.42 446.5 (2+) 18 36.19 

Cys6 C
6

+58
ELAAAMK

13
 893.44 447.5 (2+) 79 27.57 

Cys30 G
22

YSLGNWVC
+58

AAK
33

 1325.64 663.6 (2+) 80 38.35 

Cys64 W
62

WC
+58

NDGR
68

 993.41 497.5 (2+) 35 32.31 

Cys76 N
74

LC
+56

NIPCSALLSSDITASVNCAK
96

 2506.19 836.4 (3+) 77 42.39 

Cys76 N
74

LC
+58

NIPCSALLSSDITASVNCAK
96

 2508.20 837.1 (3+) 50 43.84 

Cys80, 

Lys96 
N

74
LCNIPC

+58
SALLSSDITASVNCAK

96

+58
 2509.22 837.4 (3+) 92 44.29 

Cys76, 

Cys80, 

Lys96 

N
74

LC
+58

NIPC
+58

SALLSSDITASVNCAK
96

+58
 2510.24 838.1 (3+) 60 44.84 

Cys115 C
115

+58
KGTDVQAWIR

125
 1333.68 445.4 (3+) 17 31.19 

Cys115 C
115

+56
K

+58
GTDVQAWIR

125
 1389.71 464.1 (3+) 28 30.24 

Lys116 C
115

K
+58

GTDVQAWIR
125

 1390.70 464.4 (3+) 30 31.08 

a (subscript) – amino acid position in the mature protein for the start and end residues. 

b (superscript) – mass difference corresponding to the modification on the affected residue (shown in red). 
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Figure 2.5. MS/MS spectra of lysozyme tryptic peptide. CELAAAMK modified on a cysteine 

residue by acrolein (58 Da). (A) The y and b ions indicated by the arrows confirm the peptide 

sequence and the modification on the cysteine residue. (B) x-axis adjusted to 50-150 Da for 

immonium ions identification: leucine (L) at m/z 72 Da and 86 Da, lysine (K) at m/z 84 Da and 129 

Da, glutamic acid (E) at m/z 102 Da, methionine (M) at m/z 104 Da and acrolein-modified cysteine 

(C) at m/z 134 Da. The base structure of an immonium ion is shown next to the spectrum. 
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Peptide fragmentation is not often a clean process and the spectrum may show peaks 

from side chain cleavages (generating y- and b-ions) and internal fragments. This makes 

the analysis more complex and increases the difficulty of reading the peptide sequence. In 

the example shown in Figure 2.5A it was possible to sequence the peptide and confirm the 

modification identified previously by MASCOT database search. This bottom-up proteomic 

approach allowed us to identify 8 amino acid residues modified by acrolein: Cys6, Cys30, 

Cys64, Cys76, Cys80, Lys96, Cys155 and Lys116. This information corroborates the intact 

protein analysis where up to 8 acrolein molecules adducted per protein were identified 

(Figure 2.3A). One lysozyme peptide (NLCNIPCSALLSSDITASVNCAK) was found to 

contain 3 acrolein adducts, at Cys76, Cys80 and Lys96. 

The immonium ion (breaking of two bonds in the peptide either side of the amino acid 

residue) of each amino acid residue can be seen in an MS/MS spectrum and these are 

helpful for their identification. In case of modification, the immonium ion is not seen in the 

spectrum due to the structure and mass change of the amino acid residue. Some amino 

acids, like tryptophan (W), proline (P) and histidine (H), give a strong immonium ion signal 

while others do not give much information. Figure 2.5B shows the same MS/MS spectrum 

with x-axis adjusted to 50-150 Da where the immonium ions can be identified. It was 

possible to identify the immonium ion for leucine (L) at m/z 72 Da and m/z 86 Da, for lysine 

(K) at m/z 84 Da and m/z 129 Da, for glutamic acid (E) at m/z 102 Da and finally for 

methionine (M) at m/z 104 Da, confirming the presence of these amino acid residues in the 

peptide and so corroborating the results from the analysis of b- and y-ions. Alanine (A) and 

cysteine (C) immonium ions do not give strong MS signals, hence they are not usually 

observed in the spectrum. Additionally, a peak at m/z 134 Da was identified as cysteine 

immonium ion (76 Da) plus the acrolein modification (58 Da), which can be used as a 

diagnostic fragmentation product of acrolein-cysteine adducts. The same approach was 

applied to the other modified peptides and two diagnostic fragments were consistently 

observed at m/z 134.06 Da and m/z 117.04 Da for acrolein-cysteine adducts, while acrolein-

lysine adducts gave diagnostic fragments at m/z 142.12 and m/z 159.15 (Figure 2.6). These 

fragment products are aldehyde- and amino acid residue-specific, which make them 

potential diagnostic ions to be used with targeted methods for the detection of these 

modifications in more complex mixtures such as biological samples. 
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Figure 2.6. Proposed structures of the diagnostic ions found for the reduced acrolein 

modifications on lysine and cysteine. 

 

2.3.2. Human serum albumin lipoxidation analysis by LC-MS/MS 

As lysozyme had been used as a model system, once the protocols had been optimized 

the methodology developed was then tested on a biologically relevant protein, human 

serum albumin (HSA).This is most abundant protein in human blood, responsible for 

transportation of different molecules such as hormones and fatty acids and. therefore likely 

to be susceptible to adduct formation. 

 

2.3.2.1. Acrolein 

As previously described, to increase the efficiency of the reaction between the lysozyme 

and the aldehyde, the disulfide bonds on the protein were reduced with dithiothreitol (DTT). 

However, in these experiments the analysis was performed on unreduced HSA, which 

should better represent the protein in the organism. HSA was reacted with acrolein at 4, 8 

and 14 mM and for 2h, as these were the optimum conditions for the lysozyme experiments. 

Similarly, the reaction products were reduced by sodium borohydride to improve the 

adducts’ stability. 

The analysis of acrolein-HSA adducts by direct infusion mass spectrometry of the intact 

protein was not possible, probably due to the size of the protein. Hence to investigate the 

HSA modifications by acrolein, a bottom-up approach was applied, the same method as 

described for lysozyme. This allowed the identification of amino acid sequence and the 

acrolein modified amino acid residues. Acrolein-treated HSA as well as the native HSA were 

separated by 15% SDS-PAGE (Figure 2.7). 
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Figure 2.7. SDS-PAGE (denaturing gel electrophoresis) results for human serum albumin. 

Untreated and treated HSA with acrolein at 4 mM, 8 mM or 14 mM for 2 hours. Gel stained with 

Coomassie blue staining. The highlighted section boxed in white was cut out for further analysis. 

The molecular weight of Human serum albumin is 66,437 Da, according to the amino 

acid sequence. The protein appears on the gel between the markers 50 kDa and 75kDa. 

The gel run was followed by in-gel trypsin digestion of the main bands. The resulting 

peptides were then separated by liquid chromatography and analysed by MS/MS. MASCOT 

analysis identified 11 acrolein modifications on lysine (K), histidine (H) and cysteine (C) in 

11 different peptides (Table 2.2), based on peptide molecular wright, mass/charge ratio and 

charge of the peptide ion, ion score and LC retention time. These modifications were 

confirmed by manual analysis of the tandem mass spectrometry (MS/MS) data. De novo 

sequencing of each peptide confirmed the amino acid sequence as well as the location of 

the modification on specific amino acid residues. An example of this approach is given in 

Figure 2.8 for the amino acid sequence KQTALVELVK identified as modified by a reduced 

acrolein adduct on a lysine residue.  
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Table 2.2. Modifications of human serum albumin by acrolein. 

Modified 

Residues 
HSA modified peptides (a 

b) 

Observed 

mass of 

modified 

peptide 

m/z 

(charge) 

Ion 

score 

Rt 

(min) 

His67 S65LH+58TLFGDK73 1074.57 359.2 (3+) 43 28.51 

Lys137 K137
+58YLYEIAR144 1112.62 557.3 (2+) 16 27.69 

His146 R145H+58PYFYAPELLFFAK159 1956.03 653.0 (3+) 66 41.35 

Lys262 A258DLAK+58YICENQDSISSK274 1998.96 667.3 (3+) 73 31.29 

Lys276 Y263ICENQDSISSKLK276
+58 1741.86 581.6 (3+) 109 26.71 

His288 S287H+58CIAEVENDEMPADLPSLAADFVESK313 3031.38 1011.5 (3+) 61 42.41 

His338 R337H+58PDYSVVLLLR348 1524.88 509.3 (3+) 83 34.59 

Cys392 Q390NC+56ELFEQLGEYK402 1655.75 829.4 (2+) 42 41.14 

Lys414 K414
+58VPQVSTPTLVEVSR428 1696.97 566.3 (3+) 59 30.89 

Lys525 K525
+58QTALVELVK534 1185.73 396.3 (3+) 52 28.84 

Lys574 K574
+58LVAASQAALG584 1198.73 600.4 (2+) 62 33.67 

a (subscript) – amino acid position in the mature protein for the start and end residues. 

b (superscript) – mass difference corresponding to the modification on the affected residue (shown in red). 

 

 

Figure 2.8. MS/MS spectra of human serum albumin tryptic peptide. KQTALVELVK modified on 

a lysine residue by acrolein (58 Da). The y and b ions indicated by the arrows confirm the peptide 

sequence and the modification on the cysteine residue. Immonium ions for acrolein-modified lysine 

found at m/z 142 Da. 
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It was possible to sequence the peptide and confirm the modification identified by 

database search. Mainly histidine and lysine residue were found to be modified and only 

one cysteine: His67, Lys137, His146, Lys262, Lys276, His288, His338, Cys392, Lys414, 

Lys525 and Lys574. This contrasts with  lysozyme, where mainly cysteine residues were 

found to be modified; this difference may be due to the DTT reduction which generates 

cysteines in the free thiol form, instead of being in disulfide bonds, and therefore these are 

available to react with the acrolein. In its native state HSA has 17 disulfide bonds and only 

one free cysteine, which is not the cysteine that was found to be modified, suggesting that 

this cysteine was made available for reaction possibly by rearrangement of albumin after 

lysine modification and the only free cysteine residue is well buried and protected in the 

protein’s structure. Figure 2.8 shows an example of an HSA peptide modified by acrolein 

on Lys525, where the peptide could be sequenced using the b and y fragment ions. The 

modified lysine immonium ion was also detected at m/z 142.12, which is an additional 

diagnostic fragmentation product of acrolein-lysine adduct not observed in section 2.3.1. 

HSA peptide analysis provided information on acrolein-histidine modifications and a 

diagnostic fragmentation product was found at m/z 168.11 Da. The structure of these two 

ions is in Figure 2.9, which is an update on all the diagnostic ions found for acrolein 

modifications.  

 

Figure 2.9. Proposed structures of the diagnostic ions found for the reduced acrolein 

modifications on lysine, cysteine and histidine. 

These fragment products are aldehyde- and amino acid residue-specific, which makes 

then potential diagnostic ions to be used with targeted methods for the detection of these 

modifications in more complex mixtures such as biological samples. Section 2.3.3 describes 

the application of these diagnostic ions on MRM (multiple reaction monitoring) approaches.  
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2.3.2.2. 4-hydroxy-2-hexenal 

The lipoxidation of human serum albumin by another short-chain aldehyde was also 

performed. 4-hydroxy-hexenal (HHE), the 6-carbon analogue of the well-studied HNE was 

used to treat HSA for 2 hours at 8 and 16 mM. The same mass spectrometry approach was 

used and the HHE-modified HSA, as well as the untreated protein, were separated by 15% 

SDS-PAGE. HSA ran in the gel between the markers for 55 kDa and 72 kDa according to 

its expected molecular weight of 66.4 kDa, and this region is highlighted in Figure 2.10. 

 

 

Figure 2.10. SDS-PAGE (denaturing gel electrophoresis) results for human serum albumin. 

Untreated and treated HSA with HHE at 8 mM or 16 mM for 2 hours. Gel stained with Coomassie 

blue staining. The highlighted section boxed in white was cut out for further analysis. Arrows identify 

possible protein crosslinking. 

Following the same proteomic approach previously described, including in-gel tryptic 

digestion and analysis of the peptides by LC-MS/MS. MASCOT analysis identified 12 HHE 

modifications on lysine (K), histidine (H), cysteine (C) and arginine (R) residues distributed 

in 14 different peptides (Table 2.3), based on peptide molecular wright, mass/charge ratio 

and charge of the peptide ion, ion score and LC retention time. 
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Table 2.3. Modifications of human serum albumin by 4-hydroxyl-hexenal (HHE). 

Modified 

Residues 
HSA modified peptides (a 

b) 

Observed 

mass of 

modified 

peptide 

m/z 

(charge) 

Ion 

score 

Rt 

(min) 

Cys75 74LC+96TVATLR81 971.55 486.76 (2+) 27 35.62 

Cys124 115LVRPEVDVMC+114TAFHDNEETFLK136 2706.30 677.59 (4+) 29 31.91 

Cys124 115LVRPEVDVMC+114TAFHDNEETFLKK137 2834.39 709.61 (4+) 32 29.62 

Lys137 137K+78YLYEIAR144 1132.63 567.32 (2+) 15 29.21 

Cys245 241VHTEC+114CHGDLLECADDR257 2085.86 522.46 (4+) 44 23.89 

Cys245 241VHTEC+114CHGDLLEC*ADDRADLAK262 2584.14 647.04 (4+) 47 26.26 

His247 241VHTECCH+114GDLLEC*ADDRADLAK262 2584.14 647.04 (4+) 33 26.47 

Cys265 263YIC+114ENQDSISSK274 1499.68 750.85 (2+) 29 22.82 

Cys279 275LKEC*C+114EKPLLEK286 1602.84 535.28 (3+) 40 20.46 

His288 287SHC+114IAEVENDEMPADLPSLAADFVESK313 3030.38 758.61 (4+) 25 39.59 

Cys360 360C+114CAAADPHEC*YAK372 1551.62 776.80 (2+) 45 22.83 

Arg410 403FQNALLVR+96YTK413 1447.82 483.62 (3+) 22 32.98 

His464 446MPC*AEDYLSVVLNQLCVLH+114EK466 2574.25 859.10 (3+) 40 46.30 

Cys477 473VTKCC+114TESLVNR484 1465.73 489.59 (3+) 39 24.61 

Cys477 476CC+114TESLVNR484 1137.52 569.75 (2+) 59 28.67 

a (subscript) – amino acid position in the mature protein for the start and end residues. 

b (superscript) – mass difference corresponding to the modification on the affected residue (shown in red). 

  



88 

 

These modifications were confirmed by manual analysis of the tandem mass 

spectrometry (MS/MS) data and de novo sequencing of each peptide confirmed the amino 

acid sequence, as well as the location of the modification. Mainly cysteine and histidine 

residues were found to be modified and only one lysine and one arginine: Cys75, Cys124, 

Lys137, Cys245, His247, Cys265, Cys279, His288, Cys360, Arg410, His464 and Cys477. 

The HHE-modified immonium ions of these residues were also detected and as 

previously described, these were hypothesized to be reporter ions for these modifications. 

Diagnostic fragments were observed at m/z 215.18 and 243.17 Da for HHE-lysine adducts 

generated by Michael addition, at m/z 197.16, 180.14 and 179.15for HHE-lysine adducts 

generated by Schiff base, at m/z 224.14 Da for HHE-histidine adducts and at m/z 226.16 

Da for HHE-arginine adducts generated by Michael addition at m/z 208.14 Da for HHE-

arginine adducts generated by Schiff base. Figure 2.11 shows the proposed structures for 

these aldehyde- and amino acid residue-specific reporter ions. These could be used to 

develop targeted label free mass spectrometry approaches such as MRM (multiple reaction 

monitoring). 

 

Figure 2.11. Proposed structures of the diagnostic ions found for 4-hydroxy-hexenal (HHE) 

modifications on lysine (A), histidine (H) and arginine (R).  
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2.3.3. Developing an MRM approach as a potential diagnostic tool for acrolein-HSA 

modifications 

The detection and analysis of lipoxidation adducts in biological samples is challenging 

due to their low abundance. Even though mass spectrometry is a good technique to detect 

the mass shift caused by the adducts, the data output is much greater in complex samples. 

To overcome this issue, new targeted methods are needed to simplify the detection of 

adducts in biological samples such as human plasma. Therefore, a multiple reaction 

monitoring (MRM) approach was developed to detect acrolein modifications on human 

serum albumin (Table 2.4).  

 

Table 2.4. MRM transitions for human serum albumin peptides unmodified or modified by acrolein.  

HSA peptides (a 
b) 

Q1 m/z 

(charge) 
Q3 m/z 

Ion 

Series 
CE 

Dwell Time 

(ms) 

337RHPDYSVVLLLR348 509.3 (3+) 

564.3 B4 35.0 40 

885.4 B7 35.0 40 

168.1 RI 41.0 35 

337RHPDYSVVLLLR348 489.9 (3+) 

756.3 B6 35.0 60 

613.4 Y5 35.0 60 

414KVPQVSTPTLVEVSR428 566.3 (3+) 

511.3 B4 35.0 70 

798.5 B7 35.0 70 

159.1 RI 55.0 60 

414KVPQVSTPTLVEVSR428 547.3 (3+) 

589.3 Y5 35.0 10 

740.4 B7 35.0 25 

574KLVAASQAALG584 600.4 (2+) 

541.4 B5 35.0 20 

898.5 B9 35.0 20 

142.1 RI 55.0 25 

574KLVAASQAALG584 507.3 (2+) 

712.4 B8 35.0 25 

284.2 B3 35.0 10 
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Transitions were designed based on the MS/MS data on acrolein-treated HSA tryptic 

digests obtained in Section 3.2. The m/z of the modified peptides was set as the parent ion. 

Ions from the b or y fragmentation series were used as the product ions for each chosen 

peptide, generally selecting the ions with highest intensity. The reporter ions previously 

described in 3.2 were also selected for each modified peptide with respect to its modified 

residue. The collision energy (CE) and dwell time of each transition were optimized by trial 

and error. 

Three peptides were shown to be selective for the identification of acrolein adducts on 

HSA: KLVAASQAALG modified on the lysine residue (Lys574), RHPDYSVVLLLR modified 

on the histidine residue (His338) and KVPQVSTPTLVEVSR modified on the lysine residue 

(Lys414). For each, three transitions were selected for the modified and two transitions for 

the corresponding unmodified peptide. Specifically, the transitions using the reporter ions 

were of most interest as these are novel and have never been reported for identification of 

acrolein adducts. The reporter ions used were two lysine modifications specific (m/z 142.1 

and m/z 159.1) and one histidine modification specific (m/z 168.1). Figure 2.12 shows the 

XICs for the three transitions selected for the modified peptide in untreated and in vitro 

acrolein-treated human serum albumin. 

The first two transitions studied for each peptide were chosen here as peptide-specific 

ion transitions. These were only detected in the acrolein treated sample, not in the untreated 

control sample, except for the peptide in Figure 2.12C (KVPQVSTPTLVEVSR). Regarding 

the transitions including the reporter ions, m/z 600.4→142.1 and m/z 509.3→168 proved to 

be excellent at detecting lysine and histidine modified peptides, respectively. These 

generated high intensity signal peaks for the treated samples while not being detected in 

the untreated sample. Additionally, these ions eluted at the same retention time as the 

peptide-specific ions, supporting the hypothesis of these being selective of their acrolein-

modified residue. However, the transition m/z 566.3→159.1 gave a relatively low intensity 

and broad signal and was also detected in the untreated sample at even higher intensity. 
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Figure 2.12. Multiple reaction monitoring (MRM) for the identification of three human serum 

albumin peptides modified by acrolein. Untreated and treated HSA with ACR at 8 mM for 2 hours. 

KLAASQAALG modified on lysine residue (A), RHPDYSVVLLLR modified on histidine residue (B) 

and KVPQVSTPTLVEVSR modified on the lysine (C).  
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The same MRM method was used to study the effect of different acrolein concentration 

treatments in amount of modified-peptide detected. Figure 2.13 shows a plot of the area 

under the curve as the signal intensity for the peaks detected of each of the modified-peptide 

transitions after acrolein treatment at 4, 8 and 14 mM. Transitions for KLVAASQAALG 

(Figure 2.13A) showed an interesting pattern not observed for the other peptides. The 4 

mM treatment resulted in the lowest amount of modified peptide while 8 mM appeared to 

be producing the highest, instead of 14 mM as for the other two peptides, confirmed by the 

three transitions tested. Once more, treatment of HSA with 4 mM acrolein produced fewer 

RHPDYSVVLLR modified peptides when compared to higher concentration treatments. 

Interestingly, these showed very similar intensities for this peptide and the transition 509.3 

→ 168.1 presented the highest signal intensity of all three transitions for this modified 

peptide (Figure 2.13B). The product ion m/z 511.3 for KVPQVSTPTLVEVSR was detected 

at higher intensity than m/z 789.5 for all the concentrations studied. For both transitions, 4 

and 8 mM resulted in similar levels of modification and thus similar signal intensity. The 

highest concentration treatment at 14 mM resulted in higher levels of this modified peptide 

in comparison with the lower concentration treatments mainly detected by the ion m/z 511.3. 

The reporter ion m/z 159.1 was detected with the highest intensity at 4 and 14 mM while at 

8 mM the amount detected was even lower than the control (Figure 2.13C). 
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Figure 2.13. MS/MS signal intensities produced by three human serum albumin peptides 

treated with different concentrations of acrolein (0 mM, 4 mM, 8 mM and 14 mM). Two 

transitions for peptide-specific product ions (green and blue) and one transition for residue and 

modification-specific report ion (yellow). KLAASQAALG modified on lysine residue (A), 

RHPDYSVVLLLR modified on histidine residue (B) and KVPQVSTPTLVEVSR modified on the lysine 

(C). (n=1).  
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2.3.4.  Testing the developed MRM approach for acrolein-HSA modifications on 

pooled human plasma 

The next step was to test these transitions on an acrolein-treated human plasma pool 

with the goal of detecting acrolein-modified HSA within a complex mixture of proteins. 

Plasma pooled from healthy volunteers was diluted to 1:4 to give a human serum albumin 

concentration of roughly 10 mg/mL [302] and treated with acrolein as described for HSA 

previously. Figure 2.14 shows the XICs for the MRM analysis of the untreated plasma and 

acrolein-treated plasma at 8 mM. The MRM method used was the same as described in 

Table 2.4. 

All 14 transitions (for treated and untreated peptides) were successfully detected in 

plasma, although only the XICs for the transitions for the modified peptides are shown in 

Figure 2.14, for both treated and untreated plasma. These transitions eluted at the same 

retention time as observed for HSA supporting the hypothesis that these are selective for 

acrolein-albumin modifications. Here it is evident that the MRM method developed can be 

applied to complex biological samples of human plasma, without the need for much sample 

preparation as it was used as whole and no proteins were precipitated from the plasma. 

Just as observed for HSA, all the three transitions tested for KLAASQAALG were 

detected in the acrolein-treated plasma while not being detected in the untreated plasma 

showing their power to detect this lysine modification not only in HSA but also in human 

plasma (Figure 2.14A). Once more, the diagnostic ion m/z 142.1 proved to be a reporter 

ion for lysine modification even in a complex sample. In the XIC for RHPDYSVVLLLR, the 

peptide-specific transitions 509.3 → 885.4 and 509.3 → 564.3 gave rise to two peaks 

instead of one as observed for HSA (Figure 2.14B), suggesting that in plasma there are 

two precursors sharing the same mass and producing the same fragmentation product, 

varying only on retention time. When compared with the untreated plasma, this peptide 

showed a small increase in the signal intensity for the peptide-specific product ions while 

the reporter ion clearly shows an increase in intensity upon acrolein treatment. The 

transitions 509.3 → 168.1, using the report ion, was the best at detecting this histidine 

modification in the plasma. On the other hand, the peptide KVPQVSTPTLVEVSR showed 

that the reporter ion for lysine modification at m/z 159.1 was detected in the treated and the 

untreated plasma samples at roughly the same intensity (Figure 2.14C). This pattern was 

also observed on the analysis of HSA, evidently showing that this ion is not selective for 

lysine modification on this particular peptide. Nevertheless, the transitions 509.3 →168.1 

and 600.4→142.1, for RHPDYSVVLLLR modified on the histidine and KLVAASQAALG 

modified on the lysine residues respectively, were detected at high intensities in the 

acrolein-treated plasma and at very low intensities in the untreated plasma, as described 

above. The detection of these in the control sample might be expected at low intensities 
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due to in vivo albumin-acrolein modifications that could already be present in the plasma at 

the time of collection. 

 

Figure 2.14. Multiple reaction monitoring (MRM) for the identification of three human serum 

albumin peptides modified by acrolein in human plasma. Untreated and treated human plasma 

with ACR at 8 mM for 2 hours. KLAASQAALG modified on lysine residue (A), RHPDYSVVLLLR 

modified on histidine residue (B) and KVPQVSTPTLVEVSR modified on the lysine residue (C).  
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The same MRM method was tested to detected acrolein-modified human serum albumin 

peptides in plasma after different acrolein concentration treatments. Figure 2.15 shows a 

plot of the area under the curve as the signal intensity for the peaks detected of each 

modified-peptide transition after plasma being treated with acrolein at 4, 8 or 14 mM. The 

transitions studied were sensitive to changes in the acrolein concentration treatment and 

different amounts of the modified peptides were detected in the plasma. Transitions for 

KLVAASQAALG were detected with the lowest intensity for 4 mM while 8 and 14 mM 

produced the highest intensity signals and at very similar levels (Figure 2.15A). The 

transitions 600.4 → 898.5 and m/z 600.4 →142.1 showed the best signal intensity out of 

the three tested for this peptide. Interestingly for RHPDYSVVLLLR, the transitions 509.3 → 

885.4 and 509.3 → 564.3 were detected at the same levels for both 4 and 8 mM (Figure 

2.15B). Only the transition 509.3 → 168.1 detected the increase of this modified peptide 

between these treatments. The lowest signal intensity detected for all of this peptide 

transitions were detected after the 14 mM treatment. The transition 566.3 → 511.3 for 

KVPQVSTPTLVEVSR detected an increase in this modified peptide at 8 and 14 mM in 

comparison with the control, however the signal for 14 mM was lower than for 8 mM (Figure 

2.15C). The other two transitions showed lower intensity signals overall. The transition 

566.3 → 159.1 was detected at roughly the same intensity at all concentration treatment 

and even at the control sample. 
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Figure 2.15. MS/MS signal intensities produced by three human serum albumin peptides 

identified in human plasma after treatment with different concentrations of acrolein (0 mM, 4 

mM, 8 mM and 14 mM). Two transitions for peptide-specific product ions (green and blue) and one 

transition for residue and modification-specific report ion (yellow). KLAASQAALG modified on lysine 

residue (A), RHPDYSVVLLLR modified on histidine residue (B) and KVPQVSTPTLVEVSR modified 

on the lysine (C). (n=1). 
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2.4. Discussion 

In this study, the modification of proteins by two aldehydes, acrolein and 4-hydroxy-

hexenal, was evaluated as a model of lipoxidation adducts that may occur in inflammatory 

diseases. The first aim was to map the sites of modification using LC-MS/MS and identify 

potential diagnostic ions for adducts with different amino acid residues. To ensure extensive 

adduct formation and to allow a better MS characterisation of the adducts formed, high and 

non-physiological concentrations of the aldehydes were used, even though it has been 

suggested that local levels of aldehydes can be higher than plasma levels [303]. Acrolein 

modifications were found in 5 lysozyme and 11 HSA peptides and were predominantly 

formed by Michael addition reactions with cysteine, histidine and lysine amino acid residues, 

based on the mass increases of 56 Da or 58 Da for unreduced or reduced forms 

respectively, despite the potential for this aldehyde also to form Schiff’s base adducts. 

Additionally, 5 diagnostic ions for acrolein adducts with cysteine, histidine and lysine were 

consistently observed in the MS/MS spectra of modified peptides. HHE modifications were 

found in 14 HSA peptides, with adducts identified on cysteine, lysine, histidine and arginine 

residues, based on the mass increase of 114 Da or 96 Da for Michael addition and Schiff 

base, respectively. In addition, 8 potential diagnostic ions for HHE adducts with lysine, 

arginine and histidine were observed. 

The bottom-up proteomic approach allowed identification of 8 lysozyme residues 

modified by acrolein: Cys6, Cys30, Cys64, Cys76, Cys80, Lys96, Cys155 and Lys116, 

which fitted well with the 8 acrolein molecules found covalently bound per lysozyme by intact 

protein analysis. For HSA, mainly histidine and lysine residues were found to be modified: 

His67, Lys137, His146, Lys262, Lys276, His288, His338, Lys414, Lys525 and lys574. The 

high number of cysteines modified in lysozyme is likely to result from the reduction prior to 

reaction with the acrolein. This also confirms that free cysteine residues are highly 

susceptible to acrolein modification. For HSA the reduction was omitted and since only one 

single cysteine (Cys34) is in the free thiol form, modifications of lysine and histidine were 

consequently more prevalent. The tryptic peptide containing the HSA free cysteine was 

challenging to detect, as it is a long peptide that gives low ion intensity. Some of the peptides 

identified contained missed cleavages owing to modification of lysine residues, which could 

complicate relative quantification against untreated samples due to generation of different 

peptides. A number of the lysines and histidines observed to be modified have been 

reported to be susceptible to electrophilic attach, and the occurrence of acrolein-protein 

adducts has previously been reported both in vitro and in vivo [74], including studies of 

acrolein modification of albumin [304]. The same bottom-up proteomic approach was used 

to identify 12 HSA residues modified by HHE: Cys75, Cys124, Lys137, Cys245, His247, 

Cys265, Cys279, His288, Cys360, Arg410, His464 and Cys477. Two residues were found 
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to be modified by both aldehydes (Lys137 and His288), suggesting highly susceptibility of 

these to lipoxidation.  

HSA is highly abundant, and its modification might be seen as a defence mechanism to 

prevent the damage of other critical and less abundant proteins. However, it is still important 

to consider the potential physiological consequences of lipoxidation, as human serum 

albumin has many biological functions that could as well be affected by modification. For 

example, His67 was readily modified by acrolein, and is one of the residues contributing to 

the zinc binding site on albumin [20, 305, 306]. Zinc is required for essential intra and 

extracellular enzymes function. The zinc site on albumin is formed by the side chains of 

His67 and Asn99 from domain I, and His247 and Asp249 from domain II [305]. So 

modification on any of these residues could disrupt zinc binding to and transport by albumin. 

As decreased binding of zinc can affect fatty acid binding to albumin [307], this modification 

could result in increased levels of fatty acids in the blood and contribute to plasma lipid 

changes in cardiovascular diseases and diabetes. While acrolein was found to modify many 

relevant residues, under physiological conditions the profile of the modifications could be 

different. The data presented here, and previous literature suggest that the cysteine 

residues would be major sites of modification [285, 308, 309]. Furthermore, the sequence 

coverage obtained was incomplete (typically 80-85%) and some potential modification sites, 

such as the N-terminal, were not covered; hence no conclusions can be drawn about these 

sites. Nevertheless, this shows the importance of identifying the correct location of protein 

modifications and understand their relevance to disease. 

A major aim of the study was to identify the diagnostic ions for the aldehyde adducts 

that could subsequently be used in targeted mass spectrometry approaches such as 

multiple reaction monitoring (MRM), or to confirm peptide identifications. At lower m/z range 

of the MS/MS spectra, immonium and related internal fragmentation ions specific to amino 

acids present in the peptides can be observed; these ions are potential MS/MS reporter 

ions for modified amino acid residues. From the MS/MS spectra of the modified tryptic 

peptides, several potential diagnostic ions for the acrolein (Figure 2.9) and for HHE (Figure 

2.11) modifications were identified. While protein-acrolein adducts have been extensively 

studied previously [308, 310, 311], the focus was on finding these reporter ions since it 

appears that there are no specific studies of this kind aiming to improve the detection of 

these modifications. The success of the application of these reporter ions on novel detection 

methods corresponds to the second aim of this chapter and it is discussed in detail below. 

In summary, the first aim has provided new data on the sites of modification in two model 

proteins by acrolein and HHE. It has also identified novel diagnostic fragment ions for 

acrolein and HHE adducts of cysteine, lysine, histidine and arginine. This study shows the 

power of combined use of direct infusion and LC-MS/MS to identify the type, the number 
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and the location of protein adducts. The MS approaches described here could also be 

applied to study other types of adducts as biomarkers of lipoxidation in cells and tissues 

under pathophysiological conditions. The acrolein diagnostic ions were used in targeted 

mass spectrometry approaches, such as multiple reaction monitoring, to identify and 

quantify aldehyde adducts. 

For the second aim of the study in this chapter, an MRM approach was developed to 

detect albumin-acrolein adducts in human plasma. The success of developing any MRM 

method depends upon selection of the most appropriate peptides and their respective 

transitions. Transitions were designed based on MS/MS data resulting from bottom-up 

analysis of acrolein-treated HSA. To ensure that the MRM method could be applied to 

biological samples, multiple transitions were established per peptide owing to the 

complexity of human plasma [211]. The m/z of the modified peptide was set as the precursor 

ion. Ions from the b and y type fragmentation chosen based on the highest intensity 

fragmentation ions present in the MS/MS spectra [312], as well as the report ions for 

acrolein modification, were used as the product ions. The bottom-up data used to choose 

these ions was acquired on a Q-TOF while the MRM data was acquired on a triple 

quadrupole, which could explain why some of the transitions did not work as well to detect 

the modifications with the MRM method [300, 312]. No peptide containing modified cysteine 

was used in the MRM method, as cysteine gives weak immonium ion signals and 

consequently its corresponding report ion did not work well in this method development. 

Two of the three peptides used in the method (RHPDYSVVLLLR and 

KVPQVSTPTLVEVSR) contained at least one proline residue and it has been suggested 

that peptides containing this residue are able to produce higher intensity MS/MS signals 

facilitating their detection [313]. The three peptides used were shown to be selective and 

provided good intensity peaks indicating highly sensitive detection of HSA-acrolein 

modifications. 

After the method development performed on in vitro modified HSA, this was tested on 

in vitro acrolein-treated plasma. Previous studies reported that due to the large variety of 

proteins present in plasma, the MRM approach detected a large amount of noise and 

interference, and better results were obtained when the MRM method was run on plasma-

extracted albumin instead of the whole plasma [314]. However, for our method, no sample 

preparation was used apart from plasma dilution before treatment and the method proved 

to be sensitive with minimal background noise. 

One issue detected in the plasma but not in the HSA data was the double peak detected 

by the transitions 509.3 → 885.4 and 509.3 → 564.3 for RHPDYSVVLLLR. This might mean 

that another precursor ion with the same mass m/z 509.3 is also producing the same 

product ions. However, this does not interfere with the identification of the modified peptide 



101 

 

because another transition was used in parallel using the reporter ion m/z 168.1, which has 

previously been shown to be selective for acrolein-histidine modification. This confirmed the 

retention time consequently identifying which of the two peaks correspond to our peptide of 

interest. 

One hypothesis tested with this method was that increasing the concentration of acrolein 

treatment on HSA, would consequently increase the level of acrolein modifications. 

However, this hypothesis was not confirmed. This could be due to the level of acrolein-

induced albumin crosslinking that occurs during the different treatments. Unfortunately, 

crosslinking was not studied, and this could not be confirmed. Acrolein protein-protein 

cross-linking has been previously studied [315, 316], including in proteins such as Hsp90 

which has a role in the response to oxidative stress [317], but none of these were studied 

using mass spectrometry, as opposed to the interchain cross-linking of DNA mediated by 

acrolein which has been studied by MALDI-TOF [318, 319]. The same hypothesis could 

possibly explain why at 8 mM acrolein treatment similar or slightly higher intensity peaks 

were detected than at 14 mM treatment for the peptides RHPDYSVVLLLR and 

KLAASQAALG. This could be because acrolein modifications at His338 and Lys574 are 

more likely to induce crosslinks than modifications at Lys414, and therefore there would be 

fewer of these modified peptides resulting from enzymatic digestion. However, without 

further studies, it is not possible to confirm this hypothesis, and the evidence supporting the 

formation of acrolein-induced albumin crosslinking is a limitation of this work. 

A thorough validation process of the transitions used in this method would be desirable 

to be able to accurately quantify the level of acrolein-albumin adducts. For example, the 

samples would need to be spiked with a known concentration peptide to serve as an internal 

standard [300]. Once the transitions are accurately validated using in vitro acrolein-treated 

plasma from healthy volunteers, it would be ideal to test it with plasma from patients with a 

pathophysiological conditions known to result in increased acrolein-albumin adducts such 

as cardiovascular disease, type 2 diabetes mellitus, Alzheimer’s disease and brain 

infarction [314, 320] to fully validate the method. Unfortunately, there was not enough time 

to source such samples and carry out further investigation. 

In conclusion, it is evident that an MRM approach for acrolein-albumin adducts has the 

potential to become a robust method with further validation. Many pathophysiological 

conditions result in increased levels of oxidative stress, and other RCS-albumin adducts as 

biomarkers for oxidative stress have repeatedly been suggested in recent years [302, 314]. 

The lack of sensitive, specific and validated analytical assays has held back progress in the 

use of these adducts as biomarkers of oxidative stress. LC-MS/MS analysis, specially 

targeted methods as MRM, provide a promising solution to this need for sensitive and highly 

specific measurements of RCS-albumin adducts. The method developed in this chapter has 
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identified successful and promising MRM transitions, specially the novel transitions using 

report ions which proved to be highly selective for acrolein modification. This provided an 

approach that could potentially be used in the future for detection of acrolein-albumin 

adducts in human plasma, for example from diabetic patients or lung cancer since acrolein 

is a major component of tobacco smoke. 
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Chapter 3. Synthesis of 2-chlorohexadecanal and its 

adduction to proteins 
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3.1. Introduction 

In inflammation, neutrophils are activated and release numerous bioactive and anti-

microbial molecules, including partially reactive oxygen species such as hydrogen peroxide. 

Hydrogen peroxide is a substrate of the enzyme myeloperoxidase (MPO), which in the 

presence of chloride ion produces hypochlorous acid (HOCl) [139, 321], a strong oxidizing 

and chlorinating agent. HOCl is primarily responsible for the microbicidal action of 

neutrophils but during chronic inflammation it is able to react with host proteins, nucleic 

acids and lipids [322]. Plasmalogens, which contain a vinyl ether bond, are particularly 

susceptible to reaction with HOCl, resulting in the production of free α-chloroaldehydes 

[142, 143]. Plasmalogens are a subclass of phospholipids found in many cells but are 

particularly enriched in phagocytes such as neutrophils [323]. α-chloroaldehydes have 

previously been reported to accumulate in activated human neutrophils and monocytes 

[138, 324] and to be elevated in human aortic atherosclerotic plaques [147]. Although α-

chloroaldehydes are produced during neutrophil activation, the mechanism by which they 

have an impact on cell function remains to be resolved. The biological activity attributed to 

α-chloroaldehydes may be mediated through metabolism to α-chloro carboxylic acids, 

which have been reported to induce apoptosis [325]. However, α-chloro aldehydes are likely 

to cause direct cellular effects due to their reactive aldehyde group and α-chlorinated 

carbon. A potential mechanism by which α-chloroaldehydes could cause impact in cell 

function is by forming reversible Schiff base adducts with amines in proteins [326]. 

The HOCl oxidation of plasmenylcholine (16:0/18:1) results in formation of 

lysophosphatidylcholine (0:0/18:1) and 2-chlorohexadecanal (2-ClHDA), by far the most 

studied α-chloroaldehyde [138, 146]. 2-ClHDA is known to be involved in pro-inflammatory 

and cell death pathways, making it important to understand the mechanisms underlying 

such roles [151, 152]. Therefore, it is important to understand its metabolism and cellular 

impact. 2-ClHDA has been reported to contribute to atherosclerosis and cardiac dysfunction 

[147, 327] suggesting that this chloroaldehyde in particular is relevant in inflammatory 

diseases. Additionally, it has been reported to activate cyclooxygenase-2 (COX-2), which 

is highly expressed in atherosclerotic lesions, via an NF-kB mediated pathway [151]. MPO 

is also highly expressed in neuroinflammatory diseases, such as Parkinson’s and 

Alzheimer’s diseases, in comparison with normal brain [328, 329], and 2-ClHDA has been 

reported to affect brain function by induction of blood-brain barrier dysfunction (BBB). This 

was shown in primary brain microvascular endothelial cells (BMVEC) on treatment with 

MPO-H2O2-Cl, and in a mouse model, neutrophils released MPO into the 

cerebrovasculature, induced decrease of brain plasmalogen content, formation of 2-ClHDA, 

increased BBB permeability and activated the MAPK cascade in response to systemic 

lipopolysaccharide (LPS) administration [148, 330]. Previous studies suggest that 2-ClHDA 
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causes brain damage by covalent modification of proteins, which impairs function and 

triggers responses associated with oxidative stress [331]. PARK7 (DJ-1), which protect cells 

from oxidative stress, has been identified as a prime target of 2-ClHDA in brain [331]. 

Additionally, DJ-1 has also been reported to form adducts with other electrophilic aldehydes, 

such as HNE and these adducts were found increased in blood from Parkinson’s disease 

patients when compared with healthy controls [332].  

2-ClHDA undergoes redox metabolism via the fatty acid-fatty alcohol cycle, resulting in 

the corresponding alcohol or carboxylic acid [333]. The oxidation to 2-chlorohexadecanoic 

acid (2-ClHA) from 2-ClHDA is dependent on fatty aldehyde dehydrogenase (FALDH) and 

has been demonstrated both in isolated human neutrophils and in vivo systems [150, 333]. 

2-ClHA does not show the neutrophil chemoattractant properties of 2-ClHDA [138] and its 

generation from 2-ClHDA might be considered as a protective pathway. However, 2-HDA 

was found to accumulate in activated monocytes and to induce apoptosis through 

mechanisms involving H2O2 release and ER stress, in monocytic and macrophagic cell 

lines, as well as primary human monocytes [325]. 

Pre-treatment of monocytes with glutathione (GSH) shown to ameliorate the production 

of H2O2 induced by 2-ClHA and reduce the caspase 3 activity, PARP cleavage and CHOP 

expression [325]. GSH is responsible for detoxification of endogenous and exogenous 

potentially toxic electrophiles due to its nucleophilic thiol, which can react with unsaturated 

and halogenated carbons [334, 335]. The α-chlorinated carbon of 2-ClHDA was shown to 

react with the nucleophilic thiol of GSH, resulting in a peptidoaldehyde (FALD-GSH) which 

has been found in activated neutrophils and in plasma of a mouse arthritis model [199]. LC-

MS/MS [336] confirmed the structure of the adduct, which is formed from nucleophilic attack 

at the α-chlorinated carbon by the thiol with loss of chlorine [199]. The dihydrochalcone-

type polyphenol phloretin has also been shown to be able to attenuate the cellular effect of 

2-ClHDA, providing protection against BBB dysfunction, apoptosis and ATP depletion [152]. 

The structure of the adduct of phloretin and 2-ClHDA was confirmed by NMR, and biological 

experiments demonstrated that the adduct did not alter cell function, so this can therefore, 

be considered a detoxification pathway [337].  

2-chlorohexadecanal is not commercially available, thus its synthesis is necessary prior 

to any study on its effect on proteins. Recent studies have used the for reaction of 1-O-

hexadec-enyl-glycerol-3-phosphocholine with HOCl followed by lipid extraction and HPLC 

purification to obtain 2-chlorohexadecanal [151]. This approach proved to be time 

consuming and relatively expensive. In this study, two alternative approaches were tested. 

First, a multi-step reaction was evaluated, consisting of: 1) synthesis of hexadecanal from 

hexadecanol by Corey-Suggs oxidation [338]; 2) acetal protection of the hexadecanal using 

trimethylorthoformate to protect the aldehyde from nucleophilic attack during chlorination; 
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3) chlorination via manganese catalysed chlorination with trimethylsilylchloride; 4) 

deprotection the 2-chloro-methylacetal hexadecanal by mild acid hydrolysis. This was also 

time consuming, although it would allow synthesis of reasonable quantities of the 

chloroaldehyde, and so an alternative one-pot method was investigated using 

trichloroisocyanuric acid (TCCA) as the oxidizing and chlorinating agent with TEMPO 

(2,2,6,6-tetramethylpiperidine 1-oxyl) as a catalyst [339]. All reaction products were 

characterized by 1H NMR. 

Liquid chromatography coupled to tandem mass spectrometry was used to investigate 

protein modifications by 2-chlorohexadecanal. As for chapter 2, lysozyme (14,306 Da), 

which is rich in lysine and cysteine residues, and human serum albumin (66,437 Da), the 

most abundant human plasma protein were used as model proteins. Non-physiologically 

high concentrations of 2-chlorohexadecanl were used to ensure adduct formation as the 

aim was to generate adducts in reasonable abundance in order to characterize the modified 

amino acids and identify potential reporter ions for these modifications which are preferably 

amino acid- and modification-specific and, which could be used to develop targeted 

methods such as SRM or MRM for the identification of these adducts in clinical samples.  

  



107 
 

3.2. Material and Methods 

 

3.2.1. Multi-step synthesis of hexadecanal from hexadecanol 

3.2.1.1. Synthesis of hexadecanal (Corey-Suggs oxidation) 

Into a three-necked round bottom flask, under positive pressure of nitrogen gas, 123.63 

mmol (17.9 g) of pyridinium chlorochromate (PCC) dissolved in 150 mL of dry 

dichloromethane (DCM) was added. The mixture was stirred for 15 min at room 

temperature, then 82.49 mmol (13.4 g) of hexadecanol dissolved in 50 mL of dry DCM was 

added in one portion. The mixture immediately turned black. It was left to stir for 1.5 hours 

at room temperature after which 150 mL of dry diethyl ether was added, and a black tarry 

precipitate formed [338]. The solution was filtered under gravity and the black precipitate 

was washed with dry diethyl ether and wash filtered. The filtrate was then filtered for a 

second time using a sintered funnel loaded with 30g of Florisil® to remove fine particulates. 

The Florisil® was then washed 2 x 30 mL with petroleum ether 60-80/diethyl ether (90:10). 

The organic extracts were evaporated under vacuum and the resulting off-white powder 

was dried in a desiccator. The reaction was monitored by TLC (silica gel 60 F254, Merck, 

Darmstadt, Germany) using pet ether 60-80/ether (90:10) as solvent and the retention factor 

(Rf) for the starting material was 0.1 and for the final product was 0.37. 

 

3.2.1.2. Synthesis of dimethylacetal hexadecanal (protection) 

4.19 mmol of hexadecanal (1 g) from the previous reaction and 8.21 mmol (900 μL) of  

trimethylorthoformate (TMOF) were dissolved in 20 mL of dry methanol. 4.65 mmol of p-

toluene sulfonic acid (0.8 g) was then added. The mixture was stirred under reflux for 4 h at 

70 °C. The reaction was then diluted with 20 mL of pentane, washed with 10 mL of 0.5% 

NaOH solution and the aqueous phase extracted with 3 x 10 mL of pentane. The organic 

phases were combined and dried over MgSO4. The solvent was evaporated under vacuum 

to obtain the hexadecanal methyl acetal as a white solid. The reaction was monitored by 

TLC using n-hexane/ethyl acetate (95:5) as solvent and the Rf of the final product was 0.56. 

 

3.2.1.3. Synthesis of 2-chloro-methylacetal hexadecanal (chlorination) 

MnCl2 (1.5 mmoles, 0.339 g) was weighed into a flask with 10 mL of acetonitrile and 

methanol (50:50) and the mixture stirred until the MnCl2 was completely dissolved. MnO2 

(3.1 mmoles, 0.527 g) and the methyl acetal (3.5 mmoles, 1.14 g) from the reaction above 

were added and the mixture immediately turned black. The stirred mixture was refluxed at 

40 °C for 15 minutes before trimethylsilylchloride (TMSCl) (14.4 mmoles, 3.1 g) was poured 

into the mixture in one portion. The reaction was left to reflux for 42 hours and then it was 
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diluted with 20 mL of hexane. The mixture was diluted with 20 mL of CH2Cl2 and the 

precipitated removed by filtration. The organic phase was washed with 10 mL of 1.5 % 

NaOH solution. The aqueous layer was then extracted with 2 x 10 mL of hexane, and the 

organic phases were combined, dried over MgSO4 and then evaporated under vacuum. 

The reaction was monitored by TLC using pet ether 60-80/dichloromethane (70:30) as 

solvent and the Rf of the final product was 0.28. 

 

3.2.1.4. Acid hydrolysis of 2-chloro-methylacetal hexadecanal (deprotection) 

To 1.25 mmol (400 mg) of 2-chloro-methylacetal hexadecanal dissolved in 5 mL of 

anhydrous CH2Cl2 were added 2.5 mL of 50:50 trifluoroacetic acid (TFA) and water (v/v). 

The reaction was stirred at 37 °C for 48 hours, after which it was diluted with 20 mL of 

CH2Cl2 and washed three times with 20 mL of an aqueous 5% NaHCO3 solution. The 

aqueous phase was re-extracted with CH2Cl2 (3 x 20 mL) and the combined organic phases 

were dried over MgSO4 evaporated in vacuum. The reaction was monitored by TLC using 

hexane/dichloromethane (50:50) as solvent and the Rf of the final product was 0.59. 

 

3.2.2. Direct conversion of alcohol into chloroaldehyde 

3.2.2.1. First attempt 

Hexadecanol (4.12 mmol, 1 g) was dissolved in 20 mL of dichloromethane. 3.3 mmol 

(0.78 g) of trichloroisocyanuric acid (TCCA) and 0.3 mmol (0.0415 g) of TEMPO (catalyst) 

were added to the reaction which was left stirring for one hour at room temperature. The 

product was filtered twice, and a white powder was formed. Reaction was monitored by TLC 

using hexane/dichloromethane (50:50) as solvent. The Rf of the starting material was 0.32 

and for the final product was 0.79. Product was characterized by 1H NMR. 

3.2.2.2. Second attempt 

Hexadecanol (0.5 mmol, 121.2 mg) and TEMPO (0.03 mmol, 4.69 mg) were dissolved 

in 5 mL dichloromethane. The mixture was cooled to 0 °C. TCCA (0.5 mmol, 116.2 mg) was 

added in small portions while stirring. The reaction was left to stir for 10 minutes at 0 °C. 

The reaction was then stirred for additional 30 minutes at room temperature while being 

monitored by TLC using hexane/dichloromethane (50:50) as solvent. The retention factor 

(Rf) for the starting material was 0.25 and for the final product was 0.68. Pentane was added 

and the mixture filtered. The filtrate was then washed three times with 20 mL of water, dried 

over MgSO4 and concentrated under vacuum. The product obtained was a yellow oil that 

was characterized by 1H NMR. 
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3.2.3. 1H NMR analysis 

1H NMR experiments were performed at room temperature on a Bruker spectrometer 

operating at 400 MHz with a 5mm PABBO probe. Spectra were acquired with an 8012.82 

Hz spectral width, 296.6 K data points, a 1s relaxation delay (d1) and 16 scans. Data 

processing was performed using MestReNova (Mnova NMR) programme, version 8.1 

(Mestrelab Research, California, USA). Chemical shifts are given in ppm. The chemical 

shifts were referenced internally to the TMS signal at 0.00ppm. Splitting pattern 

abbreviations are s, singlet; d, doublet; t, triplet; m, multiplet. 

 

3.2.4. GC-FID analysis 

GC-FID analysis was performed using an Agilent HP-5 column (30m, 0.32mm i.d., 

0.25um) with an Agilent Technologies 7829A gas chromatograph. The analysis of the 

multistep reaction was performed with the injector at 250 °C and an isothermal analysis with 

the oven kept at 260 °C with an analysis time of 2 minutes. The analysis of the direct 

conversion products was performed as previously described by Wacker, B.K. et al [336]. 

The injector and the transfer lines were kept at 250 °C. The GC oven was kept at 150 °C 

for 3.5 minutes and increase the temperature at a rate of 25 °C /min to 300 °C. This 

temperature was held for an additional 5 minutes. 

 

3.2.5. Treatment of model proteins with 2-chlorohexadecanal in vitro 

Lysozyme and human serum albumin (1 mg/mL) were first reduced with 100 mM DTT 

for 30 minutes as described in Section 2.2.2. Synthesized 2-chlorohexadecanal was added 

to the protein at treatment concentrations of 8 and 16 mM and allowed to react for 2 hours 

at room temperature. To stabilize adducts, NaBH4 was added to the reaction to a final 

concentration of 5 mM and left for 1 hour at room temperature. 

 

3.2.6. Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis 

Peptides were separated and analysed using an Ultimate 3000 system (Thermo 

Scientific, Hempstead, UK) coupled to a 5600 TripleTOF (ABSciex, Warrington, UK). The 

analysis was performed as previously described by Verrastro et al., 2016 [298] and as 

detailed in section 2.2.6.  

 

3.2.7. Database Search 

The Mascot® probability-based search engine (Matrix Science, London, version 2.4.0) 

was used to interrogate the SwissProt 2017-07 primary database. LC-MS .wiff files of each 

sample were searched for protein identification and oxidative post-translational 
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modifications (oxPTMs). For protein identification, variable modifications of methionine 

oxidation and carbamidomethyl cysteine were used. For the analysis of the lipoxidation 

products, the initial searches additionally used a variable modification list including 2-chloro-

hexadecanal reduced adducts at 258.9 Da and 222.4 Da for arginine, lysine and histidine 

amino acid residues and at 240.4 Da for cysteine amino acid residue. Other parameters for 

the searches were as follows: Enzyme: Trypsin; Peptide tolerance: ±0.6 Da; MS/MS 

tolerance: ±0.6 Da; Peptide charge state: +2, +3; Max Missed cleavages: 1; #13C: 0; 

Quantitation: None; Instrument: ESI-QUAD-TOF; Data format: Mascot Generic; 

Experimental mass values: Monoisotopic; Taxonomy: Chordata. All data identifying 

modifications were manually validated before inclusion.  
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3.3. Results 

3.3.1. Multi-step reaction synthesis of 2-chlorohexadecanal 

While the aim was to characterize the modification by chloroaldehydes of proteins using 

the proteomic approach described in chapter 2, α-chloroaldehydes are not commercially 

available and its synthesis was required prior all the other experiments. 2-

chlorohexadecanal has been the most studied α-chloroaldehyde as it is a biological product 

of the reaction of HOCl with plasmenylcholine (16:1/18:0). The first approach to the 

synthesis of 2-chlorohexadecanal was a multi-step reaction that started with the oxidation 

of hexadecanol to hexadecanal following the Corey-Suggs protocol [338] using pyridinium 

chlorochromate (PCC), a readily available, stable reagent, that oxidizes a wide variety of 

alcohols to carbonyl compounds with high efficiency (Figure 3.1). 

 

 

Figure 3.1. Corey-Suggs oxidation of hexadecanol to hexadecanal using pyridinium 

chlorochromate as catalyst. 

 

The reaction was monitored by thin-layer chromatography (TLC) and the retention factor 

(Rf) for the starting material was 0.1 while for the product was 0.37. The reaction yield was 

97.7%. A proton nuclear magnetic resonance (1H NMR) spectrum was also obtained in 

order to confirm the structure of the starting material (Figure 3.2A) and the product (Figure 

3.2B).  



112 
 

 

 

Figure 3.2. 1H NMR spectrum of the starting material hexadecanol (A) and the product of its 

oxidation, hexadecanal (B). A- 1H NMR: 3.63 ppm (2H, t, CH2); 1.56 ppm (2H, m, CH2); 1.28 ppm 

(26H, m, CH2); 0.88 ppm (3H, t, CH3). B-1H NMR: 9.77 ppm (1H, t, C(=O)H); 2.40 ppm (2H, m, 

CH2); 1.63 ppm (2H, m, CH2); 1.28pm (24H, m, CH2); 0.88 ppm (3H, t, CH3). Internal reference 

(TMS) at 0.0 ppm.  

The 1H NMR analysis confirmed that the product obtained was hexadecanal. The peak 

at 7.3 ppm corresponds to chloroform, the solvent used. The peak lower in the field (higher 

frequency), observed at 9.7 ppm was only observed in Figure 3.2B has a singlet and 

corresponds to the proton in the aldehydic group (RC(=O)H). This confirms that the 

oxidation from the alcohol to aldehyde occurred. The protons identified as b are closer to 

the electronegativity of the oxygen than the remaining protons and therefore appear at lower 

field (2.3 ppm) that the remaining protons. The protons identified as e appear as a triplet at 

0.9 ppm and correspond to the terminal methyl group. The area of the multiplet peak 

identified as c confirms that it corresponds to the remaining 22 protons in the structure. 

While the next step could be chlorination of hexadecanal, the carbonyl group would be 

vulnerable, so it needs to be protected. This is most easily achieved through formation of 

the dimethylacetal. This was formed by reaction of hexadecanal with trimethyl orthoformate 

(TMOF) in methanol and using p-toluenesulfonic acid (pTSA) as organic acid catalyst. The 

final product was hexadecanal dimethyl acetal (Figure 3.3). 
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Figure 3.3. Introduction of a protective group to hexadecanal by trimethyl orthoformate 

(TMOF) in methanol and using p-toluenesulfonic acid (pTSA) as catalyst, resulting in 

hexadecanal dimethyl acetal. 

The reaction was monitored by thin-layer chromatography (TLC) and the retention factor 

(Rf) for the product was 0.56, and the reaction yield was 94.7%. A proton nuclear magnetic 

resonance (1H NMR) spectrum was also obtained in order to confirm the structure of the 

final product (Figure 3.4).  

 

 

Figure 3.4. 1H NMR spectrum of hexadecanal dimethyl acetal, product of the reaction of 

hexadecanal with TMOF in the presence of pTSA. 1H NMR: 4.36 ppm (1H, t, (OR’)CH(OR’’)); 3.31 

ppm (6H, s, OCH3); 2.30 ppm (2H, td, CH2); 1.59 ppm (2H, tt, CH2); 1.26 ppm (24H, m, CH2); 0.88 

ppm (3H, t, CH3). Internal reference (TMS) at 0.0 ppm.  

The main differences between starting material and final product were the 

disappearance of the proton in the aldehydic group (the peak previously observed at 

approximately 9 ppm), and appearance of the protons from the methyl groups of the acetal 

identified as a in Figure 3.4. The area of the peak at 3.3 ppm corresponds to 6 protons and 

confirms the formation of the protecting group. The peak at lower field that appeared at 4.4 

ppm as a triplet (b) corresponds to the proton on the carbon adjacent to the two oxygen  

atoms increasing the electronegativity. The remaining protons in the structure were 

explained above since these did not change during this reaction. Again, the peak at 7.3 ppm 

corresponds to deuterated chloroform. 
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With the aldehyde group protected, the next step was the alpha chlorination of the 

dimethylacetal. The chlorinating agents used were manganese chloride (MnCl2) and 

manganese oxide (MnO2), in a mixture of acetonitrile and methanol. Trimethylsilyl chloride 

(TMSCl) was used as catalyst. The final product was 2-chloro-hexadecanal dimethyl acetal 

(Figure 3.5). 

 

Figure 3.5. Chlorination reaction of hexadecanal dimethyl acetal to a 2-chloro-aldehyde dimethyl 

acetal, using manganese chloride (MnCl2) and manganese oxide (MnO2), in a mixture of acetonitrile 

and methanol, and trimethylsilyl chloride (TMSC) as catalyst. 

The reaction was monitored by thin-layer chromatography (TLC) and the retention factor 

(Rf) for the product was 0.28. It was not possible to determine the reaction yield as the 

required product was obtained in low amount and in a mixture with other components. A 

proton nuclear magnetic resonance (1H NMR) spectrum was also obtained in order to 

confirm the structure of the different products Figure 3.6. 

 

Figure 3.6. 1H NMR spectrum of 2-chlorohexadecanal dimethyl acetal, the product of the 

chlorinating of hexadecanal dimethyl acetal. 1H NMR: a- 3.61 ppm (6H, s, OCH3); b- 5.23 ppm 

(1H, d, (OR’)CH(OR’’); c- 3.82 ppm (1H, m, CHCl); d- 1.55 ppm (2H, m, CH2); e- 1.20 ppm (24H, m, 

CH2); f- 0.82 ppm (3H, t, CH3); A- 3.38 ppm (6H, s, OCH3); B- 4.25 ppm (1H, t, (OR’)CH(OR’’); C- 

2.25 ppm (2H, m, CH2). Internal reference (TMS) at 0.0 ppm. 
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The main difference between starting material and final product was the insertion of a 

chloro group on the α-carbon of hexadecanal dimethyl acetal. The identification of the 

protons identified as  a to c was crucial to confirm that the chlorination had occurred. The 

peaks at 3.6 ppm (a) and 3.3 ppm (A) were identified as the protons from the methyl groups 

from the final product and the starting material, respectively. The peak at lower field was 

identified as b at 4.2 ppm due to the combined electronegative effect of the oxygen and 

chlorine atoms. The same reason justifies the identification of protons the peak at 4.1 ppm 

as c. Protons identified as B and C, triplet at 4.3 ppm and multiplet at 2.3 ppm respectively, 

appear at higher field from b and c because the starting material does not contain the 

chlorine and therefore only oxygens affected the electronegativity. The remaining structure 

has been discussed previously and did not change during the course of this reaction. Peaks 

from the starting material were identified, which means that the chlorination was incomplete 

and by the integration of their peaks it was possible to relatively quantify these and obtained 

a product/starting material ratio of 0.927. 

The final step to obtain 2-chlorohexadecanal was the deprotection of the 2-

chlorohexadecanal dimethyl acetal, which was achieved by acid hydrolysis using 

trifluoroacetic acid (TFA) (Figure 3.7).  

 

 

Figure 3.7. Acid hydrolysis of 2-chlorohexadecanal dimethyl acetal with TFA to obtain 2-

chlorohexadecanal. The last step of the multi-step synthesis. 

The reaction was monitored by thin-layer chromatography (TLC) and the retention factor 

(Rf) for the product was 0.59. A proton nuclear magnetic resonance (1H NMR) spectrum 

was also obtained in order to confirm the structure of the final product in Figure 3.8. 
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Figure 3.8. 1H NMR spectrum of 2-chlorohexadecanal, the product of TFA acid hydrolysis 

reaction. 1H NMR: a- 9.28 ppm (1H, d, C(=O)H); b- 4.89 ppm (1H, m, CHCl); c- 1.45 ppm (2H, m, 

CH2); d- 1.06 ppm (24H, m, CH2); e- 0.68 ppm (3H, t, CH3). 1- 3.49 ppm (6H, s, CH3); 2- 5.10 ppm 

(1H, d, OCH); 3- 3.96 ppm (1H, m, CHCl). I- 3.36 ppm (6H, s, CH3); II- 3.77 ppm (1H, t, OCH); III- 

2.19 ppm (2H, m, CH2). Internal reference (TMS) at 0.0 ppm. 

The acid hydrolysis deprotects the aldehydic groups and the appearance of a doublet 

at 9.3 ppm (a) confirm this. Similarly to the previous reaction, the identification of the peaks 

a and b was crucial for the product identification, the latter being identified at 4.8 ppm. Many 

other peaks appeared in the spectra and these were identified as starting material, 2-

chlorohexadecanal dimethyl acetal and hexadecanal dimethyl acetal, the two products from 

the previous reaction and already described above. This confirms that the acid hydrolysis, 

similarly to the chlorination, was not complete.  

GC-FID analysis of hexadecanol and hexadecanal separately allowed their retention 

time to be determined as 6.3 min and 5.9 min, respectively (Figure 3.9A and Figure 3.9B). 

GC-FID analysis of the acid hydrolysis product confirmed the presence of 7.4 % of 

hexadecanol, 1.8 % of hexadecanal, 60.7 % of 2-chlorohexadecanal, and 30 % of unknown 

impurities, possibly the dimethylacetal or chlorinated dimethylacetal from previous 

reactions(Figure 3.9C). 
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Figure 3.9. GC-FID spectra of 2-chlorohexadecanal as a product of acid hydrolysis, the last 

step of a multi-step reaction. GC data acquired with an isothermal analysis at 260 ⁰C for 2 minutes. 

A – hexadecanol (1.06 min, 99.9%); B – hexadecanal (0.99 min, 37.9%; 1.02 min, 58.5%); C – 

product of the acid hydrolysis (0.95 min, 7.4%; 1.05 min, 1.8 %, 1.12 min, 60.7 %; 1.19 min, 30%). 
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3.3.2. Direct conversion of hexadecanol to hexadecanal and 2-chloro-hexadecanal 

Although the α-chloroaldehyde was obtained in reasonable overall yield using the 

approach above, the synthesis was time-consuming due to the number of steps required, 

and the product was impure and obtained in low overall yield. Other approaches were 

evaluated for the synthesis of the aldehyde by the direct conversion of the primary alcohol 

to the corresponding α-chloroaldehyde [339-341]. The method developed by Jing et al [339] 

for the direct conversion of primary and secondary alcohols into the corresponding 

aldehydes using trichloroisocyanuric acid, serving both as stoichiometric oxidant and α-

halogenating reagent was used to produce α-chlorohexadecanal from hexadecanol and two 

different attempts were made as described below. 

 

3.3.2.1. First Attempt at Direct Synthesis of 2-chloro-hexadecanal  

The first attempt to the direct conversion of hexadecanol to 2-chlorohexadecanal used 

trichloroisocyanuric acid (TCAA) as the oxidizing and chlorinating agent and TEMPO as 

catalyst (Figure 3.10). Hexadecanol was dissolved in CH2Cl2, TCCA and TEMPO were 

added at room temperature, and the reaction was left stirring for one hour. The reaction was 

initially orange, and after 45 minutes became yellow and after one hour was white. By 

filtration, an off-white powder was removed to obtain a colorless solution. 

 

Figure 3.10. First attempt at the direct conversion of hexadecanol to α-chlorohexadecanal and 

hexadecanal. 

The reaction was monitored by thin-layer chromatography (TLC) and the retention factor 

(Rf) for the starting material was 0.32 and for the final product was 0.79. A proton nuclear 

magnetic resonance (1H NMR) spectrum was also obtained in order to confirm the structure 

of the final product in (Figure 3.11). 
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Figure 3.11. 1H NMR spectrum of 2-chlorohexadecanal, the product of direct conversion from 

hexadecanol (1st approach). 1H NMR: a- 9.5 ppm (1H, d, C(=O)H); b- 4.2 ppm (1H, m, CHCl); c- 

1.8 ppm (2H, m, CH2); d- 1.3 ppm (24H, m, CH2); e- 0.9 ppm (3H, t, CH3). A- 9.7 ppm (1H, t, 

C(=O)H); B- 2.4 ppm (2H, m, CH2); C- 1.6 ppm (2H, m, CH2). Internal reference (TMS) at 0.0 ppm. 

The direct conversion comprises of two simultaneous reactions, oxidation of the alcohol 

and chlorination of the alpha carbon. The oxidation alone produces hexadecanal, for which 

the protons were identified from A to E in Figure 3.11, and from the oxidation and 

chlorination results in 2-chlorohexadecanal, protons from which were identified form a to e. 

The main difference between both products and the starting material is the appearance of 

peak at around 9 ppm corresponding to the protons from the aldehydic group. The protons 

from the aldehyde appear as a triplet at 9.7 ppm, while the protons from the α-

chloroaldehyde appear as a doublet at 9.5 ppm. The protons in the α-carbon of the 2-

chlorohexadecanal (b) appear at higher field to the protons in the α-carbon of the 

hexadecanal (B) due to electronegativity of the chlorine. GC-FID analysis (Figure 3.12) 

confirmed the presence of 9.5% of hexadecanol, 8 % of hexadecanal and 59.1 % of 2-

chlorohexadecanal. 
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Figure 3.12. GC-FID spectra of 2-chlorohexadecanal as a product of direct conversion from 

hexadecanol. GC data acquired with a gradient starting from 150 ⁰C to 300 ⁰C at a rate of 25 ⁰C/min, 

total run time of 14.5 minutes. A – hexadecanol (6.3 min, 99.7 %); B – hexadecanal (5.9 min, 93.9 

%); C – product of the direct conversion (5.9 min, 8%; 6.3 min, 9.5 %; 6.7 min, 59.1 %; 6.9 min, 23.4 

%). 
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3.3.2.2. Second Attempt at Direct Synthesis of 2-chloro-hexadecanal 

The second approach to the direct conversion of hexadecanol to hexadecanal and 2-

chlorohexadecanal still used trichloroisocyanuric acid (TCAA) as the oxidizing and 

chlorinating agent and TEMPO as catalyst (Figure 3.13). Hexadecanol and TEMPO were 

dissolved in CH2Cl2 and cooled to 0 ⁰C prior to addition of TCCA, and the mixture was stirred 

for 10 minutes at 0 ⁰C. The reaction was then allowed to warm to room temperature and 

stirred for another 30 minutes. After filtration, a yellow oil was obtained. 

 

Figure 3.13. Second attempt at the direct conversion of hexadecanol to α-chlorohexadecanal 

and hexadecanal. 

The reaction was monitored by thin-layer chromatography (TLC) and the retention factor 

(Rf) for the starting material was 0.25 and for the final product was 0.68. The reaction yield 

was 64%. A proton nuclear magnetic resonance (1H NMR) spectrum was also obtained in 

order to confirm the structure of the final product in Figure 3.14. 
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Figure 3.14. 1H NMR spectrum of 2-chlorohexadecanal, the product of direct conversion from 

hexadecanol (2nd approach). 1H NMR: a- 9.5 ppm (1H, d, C(=O)H); b- 4.2 ppm (1H, m, CHCl); c- 

1.8 ppm (2H, m, CH2); d- 1.3 ppm (24H, m, CH2); e- 0.9 ppm (3H, t, CH3). A- 9.7 ppm (1H, t, 

C(=O)H); B- 2.4 ppm (2H, m, CH2); C- 1.6 ppm (2H, m, CH2). Internal reference (TMS) at 0.0 ppm. 

The analysis of this spectra was the same described previously for Figure 3.11 since 

the expected final products were the same. Hexadecanal protons were identified from A to 

E and 2-chlorohexadecanal protons from a to e. The protons from the aldehyde appear as 

a triplet at 9.7 ppm while the protons from the α-chloroaldehyde appear as a doublet at 9.5 

ppm. The protons in the α-carbon of the 2-chlorohexadecanal (b) appear upfield due to the 

combination of oxygen and chlorine electronegativity. The remaining protons upfield were 

not affected during this reaction and were less affected by the electronegativity thus 

appearing at lower frequency. GC-FID analysis (Figure 3.15) confirmed the presence of 1.7 

% of hexadecanol, 5.7 % of hexadecanal and 60.9 % of 2-chlorohexadecanal. 

 

Figure 3.15. GC-FID spectra of 2-chlorohexadecanal as a product of direct conversion from 

hexadecanol. GC data acquired with a gradient starting from 150 ⁰C to 300 ⁰C at a rate of 25 ⁰C/min, 

total run time of 14.5 minutes. Three peaks were identified: hexadecanal at 5.9 min, 5.7%; 

hexadecanol at 6.3 min, 1.7%, 2-chlorohexadecanal at 6.7 min, 60.9%. Other three peaks at around 

6.9 min with a total of 12.3% were identified as unknown impurities.  
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3.3.3. Lipoxidation of lysozyme by 2-chloro-hexadecanal 

Biomolecules exposed to reactive chlorine species and the chlorination of plasmenyl 

phospholipids results, among other reaction products, in α-chloroaldehydes. These 

aldehydes are known to be involved in cellular process such as apoptosis [342]. Therefore, 

it is important to study the modification of proteins by α-chloroaldehydes. A recent study 

demonstrated using LC-MS/MS the 2-chlorohexadecanal modification of glutathione, 

indicating that the field is slowly starting to move forward [199]. Consequently, the next step 

of the study was to react the synthesized α-chloroaldehyde with two model proteins, 

lysozyme and human serum albumin, and characterize its modifications. 

Lysozyme was incubated with 8 or 16 mM of 2-chlorohexadecanal for 2, 4 or 24 hours, 

after which the products were reduced and stabilised by the addition of sodium borohydride 

(NaBH4) at 5 mM final concentration. A bottom-up proteomic approach was carried out as 

described in chapter 3. The native and the aldehyde-treated lysozyme were separated by 

15% SDS-PAGE (Figure 3.16), before the gel bands were cut for tryptic digestion and the 

peptides analysed by LC-MS/MS. 

 

Figure 3.16. SDS-PAGE (denaturing gel electrophoresis) results for lysozyme untreated and treated 

with 8 mM or 16 mM 2-chloro-hexadecanal (2-ClHDA) for 2, 4 or 24 hours. Gel stained with 

Coomassie blue staining. The highlighted sections boxed in white were cut for further analysis. 

This approach allowed the identification of 2 peptides from lysozyme modified by 2-

chlorohexadecanal, based on the peptides’ molecular weight, mass/charge ratio and charge 

of the peptide ion, ion score and LC retention time (.Table 3.1). The mass of the adduct 

suggested that 2-chlorohexadecanal reacted by Schiff base formation with additional loss 

of HCl (Appendix1). Both arginine (Arg, R) and lysine (Lys, K) residues were also found to 

be modified, with the modified residues being identified as Arg5 and Lys13.
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.Table 3.1. Modification of lysozyme by hexadecanal and 2-chloro-hexadecanal 

Treatment 
Sequence 

coverage 

Modified 

Residues 

Lysozyme modified peptides 

(a 
b) 

Theoretical 

mass of 

modified 

peptide 

Observed 

mass of 

modified 

peptide 

m/z (charge) 
Ion 

score 
Rt (min) 

2 hours 

8 mM 
82 % 

Arg5 V2FGR+222CELAAAMK13 1516.89 1517.15 506.7 (3+) 52 29.17 

Lys13 C*6ELAAAM*K+222R13 1286.75 1286.79 644.4 (2+) 38 50.64 

4 hours 

8 mM 
82 % 

Arg5 V2FGR+222CELAAAMK13 1516.89 1517.13 506.7 (3+) 58 30.82 

Lys13 C*6ELAAAM*K+222R13 1286.75 1286.79 644.4 (2+) 50 51.05 

2 hours 

16 mM 
82 % 

Arg5 V2FGR+222CELAAAMK13 1516.89 1517.16 506.7 (3+) 63 29.01 

Lys13 C*6ELAAAM*K+222R13 1286.75 1286.80 644.4 (2+) 65 50.94 

4 hours 

16 mM 
82 % Lys13 C*6ELAAAM*K+222R13 1286.75 1286.80 644.4 (2+) 64 51.14 

24 hours 

16 mM 
82 % Lys13 C*6ELAAAM*K+222R13 1285.75 1286.80 644.4 (2+) 52 50.86 

a (subscript) – amino acid position in the mature protein for the start and end residues. 

b (superscript) – mass difference corresponding to the modification on the affected residue (shown in red). 
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Initially MASCOT software was used to identify peptides modified by 2-chlorohexadecanal, 

and each potential modification was confirmed by manual analysis of MS/MS spectrum as in 

the example shown in Figure 3.17 for the peptide CELAAAMKR modified on Lys13. Similarly 

to the work described in section 2.3.1, the MS/MS spectra were analysed in the search for 

diagnostic ions of these modifications. It was possible to identify the modified lysine immonium 

ion at m/z 323 Da when this amino acid residue was found modified and the proposed structure 

is shown in Figure 3.18. This ion, being amino acid- and aldehyde-specific, is a good candidate 

for a diagnostic fragmentation ion for 2-ClHDA-lysine modifications and could be used for the 

development of targeted methods, such as MRM and precursor ion scanning. 

 

 

Figure 3.17. MS/MS spectra of lysozyme tryptic peptide. CELAAAMKR modified on a lysine residue 

by 2-chlorohexadecanal by Schiff base formation with loss of HCl followed by NaBH4 reduction (+ 222 

Da). The y and b ions indicated by the arrows confirm the peptide sequence and the modification on the 

cysteine residue. Immonium ions for hexadecanal-modified lysine found at m/z 323 Da. 

 

 

Figure 3.18.  Proposed structure for the reporter ion observed at m/z 323 Da. A) structure of the 

lysine residue immonium ion (m/z 101.1 Da). B) structure of the 2-ClHDA-lysine reporter ion (m/z 323 

Da).  
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3.3.4. Lipoxidation of human serum albumin by 2-chloro-hexadecanal 

Human serum albumin is the most abundant protein in human blood and therefore is 

subject to constant post translational modifications (PTMs), so the effect of 2-

chlorohexadecanal on this protein was assessed. HSA was incubated with 8 or 16 mM of 2-

ClHDA for 2, 4 or 24 hours before these samples were separated by 15% SDS-PAGE (Figure 

3.19) and the bands highlighted were cut out, digested with trypsin and the tryptic peptides 

analysed by LC-MS/MS.  

 

 

Figure 3.19. SDS-PAGE (denaturing gel electrophoresis) results for human serum albumin 

untreated and treated with 8 mM or 16 mM 2-chloro-hexadecanal for 2, 4 or 24 hours. Gel stained 

with Coomassie blue staining. The highlighted sections boxed in white were cut for further analysis. 

 

This approach allowed the identification of 3 peptides from HSA modified by 2-

chlorohexadecanal (Table 3.2). The mass of the adducts suggest that 2-chlorohexadecanal 

reacted by Schiff base formation with additional loss of HCl, the same as was observed for 

lysozyme in 3.3 (Appendix 1). Only lysine (Lys, K) residues were found to be modified: these 

were Lys257, Lys499 and Lys549. Initially MASCOT software was used to identify peptides 

modified by 2-chlorohexadecanal, and each potential modification was confirmed by manual 

analysis of MS/MS spectrum. Diagnostic fragmentation ions for 2-ClHDA-lysine modification 

were not detected.



127 
 

Table 3.2. Modification of human serum albumin by hexadecanal and 2-chloro-hexadecanal. 

Treatment 
Sequence 

coverage 

Modified 

Residues 
HSA modified peptides (a 

b) 

Theoretical 

mass of 

modified 

peptide 

Observed 

mass of 

modified 

peptide 

m/z (charge) Ion score Rt (min) 

2 hours 

8 mM 
82 % Lys257 250AEFAEVSK+222LVTDLTK264 1872.12 1872.03 625.1 (3+) 30 51.33 

4 hours 

8 mM 
73 % Lys499 497VTK+222CCTESLVNR508 1573.89 1574.20 525.7 (3+) 34 35.23 

24 hours 

8 mM 
81 % Lys549 549K+222QTALVELVK558 1349.93 1349.82 675.9 (2+) 53 43.25 

4 hours 

16 mM 
81 % Lys549 549K+222QTALVELVK558 1329.93 1349.82 675.9 (2+) 48 43.23 

a (subscript) – amino acid position in the mature protein for the start and end residues. 

b (superscript) – mass difference corresponding to the modification on the affected residue (shown in red). 



128 
 

3.4. Discussion 

The work described in this chapter had two main aims, firstly to test different synthesis 

protocols for α-chloroaldehydes, and find alternatives to the methods currently used, and 

secondly to characterize the adducts of the synthetic aldehyde with proteins by LC-MS/MS. 

Previous studies have assessed the biological effects of 2-chlorohexadecanal for which the 

synthesis of the aldehyde was required. The mostly used methods included the reaction of 

1-O-hexadec-enyl-glycerol-3-phosphocholine with HOCl and HPLC purification [151]. This 

method is time consuming and expensive. Therefore, less time-consuming alternatives 

were tried.  

In this study, two other approaches were tested. First, a multi-step reaction, which 

included hexadecanol oxidation to hexadecanal followed by acetal derivatisation, 

chlorination and finally deprotection to obtain 2-chlorohexadecanal. This chain of reactions 

took one week of work overall, therefore also being time consuming and not showing an 

improvement to the other method mentioned above. Additionally, these reactions require 

the use of harmful chemicals such as TFA and pTSA, both corrosive and irritant, TMOF and 

TMSC, both flammable, and PCC which is carcinogenic. This chain of reaction allowed us 

to obtain in the end 60.7 % of 2-chlorohexadecanal, with 7.4 % of hexadecanol and 1.8 % 

of hexadecanal still present as well as 30 % of unknown impurities. As a result of the poor 

yield, presence of impurities that were hard to remove and the use of PCC, two attempts 

were made to use an alternative method to directly convert hexadecanol into hexadecanal 

and 2-chlorohexadecanal, according to the method  of Jing et al. [339]. This reaction used 

TCCA as an oxidizing and chlorinating agent and TEMPO as a catalyst. In the first attempt, 

all reaction components were dissolved in CH2Cl2 and left stirring for one hour at room 

temperature. The 1H NMR analysis confirmed the presence of hexadecanal and 2-

chlorohexadecanal and the GC-FID analysis confirmed the presence of 9.5% of 

hexadecanol, 8% of hexadecanal, 59.1% of 2-chlorohexadecanal, and 23.4% of unknown 

impurities. This reaction was already a good alternative, taking only one hour and 

decreasing the amount of unknown impurities in comparison with the multi-step reaction. 

However, a second attempt was made to try to improve the hexadecanal/2-

chlorohexadecanal ratio and decrease the percentage of impurities. In the second attempt, 

hexadecanol and TEMPO were firstly dissolved in CH2Cl2 and cooled to 0 ⁰C, then TCCA 

was added and left stirring for 10 minutes, after which the reaction was warmed to 37 ⁰C 

and left stirring for another 30 minutes. In this attempt, pentane was added to the reaction 

before filtration, which being a non-polar solvent promoted the precipitation of pentane 

insoluble compounds, removing some of the impurity as 2-ClHDA due to the long carbon 

chain is non-polar and therefore soluble. The resulting oil was characterized by 1H NMR 
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and although the product yield was not greatly increased, the amount of unidentified 

impurities was lower. According to the GC-FID data, the changes made for the second 

attempt decreased the amount of hexadecanol, hexadecanal and unknown impurities in the 

final product, while slightly increasing the amount of 2-chlorohexadecanal. Nevertheless, 

both attempts at the direct conversion of hexadecanol to 2-chlorohexadecanal represent a 

good alternative to current methods used, as they are less time consuming and use fewer 

harmful chemicals, improving time spent with the synthesis as well as health and safety of 

the experiments. This finding will help the research on this particular aldehyde move forward 

since its synthesis can be quicker and still with satisfactory quality. Another methods that 

could have been tested to synthesize 2-chlorohexadecanal was the direct organocatalytic 

asymmetric α-chlorination of aldehydes from Halland et al. which  has also been reported 

to be a quick method that synthesizes α-chloroaldehydes with good yield within one hour 

reaction [343]. 

The modification of two proteins by 2-chlorohexadecanal was evaluated as a model of 

lipoxidation adducts that may occur in inflammatory disease. The aim was to characterize 

these modifications using LC-MS/MS and identify potential diagnostic ions for adducts of 2-

chlorohexadecanal with different amino acid residues. While the physiological concentration 

of 2-ClHDA ranges between 25 to 30 μM [148, 330], higher concentrations were used to 

ensure adducts were formed. 2-ClHDA modifications were identified on 2 lysozyme and 3 

human serum albumin peptides, all with a mass increase of 222.2 Da corresponding a 

Schiff’s base formation between the carbonyl from the aldehyde and the amine form lysine, 

followed by reduction of imine by sodium borohydride(Figure 3.20A). This is a mild reducing 

agent therefore the unsaturation on the carbon chain was not reduced. Duerr et al  

previously reported the 2-ClHDA-thiol adduct to occur by nucleophilic attack to the α-

chlorinated carbon with the adduct formed retaining the carbonyl group [199] and 

corresponding to a mass shift of 240.25 Da in its reduced form (Figure 3.20B), however no 

modifications were detected on cysteine residues. Condensation of thioamides with α-

halocarbonyl compounds confirms that the thiol group reacts with the α-halogenated carbon 

while the amine group reacts with the carbonyl group [344]. Similarly, 2-chloroaldehydes 

react differently with the thiol group in cysteines and the amine group in lysines. This justifies 

the different mechanism of adduction reported in this thesis and the mechanism reported 

by Duerr et al [199]. While the adduct resulting in a same mass shift of 22.2 Da can also be 

achieved by hexadecanal-lysine modification (Figure 3.20C), the samples were reduced 

and therefore there is a higher probability of this mass difference being a result of a reduced 

form of 2-ClHDA-lysine adduct rather than the unreduced form of the hexadecanal-lysine 

adduct.  
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Figure 3.20. Structure of unreduced and reduced hexadecanal and 2-chlorohexadecanal 

adducts. (A) 2-Chlorohexadecanal adducts with amines by Schiff base formation followed by imine 

reduction but not the carbon chain unsaturation; (B) 2-Chlorohexadecanal adducts with thiol 

(cysteine residue) by nucleophilic attack of C-Cl followed by reduction of the remaining carbonyl; (C) 

Hexadecanal adduct with amine by Schiff base formation followed by imine reduction. 

The bottom-up proteomic approach allowed the identification of 2 modified lysozyme 

residues: Arg5 and Lys13. For HSA only lysine residues were found to be modified: Lys257, 

Lys499 and Lys549. The proteins were not reduced prior to the 2-ClHDA treatment as 

explained in chapter 3, meaning that the cysteine residues were in disulphide bonds and 

therefore not available for modification. This might explain why no 2-ClHDA-cysteine 

adducts were detected, even though these have been previously reported by another group 

in work using glutathione [199]. A major aim of the study was to identify diagnostic ions for 

the 2-ClHDA adducts that could later be used in targeted mass spectrometry approaches, 

multiple reaction monitoring (MRM) or precursor ion scanning (PIS). MS/MS spectra contain 

immonium ions that are specific to amino acid residues present in the peptide and these 

ions are potential MS/MS reporter ions for modified amino acid residues. One diagnostic 

ion was detected for 2-ClHDA-lysine modification at m/z 323. While protein-acrolein adducts 
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have been previously reported, it appears that there aren’t any specific studies of reporter 

ions that could be used for this type of modifications. None of the HSA amino acid residue 

positions found modified have been previously reported modified by lipoxidation. 

Nevertheless, this approach allowed us to identify some protein modifications by 2-ClHDA 

and mostly important to provide reporter ions that could be relevant in disease diagnostic 

method development.  

In summary, this study has provided a novel approach to 2-chlorohexadecanal synthesis 

able to obtain the product in an hour saving time and consumables in research. It also 

provided novel data on modification in two model proteins by 2-ClHDA and has identified a 

novel diagnostic ion for 2-ClHDA-lysine adduct that can be used in targeted mass 

spectrometry approaches to identify and quantify these adducts in biological or clinical 

complex samples. 
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Chapter 4. Chromatography methods for separation of 

proteins modified by short-chain aldehydes 
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4.1. Introduction 

The analysis of the proteome of an organism is a difficult challenge due to the dynamic 

range of protein concentrations [345, 346]. Genetic information processing increases 

protein variation through mutations, polymorphisms and alternative splicing. Protein 

isoforms have high sequence similarity and arise either from the same gene family or from 

polymorphisms [347]. A single gene can code for multiple proteins due to alternative mRNA 

splicing, resulting in multiple protein forms with different peptide sequences [348]. However, 

protein isoforms can also be generated from separate genes such as actin and pyruvate 

kinase isoforms [349, 350]. Each protein isoform can be expressed in different tissues being 

therefore associated with different roles. However, for some isoforms their roles are still not 

completely understood and post translational modification (PTMs) can add extra differences 

to the complexity of the cellular proteome, which itself can change in response to different 

stimuli. Therefore, a comprehensive characterization of all of these isoforms is important to 

improve diagnosis and treatment of diseases such different types of cancer where protein 

biomarkers are important [351, 352]. 

A wide variety of methods can be used for protein study, yet mass spectrometry 

approaches are distinctively suited to handle the complexity of proteomics [248]. There are 

two strategies for protein analysis by MS: bottom-up and top-down approaches. The 

bottom-up proteomics approach involves proteins being chemically or enzymatically 

digested prior to peptide analysis by MS [353]. The identification of the peptides is 

performed by analysis of their fragmentation pattern, which identifies the protein and 

characterizes and localizes possible PTMs, usually by comparison to databases [353, 354]. 

However, different isoforms may produce peptides with the same sequence, making this 

approach a disadvantage for isoform investigation. Other disadvantages of the bottom-up 

approach are the limited dynamic range of MS analysis, which only allows peptides present 

at higher relative abundance to be analysed but  misses information regarding low abundant 

proteins, as several peptides might not be specific to a single protein and regions of the 

protein sequence might not be covered so information on possible PTMs is unavailable. 

The top-down approach corresponds to intact protein analysis by MS in which intact protein 

ion masses are measured followed by fragmentation without prior digestion [355]. This 

approach facilitates a complete characterization of protein isoforms, as well as PTMs by the 

shift caused to the protein mass. Several applications have been reported for this proteomic 

approach, including the interpretation of the “histone code” by characterizing the 

combination of multiple modifications such as acetylation, methylation and phosphorylation 

[235, 356, 357] and the  characterization of biotherapeutic molecules such as monoclonal 

antibodies [239, 358]. Even though top-down analysis has been shown to be a powerful 

tool, the throughput for proteome analysis still needs improvement. Recent advances in the 
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chromatographic methods, MS instrumentation, dissociation methods and data processing 

software have greatly improved intact protein analysis [359, 360]. The development of soft 

ionization techniques such as electrospray ionization (ESI) revolutionized protein and 

peptide analysis using MS [209], particularly by the ability to couple MS with liquid 

chromatography (LC). 

The separation of peptides and proteins is a key step in both top-down and bottom-up 

MS approaches. Liquid chromatography is one of the most common methods for small 

molecule separation, which consists of differential partitioning of analytes between a liquid 

mobile phase and a stationary phase. Intact protein analysis using LC coupled to MS 

provides information on the accurate mass of the protein, relative abundance of its isoforms, 

PTMs localization and combination of any other modifications on the protein [361, 362]. 

Each of these applications requires upfront separation. Reverse-phase chromatography 

(RPLC) has been widely used for intact protein analysis due to its compatibility with ESI-

MS. The aqueous solvent mixtures used in RPLC are compatible with ESI-MS and the 

additives such as formic acid or triflouroacetic acid improve not only the chromatographic 

peak shape but also provides a source of protons. Nevertheless, other separation methods 

can separate proteins based on their structure, mass, charge or presence of modifications 

such as size exclusion chromatography (SEC) and ion exchange chromatography (IEX).  

RPLC uses non-polar stationary phase and polar mobile phase and therefore 

hydrophilic analytes elute first. Several stationary phases can be used, with alkyl chains 

linked to porous silica particles being the most common, where shorter chains such as C4 

are generally used since proteins show strong retention on long chains (e.g. C8, C18) [361]. 

However, derivatized nonporous silica (NPS) particles and superficially porous particles 

containing a nonporous silica core and a porous shell have also been reported to be suitable 

for protein work [233, 363, 364]. For this study, a polymeric reversed-phase material (resin 

based on a hydrophobic supermacroporous polymer) was used, which offered high-

resolution separation of intact proteins with increased mechanical strength (stable at 

extreme pH and high temperature), high efficiency with low carry-over and high throughput. 

In RPLC the retention of proteins is also affected by the size of the particles, the pressure, 

the temperature and the composition of the mobile phase [365-367].  

Ion exchange chromatography (IEC) is a non-denaturing separation technique which 

separation relies on the differences in the charge of the analytes. Changes in protein charge 

cause by modifications may affect the separation. Protein separation by IEC depends on 

the protein interaction with the charged stationary phase and a salt-gradient is usually 

applied for elution [232, 368]. Proteins are eluted in order of increasing binding charge, 

which closely correlates with their isoelectric point (pI). Employing a pH gradient instead of 

a salt-gradient can be a useful alternative to separate proteins with small changes in pI. In 
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this method, proteins’ net charges are modified during the gradient and proteins elute at 

their pI. The proteins suitable to be separated using this technique would depend on the pH 

range of the gradient. The choice of the eluent to be used is also important, so usually a 

mixture of amine buffering species and weak acids are chosen to create the gradient [369, 

370]. The advantage of a pH gradient is the low concentration of salt used, which allows 

on-line coupling to mass spectrometry [371]. This method has been mainly applied to 

separation and charcaterization of biopharmaceuticals like monoclonal antibodies [372]. In 

addition, it has also been used to separate protein isoforms. The use of both cation 

exchange chromatography (CEC) and anion exchange chromatography (AEC) have been 

reported for intact protein analysis when coupled to RPLC, which not only increases the 

fractionation but also desalts the samples prior to MS analysis. For example, the 

Escherichia coli proteome was studied by two-dimensional separation using CEC coupled 

to on-line RPLC [373] and AEC coupled to RPLC-MS [374]. A few years later, a similar 

method using AEC-RPLC was applied to top-down analysis of human leukocytes proteome 

in order to implement this technique in clinical studies [375]. IEC can also be applied to 

separation of HSA isoforms, which are known to be a biomarker of age [376]. The analysis 

of HSA isoforms started with a mixed-mode anion exchange-hydrophobic interaction 

chromatography, which is commonly used to assess the redox state of HSA [377]. However, 

this technique was not coupled to mass spectrometry, thus limiting the information provided 

by the method. Later, different HSA isoforms were separated by their pI using a pH gradient 

method and an anion exchange column, and fractions were collected for further analysis by 

RPLC-MS [378]. More recently, non-denaturing ion exchange chromatography methods 

coupled on-line to native mass spectrometry were developed for monoclonal antibodies 

[379], interferon-β [380] and HSA isoforms characterization [381]. The use of MS-

compatible salts allows the direct detection and characterization by MS, which could easily 

be applied for clinical diagnosis purposes.  

The separation methods described above have been used to separate protein isoforms 

resulting from post-translational modifications such as deamidation, glycation and 

phosphorylation but as yet have not been applied for separation of lipoxidation products. 

Lipoxidation is more commonly analysed by bottom-up approaches that allow the 

modifications to be localized and characterized by mass spectrometry [217]. RPLC is 

usually used for separation of lipoxidized proteins since the oxidized lipid modification 

increases the hydrophobicity of the proteins. The same modifications can also change the 

protein net charge and therefore IEC could also be applied for lipoxidized protein 

separation. 

The aim of the work reported in this chapter was to test different chromatographic 

methods for protein isoform and oxPTM  separations and ion exchange chromatography by 
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pH gradient and reverse-phase chromatography were the methods used. Additionally, the 

same modified proteins were analysed by bottom-up approach to localize and characterize 

these modifications. Comparison between trypsin digestion protocols and data processing 

software for peptide analysis was also performed.  
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4.2. Material and Methods 

4.2.1. Materials 

Water (Optima LC-MS grade) and ammonium formate (LC-MS grade) were obtained 

from Fisher Scientific (Schwerte, Germany). Formic acid (LC-MS grade), ammonium 

acetate, acetic acid, human serum albumin and human serum plasma were purchased from 

Sigma-Aldrich (Sigma-Aldrich, Munich, Germany). 4-Hydroxy-2-trans-nonenal (HNE) and 

4-Hydroxy-2-trans-hexenal (HHE) were purchased from Cayman Chemicals. 

 

4.2.2. Treatment of proteins with aldehydes in vitro 

Ubiquitin, insulin and human serum albumin (100μM) were modified by two different 

aldehydes. 4-hydroxy-hexenal (HHE) and 4-hydroxy-nonenal (HNE) were added to the 

protein solution at a 1:10 (protein: aldehyde) molar ratio and allowed to react for 2 hours at 

room temperature. To stabilize adducts, NaBH4 was added to a final concentration of 25 

mM and left to react for 1 hour at room temperature. 

 

4.2.3. Ion Exchange Chromatography (IEC) 

UHPLC separation was performed on Thermo Scientific Vanquish UHPLC System 

equipped with a binary pump, an autosampler and a column compartment. A binary solvent 

system was used, in which eluent A consisted of 10 mM ammonium acetate and 10 mM 

ammonium formate and eluent B of 10 mM acetic acid and 10 mM formic acid. Proteins 

(25 μL; each sample in technical triplicate) were loaded onto an anion exchange column 

(ProPac SAX-10, 2 x 50 mm) at 0% B and eluted using a gradient: ramp from 0% to 60% B 

during 10 minutes followed by an isocratic gradient at 100% for 1 min. Together with an 

equilibration time of 9 min, the samples were injected every 20 min. The pH range of the 

gradient was 2.9-6.5. Proteins (25 μL; each sample in technical triplicate) were loaded onto 

a cation exchange column (MabPac SCX-10 RS 5 μm, 2.1 x 50 mm) at 0% B and eluted 

using a gradient: ramp from 0% to 75% B for 10 min followed by an isocratic gradient at 

100% for 4 min. Together with an equilibration time of 11 min, the samples were injected 

every 25 min. The pH range of the gradient was 5.3-10.9. For both methods, the column 

temperature was set to 25 °C and the flow rate to 400 μL/min. 

 

4.2.4. Reverse Phase Chromatography 

UHPLC separation was performed on Thermo Scientific Vanquish UHPLC System 

equipped with a binary pump, an autosampler and a column compartment. A binary solvent 

system was used, in which eluent A consisted of 0.1% of formic acid in water and eluent B 

of 0.1% of formic acid in acetonitrile. Proteins (5 μL; each sample in technical triplicate) were 
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loaded onto a reverse phase column (MabPac RP 4 μm, 2.1 x 50 mm) at 0% B and eluted 

using a gradient: ramp from 0% to 40% B for 4 min, then isocratic gradient at 40% B for 2 

min followed by 1 minute at 100% B. Together with an equilibration time of 3 min, the 

samples were injected every 10 min. Column temperature was set to 50 °C and the flow 

rate to 600 μL/min. Peptides (5 μL from 20 μM solution; each sample in technical triplicate) 

were loaded onto a reverse phase column (Acclaim VANQUISH C18 2.2μ, 2.1 x 250 mm) 

at 10% B and eluted using a gradient: ramp from 10% to 45% B for 13 min followed by an 

isocratic gradient at 90% B for 2 min. Together with an equilibration time of 5 min, the 

samples were injected every 20 min. Column temperature was set to 35 °C and the flow 

rate to 250 μL/min. 

 

4.2.5.  Mass Spectrometry for intact protein analysis 

 A Q Exactive HF mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) 

using a HESI source was operated in Full MS HMR mode for HSA and in Protein mode for 

the other two proteins. Every sample was measured in technical triplicates in positive ion 

mode. Ion source parameters were the following: Source Voltage: 3.6 kV; Ion transfer tube 

temperature: 320°C; Sheath Gas: 30 arbitrary units; Aux Gas: 15 arbitrary units; vaporizer 

temperature: 100°C. The Orbitrap mass analyser was operated in high mass resolution 

(HMR) mode at a resolution setting of 15,000 and in Protein mode at a resolution setting of 

60,000 for m/z 200 in full-scan mode (scan range: 2000–6000 m/z automatic gain control 

target: 3e6; max. injection time: auto (needed to be changed in at least 500 ms, 10 

microscans). The S-Lens RF level was set to 150%.  

 

4.2.6. Mass Spectrometry for peptide analysis 

A Q Exactive HF mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) 

using a HESI source was operated in data-dependent acquisition (DDA) mode. Every 

sample was measured in technical triplicates in positive ion mode. Ion source parameters 

were the following: Source Voltage: 3.6 kV; Ion transfer tube temperature: 320°C; Sheath 

Gas: 30 arbitrary units; Aux Gas: 15 arbitrary units; vaporizer temperature: 100°C. The 

Orbitrap mass analyser was operated at a resolution setting of 120,000 for m/z 200 in full-

scan mode (scan range: 350–2000 m/z automatic gain control target: 3e6; max. injection 

time: auto (needed to be changed in at least 500 ms, 10 microscans) and at a resolution 

setting of 30,000 for m/z 200 in the Top10 DDA MS/MS mode (HCD, Stepped Normalized 

Collision Energy: 30 ± 10 eV; Isolation Width: 1.0 Da; Activation Q: 0.2; Activation Time: 

10 ms; automatic gain control target: 1e5; max. injection time: 100 ms; Intensity threshold: 

5e4 counts) with dynamic exclusion for 10 s and in profile mode. 
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4.2.7. In-gel digestion 

The reaction products from 4.2.2. were separated by 12.5 % SDS-polyacrylamide gel 

electrophoresis (section 2.2.5) followed by staining with Coomassie blue to visualize the 

bands prior to further processing. Bands present in the gel were then excised and tryptic 

digestion was performed according to Verrastro et al., 2016 [298]. The peptide extracts were 

dried for storage and resuspended in 0.1% formic acid in water prior to MS analysis. 

 

4.2.8. SMART Digestion 

Samples were diluted to 2 mg/mL (protein). Then 150 μL SMART Trypsin Buffer was 

added to the SMART digest vials, followed by 50 μL of sample (100 μg). Samples were 

incubated at 70 ⁰C with mixing at 1400 rpm. The tubes were incubated for different digestion 

times according to the protein size. Following trypsin digestion, samples were centrifuged 

for 2 minutes at 4600 g and the supernatants placed in a fresh tube. Reduction of disulphide 

bonds was carried out with DTT, final concentration 10 mM, for 30 minutes in the dark.  

 

4.2.9. Data processing 

The software BioPharma Finder 3.1 (Thermo Fisher Scientific) was used for peptide 

mapping analysis and to match them to the primary sequence of each protein (Uniprot 

entries: Insulin, P01315; Ubiquitin, P0CG48; HSA, P02768). Allowed variable modifications 

were methionine oxidation, Cys carbamidomethylation and HNE- or HHE-carbonylation on 

Cys, Lys, Arg and His to form Michael addition or on Lys and Arg to form base Schiff base 

adducts (respectively characterized by an isotopic delta mass equal to 114.14 Da, 93.13 

Da and 78.11 Da for HHE, and 156 and 138 for HNE). Furthermore, the following key 

processing parameters were set such as mass tolerance ± 10 ppm, relative abundance 

threshold 10%, charge state range 2-10.  
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4.3. Results 

4.3.1. Protein separation by ion exchange chromatography 

An anion exchange chromatography method was used to separate protein within a pH 

range of 2.9 to 6.5. It was important to know the isoelectric point (pI) of each protein being 

separated with this method, since it should fit within this pH range. The pI corresponds to 

the pH at which the net charge on the protein is zero, meaning that the protein is no longer 

interacting with the column and elutes. The proteins used were insulin (pI 5.35), ubiquitin 

(pI 6.79) and human serum albumin (pI 4.7) and their AEC base peak chromatograms are 

shown in Figure 4.1. 

 

Figure 4.1. Base peak chromatograms resulting from anion exchange chromatography 

separation of different protein isoforms. Retention time 0.0 to 10.0 minutes. Protein used were 

insulin, ubiquitin and human serum albumin 

This chromatographic method was able to separate different isoforms for insulin as well 

as for human serum albumin, since the base peak chromatograms above show multiple 

peaks corresponding to different protein isoforms. The same was not observed for ubiquitin, 

for which only one peak eluted. Insulin and ubiquitin both started eluting early reflecting 

higher PIs whereas HAS did not elute until later. These proteins were then treated with 4-

hydroxy-hexenal (HHE) or 4-hydroxy-nonenal (HNE) and the same chromatographic 

method was used to separate the proteins upon treatment (Figure 4.2). 
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Figure 4.2. Base peak chromatograms from anion exchange chromatography separation of 

untreated and HHE or HNE treated protein. A-insulin; B-ubiquitin; C-human serum albumin. 

Retention times varying from 0.0 to 14.0 minutes. Untreated samples data in black, HHE treatment 

data in red and HNE treatment in blue. Each peak was assigned a number for later identification. 

Treated and untreated forms of the same protein were not separated by the AEC 

method used, since no new peaks were detected upon treatment or a change in retention 

time detected. However, in Figure 4.2A it was possible to observe a tailing of the peaks for 

the treated samples. In fact, the isoform eluting between 2 and 4 minutes showed what 

seems to be two peaks with low resolution. This effect was not observed for ubiquitin 

(Figure 4.2B) which continue to correspond to only one peak even upon aldehyde 

treatment. In turn, human serum albumin showed a quite complex chromatogram upon 

treatment possibly due to the high amount of modifications and distinct peaks were no 

longer observed (Figure 4.2C). Nevertheless, the analysis of the MS data confirmed the 

presence of the HHE and HNE modifications on the proteins by the increase in the protein 

mass corresponding to the insertion of these aldehydes either by Michael addition or by 

Schiff base formation (Figure 4.3). 
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Figure 4.3. MS spectra of untreated or HHE/HNE-treated intact protein separated by AEC. The 

spectra correspond to the peaks in Figure 4.2 and these are labelled with the same number as the 

corresponding chromatographic peak. (A) Insulin (z=4+), isoform in peaks 3 and 4 from Figure 2 are 

shown; (B) Ubiquitin (z=6+), MS data from single peak in chromatogram.; (C) HSA, MS data from 

peak at highest relative abundance and for aldehyde-treated samples, the same retention time was 

selected. Untreated samples data in black, HHE treatment data in red and HNE treatment in blue. 
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The untreated insulin was identified at m/z 1445.17 (charge 4+). The covalent adducts 

with the aldehydes were confirmed by the insertion of one (m/z 1473.689), two (m/z 

1502.207) or three (m/z 1530.725) HHE molecules or one (m/z 1484.202), two (m/z 

1523.231) or three (m/z 1562.514) HNE molecules (Figure 4.3A). Comparison between the 

two spectra for the same treatment showed an increase in the extension of modification by 

an increase in the relative abundance of the modified species in the second spectrum 

(higher retention time). This demonstrated that the method was able to separate slightly 

insulin with different extent of aldehyde modification. The untreated ubiquitin was identified 

at m/z 1428.44 (charge 6+). Upon treatment, a total of up to 5 covalent adducts were 

confirmed for HHE and up to 4 were confirmed for HNE, including Michael addition and 

Schiff base formation, corresponding to a mass increase of 114.07 Da and 96.06 Da for 

HHE and 156.12 Da and 138.10 Da for HNE respectively. The highest covalent modification 

corresponded to the insertion of four HHE molecules by Michael addition and one by Schiff 

base resulting in the m/z 1520.344, or the insertion of three HNE molecules by Michael 

addition and one by Schiff base resulting in the m/z 1529.519. For HSA, due to the larger 

protein size, it was not possible to determine the charge envelop and therefore no specific 

modifications could be reported from this data.  

In order to separate protein isoforms with higher pI, a cation exchange chromatographic 

(CEC) method was tested with a pH range of 5.3 to 10.9. The proteins tested were the same 

as for AEC and the base peak chromatograms for insulin (pI 5.35), ubiquitin (pI 6.79) and 

human serum albumin (pI 4.7) are shown in Figure 4.4. 

 

Figure 4.4. Base peak chromatograms resulting from cation exchange chromatography 

separation of different protein isoforms. Retention time was 0.0 to 10.0 minutes. Protein used 

were insulin, ubiquitin and human serum albumin. 
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CEC was not able to separate insulin isoforms, in contrast to what was previously 

observed for AEC; however, the retention of this protein in this chromatography was 5 

minutes,  which was longer than with AEC. On the other hand, CEC was found to be more 

suitable for ubiquitin separation than AEC; two peaks were observed confirming the 

separation of different isoforms with retention times of 4.5 and 4.9 minutes. Human serum 

albumin, with a lower pI than the other proteins tested, was not separated by CEC, since 

no clear peaks were observed in the chromatogram. Similarly to the experiment described 

above, these proteins were treated with 4-hydroxy-hexenal (HHE) or 4-hydroxy-nonenal 

(HNE) and the modified proteins were then separated by CEC (Figure 4.5). 

 

Figure 4.5. Base peak chromatograms from cation exchange chromatography separation of 

untreated and HHE or HNE treated protein. A-insulin; B-ubiquitin. Retention times varied from 1.0 

to 9.0 minutes. Untreated samples data in black, HHE treatment data in red and HNE treatment in 

blue. Each peak was assigned a number for later identification. 

The aldehyde treatment did not change the retention time of insulin; upon HHE 

treatment, it still only one peak was present in the chromatogram, while HNE treatment 

resulted in the detection of two peaks showing some separation. In case of ubiquitin, HHE 

treatment changed the retention time of the protein resulting in earlier elution. In contrast, 

HNE treatment of ubiquitin resulted in four peaks in the chromatogram with increasing 

retention time in comparison with the untreated ubiquitin. HSA results are not shown since 

the untreated samples did not present good separation with this method. Figure 4.6 shows 

the MS spectra of each peak identified in the chromatograms above, which are identified 

by the numbering alongside the spectra.
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Figure 4.6. MS spectra of untreated or HHE/HNE-treated intact protein separated by CEC.  The spectra correspond to the peaks in Figure 4.5 and these 

are labelled with the same number as the corresponding chromatographic peak. (A) Insulin (z=3+), MS data for single chromatogram peak for untreated and 

HHE-treated and for the two peaks for HNE-treated; (B) Ubiquitin (z=6+), MS data from the single peak 1 for untreated protein, peaks 1 and 2 for HHE-treated 

protein and peaks 1, 2, 3 and 5 for HNE-treated protein. Untreated samples data in black, HHE treatment data in  red and HNE treatment in blue. 
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The untreated insulin was identified at m/z 1926.5657 (charge state 3+). In Figure 4.6A, 

the MS data for HHE-modified insulin corresponds to the single peak in Figure 4.5A and the 

HHE covalent adducts were confirmed by the insertion of one (m/z 1964.5916), two (m/z 

2002.6157) or three (m/z 2040.6393) HHE molecules by Michael addition. Also in Figure 4.5A 

two peaks were observed after HNE-treatment and therefore in Figure 4.6A two spectra are 

shown corresponding to each chromatographic peak. The HNE covalent adducts were 

confirmed by the insertion of one (m/z 1978.9421) or two (m/z 2024.9862) HNE molecules by 

Michael addition and one (m/z 1972.9353) or two (m/z 2018.9811) HNE molecules by Schiff-

base reaction. Additionally m/z 2077.0281 was also observed with the highest retention time 

peak and was identified as the insertion of 3 HNE molecules, two by Michael addition and one 

by Schiff-base reaction. The MS data confirmed the separation by CEC of insulin with different 

extent of aldehyde modification. The peak with the highest retention time was shown to 

correspond to higher amount of insulin HNE-modification. In Figure 4.6B, the untreated 

ubiquitin was identified at m/z 1428.4528 (charge 6+), and these MS data correspond to peak 

1 in Figure 4.5B. Up to 4 HHE molecules and 3 HNE molecules were found to be covalently 

linked to ubiquitin, identified by the masses described above for Figure 4.3B. For HHE-treated 

ubiquitin, two peaks were observed in the chromatogram and comparison of the MS data of 

each peak did not shown differences in the amount of protein modification. On the other hand, 

comparison of the spectra for each HNE-treated ubiquitin chromatographic peak showed a 

decrease in untreated protein relative abundance and an increase in the extent of HNE 

modification with the increase in retention time. This observation is in accordance to the results 

from insulin, showing the ability to separate proteins with different degrees of modification by 

cation exchange chromatography, as the aldehyde modification alters the protein’s pI, resulting 

in later elution from the column. HSA data was not shown since no conclusions could be 

obtained from it.  

 

4.3.2. Intact protein separation by reverse phase chromatography 

In order to assess which chromatography method would better suit the separation of 

lipoxidized proteins, a reverse phase (RP) chromatography method was used to separate 

untreated as well as HHE or HNE-treated insulin, ubiquitin and human serum albumin (the 

same samples used for ion exchange chromatography described in 4.3.1). This separates 

proteins according to their hydrophobicity, starting as hydrophilic followed by a gradient 

increasing in hydrophobicity. Due to the solvents used, intact protein analysis by RP 

corresponds to the denatured forms of the proteins, in contrast to the native non-denaturing 

ion exchange chromatography. Figure 4.7 shows the base peak chromatograms obtained for 

untreated and treated proteins by reverse phase chromatography. 
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Figure 4.7. Base peak chromatograms from reverse phase chromatography separation of 

untreated and HHE or HNE treated protein. A-insulin; B-ubiquitin; C-HSA. Retention times varying 

from 2.5 to 5.5 minutes Untreated samples data in black, HHE treatment data in  red and HNE treatment 

in blue. More than one peak was observed in each chromatogram; therefore a number was assigned 

for later identification. 

For all the proteins tested, it was observed that the aldehyde modification changed their 

retention time, reflecting increased hydrophobicity. For insulin, 3 peaks were detected after 

HHE treatment and 6 after HNE treatment. The same effect was observed for ubiquitin with 

three peaks and five peaks detected upon HHE and HNE respectively. For HSA, no distinct 

and resolved peaks were observed but it was still possible to observe the shift in retention time 

after aldehyde modification. The MS shown in Figure 4.8 helped with the identification and 

characterization of the species in each of these peaks. HSA data are not shown for the same 

reason as stated previously. 
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Figure 4.8. MS spectra of untreated or HHE/HNE-treated intact protein separated by reverse phase chromatography. The spectra correspond to the 

peaks in Figure 4.7 and these are labelled with the same number as the corresponding chromatographic peak. A-Insulin (z=4+), MS data shown for peak 1 for 

untreated, peaks 1 and 3 for HHE-treated and peaks 1, 3 and 5 for HNE-treated; B-Ubiquitin (z=6+), MS data shown for peak 1 for untreated, peaks 1 and 2 for 

HHE-treated and peaks 1, 2, 3 and 5 for HNE-treated. Untreated samples data in black, HHE treatment data in  red and HNE treatment in blue. 
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Compared to the native peak at m/z 1445.1696 (charge 4+) for insulin and at m/z 

1428.4484 (charge 6+) for ubiquitin, increased m/z for the modifications were observed. MS 

data analysis showed that the distinct peaks separated by RPLC demonstrated in Figure 

4.7 correspond to different degree of modification of the protein with the highly modified 

proteins eluting later. This observation was confirmed for both HHE and HNE. These results 

shown reverse phase chromatography to be able to separate unmodified from modified 

protein as well as separation of proteins by the extent of modification, thus being a better 

choice than the ion exchange chromatography methods described in 4.3.1. for lipoxidized 

proteins separation. 

 

4.3.3. Comparison between protein digestion methods 

A bottom-up approach was also used to localize and characterize the HHE and HNE 

modifications to insulin, ubiquitin and human serum albumin. The same samples were 

digested into peptides by two different protocols for comparison. The first method tested 

was the commonly used in-gel digestion method where an SDS polyacrylamide gel was run 

and the band of interest cut and digested with trypsin to obtain peptides. The second method 

used was the SMART Digest™ Trypsin Kit from Thermo, which has been reported to be a 

significant improvement over in-solution digestion methods requiring less than 60 minutes 

to achieve full digestion, whereas usually it would take up to 24 hours and the reduction in 

the number of chemicals used resulted in cleaner samples [382]. After MS data was 

acquired, the analysis was performed using Biopharma Finder. The protein sequence 

coverage obtained was dependent on the digestion method used (Table 4.1).  
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Table 4.1. Sequence coverage of insulin, ubiquitin and human serum albumin. Proteins were 

digested by in-gel or SMART trypsin digestion, and peptide MS analysis performed using Biopharma 

Finder. 

 

The percentage of protein sequence coverage was shown to be dependent on the 

digestion method and on the aldehyde treatment. Using biopharma finder, the sequence 

coverage for proteins digested by in-gel trypsin digestion was slightly higher than by SMART 

digest for three proteins tested. Additionally, both aldehyde treatments decreased the 

percentage of sequence coverage when samples were digested by SMART digest but the 

same was not observed for in-gel digestion samples, for which the percentage of sequence 

coverage showed a 20% increase upon treatment. This bottom-up approach allowed for the 

localization and characterization of the HHE and HNE modifications on ubiquitin and human 

serum albumin and the results are reported in Table 4.2 and Table 4.3, respectively. The 

peptides were identified based on their molecular weight, mass/charge ratio and charge of 

the peptide ion and LC retention time. Results for insulin are not shown in the tables below, 

because data was only acquired for SMART digestion.  

Sequence Coverage (%) 

Proteins 
Untreated HHE-treated HNE-treated 

In-Gel SMART In-Gel SMART In-Gel SMART 

Insulin - 7.4 - 6.5 - 6.5 

Ubiquitin 72.4 51.3 94.7 60.5 94.7 40.8 

HSA 79.3 59.7 90.6 78.1 92.5 70.8 
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Table 4.2. Modification of ubiquitin by HHE or HNE. Peptides obtained by in-gel (G) or SMART 

(S) trypsin digestion and MS data was analysed by Biopharma Finder. 

Modified 

Residues 
Ubiquitin modified peptides (a 

b) 

Mass of 

modified 

peptide 

m/z 

(charge) 

Rt 

(min) 

Digestion 

Protocol 

4-hydroxy-hexenal (HHE)  

His68 E64STLH+114LVLR72 1180.6825 394.568 (3+) 8.39 G S 

His68 E64STLH+96LVLR72 1162.6708 582.343 (2+) 9.98 G S 

His68 E64STLH+78LVLR72 1144.6608 573.338 (2+) 10.40 G 

4-hydroxy-nonenal (HNE)  

His68 E64STLH+156LVLR72 1222.7278 612.371 (2+) 10.48 G 

His68 E64STLH+138LVLR72 1204.7179 603.366 (2+) 11.88 G S 

 

 

Table 4.3. Modification of human serum albumin by HHE or HNE. Peptides obtained by in-gel 

(G) or SMART (S) trypsin digestion and MS data was analysed by Biopharma Finder. 

Modified 

Residues 
HSA modified peptides (a 

b) 

Mass of 

modified 

peptide 

m/z (charge) 
Rt 

(min) 

Digestion 

Protocol 

4-hydroxy-hexenal (HHE)  

His3 DAH+114KSEVAHR 1262.6368 421.887 (3+) 3.23 S 

Lys4 DAHK+114SEVAHR 1262.6368 421.886 (3+) 3.12 S 

His9 SEVAH+114R 811.4183 406.716 (2+) 3.25 S 

Lys12 FK+114DLGEENFK 1339.6661 670.840 (2+) 6.80 S 

Lys12 FK+96DLGEENFK 1321.6554 441.559 (3+) 6.80 S 

His67 SLH+114TLFGDK 1130.5974 377.873 (3+) 8.37 G S 

Cys75 LC+96TVATLR 971.5478 486.781 (2+) 7.88 G S 

Cys101 NEC+114FLQHK 1131.5392 566.777 (2+) 6.35 G S 

Cys101 NEC+114FLQHKDDNPNLPR 2052.9702 685.665 (3+) 6.58 G S 

Cys124 LVRPEVDVMC+96TAFHDNEETFLKK 2816.3889 568.087 (5+) 9.45 S 

His128 LVRPEVDVMCTAFH+114DNEETFLKK 2834.3984 710.108 (4+) 9.45 S 

His146 RH+114PYFYAPELLFFAK 2012.0592 672.028 (3+) 11.70 S 
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Cys177 AAC+96LLPK 810.4671 406.241 (2+) 7.79 G 

Arg186 LDELR+114DEGK 1187.6028 396.875 (3+) 4.89 G 

Lys190 LDELRDEGK+114ASSAK 1631.8389 544.954 (3+) 4.05 S 

Cys200 C+96ASLQK 744.3839 373.199 (2+) 5.86 S 

Lys212 AFK+96AWAVAR 1114.6284 372.550 (3+) 7.50 S 

Arg218 AWAVAR+114LSQR 1270.7145 636.365 (2+) 7.38 S 

Cys265 YIC+114ENQDSISSK 1499.6815 750.848 (2+) 6.24 G S 

Cys265 YIC+96ENQDSISSK 1481.6710 741.843 (2+) 6.24 G S 

Cys289 SHC+114IAEVENDEMPADLPSLAADFVESK 3030.3918 1011.472 (3+) 11.54 G S 

Arg338 RH+114PDYSVVLLLR 1580.9049 791.460 (3+) 9.49 S 

Lys378 VFDEFK+114PLVEEPQNLIK 2158.1587 720.728 (3+) 10.46 S 

Cys392 QNC+114ELFEQLGEYK 1713.7913 857.903 (2+) 10.14 S 

Cys392 QNC+96ELFEQLGEYK 1695.7797 848.897 (2+) 10.14 S 

Arg410 FQNALLVR+114YTK 1465.8291 489.617 (3+) 8.33 S 

Arg410 FQNALLVR+96YTK 1447.8217 483.614 (3+) 8.83 S 

Lys414 K+114VPQVSTPTLVEVSR 1752.9985 878.008 (2+) 7.62 S 

Lys432 NLGK+114VGSK 915.5395 458.777 (2+) 3.26 S 

Lys432 NLGK+96VGSK 897.5287 449.772 (2+) 3.27 S 

Arg485 R+96PCFSALEVDETYVPK 1948.9631 650.996 (3+) 9.07 G S 

Cys487 RPC+114FSALEVDETYVPK 1966.9724 656.999 (3+) 9.07 S 

Lys525 K+114QTALVELVK 1241.7596 621.887 (2+) 7.71 S 

Lys525 K+96QTALVELVK 1223.7491 408.924 (3+) 7.76 S 

Cys567 ADDKETC+114FAEEGKK 1683.7666 562.263 (3+) 4.82 G 

4-hydroxy-nonenal (HNE)  

His9 SEVAH+156R 853.4664 427.740 (2+) 5.01 G S 

His67 SLH+156TLFGDK 1172.6442 587.329 (2+) 10.70 S 

His128 LVRPEVDVMCTAFH+156DNEETFLK 2748.355 917.460 (3+) 11.62 S 

Arg186 LDELR+156DEGK 1229.6497 410.890 (3+) 7.98 G S 

Cys265 YIC+156ENQDSISSK 1541.7289 771.872 (2+) 9.05 G S 
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Lys276 LK+156ECC+57EKPLLEK 1644.8835 549.302 (3+) 7.74 G 

Cys289 SHC+156IAEVENDEMPADLPSLAADFVESK 3072.4399 1025.488 (3+) 12.45 S 

His338 RH+156PDYSVVLLLR 1622.9518 812.483 (2+) 10.70 S 

His338 H+156PDYSVVLLLR 1466.8524 489.958 (3+) 12.14 S 

Cys392 QNC+156ELFEQLGEYK 1755.8402 879.429 (2+) 11.95 S 

Arg410 FQNALLVR+156YTK 1507.8785 754.947 (2+) 10.36 S 

Arg410 FQNALLVR+138YTK 1489.8680 745.941 (2+) 10.59 G S 

Lys414 K+156VPQVSTPTLVEVSR 1795.0471 599.356 (3+) 8.97 S 

Lys432 NLGK+138VGSK 939.5760 470.795 (2+) 6.99 S 

Lys432 NLGK+156VGSK 957.5867 479.801 (2+) 6.99 S 

His440 H+156PEAK 736.4120 369.213 (2+) 4.84 S 

Arg485 R+138PCFSALEVDETYVPK 1991.0093 664.677 (3+) 10.73 S 

Arg485 R+156PCFSALEVDETYVPK 2009.0183 671.015 (3+) 10.72 S 

Cys487 RPC+156FSALEVDETYVPK 2009.0215 671.015 (3+) 10.58 S 

Lys525 K+156QTALVELVK 1283.8062 428.943 (3+) 9.42 S 

Lys525 K+138QTALVELVK 1265.7961 422.939 (3+) 9.52 S 

Cys567 ADDKETC+156FAEEGKK 1725.8132 576.278 (3+) 7.20 G 

 

With this bottom-up proteomic approach only one histidine residue (His68) could be 

identified on insulin modified by both HHE and HNE, either by Michael addition or by Schiff-

base formation, and independently from the digestion protocol used. For HSA, the analysis 

was more complex due to the protein size. A total of 27 amino acid residues were found to 

be modified by HHE, while 17 amino acid residues were found to be modified by HNE. Most 

of these residues were cysteine (Cys) and lysine (Lys) but histidine (His) and arginine (Arg) 

modifications were also detected. Some residues, for example Lys12, Cys75, Cys101, 

Cys124, Lys190, Cys200, Lys212, Arg218 and Lys378, were found to be exclusively 

modified by HHE, while the residues Lys276 and His440 were exclusively modified by HNE. 
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In contrast to the sequence coverage observations, comparison of the two digestion 

approaches in terms of modified peptides detection showed that SMART digest, even 

though it had lower sequence coverage, allowed the detection of more modified peptides, 

either by HHE or HNE (Figure 4.9). Around 60-70% of peptides found to be modified were 

produced from SMART digest while under 10% were produced by in-gel digestion. Only 20-

30% of the peptides listed in Table 4.3 were generated by both digestion approaches. 

 

Figure 4.9. Percentage of HSA modified peptides detected after SMART and In-gel digestion. 
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4.4. Discussion 

Selection of the appropriate chromatography for LC-MS analysis of lipoxidized proteins 

is a key step in proteomics specially in intact protein analysis. The diversity of proteins in 

shape, size or charge result in different interaction with column affecting its elution. Protein 

lipoxidation increases its complexity, hydrophobicity and charge resulting in a different 

interaction with chromatographic columns. The aim of the study reported in this chapter was 

to compare different chromatography methods for the separation of untreated protein 

isoforms as well as aldehyde-modified proteins. Three methods were tested: anion 

exchange, cation exchange and reverse phase chromatography. The proteins used to test 

the methods were insulin, ubiquitin and human serum albumin, either untreated or 

HHE/HNE-treated. The ion exchange methods presented in this study were based on a pH 

gradient using ammonium acetate and ammonium formate as the high pH eluent and acetic 

acid and formic acid as the low pH eluent. For these methods, the isoelectric point of each 

protein was important since the elution from the column would depend on the protein net 

charge, being eluted from the column once the pH from the mobile phase met the protein 

pI leaving it with neutral net charge. The ion exchange methods tested worked better for 

native protein isoform separation than lipoxidized proteins. It was hypothesized that these 

methods could be used to separate lipoxidized proteins since the oxidized lipid 

modifications could change the net charge of a protein. However, only cation exchange 

chromatography was able to distinctively separate HNE-modified ubiquitin and insulin, while 

MS data confirmed the modified proteins eluting slightly later than unmodified, no clear 

separation was observed at any other condition. Anion exchange chromatography was able 

to separate several isoforms of insulin and human serum albumin, the two proteins for which 

the PIs fit within the pH range of the gradient used. These observations confirm that each 

IEC method should be tailored to the pI of the protein of interest. However, for an ion 

exchange method to be coupled on-line to mass spectrometry, the choice of buffers needs 

to be compatible. This limits the buffers that can be used and therefore limiting the pH 

ranges that can be covered and consequently the proteins that are suitable for separations 

using these methods. Therefore, the anion exchange chromatography method used in this 

study shown interesting preliminary results in human serum albumin isoform separation 

which could potentially be applied to a clinical purpose. This method showed the same 

degree of separation with a similar HSA isoforms chromatogram as previously reported by 

Leblanc et al , which used a salt-gradient instead of pH gradient method for HSA isoforms 

separation [381]. Even though both methods were able to separate the isoforms and are 

both suitable for on-line coupling to MS, the pH gradient described in this chapter is quicker 

(20 min) when compared to theirs (80 min), which makes it more appealing for a potential 

clinical application. In contrast, this method was not able to separate lipoxidized HSA as 
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this was so heavily modified that no distinct peaks were observed. The proteins were 

modified on a 1:10 ratio so possibly a 1:1 ratio of modification would improve the separation 

of lipoxidized HSA. In conclusion, this chapter shows that the anion exchange 

chromatography method could be an easy and rapid tool for clinical application for HSA 

isoform separation and further validation of this method should be conducted with clinical 

samples. For example, plasma from diabetic or Alzheimer’s disease patients could be used 

to validate the method as for these the glycated isoforms of human serum albumin have 

been suggested as a biomarker [383, 384]. It was also possible to observe that the 

separation was easier for smaller proteins rather than large, for which multiple charges can 

influence the separation but most importantly the MS analysis. To improve this limitation, a 

middle down approach could have been applied for larger proteins such as human serum 

albumin [385]. On the other hand, reverse-phase chromatography showed to be the best 

separation method tested for lipoxidized-protein separation. The aldehyde modification on 

the proteins caused a changed in hydrophobicity, causing a change in retention time and 

allowing for the modified-proteins to be separated, not only according to the different 

degrees of modification but also separated unmodified from modified protein. Reverse-

phase chromatography is the commonly used method for intact protein analysis and here it 

was shown to be the best for quick separation of lipoxidized proteins. Even though ion 

exchange chromatography is being proposed as a good alternative to reverse phase in 

other applications than lipoxidation, such as basic drugs determination [386], the fact that 

this is not coupled to mass spectrometry does not limit the solvents that can be used and 

potentially improves the application of this method. However, for lipoxidized protein 

analysis, the coupling to MS for charcaterization is essential and ion exchange is not as 

good as reverse-phase chromatography for separation of these. 

Bottom-up LC-MS/MS analysis of insulin, ubiquitin and HSA were performed to localize 

the oxPTM hotspots of these proteins. In order to obtain the peptides, the samples were 

digested by in-gel or SMART digestion. The latest corresponds to a kit from Thermo which 

consists of an improved in-solution trypsin digestion in which trypsin is linked to beads and 

digests the proteins with an easy and quick protocol that obtains peptides in minutes. 

Additionally, it requires less samples manipulation since no reduction or alkylation is 

necessary. On the other hand, for in-gel digestion, more sample preparation is required 

such as to run a denaturing gel (SDS-PAGE), as the protein is cleaved into peptides in the 

later steps, which can take up to 2 days. In terms of sequence coverage, in-gel digestion 

shown higher percentage than SMART digestion, possibly due to less sample complexity 

and better detection of the fewer peptides present. However, a higher number of 

modification hotspots were identified using the later. While in-solution and in-gel digestion 

are two well-used approaches to prepare a bottom–up proteomic sample, in-gel digestion 
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has several advantages including simplification of samples of greater complexity before 

mass spectrometry analysis potentially contributing to the higher sequence coverage 

observed [216, 387]. In-solution digestion have the advantage of being a straightforward 

method where fewer things can go wrong. Additionally, it requires less protein and the 

peptides extraction efficiency is higher, which might justify the higher number of modification 

hotspots identified [388, 389]. Several amino acid residues were found to be modified by 

HHE and HNE, including some lysine, histidine and cysteine residues which have been 

previously reported modified by short-chain aldehydes [217]. However, in contrast to 

previous studies [286], the HSA cys34 was not found to be modified by either of the 

aldehyde treatments used in this study. This might be due to the size of the tryptic peptide 

containing this residue, which could give low ion intensity making its detection challenging. 

In conclusion, the study reported in this chapter demonstrated that ion exchange 

chromatography methods are rising as a good alternative for protein separation and here it 

was shown to be the best specifically in isoform separation. This could then be potentially 

used in clinical applications where isoform separation is relevant for example in the 

assessment of glycated isoforms of human serum albumin in diabetes. However, reverse 

phase chromatography remained the better method for lipoxidized proteins separation in 

agreement to previous studies, and the quick method reported here showed promising 

preliminary results in separation of proteins by degree of modification, and therefore 

potential application of this to investigate degree of lipoxidized proteins in human plasma 

as a diagnosis tool for inflammatory diseases. 
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Chapter 5. Short-chain lipid peroxidation products form 

covalent adducts with pyruvate kinase and inhibit its 

activity in vitro and in breast cancer cells 
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5.1. Introduction 

Tumour cells, as other highly proliferative cells, show upregulation of aerobic glycolysis, 

also known as the Warburg effect [270, 390]. They are also known to have altered redox 

balance, with higher cellular levels of reactive oxygen species as well as increased antioxidant 

concentrations[390, 391], and this pro-oxidative status is a requirement for their proliferative 

state through changes in metabolic reprograming [391, 392]. These changes may be achieved 

by modulation of enzymatic activities, as many enzymes in glycolysis are sensitive to cellular 

redox balance, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate 

kinase M2 (PKM2), and phosphofructokinase (PFK) [393]. For example, the oxidation of the 

cysteine residue in the catalytic site of GAPDH leads to inhibition of its activity [394-396]. PFK 

can be regulated under oxidative stress by modifications of PFKFB3, which catalyzes the 

formation of fructose-2,6-bisphosphate, a potent allosteric inhibitor of PGFK, as modification 

of PFKFB3 on a cysteine residue located near the substrate binding pocket and cause 

decrease in its catalytic activity [397]. However, few studies have been conducted on the effect 

of oxidative stress on pyruvate kinase. 

Pyruvate kinase is the last enzyme of glycolysis and catalyses the conversion of 

phosphoenolpyruvate and ADP to pyruvate and ATP. It has been suggested to be a key player 

in the Warburg effect, since its activity can be modulated by allosteric regulation in tumour 

cells. Tumours, and other proliferating cells, have higher expression of the PKM2 isoform 

which is subject to allosteric regulation and lower activity compared to the non-allosteric PKM1 

isoform found in the majority of tissues [398, 399]. While PKM1 exists in the active tetrameric 

form, PKM2 occurs in equilibrium between monomer, dimer and the active tetramer [398]. This 

can be regulated by a wide variety of molecules, for example, the upstream glycolytic 

metabolite fructose-1,6-bisphosphate (F1,6BP), which stabilizes the tetramer, and in its the 

absence PKM2 activity drops to 4% [400-402]. Owing to its complement of nucleophilic amino 

acids such as cysteine residues, pyruvate kinase can also be inhibited by oxidants such as 

H2O2 [401, 403, 404]. Even though this modification is reversible and can recovered with a 

reducing agent, oxidation of pyruvate kinase can affect substrate binding, binding of allosteric 

regulators or multimerization [405]. Thus, oxidation has been suggested as a mechanism for 

inhibiting pyruvate kinase, for example in lung cancer cells [403]. It has been proposed that 

inhibition of pyruvate kinase leads to rerouting of glycolytic intermediates into the pentose 

phosphate pathway in order to generate NADPH and maintain reduced glutathione levels, 

facilitating cell survival in a pro-oxidative status [406]. In fact, accumulation of PEP has been 

shown to stimulate the pentose phosphate pathway by a feedback loop in the eukaryotic model 

S. cerevisiae [407]. Such metabolomic changes allow tumour cells to meet the increased 

biosynthetic demands for antioxidants, lipids and nucleotides, promoting tumour growth [399, 

408].  
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While hydrogen peroxide or peroxynitrite can affect glycolytic enzymes directly, more 

reactive oxidants such as hydroxyl radicals can damage other cellular components such as 

lipids and cause lipid peroxidation. Oxidation of polyunsaturated fatty acids results in a wide 

range of products including short-chain aldehydes that are reactive and can cause covalent 

modifications of proteins [20, 31]. This process is known as lipoxidation and can occur via 

formation of Schiff’s base or Michael adducts on nucleophilic amino acids including lysine, 

histidine or cysteine [409, 410], as described in chapter 1. These adducts have been shown to 

occur both in vitro and in vivo, and links to inflammatory diseases such as atherosclerosis and 

Alzheimer’s disease have also been reported [410]. 

The 6-carbon aldehyde 4-hydroxyhexenal (HHE) is one of the major lipid peroxidation 

products of ω-3 PUFAs; it has very comparable reactivity to HNE, usually referred to as the 

the most toxic of this class of lipid oxidation product, and therefore of potential importance in 

disease [113]. The 3-carbon compound malondialdehyde (MDA) is the most studied aldehyde 

[411] and as it is bifunctional it has the potential to crosslink proteins [129]. Acrolein is another 

3-carbon aldehyde more commonly associated with tobacco smoke and processed foods 

[412], but which can also occur as a breakdown product of lipid peroxidation [74]. Acrolein is 

highly reactive, and it has been associated apoptosis and disruption of inflammation and 

antioxidant defence regulation [71, 80]. These aldehydes, an in particular HNE, have been 

suggested to have both pro-tumorigenic and anti-cancer effects depending on their levels. 

Aldehyde adducts with proteins and DNA can be mutagenic and carcinogenic [413], and have 

been reported to inhibit cell proliferation and angiogenesis as well as inducing differentiation 

and apoptosis in tumor cell lines [414]. Despite the known links between lipoxidation and 

cancer, little attention has been focused on the study of lipid peroxidation-derived aldehydes 

on glycolytic enzymes involved in the Warburg effect. GAPDH appears to be particularly 

susceptible to lipoxidation and it has been reported to be modified by HNE in vitro [163] and 

by acrolein in mouse carcinoma cells treated in culture [272, 415, 416]. In another study, the 

sites and mechanism of GAPDH modification by acrylamide, acrolein and methylvinyl ketone 

were compared [417]. Acrylamide caused the greatest inhibition of the enzyme activity and it 

was directly related with the modification on Cys152, located in the GAPDH active site. In 

contrast, lipoxidation of pyruvate kinase is still largely unexplored with only one study reporting 

the potential for HNE and its di-carbonyl analogue 4-oxononenal (ONE) to inactivate PKM2 

[273].  

In view of the gap in knowledge on the interactions of short chain reactive aldehydes with 

pyruvate kinase, we investigated the modification of this protein by acrolein, malondialdehyde 

and 4-hydroxyhexanal using LC-MS/MS to map the sites of modification following treatment in 

vitro. We then determined the effects of these treatments on PKM2 activity, both in vitro and 

in the cultured cell line MCF-7, and assessed their impact on cell viability, with the aim of 
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determining the potential of different aldehydes reactivity to contribute to metabolic remodelling 

via PKM2. The metabolic changes in the cell line MCF-7 caused by acrolein were also 

assessed by 1H NMR in collaboration with the University of Birmingham.  
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5.2. Material and Methods 

 

5.2.1. Synthesis of 4-hydroxy-2(E)-hexenal  

4-hydroxy-2(E)-hexenal (HHE) was a kind donation from  and was obtained by cross-

metathesis between acrolein and 1-penten-3-ol with Hoveyda-Grubbs catalyst in good yield 

(68%), following the two published procedures [418, 419]. 1H NMR (300 MHz, Aceton-d6) δ 

9.57 (d, J = 7.9 Hz, 1H), 6.96 (dd, J = 15.6, 4.4 Hz, 1H), 6.22 (ddd, J = 15.6, 7.9, 1.7 Hz, 1H), 

4.32 (ddt, J = 9.5, 6.7, 3.2 Hz, 1H), 4.22 (d, J = 4.9 Hz, 1H), 1.83 – 1.42 (m, 2H), 0.94 (t, J = 

7.4 Hz, 3H) ; 13C NMR (75 MHz, Aceton-d6) δ 193.1, 160.3, 130.3, 71.3, 29.2, 8.9. 

 

5.2.2. Treatment of pyruvate kinase with aldehydes in vitro 

Pyruvate kinase from rabbit muscle (EC2.7.1.40) was prepared at 2.5 mg/mL in phosphate 

buffer (7 mM sodium phosphate monobasic and 10 mM disodium phosphate dibasic, pH7.4) 

and treated with acrolein (ACR), malondialdehyde (MDA) (prepared via acid hydrolysis of 

1,1,3,3-tetramethoxypropane) or 4-hydroxy-2(E)-hexenal (HHE) at 2 µM, 10 µM, 20 µM, 38 

µM, 100 µM, 200 µM, 380 µM, 500 µM, 760 µM, 1mM or 5 mM, and allowed to react for 10 

minutes, 30 minutes, 1 hour, 2 hours or 4 hours at 37 °C. Following the reaction, to stabilize 

any adducts sodium borohydride (NaBH4) was added to the reaction to a final concentration of 

5 mM and the reaction left for a further 30 minutes at room temperature. This step was omitted 

when the treated pyruvate kinase was used immediately in the enzymatic activity assay. 

 

5.2.3. Cell culture and aldehyde treatment 

MCF-7 cells were cultured in DMEM (Gibco, UK) supplemented with 10% fetal bovine 

serum (FBS), 100 U/mL penicillin and 100 μg/mL streptomycin in a humidified incubator at 37 

°C and 5% CO2. For each aldehyde treatment, cells were seeded into new flasks at a cell 

density of 106 /mL and 10x stock solutions of ACR, MDA or HHE in phosphate buffered 

containing 0.9% NaCl pH 7.4 were added to the culture media to give final concentrations of 

2, 10, 20, 100 or 200 µM and incubated for 2, 4 or 24 hours. Biological triplicates were 

performed. 

 

5.2.4. XTT cell viability assay 

MCF-7 cells were cultured in a 96-well plate at 105 cells per well. The treatments with 

aldehydes were performed at the concentrations and times described above. XTT [2,3-bis-(2-

methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] was dissolved in sterile 

medium to a final concentration of 1 mg/mL. A 10 mM solution PMS (N-methyl dibenzopyrazine 

methyl sulfate) solution was prepared in phosphate buffer saline (PBS). Immediately prior the 
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start of the assay, 10 µL of PMS was added to 4 mL of XTT solution; 25 µL of PMS/XTT mixture 

was added to each well and the plate incubated in the dark for 2 h at 37 °C before reading the 

absorbance at 450 nm. The assay was performed with both technical and biological triplicates. 

 

5.2.5. Cell harvesting, lysis and protein concentration assessment 

Cells were harvested using pre-warmed trypsin-EDTA solution followed by centrifugation 

at 150 g for 5 min at 4 °C and lysed in lysis buffer (50 mM Tris-HCl pH 7.5, 1 mM EDTA, 150 

mM NaCl, 1% Triton X-100) supplemented immediately prior to usage with cOmplete™ EDTA-

free Protease Inhibitor Cocktail (Sigma Aldrich, UK) according to the manufacturer’s 

instructions. After 15 minutes incubation on ice, the samples were centrifuged at 17,000 g for 

2 minutes and the supernatant (cytosolic extract) was retained. The total protein concentration 

was determined by the Bradford assay using Pierce™ Coomassie Plus Assay Reagent 

(ThermoFisher Scientific, UK) in a 96-well plate: 5 µL of sample or standard per well were 

mixed with 250 µL of Coomassie reagent and after 10 mins the absorbance was read at 595 

nm. Samples were analysed for enzymatic activity immediately. 

 

5.2.6. Pyruvate kinase activity assays 

Pyruvate kinase activity was measured using a coupled assay using the pyruvate-

dependent conversion of NADH to NAD+ by lactate dehydrogenase as the reporter. For 

analysis of the effects on pyruvate kinase in vitro, 5 µL of the aldehyde-treated pyruvate kinase 

(equivalent to 1U) were added to a cuvette containing 30 µL of 45 mM adenosine 5′-

diphosphate (ADP), 30 µL of 45 mM phosphoenolpyruvate (PEP), 30 µL of 6.6 mM β-

nicotinamide adenine dinucleotide reduced form (NADH) and 5 µL of 200 U/mL lactate 

dehydrogenase (LDH) in 900 µL of 50 mM imidazole-HCl buffer pH 7.6, to give a final volume 

of 1 mL. The reaction at 25 °C was monitored at 340 nm for 10 minutes and the initial rate of 

reaction in μmol NADH utilized /min was calculated. For analysis of pyruvate kinase activity 

following cell treatments, the cytosolic extract was substituted for the commercial pyruvate 

kinase preparation. 

 

5.2.7. Protein in-solution digestion 

To 100 µL of aldehyde-treated pyruvate kinase prepared as described above, 100 µL of 

RapiGest SF (Waters, UK) were added and the solution vortexed. DTT was then added to a 

final concentration of 5 mM and the reaction incubated at 60 °C for 30 minutes. Cysteine 

alkylation was then performed by adding iodoacetamide to a final concentration of 15 mM and 

incubating in the dark for 30 min at room temperature. Trypsin (Trypsin Gold, Mass 

Spectrometry Grade, Promega, Southampton, UK) was added to a final concentration of 7 
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µg/mL and the samples were incubated overnight at 37 °C. To prepare samples for LC/MS, 

trifluoroacetic acid (TFA) was added to a final concentration of 0.5% and the reaction incubated 

at 37 °C for 45 min, during which time a precipitate formed. Acid-treated samples were 

centrifuged at 13000 rpm for 10 min then the supernatant carefully transferred to another tube 

and dried in a centrifugal evaporator and stored dry at -20 °C. Samples were resuspended in 

H2O/acetonitrile (98%/2%), 0.1% formic acid prior to MS analysis. 

 

5.2.8. Cellular extract in-gel digestion 

MCF-7 cells were grown as described in 2.4, but in 75 cm2 flasks. Cells were harvested by 

trypsinization and resuspended at 2x106 cells/mL in DMEM containing penicillin, streptomycin 

and 10% bovine calf serum. For each treatment, 5 mL of cells were seeded in a 25 cm2 flask, 

topped up with 4.5 mL of medium, and treated with 0.5 mL of a 10x stock of acrolein to yield 

final concentrations of 10 or 200 µM. At the end of the treatment, cells were harvested and 

extracted as described in 2.6. Extracts of 1x107 cells were run on a 7.5% denaturing 

polyacrylamide gel followed by in-gel digestion of the bands corresponding to pyruvate kinase 

according to a previously described protocol [217]. The resulting tryptic peptides were 

analysed by LC-MS/MS as described for the treatments in vitro. 

 

5.2.9. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Analysis 

Peptides were separated and analysed using an Ultimate 3000 system (Thermo Scientific, 

Hemel Hempstead, UK) coupled to a 5600 TripleTOF (ABSciex, Warrington, UK). The analysis 

was performed as previously described [298] and as detailed in section 2.2.6. 

 

5.2.10. Database Searches 

The Mascot® probability based search engine (Matrix Science, London, version 2.4.0) was 

used to interrogate the SwissProt 2019_03primary database. LC-MS .wiff files of each sample 

were searched for protein identification and oxidative post-translational 

modifications(oxPTMs). For protein identification, variable modifications of methionine 

oxidation and carbamidomethyl cysteine were used. For the analysis of the lipoxidation 

products, the initial searches additionally used a variable modification list including reduced 

and unreduced ACR(mass changes of 56.06 Da, 58.08 Da, 40.06 Da, 94.11 Da, 56.06 

Da,76.09 Da), MDA (mass changes of 54.05 Da, 56.06 Da, 134.13 Da,36.03 Da and 26.04 

Da) or HHE (mass changes of 114.14 Da, 93.13 Da,78.11 Da) adducts at cysteine, lysine and 

histidine residues. Other parameters for the searches were as follows: Enzyme: Trypsin; 

Peptide tolerance: ± 0.6 Da; MS/MS tolerance: ± 0.6 Da; Peptide charge state:+2, +3; Max 

Missed cleavages: 1; #13C: 0; Quantitation: None; Instrument:   ESI-QUAD-TOF;   Data   
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format:   Mascot   Generic; Experimental mass values: Monoisotopic; Taxonomy: Chordata. 

All data identifying modifications were manually validated before inclusion 

 

5.2.11. Protein structure visualization using PyMOL 

The PyMOL Molecular Graphics System (Version 1.2r3pre, Schrödinger, LLC) was used 

for molecular visualization of the crystal structure of pyruvate kinase. The .pdb file containing 

the known crystal structure of PKM from rabbit muscle (P11974) and from Human (P14618) 

were downloaded from Uniprot. Backbone structures and space filing modules were created 

using the dropdown menus available on PyMOL. Hydrophobicity mapping was performed 

using the script called "Color h". This script colours the amino acid residues based on the 

Eisenberg hydrophobicity scale [420]. 

 

5.2.12. Glycolysis Stress Test with Seahorse XF Extracellular Flux Analyzer 

The Glycolytic Stress Test was used to monitor cellular glycolysis upon acrolein treatment. 

Prior to the assay, the cartridge was hydrated with calibrate solution in a non-CO2 incubator at 

37 ⁰C. On the day of the assay, the XF Glycolysis Stress Test Assay Medium was prepared 

as non-buffered DMEM XF Base Medium supplemented by 2 mM L-glutamine. The lack of 

buffer is critical to detect pH changes. Cells were seeded to a 24-well XF Cell Culture 

Microplate plate at 20,000 cells/well and treated with 2, 10 or 100 μM for 2 hours. Meanwhile, 

the glucose, oligomycin, and 2-deoxy-D-glucose were left at room temperature for 15 min, 

diluted to 10mM and loaded into the cartridge. After the treatment, the media was removed, 

the cells were washed with non-buffered DMEM medium, the assay medium was added, and 

the plate incubated in a non-CO2 incubator at 37 ⁰C for 1 hour. During the assay, glucose was 

injected first to a final concentration of 1 μM and cells catabolize it through glycolysis producing 

protons causing an increase in the extracellular acidification rate (ECAR). The second injection 

was oligomycin, to a final concentration of 1 μM, which inhibits mitochondrial ATP production 

and drives the cells to a maximum glycolytic capacity. Finally, 2-DG was injected to a final 

concentration of 1 μM inhibiting glycolysis and confirming that the ECAR generated in the 

assay is due to glycolysis. After the experiment, the protein concentration in each well was 

measured by Bradford Assay and ECAR values were normalized to protein concentration. The 

Seahorse XF Glycolysis Stress Test Report Generator automatically calculated the Seahorse 

XF Glycolysis Stress Test parameters and  exported them as an Excel file. 

 

5.2.13. NMR sample preparation 

Samples were prepared according to Saborano, R. et al. [275]. MCF-7 cells were grown 

as described in 2.4 to 80% confluency. To achieve optimal reproducibility, the metabolite 
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extraction from the MCF-7 cell line was performed with ice-cold solvents to reduce all metabolic 

processes. Initially the cells were washed 2-3 times with ice cold PBS to remove residual 

media, then 400 μL of cold methanol was added to immediately quench metabolism. Cells 

were scraped off the flask and the solution transferred to a glass vial, followed by chloroform 

extraction to obtain and separate the organic and polar phase. Briefly, 200 μL of chloroform 

were added, followed by 30 seconds vortex and the addition of further 200 μL of chloroform 

and 300 μL of water. After vortex, samples were left on ice for 10 minutes, followed by 

centrifugation for 10 minutes at 4000 rpm and the polar layer was then transferred to a clean 

tube and dried under vacuum for later NMR analysis. 

 

5.2.14. NMR acquisition and analysis 

All data collection and data analysis were performed in collaboration with University of 

Birmingham and according to Saborano, et al. [275]. Data collection was carried out using a 

Bruker 600MHz Avance III spectrometer using a 1.7mm cryoprobe. Dried polar metabolites 

were re-suspended in sodium phosphate buffer in 90% water and 10% D2O (0.1 mol/L, pH 

7.00) containing 3-trimethylsilyl-2,2,3,3-d4-propionate (TMSP) as an internal chemical shift 

standard, to acquire 1D 1H NMR spectra.  1D 1H-NOESY spectra were collected at 298 K with 

a 12 ppm spectral width, 32k data points and 128 scans. Spectra were processed using 

Metabolab [421] programmes within Matlab, version R2017b (MathWorks, Massachusetts, 

United State). Prior to Fourier transformation, each free induction decay (FID) was zero-filled 

to 65536 points and multiplied by an exponential function equivalent to a 0.3 Hz line 

broadening. All spectra were aligned on TMSP, a spline baseline correction was applied, the 

water and TMSP regions were excluded and Probabilistic Quotient Normalization (PQN) was 

applied to account for dilution of complex biological mixtures. Resonances were assigned 

using Chenomx 8.1 spectral database (Alberta, Canada, 2015), and comparing with the 

chemical shifts in the Human Metabolome Database (HMDB) [422]. 

 

5.2.15. Statistical analysis 

Data were analysed with Graph Pad Prism using one-way ANOVA for single time point 

(Figure 5.4, Figure 5.5 and Figure 5.7) and using two-way ANOVA for multiple time point 

(Figure 5.6 and Figure 5.10), both with Dunnett’s multiple comparisons test, comparing the 

values of each treated sample to the mean of the untreated control, normalized to 100%. Two-

way ANOVA with Dunnett’s multiple comparison test was also used for Figure 5.14 to compare 

the values of each metabolite in treated sample to the untreated control. Data are shown as 

averages ± SEM. 
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5.3. Results 

5.3.1. Identification and mapping of lipoxidation on pyruvate kinase  

An LC-MS/MS bottom-up approach was used to investigate the in vitro modification of 

pyruvate kinase by ACR, MDA and HHE in order to map the sites of modification. Each peptide 

found modified by comparison to a database using the MASCOT® software was confirmed by 

de novo sequencing of the MS/MS spectrum [217] (examples for each aldehyde are shown in 

Figure 5.1). Following this approach, 11 acrolein-modified peptides, 10 HHE-modified 

peptides and 9 MDA-modified peptides were identified based on their peptide molecular 

weight, mass/charge ratio and charge of the peptide ion, MS/MS ion score and LC retention 

time (Table 5.1). The majority of the identified adducts occurred on lysine and cysteine 

residues, although some histidine adducts were identified. The mapping of the modified 

residues onto the enzyme 3D structure is shown in Figure 5.2. Pyruvate kinase showed 

different susceptibility to modification by each aldehyde as the residues modified were 

substantially different. ACR and HHE are both α,β-unsaturated aldehydes, therefore a similar 

profile of modification was expected. However, HHE formed adducts on Cys152, Lys188, 

Lys247, His379 that were not detected with acrolein, whereas acrolein uniquely modified 

Lys66, Lys166, Lys207 and His464. MDA gave a rather different profile, as only lysine adducts 

were identified, and modifications on Lys115, Lys224 and Lys270 were unique to this 

aldehyde. Only Lys393 and Lys475 were consistently identified as modified by all three 

aldehydes.  
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Figure 5.1. MS/MS spectra of modified pyruvate kinase tryptic peptides. LC-MS/MS was carried 

out as described in the experimental section, and peptides identified by Mascot searches as containing 

adducts were manually validated. (A) CLAAALIVLTESGR modified on the cysteine residue by acrolein 

forming a Michael adduct; (B) Michael adduct of HHE of the cysteine residue of CDENILWLDYK; (C) 

GDLGIEIPAEKVFLAQK modified by MDA as a Schiff’s base on lysine. The y and b ions indicated by 

the arrows confirm the peptide sequence and the modification on the cysteine or lysine residues 

respectively. Figure from [423].
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Table 5.1. Pyruvate kinase residues modified after 10 min treatment at high aldehyde concentrations in vitro. 

Modified 

Residues 
Pyruvate kinase modified peptides (a 

b) 

Theoretical 

mass of 

modified 

peptide 

Observed 

mass of 

modified 

peptide 

m/z 

(charge) 

Ion 

score 

Rt 

(min) 

Aldehyde 

treatment 

38 

µM 

380 

µM 

760 

µM 

5 

mM 

 Acrolein 

Cys49 SB 44NTGIIC+56TIGPASR56  1357.70 1357.83 679.9 (2+) 52 27.76 - - - ✓ 

Cys49 MA 44NTGIIC+58TIGPASR56 1359.72 1359.84 680.9 (2+) 54 27.69 - ✓ ✓ ✓ 

Lys66 MA 63EMIK+58SGMNVAR73 1292.66 1292.81 431.9 (3+) 16 21.87 - - ✓ ✓ 

Lys166 MA 163NIC*K+58VVDVGSK173 1275.68 1275.81 638.9 (2+) 13 21.94 - - ✓ ✓ 

Lys207 SB 207K+40GVNLPGAAVDLPAVSEK224 1804.01 1804.19 602.4 (3+) 62 31.00 - - - ✓ 

Cys326 MA 320AGKPVIC+58ATQMLESMIK336 1876.98 1876.17 626.7 (3+) 19 52.72 - - - ✓ 

Cys358 MA 343AEGSDVANAVLDGADC+58IMLSGETAK367 2494.16 2494.37 832.5 (3+) 37 49.48 ✓ - - - 

Lys367 MA 343AEGSDVANAVLDGADC*IMLSGETAK+58GDYPLEAVR376 3551.67 3551.99 889.0 (4+) 26 47.52 - ✓ - - 

Lys393 MA 393K+58LFELAR400 1062.61 1062.72 532.4 (2+) 27 29.34 - - ✓ ✓ 

Lys393 SB 393K+40LFELAR400 1060.59 1060.63 531.3 (2+) 9 21.87 - - ✓ ✓ 

Cys423 MA 423C+58LAAALIVLTESGR436 1473.82 1473.96 737.9 (2+) 89 51.53 - - - ✓ 

His464 SB 462QAH+40LYR467 826.44 826.51 414.3 (2+) 21 21.03 ✓ - - - 

Cys474 MA 468GIFPVVC+58K475 975.55 975.63 460.8 (2+) 31 30.97 ✓ ✓ ✓ ✓ 

Lys475 MA 468GIFPVVC*K+58DPVQEAWAEDVDLR489 2599.30 2599.51 867.5 (3+) 57 53.72 - - ✓ ✓ 

 4-hydroxy-hexenal   

Cys152 SB 152C+96DENILWLDYK162 1506.71 1506.86 754.44 (2+) 24 39.35 - ✓ ✓ ✓ 

Cys152 MA 152C+114DENILWLDYK162 1524.72 1524.72 763.43 (2+) 72 33.52 ✓ ✓ ✓ ✓ 

Lys188 MA 187QK+114GPDFLVTEVENGGFLGSK206 2235.14 2235.34 746.12 (3+) 17 35.84 - - - ✓ 

Lys247 SB 247K+96AADVHEVR255 1119.60 1119.73 374.25 (3+) 27 18.23 - - - ✓ 
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Cys326 SB 320AGKPVIC+96ATQMLESMIKKPRPTR342 2650.45 2650.72 531.15 (5+) 14 38.00 - - - ✓ 

Cys326 MA 320AGKPVIC+114ATQMLESMIKKPRPTR342 2668.46 2668.72 445.79 (6+) 13 29.35 - - - ✓ 

Cys358 MA 343AEGSDVANAVLDGADC+114IMLSGETAK367 2550.18 2550.42 851.15 (3+) 36 36.37 - ✓ ✓ ✓ 

His379 MA 377MQH+114LIAR383 981.54 981.64 491.83 (2+) 13 19.81 - - ✓ ✓ 

His391 MA 384EAEAAMFH+114R392 1174.54 1174.67 392.56 (3+) 10 21.82 - - - ✓ 

Lys393 MA 393K+114LFEELAR400 1118.63 1118.72 560.37 (2+) 26 29.38 - ✓ ✓ ✓ 

Cys423 SB 423C+96LAAALIVLTESGR436 1529.85 1529.98 765.99 (2+) 76 40.94 ✓ ✓ ✓ ✓ 

Cys474 MA 468GIFPVVC+114K475 975.55 975.62 488.82 (2+) 26 28.22 - - ✓ ✓ 

Lys475 MA 468GIFPVVCK+114DPVQEAWAEDVDLR489 2599.29 2599.49 867.50 (3+) 85 33.83 - - - ✓ 

 Malondialdehyde 

Lys115 SB 93TATESFASDPILYRPVAVALDTK+54GPEIR120 3070.59 3070.81 768.71 (4+) 42 34.07 - ✓ - ✓ 

Lys135 SB 126GSGTAEVELK+54K136 1171.61 1171.52 391.51 (3+) 52 18.74 - ✓ ✓ - 

Lys188 SB 187QK+54GPDFLVTEVENGGFLGSK206 2175.08 2175.21 726.08 (3+) 94 34.69 ✓ ✓ ✓ ✓ 

Lys207 SB 207K+54GVNLPGAAVDLPAVSEK224 1817.99 1818.03 607.02 (3+) 70 28.67 ✓ ✓ ✓ ✓ 

Lys224 SB 208GVNLPGAAVDLPAVSEK+54DIQDLK230 2402.27 2402.45 801.82 (3+) 87 33.97 - ✓ ✓ ✓ 

Lys270 SB 267IISK+54IENHEGVR278 1447.78 1447.74 483.59 (3+) 82 23.05 - - - ✓ 

Lys305 SB 295GDLGIEIPAEK+54VFLAQK311 1881.03 1881.08 628.03 (3+) 48 34.80 - - - ✓ 

Lys393 SB 393K+54LFEELAR400 1058.58 1058.57 530.29 (2+) 37 27.85 ✓ ✓ ✓ ✓ 

Lys475 SB 468GIFPVVC*K+54DPVQEAWAEDVDLR489 2596.26 2596.49 866.50 (3+) 72 36.79 ✓ ✓ ✓ ✓ 

a (subscript) – amino acid position in the mature protein 

b (superscript) - mass difference corresponding to the modification 

Michael adduction (MA) or Schiff-base formation (SB) 
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Figure 5.2. Mapping of lipoxidation adducts to the crystal structure of pyruvate kinase. Backbone 

structure with modified residues indicated in space-fill form, showing the location of adducts of acrolein 

(A), HHE (B) and MDA (C). The modified residues are color-coded with orange indicating those found 

only at 380 µM, green for those found additionally at 760 µM and blue for ones found additionally at 5 

mM. Figure from [423]. 
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The identified modifications were also mapped onto space-filling models mapped for 

hydrophobicity of the solvent-accessible surface to evaluate if the hydrophobicity may affect 

the location of the modification.  The surface hydrophobicity is indicated in red in Figure 5.3; 

no clear correlation was identified between the hydrophobicity and the site of modification. 

Nonetheless, it was observed that acrolein was able to penetrate more readily into narrow 

pockets in the enzyme in comparison to HHE. 
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Figure 5.3. Space filling models of pyruvate kinase showing surface hydrophobicity and sites of 

adduction at high aldehyde concentrations. Surface views with increasing hydrophobicity shown in 

darker red. The location of adducts of acrolein (A), HHE (B) and MDA (C) are shown color-coded with 

orange indicating those found only at 380 µM, green for those found additionally at 760 µM and blue for 

ones found additionally at 5 mM. Figure from [423]. 
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5.3.2. Inhibition of pyruvate kinase activity following treatment in vitro 

The effect of the same treatment time and concentrations on pyruvate kinase activity were 

determined in vitro by a coupled spectrophotometric assay. It is worth noting that the isoform 

used for the in vitro study was PKM1 from rabbit muscle. A significant dose-dependent effect 

on the activity of pyruvate kinase was observed for all acrolein and HHE treatments. In 

contrast, MDA at lower concentration had no effect and an impact on the activity was only 

observed at the highest concentration of 5 mM. The activity of pyruvate kinase as percentage 

of control and the number of modified peptides detected as a percentage of the total number 

of modifiable tryptic peptides in the protein are shown in Figure 5.4. A clear inverse relationship 

between the enzymatic activity and the number of modifications can be seen. HHE gave the 

highest maximum number of modified peptides, followed by acrolein, and MDA was the lowest, 

reflecting the fact that only lysine residues can be modified by MDA. However, at 380 µM 

treatment, MDA actually gave a higher percentage of modified peptides than the other two 

aldehydes.  
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Figure 5.4. Inverse relationship between the dose-dependent effect of aldehydes on the activity 

of pyruvate kinase in vitro and the percentage of modified pyruvate kinase peptides identified. 

Pyruvate kinase was treated with 38 µM, 380 µM, 760 µM and 5 mM final concentrations of acrolein, 4-

hydroxy-hexenal or malondialdehyde for 10 minutes before the assessment of its activity by 

spectrophotometric assay of NADH oxidation at 340 nm (n=4; Mean ± SEM; * p<0.1 ** p<0.01 *** 

p<0.001 **** p<0.0001). Peptide modification was determined from the total number of modified peptides 

as a % of the total modifiable peptides in the sequence. Figure from [423]. 
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The concentration range of aldehydes used for mapping of the sites of modification was 

significantly higher than the concentrations that have been measured for these aldehydes in 

their free form in plasma. Hence, the effects of a wider range of treatment concentrations, that 

included physiological (2 µM) to pathophysiological (20-100 µM) concentrations, on pyruvate 

kinase activity were tested (Figure 5.5). It can be seen that acrolein caused a dose-dependent 

decrease in the activity of pyruvate kinase, with 70% activity at 100 µM and 200 µM, 40% at 

500 µM and 10% at 1 mM treatment, corresponding to substantially more inhibition than either 

of the other aldehydes.  

Figure 5.5. Dose-dependent effect of short treatments with acrolein, 4-hydroxy-hexenal and 

malondialdehyde on the activity of in-vitro pyruvate kinase. Pyruvate kinase was treated with 2 µM, 

20 µM, 100 µM, 200 µM, 500 µM and 1 mM of each aldehyde for 10 minutes before the assessment of 

its activity (n=3; Mean ± SEM; * p<0.1 ** p<0.01 *** p<0.001 **** p<0.0001). Figure from [423]. 
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5.3.3. The effect of longer treatment times on activity and lipoxidation of pyruvate 

kinase  

It was noted that the treatment concentrations required to cause significant inhibition were 

high, and it was hypothesized that this might relate to the very short incubation times tested 

initially (10 minutes), despite the fact that the reaction of acrolein with protein was expected to 

be rapid.  Therefore, further experiments were carried out with longer incubations of 30 minutes 

to 4 hours with the lower range of concentrations for each aldehyde (Figure 5.6).  

In general, longer incubations resulted in more extensive inhibition of activity showing a 

time-dependent trend for acrolein and HHE treatments. Acrolein above 10 µM caused 

significant effect on the activity after 1 hour reaction with only 40% activity remaining in the 

100 µM treatment. Increasing the time of reaction to 2 hours caused a decrease in activity to 

approximately 20% at the same concentration, and further inhibition was observed with 4 hours 

reaction. At 10 µM acrolein, a known pathophysiological concentration [269, 424], only 40% 

remaining activity was observed after 4 hours reaction. In the case of HHE, a treatment 

concentration of 100 µM caused a time-dependent effect on the activity, with 70% remaining 

after 30 mins, 55% after 1 hour, 40% after 2 hours and 30% after 4 hours. The 4 hour treatment 

also showed a significant dose-dependent effect. Comparing the two aldehydes, acrolein 

caused more inhibition of pyruvate kinase activity. MDA did not show a clear dose or time-

dependent effect on the activity; however, significant inhibition was observed at all 

concentrations following a 2 hour treatment.   
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Figure 5.6. Effect of longer treatments with acrolein, 4-hydroxy-hexenal and malondialdehyde on 

the activity of pyruvate kinase in vitro. Pyruvate kinase was treated with 2 µM, 10 µM, 20 µM and 

100 µM of each aldehyde for 30 minutes, 1 hour, 2 hours or 4 hours before the assessment of its activity 

(n=3; Mean ± SEM; * p<0.1 ** p<0.01, *** p<0.001 and **** p<0.0001). Figure from [423].  
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The same bottom-up LC-MS/MS approach from 3.1 allowed the identification of 10 

peptides modified by acrolein and 4 peptides modified by HHE after 4 hour treatments (Table 

5.2). Mostly the same adducts were observed after 2 hour treatments (Table 5.3), with the 

exception of three residues, Lys166, Lys207 and His391, which were only found at 4 hours 

and two residues, Lys188 and His464, which were only found at 2 hours. Apart from MDA  

where no adducts could be detected, all the amino acid residues found modified with the longer 

and lower treatment were ones already identified in Table 5.1 after shorter time and higher 

concentration treatments. 
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Table 5.2. Pyruvate kinase residues modified after 4 hours treatment with low concentrations of aldehydes. 

Modified 

Residues 
Pyruvate kinase modified peptides (a 

b) 

Theoretical 

mass of 

modified 

peptide 

Observed 

mass of 

modified 

peptide 

m/z 

(charge) 

Ion 

score 
Rt (min) 

Aldehyde treatment (4 hours) 

2 

µM 

10 

µM 

20 

µM 

100 

µM 

200 

µM 

 Acrolein 

Cys49 MA 44NTGIIC+58TIGPASR56 1359.72 1359.61 680.81 (2+) 80 15.97 -     

Cys152 MA 152C+58DENILWLDYK162 1468.69 1468.58 735.29 (2+) 91 19.57      

Lys166 MA 163NIC*K+58VVDVGSK173 1275.68 1275.57 426.19 (3+) 26 11.56 - - - -  

Lys207 MA 207K+58GVNLPGAAVDLPAVSEK224 1822.02 1821.83 608.28 (3+) 16 16.21 - - - -  

Lys207 MA 207K+96GVNLPGAAVDLPAVSEK224 1860.04 1859.89 620.97 (3+) 44 16.47 - - - -  

Cys358 MA 343AEGSDVANAVLDGADC+58IMLSGETAK367 2494.16 2493.97 832.33 (3+) 118 21.22 - - -   

His391 MA 384EAEAAMFH+58R392 1118.52 1118.41 373.81 (3+) 46 11.64 - - - -  

Lys393 MA 393K+58LFELAR400 1062.61 1062.51 355.18 (3+) 37 14.66 - - - -  

Lys393 MA 393K+96LFELAR400 1100.62 1100.52 367.84 (3+) 39 14.83 - - - -  

Cys423 MA 423C+58LAAALIVLTESGR436 1473.82 1473.71 737.86 (2+) 108 20.72 -     

Cys474 MA 468GIFPVVC+58K475 919.52 919.44 460.72 (2+) 47 17.13 -     

Lys475 MA 468GIFPVVC*K+58DPVQEAWAEDVDLR489 2543.27 2543.10 848.71 (3+) 103 19.99 - - -   

 4-hydroxy-2-hexenal    

Cys152 SB 152C+96DENILWLDYK162 1506.71 1506.61 754.31 (2+) 18 22.46 - - - -  

Cys152 MA 152C+114DENILWLDYK162 1524.72 1524.59 763.30 (2+) 46 20.12      

Cys423 MA 423C+114LAAALIVLTESGR436 1529.85 1529.72 765.87 (2+) 77 22.37      

Cys474 MA 468GIFPVVC+114K475 975.55 975.44 488.73 (2+) 26 16.76 - -    

Lys475 MA 468GIFPVVCK+114DPVQEAWAEDVDLR489 2599.29 2599.11 867.38 (3+) 91 18.97 - -    

 Malondialdehyde  

No modifications detected 
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a (subscript) – amino acid position in the mature protein 
b (superscript) - mass difference corresponding to the modification 
Michael addition (MA) or Schiff-base formation (SB) 
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Table 5.3. Pyruvate kinase residues modified after 2 hours treatment with low concentrations of aldehydes 

Modified 

Residues 
Pyruvate kinase modified peptides (a 

b) 

Theoretical 

mass of 

modified 

peptide 

Observed 

mass of 

modified 

peptide 

m/z 

(charge) 

Ion 

score 
Rt (min) 

Aldehyde treatment (2 hours) 

2 

µM 

10 

µM 

20 

µM 

100 

µM 

200 

µM 

 Acrolein 

Cys49 MA 44NTGIIC+58TIGPASR56 1359.72 1359.62 680.82 (2+) 81 16.41      

Cys152 MA 152C+58DENILWLDYK162 1468.69 1468.59 735.30 (2+) 95 19.92      

Lys188 SB 187QK+40GPDFLVTEVENGGFLGSK206 2161.11 2160.92 721.31 (3+) 67 21.15 - -    

Cys358 MA 343AEGSDVANAVLDGADC+58IMLSGETAK367 2494.16 2493.99 832.34 (3+) 105 21.57 - -    

Lys393 MA 393K+58LFELAR400 1062.61 1062.52 532.27 (2+) 27 15.07 - - - -  

Cys423 MA 423C+58LAAALIVLTESGR436 1473.82 1473.72 737.87 (2+) 87 21.15      

His464 SB 462QAH+40LYR467 826.44 826.34 414.18 (2+) 15 10.37 - - - -  

Cys474 MA 468GIFPVVC+58K475 919.52 919.44 460.73 (2+) 48 17.48 -     

Lys475 MA 468GIFPVVC*K+58DPVQEAWAEDVDLR489 2543.27 2543.10 848.71 (3+) 129 20.14 - - -   

 4-hydroxy-2-hexenal    

Cys152 MA 152C+114DENILWLDYK162 1524.72 1524.59 763.30 (2+) 85 20.23      

Cys423 MA 423C+114LAAALIVLTESGR436 1529.85 1529.71 765.87 (2+) 95 20.20      

Cys474 MA 468GIFPVVC+114K475 975.55 975.44 488.73 (2+) 22 16.96 - -    

Lys475 MA 468GIFPVVCK+114DPVQEAWAEDVDLR489 2599.29 2599.09 867.37 (3+) 70 19.94 - -    

 Malondialdehyde 

 No modifications detected 

a (subscript) – amino acid position in the mature protein 
b (superscript) - mass difference corresponding to the modification 
Michael addiction (MA) or Schiff-base formation (SB) 
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As observed for shorter treatment times, there was an inverse relationship between 

enzyme activity and percentage of peptides modified for longer treatments, although the 

total level of modification was significantly lower for these lower treatment concentrations 

(Figure 5.7).  

 

Figure 5.7. Inverse relationship between the dose-dependent effect of aldehydes on the 

activity of pyruvate kinase in vitro and the percentage of modified pyruvate kinase peptides 

identified. Pyruvate kinase was treated with 2 µM, 10 µM, 20 µM and 100 µM of each aldehyde for 

2 hours or 4 hours before the assessment of its activity (n=3; Mean ± SEM; * p<0.1 ** p<0.01, *** 

p<0.001 and **** p<0.0001). Figure from [423]. 

The sites of modifications for these treatments were also mapped to the 3D structure 

and are shown in Figure 5.8, where it can be seen that cysteine residues were the most 

sensitive to both acrolein and HHE modification. These were also mapped onto the 

hydrophobicity models (Figure 5.9) but once again no obvious correlation between the sites 

of modification and hydrophobicity was apparent. 
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Figure 5.8. Mapping of lipoxidation adducts formed at low concentrations for 4 h treatments. 

Backbone structure with modified residues indicated in space-fill form, showing the location of 

adducts of acrolein at 2 h (A); acrolein at 4 h (B) and HHE at both time points (C). The modified 

residues are color-coded with yellow indicating those found only at 10 µM, orange for those found 

additionally at 20 µM, green for those found additionally at 100 µM and blue for ones found 

additionally at 200 µM. Figure from [423]. 
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Figure 5.9. Space filling models of pyruvate kinase showing surface hydrophobicity and sites 

of adduction at low treatment concentrations. Surface views with hydrophobicity mapped in red 

and showing the location of adducts of acrolein (A), HHE (B) and MDA (C). The modified residues 

are color-coded with yellow indicating those found only at 10 µM, orange for those found additionally 

at 20 µM, green  for those found additionally at 100 µM and blue for ones found additionally at 200 

µM. Figure from [423]. 
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5.3.4. Comparison of aldehyde effects on MCF-7 cell pyruvate kinase activity and 

cell viability 

To investigate the ability of the aldehydes to cause inhibition of pyruvate kinase in a 

cellular environment, MCF-7 cells were treated in culture with aldehydes and their impact 

on extractable pyruvate kinase activity and cell viability was tested. The data here presented 

was acquired in collaboration with two placement students. These results are published, 

and the students contribution was acknowledged as second and third authors [423].  

Cells were treated with the lower range of concentration tested in vitro for acrolein, MDA 

and HHE for 2 hours or 24 hours (Figure 5.10). Two hour treatments at 10 μM acrolein 

inhibited the activity of pyruvate kinase to 20% of control (Figure 5.10A), while higher 

concentration treatments had a more severe effect on the activity of the enzyme. 

Interestingly, cellular pyruvate kinase activity seemed to be less sensitive to 24-hour 

acrolein treatment with 2-10 µM acrolein, although at higher concentrations the effect was 

very similar to 2 hours. In contrast, the cell viability showed a slightly different response to 

treatments at the two time points. Neither treatment time with acrolein caused significant 

loss of cell viability until concentrations of 100 µM (Figure 5.10B). HHE caused a similar, 

though more gradual, decrease in the enzymatic activity. The 2 h treatment at 10 μM 

inhibited the activity of pyruvate kinase to 60% of control (Figure 5.10C) and higher 

concentration treatments caused an even more severe effect. Similar to acrolein, pyruvate 

kinase activity seemed to be less sensitive to 24-hour HHE treatment at all concentrations, 

but in contrast with acrolein, these treatments only caused a maximum of 20% of loss in 

cell viability even at higher concentration treatments (Figure 5.10D). The effect of MDA on 

the cellular pyruvate kinase activity was similar to, though smaller than HHE (Figure 5.10E). 

While the concentration-dependent loss of activity appeared greater for the 2 hour 

treatment, MDA caused no significant loss of viability at any concentration or time point, in 

contrast with the other two aldehydes tested, especially ACR (Figure 5.10F).  
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Figure 5.10. Dose- and time-dependence of aldehyde treatment on the activity of pyruvate 

kinase and viability of aldehyde-treated MCF-7 cells. Pyruvate kinase activity is shown on the left 

for acrolein (A), 4-hydroxyl-2(E)-hexenal (C) and malondialdehyde (E), while cell viability is shown 

on the right: acrolein (B), 4-hydroxyl-2(E)-hexenal (D) and malondialdehyde (F). Cells were treated 

with 2 µM, 10 µM, 20 µM, 100 µM and 200 µM of each aldehyde for 2 hours or 24 hours before 

proteins were extracted and 10 µg of extract were used for pyruvate kinase activity to be assessed. 

Cell viability assays were performed with n=3 for MDA and HHE and n=4 for ACR (Mean ± SEM; * 

p<0.1 ** p<0.01, *** p<0.001 and **** p<0.0001). * Comparison between treatments and control for 

each incubation time. # comparison between incubation times. Figure from [423] (This data was 

acquired by the co-authors Tanzim Ahmed and Will L Dann and used in this thesis with their 

permission).  
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LC-MS/MS analysis of the cell extracts after 10 µM and 200 µM acrolein treatment 

allowed for modifications of cellular pyruvate kinase to be mapped. Although the sequence 

coverage was low, modifications on Cys152 and Cys358 were detected (Table 5.4 and 

Figure 5.11). This data agrees with the data from the in vitro treatments, where it was 

identified that these residues were highly susceptible to adduct formation. 

 

Table 5.4. Pyruvate kinase residues modified after treatment of MCF-7 cells with acrolein 

Treatment 
Sequence 
coverage 

Modification 
Modified 

amino 
acid 

Peptide 
Ion 

Score 

200 µM 24h 29% ACR (+58Da) Cys152 CDENILWLDYK 61 

200 µM 2h 32% ACR (+58Da) Cys152 CDENILWLDYK 42 

10 µM 24h 47% - - - - 

10 µM 2h 51% ACR (+56Da) Cys358 AEGSDVANAVLDGADCIMLSGETAK 82 

Control 2h 49% none - - - 

Control 24h 56% none - - - 

 

 

 

Figure 5.11. MS/MS spectra of different pyruvate kinase tryptic peptide from MCF-7 cellular 

extracts. CDENILWLDYK (A) and AEGSDVANAVLDGADCIMLSGETAK (B) modified on a cysteine 

residue by ACR. The y and b ions indicated by the arrows confirm the peptide sequence and the 

modification on the cysteine residue. Figure from [423].  
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5.3.5. Acrolein effect on the MCF-7 cells metabolism 

The previous sections suggest pyruvate kinase activity to be inhibit in cell by treatment 

with acrolein. To assess the effect of the treatment on glycolysis, the extracellular 

acidification rate (ECAR) was measured through real-time and live cell analysis upon 2 

hours of acrolein treatment, using a Seahorse XF Analyzer. Figure 5.12  shows the ECAR 

profile for MCF-7 cells untreated (control) and acrolein treatment at different concentrations. 

 

 

Figure 5.12. Extracellular acidification rate (ECAR) profile of untreated and acrolein-treated 

MCF-7. Cells were treated with 2, 10 or 100 μM acrolein prior to the assay. Addition of glucose at 15 

min promoted glycolysis and the acidification increase by release of protons (H+) by the cells. 

Oligomycin inhibits ATP synthase, driving glycolysis to its maximum rate. Later, a competitive 

inhibitor of glucose (2-DG) is added to shut down glycolysis. 

Upon acrolein treatment, a dose-dependent decrease on the glycolytic capacity was 

observed. Glycolytic capacity is the maximum ECAR reached by a cell after addition of 

oligomycin which effectively shuts down oxidative phosphorylation and drives the cell to use 

glycolysis to its maximum capacity.  
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To further investigate the effect of the inhibition of pyruvate kinase in a cellular 

metabolism, the metabolomic profile of MCF-7 cells was analysed before and after acrolein 

treatment. Figure 5.13 shows the standard 1H NMR spectrum of the metabolites extract 

from MCF-7 cells, where a multitude of signals was detected, reflecting the complex sample 

composition. 

 

 

Figure 5.13. Representative 1H NMR spectrum of the metabolome of MCF-7 cells. Some 

assignments are indicated: three-letter codes are used for amino acids, ADP - adenosine 

diphosphate, ATP - adenosine triphosphate, BCAA - branched chain amino acids, NAD - 

nicotinamide adenine dinucleotide, PCho - phosphocholine. 
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The low frequency region (δ 0-3) shows resonances from several amino acids including 

the branched chain amino acids, alanine, threonine and glutamate, as well as organic acids 

such as lactate and acetate. In the mid-frequency region (δ 3-5.5) additional metabolites 

were detected, including glycine, choline-containing compounds, fructose and serine. The 

high-frequency region (δ 5.5-9) is characterized by signals arising from aromatic amino 

acids such as phenylalanine and tyrosine, organic acids such as fumarate and nucleotides 

such as ADP, ATP and NAD+. It is worth noting the high intensity of the peak corresponding 

to lactate in the low frequency region, which is likely to occur as these are cancer cells and 

therefore known to convert most of glucose to lactate regardless of the availability of O2 (the 

Warburg effect) [270]. In total, 27 compounds were identified in the cells providing 

significant information on the metabolic composition and setting the basis for interpreting 

the effect of acrolein exposure. MCF-7 cells were exposed to 2 μM, 10 μM and 100 μM 

acrolein for 2 and 24 hours followed by metabolites extraction for analysis. The 

concentrations and time range of the treatments were chosen based on the cell viability 

results presented in Figure 5.10. Figure 5.14 shows the 1H NMR spectra for two hour 

exposure to acrolein at the three different concentrations tested and its corresponding 

control (non-exposed). 
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Figure 5.14. 1H NMR spectra of the metabolome of MCF-7 cells untreated and upon treatment 

with 2 μM, 10 μM and 100 μM acrolein for two hours. 

A visual comparison of the four spectra allows for some differences to be proposed, 

such as a decrease in the levels of lactate, glutamate and fumarate in the exposed cells. 

Additionally, these spectra demonstrate that acrolein caused the metabolome of MCF-7 

cells to change in a concentration-dependent manner, with higher concentrations causing 

stronger effects. To better evaluate the effect of acrolein on the metabolome at different 

concentrations and times of treatment, the peaks from the spectra were integrated and the 

intensity of 18 metabolites is shown in Figure 5.15. The metabolites chosen for integration 

were based on the non-ambiguity of their identification, no overlap with other peaks on the 

spectrum and a good signal to noise ratio of their corresponding peak.  
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Figure 5.15. Dose and time-dependence of acrolein treatment on the metabolism of MCF-7 

cells.  Cells were exposed to 2 µM, 10 µM and 100 µM of acrolein for 2 hours or 24 hours followed 

by metabolites extraction and analysed by 1H NMR. (n=3; Mean ± SEM; * p<0.1 ** p<0.01 *** p<0.001 

**** p<0.0001). * Comparison between treatments and control for each incubation time. # comparison 

between incubation times. 
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The metabolome analysis showed that there was a concentration- and time-dependent 

effect of acrolein in the cellular metabolism including metabolites from glycolysis, the TCA 

cycle and amino acid metabolism. At 2h of exposure to μM acrolein, valine and 

phenylalanine were lower than in the control. A higher concentration of 10 μM acrolein 

showed further decrease in valine and an increase in aspartate, while for phenylalanine and 

all the other metabolites no changes were observed. However, 100 μM acrolein completely 

changed the cellular metabolism with pyroglutamate, methionine and glucose higher than 

the control, and almost all of the other metabolites identified were lower than the control 

including alanine, glutamate, aspartate, glycine, lactate, threonine and fumarate. The profile 

at 24 hours was similar, but a more pronounced metabolic response was apparent for 

almost all metabolites at this time-point. Aspartate was observed to be lower than the 

control at 24 hours, in contrast to 2 hours. Also for 2 μM acrolein, it was observed that there 

was an increase in lactate, and for 10 μM acrolein the levels of threonine were lower for the 

24 hour treatment in comparison to the 2 hour. Additionally, alanine and glutamate 

decreased more steeply after the 24 hour treatments.   
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5.4. Discussion 

Pyruvate kinase is an important regulatory enzyme in glycolysis, and changes in its 

expression level, isoform profile and activity have been linked to the switch to aerobic 

glycolysis in cancer and proliferating cells [350]. Cancer cells also have an altered redox 

status [392] leading to increased lipid peroxidation and the formation of electrophilic short-

chain carbonyl species, but previously there have been few studies of the effects of these 

carbonyl species on pyruvate kinase. To address this question, the inhibition of pyruvate 

kinase activity was measured following treatment with acrolein, HHE and MDA in vitro, and 

the formation of protein-aldehyde adducts was monitored  by LC-MS/MS. A clear inverse 

relationship was observed between the extent of adduct formation and the activity of 

pyruvate kinase for all three aldehydes, and acrolein was found to cause the greatest 

inhibition. MDA had no significant effect until much higher concentrations were used, 

probably due to its chemistry that only allows for reaction with lysines to form Schiff’s base 

adducts. However, like the other aldehydes, it can also cause cross-linking.  

The mass spectrometry analysis of the profiles of modification showed different 

susceptibility of pyruvate kinase residues to each aldehyde. The extent of inhibition was 

dependent on the length of incubation and the treatment concentration, with longer 

treatments causing loss of activity at lower and physiological concentrations, suggesting 

that reversibility of these adducts was not a significant factor. Pyruvate kinase extracted 

from treated cells showed higher susceptibility to modification, indicated by a greater loss 

of activity at lower concentration than found in vitro, and no correlation with the loss of cell 

viability was observed, suggesting that the loss of activity is not due to general cell 

dysfunction. It has been reported previously that tumour cells can survive and proliferate 

with very low pyruvate kinase activity [425], supporting the suggestion that loss of pyruvate 

kinase activity does not result in cell death. The susceptibility of individual residues to 

modification varied according to the aldehyde, and even ACR and HHE, which are both α,β-

alkenals, showed different modification profiles. Although there were six common residues 

(Cys326, Cys358, Lys393, Cys423, Cys474, Lys475) modified by these aldehydes following 

short treatments at higher concentrations, there were also several differences. This may be 

due to the smaller size of acrolein and a corresponding ability to access more buried 

residues, such as Cys49, Lys207 and His464. Some additional residues modified by HHE 

seemed to be surface accessible, including Lys188 and Lys247, and it is unclear why these 

were not adducted by acrolein; mapping of the surface hydrophobicity did not suggest that 

modification with the longer or shorter aldehydes correlated strongly with this factor. The 

only overlap between the three aldehydes were the modifications on Lys393 and Lys475. It 

is important to note that other modifications might have been present but not detected by 

the methods used, such as cross-linking.  
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It is important to attempt to understand the potential functional effects of the identified 

modifications on different residues. Two of the cysteine residues found modified by acrolein 

and HHE have been previously reported to be modified by oxidation [405] or electrophilic 

attack by HNE and ONE [273]. While Cys326 was only modified at higher concentration, 

Cys358 was modified at lower concentration. Cys326 is buried in the tetramer form but 

accessible in the monomeric form, and a modification at this site could prevent the 

reformation of the active tetramer [405], or destabilize the intact tetramer. In PKM1 this 

residue is protected, which is likely to account for the requirement of a high concentration 

of aldehyde to detect its modification. Cys358 is located close to the substrate binding site, 

and has previously been reported to regulate pyruvate kinase activity by oxidation, 

promoting tumour growth and survival in a pro-oxidative cellular status [403]. Cys423 was 

another cysteine residues shown to be sensitive to ACR and HHE adduct formation, which 

together with Cys152. Cys423 is located at the subunit interface, and a modification on this 

residue could also potentially destabilize the tetrameric form. Cys424 plays a role in protein-

protein interaction and allosteric regulation by F-2,6-bP, and has been reported to be 

modified by electrophilic carbonyl species [273]. However, this residue is only present in the 

PKM2 isoform and therefore was not found modified in the in vitro study described here. 

Lysine residues can also be modified, and it is important to understand their role in the 

enzyme activity. For example, Lys305 was found modified at the highest MDA treatment 

and modification of this residue by acetylation had been reported to reduce pyruvate kinase 

activity by lowering the affinity for PEP, or triggering the degradation of the enzyme itself 

under nutrient-deplete conditions [426].  

The inverse relationship between pyruvate kinase activity and the percentage of 

modified peptides observed suggests that the accumulation of adducts, rather than a 

modification on a specific residue, contributes to conformational change leading to major 

loss of activity. However, the modification on a single residue cannot be discounted as a 

possible cause of the loss in activity. For instance, losses in activity were observed at 38 

μM acrolein and HHE after 10 mins and 10 μM after 4 hour treatments, thus the adducts 

detected on these conditions (Cys 152, Cys358, Cys423, His 464, Cys474) are most likely 

to be involved. The fact that MDA did not cause an inhibition of activity on short treatments, 

but the modification of many lysines were still detected by LC-MS/MS, suggests that none 

of these residues are essential for the normal functioning of the enzyme. Instead these 

residues may well be acting as surface decoys for modification to prevent oxidative damage 

to more critical residues. The eventual loss of activity above 1 mM MDA is probably a result 

of conformational changes and unfolding of the protein, rather than modification on specific 

amino acid residues. Nevertheless, lysine residues have been reported to be involved in 

the regulation of pyruvate kinase, for example Lys433 can interact with phosphotyrosine-
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containing proteins leading to the inhibition of the enzyme by release of F-1,6-bP [427-429]. 

On the other hand, proteolysis has also been shown to be inhibited by crosslinking of lysine 

residues on enzymes [55]. 

The extractable pyruvate kinase activity in the human breast cancer cell line MCF-7 was 

found to be extremely susceptible to cellular acrolein treatment, with more than 80% loss of 

activity after 2 hours of 10 μM acrolein, in contrast to an inhibition of about 30% in vitro with 

the same treatment. MDA also had a much stronger inhibitory effect on cellular pyruvate 

kinase, compared to the minimal effect on activity in vitro, whereas the effects of HHE in 

vitro and in vivo were similar. It is important to note that the treatments in vitro and in cells 

cannot be directly compared, as the in vitro worked was carried out using the PKM1 form 

from rabbit muscle, whereas the MCF-7 cells have been shown to mainly contain the PKM2 

isoform [430]. PKM2 can be allosterically regulated and readily dissociates into dimers or 

monomers with much lower activity, in contrast to PKM1 which is found constitutively in the 

active, tetrameric form. Despite the large number of different proteins in cells, pyruvate 

kinase was highly susceptible to inactivation by the aldehyde treatment. However, it is not 

clear which mechanism, irreversible modification, increased degradation or decreased 

synthesis of the enzyme, lead to the loss of activity. Previous studies on HNE and ONE 

using click chemistry followed by shot-gun proteomics identified isoforms M1, M2 and R as 

susceptible to lipoxidation [431], and another study reported PKM2 to be modified by the 

same compounds in human colorectal carcinoma (RK) cells [273]. These observations 

support the hypothesis that the loss in activity is related to direct pyruvate kinase 

modification by the aldehydes. 

Interestingly, for all treatments the loss of activity at low treatment concentrations was 

less pronounced after 24 hours than 2 hours, which suggest that during longer treatment 

defence mechanisms are activated by the cell to overcome the loss of activity. In fact, 

pyruvate kinase has a relatively high turnover rate with half-life of 0.7 days [432], which 

could explain the recovery of enzyme activity at 24 hours at lower concentrations of 

aldehyde, although this turnover rate was not measured under the lipoxidative stress 

conditions of the experiments described in this thesis. It is also known that electrophilic 

modification of proteins, by HNE or analogues, signals for protein degradation and recycling 

by the 20S proteasome [433]. However, high concentration treatments can cause cross-

linking [434] and protein aggregation, which inhibits the proteasome and leads to cell death 

[435].  

During transformation of cells to a tumorigenic phenotype, pyruvate kinase isoforms and 

activity have been reported to change in order to switch to aerobic glycolysis (the Warburg 

effect) [398], resulting in an increase in the production of lactate by glucose-dependent 

pathways. This study suggests that oxidative modification can also change PKM2 activity 
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and consequently cause changes in metabolic response. It has been suggested that 

inhibition of pyruvate kinase causes a backing-up of metabolites in glycolysis as far at 

glucose-6-phosphate, leading to an increased flux through the pentose phosphate pathway 

that facilitates antioxidant defence and the synthesis of nucleotides [406]. Despite the low 

activity of pyruvate kinase, cancer cells are still able to maintain high lactate production, so 

it was suggested that rather than complete inhibition of pyruvate kinase, PKM2 has a high 

Km for PEP which results in a different flux through glycolysis supporting both lactate 

production and pentose phosphate pathway [436]. However, pyruvate kinase is highly 

susceptible to oxidative and electrophilic attack, and there is evidence of elevated levels of 

oxidants and antioxidants in cancer [437]. This is supported by the data presented in this 

study as well as others [273, 403, 405, 407]. In the case of inhibition by electrophilic species, 

it seems likely that increased flux through the pentose phosphate pathway and altered 

metabolic state increases protein synthesis and maintains cellular functioning. 

The decrease in the glycolytic capacity of the cells upon acrolein treatment, confirms 

the data discussed above suggesting that upon treatment the cellular glycolysis is reduced, 

and cells switch their metabolism for cell survival and proliferation. Additionally, an NMR 

based metabolomics approach was used to confirm these changes in the cellular metabolic 

state. As discussed above, acrolein decreased the activity of pyruvate kinase and 

consequently the amount of pyruvate being produced through glycolysis. However, the 

treatments did not show any effect on the cell viability until 100 μM acrolein was reached 

suggesting that the cells were changing their metabolism and surviving despite the 

decrease in pyruvate kinase activity. The results of the metabolome analysis showed that 

acrolein induced changes in amino acid, energy and oxidative stress-related metabolism. 

The decrease in pyruvate generated from glucose metabolism resulted in utilization of 

alternative pathways to overcome this, since pyruvate is crucial in cancer cells for 

conversion into lactate required for invasion and metastasis [438]. This hypothesis was 

confirmed by no statistically significant differences being observed in the amount of lactate 

after treatments, where only 100 μM acrolein after 24 hours was able to induce a decrease. 

The reduced pyruvate kinase activity was compensated for in MCF-7 cells by the production 

of pyruvate and macromolecules via glucose independent pathways. It has been reported 

that alanine consumption is increased when pyruvate levels decrease [439], and the 

decrease in alanine and glutamate observed at 24 hours treatment suggests that these 

could be being used by the MCF7 cells to fuel the tricarboxylic acid (TCA) cycle, lipid 

metabolism and to be converted to pyruvate [440]. Another alternative is for pyruvate to be 

produced from tyrosine, which itself can be produced from phenylalanine [441], and both of 

these aromatic amino acids showed a significant decrease at 24 hours treatment, 

suggesting that this may be another pathway which the cells are using to overcoming the 
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lack of pyruvate generation from glucose. Tyrosine can also be converted to fumarate [442], 

but the decrease in the levels of fumarate observed suggests that this pathway is not being 

activated, or that fumarate is readily being converted into other metabolites. In fact, cancer 

cells tend to favour the conversion of pyruvate into lactate rather than using the TCA cycle, 

so the use of aromatic amino acids to produce pyruvate over supporting the TCA cycle 

might be expected. A limitation of this metabolomic approach was that no metabolites from 

the pentose phosphate pathway were detected, so no inferences can be made from these 

results on whether metabolism is directed towards this pathway. However, accumulation of 

glucose was not observed, except at the highest acrolein concentration, suggesting that 

glucose was still being used despite the inhibition of pyruvate kinase. 

Several other amino acids were found to vary in response to acrolein in addition to the 

ones mentioned above, and these different amino acids are involved in different metabolic 

pathways. For example, valine is metabolised to carbohydrates, leucine to fats and 

isoleucine to both. After acrolein treatment, isoleucine, valine and threonine were found 

significantly decreased after 24 hours, which could be an indicator either of their metabolism 

towards protein synthesis or to form a series of coenzyme A compounds that can be further 

oxidized for use in the TCA cycle in the forms of acetyl and succinyl CoA [443], contributing 

to the energy metabolism. Another amino acid found to vary upon acrolein treatment was 

glycine, which significantly decreased at 24 hours in an acrolein concentration-dependent 

manner. Glycine is the simplest amino acid and can be utilized for the biosynthesis of 

glutathione, creatine, nucleic acids and uric acid [444], suggesting that its decrease might 

be link with the production of antioxidant defences. In fact, the simultaneous decrease of 

glycine and glutamate at 10 μM and 100 μM at 24 hours might suggest an increase in the 

biosynthesis of glutathione in order to provide protection against the oxidative stress 

generated [445] and to promote the detoxification of acrolein [446, 447]. GSH-ACR adducts 

have been previously detected in B16-BL6 mouse melanoma cells exposed to cigarette 

smoke extract [448] and these adducts were promptly reduced and excreted to the 

extracellular fluid resulting in the detoxification of acrolein. The same group showed that 

this mechanism of detoxification of acrolein also occurs in non-cancerous cells [449]. The 

decrease in glutamate might also be related to the increase in pyroglutamate, an analogue 

of glutamate produced by the loss of a water molecule [450]. Even though its biological role 

is still not completely understood, free pyroglutamate is known to have a role in 

osmoprotection and its de novo synthesis usually occurs in response to osmotic stress 

[451]. Pyroglutamate also has an anti-diabetic effect in type 2 diabetes suggesting a role in 

lipid metabolism, although the mechanism is still not clear [452]. Figure 5.16 summarises 

the metabolic changes described above for better visualization and understanding.  
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Figure 5.16. Cellular glycolysis and TCA cycle metabolism. Diagram representing the metabolic 

changes detected by 1H NMR and summarizing the changes discussed above. Green arrows 

represent the most active reactions according to the observed changes in the levels of each 

metabolite. These point to a change in metabolism to compensate the loss of pyruvate kinase by 

promoting pyruvate formation through amino acids and fuelling the TCA cycle metabolism via other 

ways other than glycolysis. The channelling of glycolysis intermediates into the pentose phosphate 

pathway was studied and is presented in grey. 
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All of the metabolic changes discussed above, either for compensation of lower 

production of pyruvate from glucose or increase in antioxidant defences, were all detected 

significantly after 24 hour treatments but not after 2 hours, which strengths the hypothesis 

of time being needed to activate these defence mechanisms, and also justifies the reduced 

loss of activity after 24 hours. It is also worth noting that the treatments presented in this 

study reflect an acute acrolein exposure allowing the cells to adapt to the treatment; a 

chronic exposure such as in inflammatory disease might show a different metabolic 

response. 

In summary, this study has provided novel data on the susceptibility of the key glycolytic 

enzyme pyruvate kinase to modification by 3 aldehydes with different chemical reactivities: 

acrolein (an alkenal), HHE (a hydroxyalkenal), and MDA (a dicarbonyl), and has shown that 

they cause differential inhibition of activity both in vitro and in a breast cancer cell line. 

Pyruvate kinase in MCF-7 cells was extremely susceptible to inhibition and modification by 

acrolein, which is a carcinogen present in tobacco smoke as well as a product of lipid 

peroxidation. Metabolomic analysis of MCF-7 cells upon acrolein treatment revealed a 

cellular metabolic change that could suggest an additional mechanism by which this 

compound may contribute to tumorigenesis. 
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Chapter 6. Effect of reactive short-chain aldehydes on 

intermediate filaments network organization 
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6.1. Introduction 

The cytoskeleton is the principal machinery responsible for maintaining cell shape and 

mechanics. It is commonly divided in terms of its functional subsystems into actin filaments 

(AFs), microtubules (MTs), and intermediate filaments (IFs), according to their size and 

protein content. However, recent studies show that key cellular functions such as cell 

division are dependent on strong crosstalk between all three subsystems [453, 454].  

Microtubules are the largest type of filament (about 25 nm in diameter) and are made of 

α/β-tubulin heterodimers, which assemble into a polar, cylindrical structure in the presence 

of GTP [455]. This is responsible for cell shape, organelle positioning, cell polarity and 

segregation of chromosomes during cell division [456]. The different functional 

specialization can be acquired by interaction with microtubules-associated proteins (MAPs) 

but also by the “tubulin code” which consists of a combination of differential expression of 

α- and β-tubulin isotypes and tubulin post-translational modifications [457, 458]. Actin is the 

most abundant protein in many cells and the component of microtubules. Humans have 

three genes for α-actin, one gene for β-actin, and two genes for γ-actin [459]. Actin has a 

strong tendency to polymerize into filaments, which consist of two strands of subunits in 

right-handed helices staggered by half the length of an actin monomer (2.7 nm) [460, 461]. 

These are responsible for providing structure and support to internal movements, including 

interaction with myosin motor proteins [462], intracellular transport [463], cellular structure 

[464], muscle contraction [465] and cytokinesis [466]. 

Intermediate filaments are made of filamentous proteins that have no known enzymatic 

activity but have a conserved substructure necessary for their self-assembly into 

intermediate filaments (which are about 10 nm diameter). The various intermediate 

filaments provide each cell type with a unique cytoskeletal network, which can be 

considered as ‘identity cards’ for cell and tissue differentiation [467]. This extensive 

cytoplasmic network connects the cell cortex to intracellular organelles, conferring an 

advantage for intermediate filaments in coordinating cell activities [468]. Intermediate-

filament proteins can be divided into five types on the basis of primary and gene structure, 

assembly properties and tissue distribution. Keratins (types I and II) form necessary 

heteropolymers in epithelial cells, while vimentin, desmin, glial fibrillary acidic protein 

(GFAP) and peripherin (type III) form homopolymer intermediate filaments. Neurofilament 

proteins (type IV) include three neurofilament subunits (NF-L, NF-M and NF-H), as well as 

nestin, syncoilin and α-internexin. Lastly, the nuclear intermediate filaments (type V) consist 

of protein lamin A, B1, B2 and C [454, 469]. 

Vimentin is a coiled-coil protein composed mainly of α-helical regions linked by 

connecting segments. Even though a crystal structure for the full-length monomeric or 

tetrameric vimentin is not yet available, molecular modelling proposes that monomers 
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assemble into parallel dimers first, which in turn associate antiparallelly into tetramers 

resulting in the structural units for polymerization [470]. These forms robust filaments 

extended from the nuclear periphery to the cell membrane, and are therefore responsible 

for several cell activities, including organelle positioning, cell migration and adhesion, and 

cell signalling [471-476]. Vimentin filaments are able to interact with signalling proteins and 

are known to bind to phosphorylated ERK, modulating MAPK cascade signaling [477]. Due 

to such important roles, vimentin has critical implications in pathophysiological conditions. 

It is recognized as an active factor in cancer [478] and as an autoantigen in rheumatic fever 

and rheumatoid arthritis [479, 480]. Additionally, it is involved in wound healing and 

consequent excessive scarring [481, 482], and has a facilitating role in viral infections [483, 

484]. The assembly of the vimentin network is regulated by interaction with microtubules 

and their associated proteins [454, 485]. Under stress conditions, post-translational 

modifications such as phosphorylation, nitrosylation or carbonylation may also be involved 

in the regulation of vimentin network [486-489].  

In a pathophysiological environment, cells increase the production of oxidants such as 

hydrogen peroxide, which can directly affect proteins or generate more reactive compounds 

such as hydroxyl radicals that can cause damage to cellular components, as well as lipid 

peroxidation. Short-chain aldehydes are one of the many products of the peroxidation of 

lipids and due to their high reactivity can cause covalent modifications and crosslink of 

proteins, altering their structure and consequently function [20, 31]. Lipoxidation can occur 

via Schiff’s base formation with lysine residues or formation of Michael adducts on histidine, 

cysteine or lysine residues [281] and its products have been found in inflammatory diseases 

such as atherosclerosis and Alzheimer’s disease [282]. The lipid peroxidation product 4-

hydroxynonenal (HNE) is by far the most studied however other aldehydes deserve some 

consideration [490]. The 6-carbon 4-hydroxyhexenal (HHE) is one of the major lipid 

peroxidation products of ω-3 polyunsaturated fatty acids (PUFAs) with comparable 

reactivity to HNE [113]. The 3-carbon compound malondialdehyde (MDA) is the most 

studied in parallel with HNE and due to its bifunctionality has the potential to crosslink 

proteins [104, 129]. Another 3-carbon aldehyde is acrolein, more commonly associated with 

tobacco smoke 31, it is highly reactive, especially with thiol groups of proteins, and it has 

been associated with apoptosis, inflammation and antioxidant defence regulation [71, 80]. 

Intermediate filaments are highly sensitive to oxidative and electrophilic stress, and their 

proteins such as vimentin, GAFP and lamin have been previously reported as direct targets 

not only of oxidation and nitrosylation as stated above but also of lipoxidation [491-493]. 

MDA and glyoxal (GO) have been shown to play a role in fibrosis and impaired wound-

healing processes mediated by vimentin disruption and deciliation [494]. The smoke 

component acrolein was reported to target vimentin and cause cross-linking in lung cells 
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[495] and vimentin network rearrangement/disruption in human gingival fibroblasts [496]. 

More recently, the pre-incubation in vitro wildtype vimentin with HNE before polymerization 

was shown to result in shorter filaments. This effect was slightly attenuated by mutation of 

the residue Cys328, required for polymerization,; however, the levels of total adducts 

detected by western blot did not change since HNE could form adducts with other residues 

such as histidine and lysine [497]. In fact, it has been previously reported that Cys328 is 

required for the normal function of vimentin under resting conditions and for its plasticity in 

response to oxidative stress. The dual function of the single cysteine residue on vimentin is 

related to its modulation by zinc levels. Zinc was shown to regulate vimentin polymerization 

and cysteine modification, suggesting that this specific residue has a zinc binding role on 

vimentin [498]. Lipoxidation of the single cysteine residue Cys328 by cyclopentenone 

prostaglandins (cyPG), a reactive lipid type generated by inflammation, has been previously 

reported. This covalent adduct between the  lipid and Cys328 caused a rearrangement of 

the vimentin network [492, 499]. 

As yet, there have been no comparative studies of Cys328-mediated effects of different 

small aldehydes on vimentin. Therefore the aim of this study was to address the importance 

of Cys328 in vimentin organization, by comparison of the network upon treatment of cells 

expressing wildtype vs cells expressing mutant Cys328S with acrolein, malondialdehyde 

and 4-hydroxyhexenal. Moreover, the ability of the vimentin network to reorganize 24 hours 

after treatment with acrolein and malondialdehyde was also assessed by overnight 

monitoring of the vimentin network organization.  
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6.2. Material and Methods 

6.2.1. Cell culture and aldehyde treatment 

Adrenal carcinoma SW13/cl.2 cells are a well-known model for vimentin cellular studies 

due to their lack of cytoplasmic intermediate filaments [500]. These cells allow for the effects 

of vimentin to be study without interference from the endogenous protein. Cells were 

cultured in p100 dishes in DMEM with 10% (v/v) fetal bovine serum (FBS) and antibiotics 

(100 U/ml penicillin and 100μg/ml streptomycin). For network visualization, cells were co-

transfected with RFP//vimentin plasmids, expressing untagged vimentin plus GFP-vimentin 

for time-lapse microscopy. SW13/cl.2 cells untransfected or stably transfected with 

RFP//vimentin wild type (wt) or RFP//vimentin C328S mutant, have been described 

previously [498]. For time-lapse experiments, transient transfections were carried out in p35 

dishes divided in 4 compartments at 70% confluence using Lipofectamine 2000. Briefly, 1 

μg of DNA (0.8 μg of RFP//vim wt and 0.2 μg of GFP-vimentin wt) and 3 μL of Lipofectamine 

were used per dish. Transfections were carried out in medium without antibiotics for 48 h. 

Imaging of live cells was performed 48 h after transfection. For single-point experiments, 

treatments were carried out in serum free medium and cells were seeded into a 12-well with 

glass coverslip plate. Cells at 80% confluence were treated with 10 μM ACR or HHE, or 30 

μM MDA for 1, 2 or 24 hours. These concentrations have been previously reported as 

pathophysiological levels in human plasma. Aldehydes were prepared as a 10x stock in 

water and filtered with 0.22 μm filter unit (Merk Millipore, Cork, Ireland) for sterilization, 

before being added to the cells for treatment. For time-lapse microscopy, the treatments 

were added immediately before the visualization for monitoring of the effect. 

 

6.2.2. Fluorescence microscopy and cell imaging 

Cells treated with the different compounds were visualized by confocal microscopy on 

Leica SP2 or SP5 microscopes. Images were acquired every 0.5μm and single sections or 

overall projections are shown, as indicated. For immunofluorescence, cells were fixed with 

4% (w/v) paraformaldehyde for 25 min at room temperature, permeabilized with 0.1% (v/v) 

Triton-X100 in PBS and blocked with 1% (w/v) BSA in PBS. Antibodies were used at 1:200 

dilution in blocking solution. For the detection of full-length vimentin the V9 antibody was 

employed. Filamentous actin (f-actin) was stained with Phalloidin-Alexa568 (Molecular 

Probes) following the manufacturer’s instructions.  Nuclei were counterstained with DAPI (3 

μg/ml). Measurements of cell area were obtained with ImageJ. Time-lapse microscopy was 

carried out in a multidimensional microscopy system Leica AF6000 LX in a humidified 5% 

CO2 atmosphere at 37 ºC. Green fluorescence and differential interference contrast (DIC) 

images were recorded. 
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6.2.3. Statistical analysis 

All experiments were performed at least three times. The results are presented as mean 

values and the error bars are the standard error of the mean (mean ± SEM). Two-way 

analysis of variance (ANOVA) was used with the Dunnett’s correction to evaluate significant 

differences among samples. A value of P < 0.05 was considered to be statistically 

significant. Statistical analysis was performed using GraphPad Prism 7 software.   
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6.3. Results 

6.3.1. Effect of short-chain aldehydes on vimentin network by confocal microscopy 

The aim of this chapter was to evaluate the effect of the lipid peroxidation products short-

chain aldehydes on the intermediate filaments network. The main filament studied in was 

vimentin, which is responsible for cell structure and organelle positioning. Therefore, SW-

13/cl.2 cells expressing wildtype vimentin were treated with 10 μM acrolein, 10 μM 4-

hydroxyhexenal and 30 μM malondialdehyde, and the effect on the vimentin network was 

assessed by confocal microscopy. Figure 6.1 shows the overlay channels of the 

immunofluorescence for vimentin in green and for nuclei in blue for the 3 time points and 

the three aldehydes tested. 

 

Figure 6.1. Effect of acrolein, 4-hydroxyhexenal and malondialdehyde on vimentin 

organization in cells. SW13/cl.2 cells stably transfected with RFP//vimentin wt were treated with 10 

μm ACR and HHE and 30 μM MDA for 1, 2 or 24 hours after which cells were fixes and vimentin 

network analysed by immunofluorescence. Scale bars, 20 μm. V9 antibody detected vimentin (green) 

and nuclei were counterstained with DAPI (blue). 
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All aldehydes tested caused a disorganization the vimentin filament network resulting in 

an accumulation around the nucleus. This effect was particularly evident for the 2 hours 

treatment, even though it was also observed for the other two time points. A small recovery 

of this network appears to occur 24 hours after the treatments. In order to assess these 

changes in the vimentin network better and investigate vimentin accumulation/aggregation, 

the vimentin and actin networks were compared (Figure 6.2).  

 

Figure 6.2. Comparison of actin and vimentin networks organization after acrolein, 4-

hydroxyhexenal and malondialdehyde treatment. SW13/cl.2 cells stably transfected with 

RFP//vimentin wt were treated with 10 μm ACR and HHE and 30 μM MDA for 1, 2 or 24 hours, after 

which cells were fixed and the vimentin network analysed by immunofluorescence. Scale bars, 20 

μm. V9 antibody (1:200) detected vimentin (green) and filamentous actin was stained with Phalloidin-

Alexa568 (red). 

The actin network helped to outline the cells and therefore assess the area covered by 

the vimentin network. While for the control samples the vimentin seemed to occupy almost 

the whole cell, after the treatments it was possible to observe an aggregation of this filament 

and consequently that it appeared to occupy less area within the cell. After 2 hours 

treatment this aggregation was very clear when compared with the control for the same time 

point. After only 1 hour of treatment the same effect can be observed, although to a smaller 

extent. For better quantification of this effect, the area of actin was used as the area of the 

whole cell and the ratio vimentin/actin was calculated (Figure 6.3). All conditions tested 
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were found to be statistically different from their respective controls (Figure 6.3A). After 1 

hour treatment, HHE appeared to cause the most accumulation of the vimentin network, 

while for acrolein 2 hours appeared most effective, although no statistically significant 

differences were confirmed between the different aldehydes at any time point. Figure 6.3B 

shows the same percentages represented as % of control, where the ratio for each control 

was set as 100% and all the other percentages calculated accordingly. This was performed 

to perceive more clearly the differences between conditions. Statistically significant 

differences were only observed for acrolein between the time points of 1 and 2 hours. Even 

though no statistical difference was observed between 24 hours and the other time points, 

a trend suggests a small recovery of the vimentin network overnight. 

 

Figure 6.3. Relative quantification of vimentin cell distribution. Variance in vimentin/actin ratio 

to assess the effect of the aldehyde’s treatment on the vimentin network. (A) vimentin/actin ratio 

expressed in percentage for control (no treatment), ACR at 10 μM, MDA at 30 μM and HHE 10 μM; 

(B) vimentin/actin ratio normalized as percentage of control, comparison between time points. (n=9; 

Mean ± SEM; * p<0.1 ** p<0.01, *** p<0.001 and **** p<0.0001) * Comparison of conditions with 

control; # comparison between conditions.  
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6.3.2. Mutation of Cys328 confers protection from lipoxidation on the vimentin network  

To assess the importance of the only cysteine residue in the vimentin amino acid 

sequence, a same cell line with mutant vimentin was used in which the cysteine residue on 

the position 328 was substituted by a serine, described as C328S throughout the chapter. 

Figure 6.4 shows the overlap of the immunofluorescence for vimentin and for nuclei for the 

3 time points and the three aldehydes tested on this mutant cell line. 

 

Figure 6.4. Effect of acrolein, 4-hydroxyhexenal and malondialdehyde on vimentin 

organization in cells. SW13/cl.2 cells stably transfected with RFP//vimentin Cys328Ser (C328S) 

were treated with 10 μm ACR and HHE and 30 μM MDA for 1, 2 or 24 hours after which cells were 

fixed and vimentin network analysed by immunofluorescence. Scale bars, 20 μm. V9 antibody 

(1:200) detected vimentin (green) and nuclei were counterstained with DAPI (blue). 

The vimentin network of the control samples from the mutant cell line already shows 

some degree of disruption when compared with the control samples from Figure 6.3. An 

aggregation of vimentin was also observed for this cell line after treatment, although to a 

smaller extent than the aggregation observed previously for the wild type. Similarly, a small 

recovery of the network appeared to be happening 24 hours after the treatments and these 

changes were also investigated by vimentin and actin networks comparison (Figure 6.5). 
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Figure 6.5. Comparison of actin and vimentin networks organization after acrolein, 4-

hydroxyhexenal and malondialdehyde treatment. SW13/cl.2 cells stably transfected with 

RFP//vimentin Cys328Ser (C328S) were treated with 10 μm ACR and HHE and 30 μM MDA for 1, 2 

or 24 hours, after which cells were fixed and vimentin network analysed by immunofluorescence. 

Scale bars, 20 μm. V9 antibody detected vimentin (green) and filamentous actin was stained with 

Phalloidin-Alexa568 (red). 

The vimentin network seemed to occupy almost the whole cell in the control samples 

as well as after the aldehyde treatments. In Figure 6.5, some perinuclear accumulation 

aggregation of vimentin after HHE treatment for 1 and 2 hours was observed. However, 

these only represent a small group of cells, and other cells in the same plate did not show 

the same effect (data not shown). So for better determination of this effect and accounting 

for the three replicates data, the area of actin was used as the area of the whole cell and 

the ratio vimentin/actin was calculated (Figure 6.6). Figure 6.6A shows the ratio between 

vimentin and actin network areas for the mutant cell line. The vimentin C328S mutant 

showed attenuated responses to the aldehyde treatments, being more resistant to these. 

When compared with the control samples, only MDA showed a significant effect after 1 hour 

treatment while ACR showed a significant effect after 2 and 24 hours treatment. Similarly 

to the wild type (Figure 6.6B), only ACR showed a difference between conditions 

significantly decreasing the ratio after 2 hours when compared with 1 hour treatment. The 

results indicate that the mutation on the only cysteine residue of vimentin protected the 

vimentin network from lipoxidation, supported by the smaller changes in the vimentin/actin 

ratio. 
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Figure 6.6. Relative quantification of vimentin cell distribution. Variance in vimentin/actin ratio 

to assess the effect of the aldehyde’s treatment on the vimentin network. (A) vimentin/actin ratio 

expressed in percentage for untreated and treated C238S mutant cells; (B) vimentin/actin ratio 

expressed in percentage for untreated and treated SW13 cell line, which is the same as shown in 

Figure 6.3A for comparison. (n=3; Mean ± SEM; * p<0.1 ** p<0.01, *** p<0.001 and **** p<0.0001)  

* Comparison of conditions with control; # comparison between conditions.  
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6.3.3. Monitoring the effect of ACR and MDA treatment by time-lapse microscopy 

In order to investigate the possibility that the vimentin network slightly recovered 

overnight after the treatments (section 6.3.1), the effect of ACR and MDA on the vimentin 

network was assessed by time-lapse microscopy. In this way the same group of cells was 

monitored throughout the experiment. Micrographs were taken before the treatment was 

added and after the treatment each 30 minutes for the first 4 hours and then every hour 

overnight (Figure 6.7). The quality of the pictures is lower than the quality in the previous 

figures because the intensity of the laser and the time of exposure were decreased in order 

to limit its impact on cell survival. Two different groups of cells were monitored overnight 

after exposure to 10 μM of acrolein. For both groups of cells, it was clear that the first 4 

hours of treatment caused a disorganization of the vimentin network resulting in its 

accumulation. However, Figure 6.7A indicates that the overnight monitoring did not detect 

a recovery of the vimentin network. In fact, after 8 hours of treatments the cells appeared 

to be dead. In contrast, in Figure 6.7B which monitored a different group of cells, a recovery 

of the network appeared to occur from 6 to 16 hours after the acrolein treatment was used. 

 

Figure 6.7. Time-lapse microscopy monitoring of cells treated with 10 μM acrolein. 

Micrographs were taken every 30 minutes for the first 4 hours and then every hour overnight. Here 

are shown the pictures taken 1, 2, 4, 6, 8, 10 and 12 hours after the treatment. Two different positions 

of the dish, A and B, followed the effect of the same treatment a different group of cells. Micrographs 

consist of green fluorescence (vimentin) and differential interference contrast (DIC) images 

overlapped. 
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The same experiment was performed after cell treatment with 30 μM of 

malondialdehyde (Figure 6.8). Similarly to the effect observed after acrolein treatment, the 

first four hours after MDA treatment resulted in an accumulation of vimentin that can be 

observed by the increase in intensity of the green fluorescence. Once again, the recovery 

of the vimentin network after treatment was not observed overnight. In fact, 10 hours after 

the treatment it was possible to observe cell death resulting in the release of its content. 

 

Figure 6.8. Time-lapse microscopy monitoring of cells treated with 30 μM malondialdehyde. 

Micrographs were taken every 30 minutes for the first 4 hours and then every hour overnight. The 

images taken 1, 2, 4, 7, 10, 13 and 16 hours after the treatment are shown. Micrographs consist of 

green fluorescence (vimentin) and differential interference contrast (DIC) images overlap. 
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6.4. Discussion 

Vimentin plays a key role in normal functioning of cells and during pathophysiological 

conditions in addition to its structural function. Among other roles, vimentin is responsible 

for organelle positioning and facilitates wound repair [498]. This protein is also known to be 

a critical sensor for oxidative stress and a target for lipoxidation by electrophilic lipids [488, 

498]. Due to the lack in studies on the Cys328-mediated effect of short-chain aldehydes on 

vimentin, the main aim of the study reported in this chapter was to assess the effect of 

acrolein, malondialdehyde and 4-hydroyhexenal in vimentin network organization as well 

as determine the importance of the only cysteine residue in the vimentin sequence. The 

concentration of each aldehyde used has previously been reported as a pathophysiological 

concentration of these free aldehydes in human plasma or serum [31, 269]. The cell line 

used was the SW13/cl.2 cells stably transfected with RFP//vimentin wild type (wt). The 

mutant cell line RFP//vimentin C328S was used to investigate the role of the cysteine 

residue Cys328 in the lipoxidation of vimentin, and RFP//vimentin wt plus GFP-vimentin wt 

transfection was used for time-lapse experiments. 

The results show that treatment of cells with reactive aldehydes results in morphological 

alterations of the network including a marked reorganization and accumulation around the 

nucleus. All aldehydes showed the ability to reduce the area of vimentin in the cell, an 

indication of its aggregation around the nucleus. In fact, the juxtanuclear condensation of 

cytoplasmic intermediate filaments like vimentin upon treatment with unsaturated carbonyl 

species has previously been reported [493, 498]. Intermediate filament remodelling can be 

a mediator of cell damage or a mechanism of defence, therefore the biological implications 

of the lipoxidation-associated aggregation is still not completely understood. Acrolein and 

HHE showed to cause the highest vimentin aggregation. Juxtanuclear aggregation of 

vimentin filament caused by lipoxidation has been previously described in fibroblasts and in 

epithelial cells after acrolein and HNE, respectively [496, 497]. Moreover, mutation of 

Cys328 resulted in protection against the lipoxidation effect and only acrolein was able to 

cause a slight aggregation of vimentin overnight. Cys328 is the only cysteine residue on 

vimentin and it has been reported to be susceptible to modification by reactive aldehydes 

such as HNE in biological systems [489]. The results in this chapter confirmed Cys328 as 

a major target of lipoxidation since its mutation to serine conferred protection. Mutation of 

this cysteine has showed protection against other electrophilic species [492, 498, 499] and 

demonstrated Cys328 to be a hot spot for posttranslational modifications in vimentin [497, 

501, 502]. Cysteine residues are commonly susceptible to modification on several protein 

apart from vimentin [493, 503]. Filament disruption upon lipoxidation is not just an issue with 

vimentin. Other intermediate filaments, for example GFAP, have been reported to show the 

same effect on the network upon lipoxidation and this protein also has a conserved cysteine 
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residue Cys294 which plays a crucial role in organization and assembly of the filaments 

[493]. Overall, these studies confirm that these conserved cysteine residues in intermediate 

filaments are sensors for stress and its mutation confers protection against oxidative stress. 

In early experiments there was some evidence of a trend to cellular recovery of vimentin 

network at 24 hours, even though the data were not significantly different. However, in this 

experiment, different groups of cells were studied for each time point. To overcome this 

limitation, a time-lapse experiment was set up in order to follow the same cells and monitor 

the changes in vimentin overnight after treatment. During the first four hours the 

juxtanuclear aggregation was confirmed, however the time lapse microscopy approach did 

not confirm the recovery of the network overnight and cell death was observed. The cell 

death might be caused by phototoxicity resulting from cumulative exposure, as little cell 

death was observed in the end-point experiments, even though the intensity of the laser 

and its phototoxicity were taken into consideration when planning the experiment 

parameters and a lower intensity and short exposure times of the laser were chosen [504]. 

Moreover, these aldehyde concentrations were not supposed to be cytotoxic as described 

in section 5.3.4. The phototoxicity of the laser was confirmed by observation under the 

microscope of the cells that were not being monitored overnight, which were confirmed to 

be alive. To overcome this limitation, future experiments should be performed by monitoring 

the cells only once every two hours, for example after the first four hours, to reduce the 

exposure time of the laser to the cells. As information on the first 4 hours has now been 

obtained, this would not need to be reported in a time lapse experiment, decreasing the 

exposure of the cells to the laser and increasing the probability of observing vimentin 

recovery. 

In conclusion, this study demonstrated the effect of electrophilic modification by short-

chain reactive aldehydes on vimentin network organization and localization in cells. The 

observed aggregation of vimentin around the nucleus could be associated with cell 

dysfunction and therefore connected to pathophysiological conditions such as aging, 

inflammatory diseases and cancer. A limitation of this study was the lack of MS data to 

support the hypothesis of Cys328 being a target of lipoxidation. Therefore, MS analysis of 

the extractable vimentin from this cell lines would strengthen the data presented in this 

chapter. 
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Chapter 7. Conclusion 

  



219 
 

7.1. General discussion  

The oxidative modification of lipids containing polyunsaturated fatty acids results in a 

wide diversity of reactive products, including short-chain aldehydes, which are highly 

reactive and able to modify proteins. Lipoxidation products generates at lower levels can be 

related have a signaling role and activate antioxidant defences. However, at higher levels 

these have been linked to many inflammatory diseases, thus their study, as potential 

biomarkers of inflammation, is important. Mass spectrometry-based methods are a key tool 

in proteomic research but there is still a need to improve the detection methods for 

lipoxidation adducts, as these are extremely challenging to detect due to their relative low 

abundance. In this project, a bottom-up approach was able to map aldehyde modifications 

on human serum albumin. However, the incomplete sequence coverage detected by LC-

MS could be improved in order to obtain information on the modification status of other 

residues that were not covered, for example Cys34 which is a major target for modification 

in HSA and several studies and methods have been developed with focus on its detection. 

The sequence coverage can possibly be improved by combination of different proteases to 

digest the protein generating smaller peptides and allowing the detection of Cys34, since 

using trypsin digestion only the peptide containing this residue was too long and gave low 

ion intensity. Protein-protein cross-linking has also previously been shown to occur through 

acrolein modification, including in proteins such as Hsp90, which has a role in the response 

to oxidative stress. However, a limitation of the work reported in this thesis is the lack of 

mass spectrometry analysis of protein crosslinking adducts even though these were 

possibly observed by SDS-PAGE where bands corresponding to double or three times the 

mass of protein in study were observed. It would have been interesting to conduct a study 

by LC-MS/MS for mapping and characterization of these crosslinks and determine hotspots 

for their occurrence in proteins such as human serum albumin. 

Regardless, the tandem mass spectrometry approach used allowed for the detection of 

potential diagnostic ions for adducts of aldehydes with nucleophilic amino acid residues 

such as cysteine, histidine, lysine and arginine. Five diagnostic ions for acrolein and eight 

for 4-hydroxyhexenal adducts with human serum albumin were consistently observed in the 

MS/MS spectra of modified peptides. The diagnostic ions for acrolein modification were 

then used in the development of a multiple reaction monitoring MS-based approached 

focused on their detection in complex biological samples. The transitions 600.4 → 142.1 

and 509.3 → 168.1, which include the reporter ions for lysine and histidine modification 

respectively, were shown to be successful in the detection of acrolein-albumin adducts as 

their signal was detected exclusively in acrolein-treated samples, both for in vitro modified 

human serum albumin and human plasma. Therefore the novel MRM method developed 

identified promising transitions for acrolein-albumin adduct detection and proved to be 
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highly selective for acrolein modification. Previously reported targeted methods developed 

for albumin modification detection required protein extraction from plasma due to 

interference from other proteins [314]; however, for the method described here, sample 

preparation was kept to a minimum by only diluting the plasma and the transitions were 

detected with minimal background noise. Further validation of this targeted method using 

clinical samples is still necessary to understand its potential application in the detection of 

acrolein-albumin adducts in case of disease, such as from type 2 diabetes mellitus patients 

[505], Alzheimer’s disease or any type of cancer, with lung cancer being the most applicable 

as acrolein in a major component of tobacco smoke. Hopefully the success of this method, 

developed using the reporter ions described in chapter 2, will encourage other methods to 

be developed with a similar approach for other protein modifications, including using the 

other reporter ions reported in this thesis. 

Chlorine containing aldehydes have previously been reported to be produced during 

neutrophil activation and to accumulate, for example, in atherosclerotic plaques [147]. There 

is still a lack in knowledge on their impact on cell function, as they have the potential to 

modify proteins and therefore directly cause structural and functional changes. Additionally, 

their reactivity in comparison with other aldehydes such as those mentioned above, and the 

products formed after chloroaldehyde modification of proteins is still largely unexplored. An 

alternative method to directly convert hexadecanol into 2-chlorohexadecanal was proposed 

on chapter 3, which was less time-consuming and cheaper than current methods used 

[339]. An MS-based approach allowed the charcaterization of 2-chlorohexadecanal 

modification of human serum albumin and consequently the detection of a reporter ion for 

2-ClHDA-lysine adducts. Previous studies reported that 2-ClHDA reacts with cysteine 

residues by nucleophilic attack on C-Cl retaining the carbonyl group [199]. However, the 

mass of the lysine residue reported in this thesis corresponds to the Schiff-base formation 

with additional loss of HCl, showing that analysis of 2-chloroaldehyde adducts is more 

complex than other aldehydes, due to the different types of modifications that can arise 

depending on the amino acid residue modified. Further analysis of 2-ClHDA adducts by MS 

is needed to confirm the sensitivity of the reporter ion m/z 323 to detect 2-ClHDA-lysine 

adducts. In addition, the purity of the synthetic 2-ClHDA could be improved by flash 

chromatography or HPLC for extraction of the chloroaldehyde and removal of impurities 

that could interfere with future experiments. For example, to assess the cellular effect of 2-

ClHDA it is important that its purity is high to ensure that the effects observed are due to 

chloroaldehyde treatment instead of its impurities. In the work reported in chapter 3, the 

synthetic 2-ClHDA was reacted with human serum albumin for mapping and 

characterization of its modifications, however other properties of this aldehydes could be 
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explored apart from its reactivity with proteins such as antimicrobial inspired by the 

properties of other chlorine containing compounds as hypochlorous acid (HOCl). 

Proteomic analysis is challenging due to the dynamic range of proteins and mass 

spectrometry approaches are distinctively suited to handle this complexity [345]. However, 

upfront separation is required for mass spectrometry application in the study of protein 

isoforms and localization of post-translational modifications, for example [361, 362]. 

Therefore, chromatographic coupling as a separation technique for peptides and proteins 

is a key step in mass spectrometry analysis, and liquid chromatography is the most common 

method for small molecule separation. Anion exchange chromatography turned out to be 

the best separation method tested for protein isoform separation with, for example, up to 

seven isoforms being separated for human serum albumin. The pH gradient used produced 

a similar separation pattern to a previously reported salt-gradient for HSA isoform 

separation [381], but the method described in this thesis was able to separate these 

isoforms in ¼ of the time required by the previous method, increasing its potential for a 

clinical application. Even though anion exchange chromatography showed promising 

results as a quick alternative for human serum albumin isoform separation, this separation 

method should now be validated for plasma samples from healthy volunteers, to determine 

its potential to separate albumin isoforms in a complex sample and understand the sample 

preparations required for the success of this separation. After these have been established, 

the method should be tested to quantify different protein isoforms in case of diseases, for 

example to quantify the different glycated isoforms of albumin in diabetic patients as these 

could be used as a prognosis tool. The choice of the right separation method is important 

for the characterization of intact proteins for mass spectrometry, improving their detection 

and allowing the diagnosis of different diseases such as cancer, where distinction between 

isoforms is vital [352]. Ion exchange chromatography has been proposed as a good 

alternative to reverse phase [386], but for lipoxidized protein separation it was observed 

that reverse-phase chromatography was still the best method as it was able to separate 

HHE and HNE-modified proteins with different degrees of modification, as well as 

separating unmodified from modified protein. This level of separation was not obtained with 

ion exchange chromatography. The intact protein MS analysis was powerful for 

identification of modification in small proteins such as insulin and ubiquitin, however for 

larger proteins such as human serum albumin for which multiple charges can influence the 

MS analysis. So, the separation and top-down analysis of large proteins turned out to be a 

major challenge and new approaches could be used, such as the middle-down proteomic 

approach, for the full characterization of PTMs on human serum albumin. This approach 

has been previously successfully applied for other large molecules characterization such as 

monoclonal antibodies [239]. 
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Due to their ability to directly modified proteins, short-chain aldehydes are been 

proposed as compounds able to change protein structure and function, and therefore having 

a role in the onset of several diseases such as cancer. Despite this known link between 

lipoxidation and cancer, little attention has been focused on the study of the effect of 

aldehydes on glycolytic enzymes involved in the modulation of the cancer metabolism into 

aerobic glycolysis [270, 390]. Some studies have reported aldehyde modification of 

GAPDH, both in vitro and in mouse models [163, 272, 506], but lipoxidation of pyruvate 

kinase is still largely unexplored, with only one study reporting its inactivation by HNE and 

ONE [273]. To understand to effects of acrolein, HHE and MDA on pyruvate kinase, the 

PKM1 was modified in vitro and several hotspots for modification were found by LC-MS/MS 

to be at or close to the active and the allosteric sites, which might explain the loss of 

enzymatic activity observed. The effect of the same aldehydes on cellular pyruvate kinase 

(PKM2) found this enzyme to be highly susceptible to modification, and its activity was 

inhibited under pathophysiological concentrations in a time- and dose-dependent manner, 

with acrolein appearing to be the most toxic of the aldehydes tested. Some of the 

modifications mapped in vitro were also detected by MS on the pyruvate kinase extracted 

from these cells. An altered cellular metabolism upon exposure to acrolein was observed to 

counteract the decrease in pyruvate being produced, suggesting that this aldehyde may 

contribute to mechanisms of tumorigenesis via pyruvate kinase inhibition. In fact, acrolein 

is a major component in tobacco smoke and this could be one of its mechanisms of action 

as a carcinogen. Further experiments should be conducted on a non-cancerous cell line in 

order to study the ability of acrolein, and other aldehydes, to switch the cell metabolism to 

a cancerous state and better understand the underlying mechanisms.  

In contrast, intermediate filaments have no known enzymatic activity but their extensive 

cytoplasmatic network confers on them a role in coordinating cell activities [468]. Vimentin 

is an intermediate filament that is able to interact with signaling proteins and have critical 

contribution in pathophysiological conditions as cancer [477]. Under stress conditions, post-

translational modifications of vimentin such as phosphorylation and nitrosylation have been 

reported to regulate the vimentin network.  In particular, the cysteine residue 328 on 

vimentin is known to be required for its response to oxidative stress [497, 498]. Due to the 

lack of studies regarding the Cys328-mediated effect of short-chain aldehydes on vimentin 

organization, this issue was addressed in this thesis with a comparative study of the network 

upon treatment of cells expressing wildtype or mutant Cys328S with acrolein, HHE and 

MDA. The three aldehydes were able to cause morphological alterations, including vimentin 

aggregation around the nucleus, which had also been reported to happen upon treatment 

with unsaturated carbonyl species [493, 498]. This remodelling of intermediate filaments is 

usually linked to mediation of cell damage or as a mechanism of defence, but the biological 
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implication of aldehyde-mediated aggregation is still not completely understood. Cys328 

was shown to be a target for lipoxidation as its mutation conferred protection from 

lipoxidation on the vimentin network. Cysteine residues have been reported as common 

targets of oxidative modification; nonetheless LC-MS/MS analysis of the cellular protein 

extract should be performed to confirm the modification of this specific residue in vimentin. 

For further confirmation that the aggregation of vimentin upon aldehyde treatment was 

Cys328-mediated, the protein cellular extract should be analysed by LC-MS/MS for 

mapping of the modification. This would be important not just to confirm cysteine 

modification but also to find other modified residues that might be relevant for vimentin 

network assembly. 

To note that from all the aldehydes tested in this thesis, acrolein was generally the more 

modifying and toxic aldehyde. This observation was consistent across the in vitro and the 

different cellular work. 

 

7.2. Summary and perspectives 

The research presented in this thesis has provided a novel method for detection  of 

aldehyde adducts, as well as highlighting some of their cellular effects. However, further 

studies are still required in order to completely understand the effect of these aldehydic 

short-chain lipid peroxidation products. The lack of sensitive methods for aldehyde-protein 

adducts has held back progress in the use of these as clinical biomarkers. The development 

of targeted methods appeared to be promising candidates for application in measurement 

of aldehyde-albumin adducts in clinical samples due to their selectivity although further 

optimization would be required for high sensitivity. The improvement of upfront 

chromatography methods for their separation in combination with these targeted MS 

methods seems to be the way of moving the field forward. 

In summary, the work presented in this thesis has contributed to the mapping of 

aldehydic short-chain lipid peroxidation products modifications on proteins, the 

development of novel methods for their detection, and the assessment of their effects on 

cellular proteins and general metabolism. These cellular changes might underlie 

pathological conditions such as cancer, diabetes or other inflammatory diseases, and 

therefore be used as biomarkers for their diagnosis and prognosis. While much work is still 

needed to fully understand the mechanisms behind these effects, the research presented 

in this thesis is an important contribution towards a more complete understanding of the 

role of short-chain reactive aldehydes in disease. 
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9.1 List of aldehyde modifications 

 

Table 9.1. Aldehyde modifications searched on MASCOT. Specificity site, monoisotopic and 

average mass, composition and proposed structure for ACR, HHE, HNE, MDA and 2-ClHDA 

adducts. 

Type of 

adduct 

Specificity 

site 

Monoisotopic 

mass 

Average 

mass 
Composition Proposed structure 

Acrolein 

Propanal C, H, K, W, R 56.026 56.063 C3H4O 

  

Propanal 

reduced 
C, H, K, W, R 58.042 58.079 C3H6O 

 

Aldimine 

reduced 
H, K 40.031 40.064 C3H4 

 

FDP-lysine K 94.042 94.111 C6H6O 

 

MP-lysine K 76.031 76.096 C6H4 
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Type of 

adduct 

Specificity 

site 

Monoisotopic 

mass 

Average 

mass 
Composition Proposed structure 

4-hydroxy-2-hexenal (HHE) 

Michael C, H, K, R 114.068 114.142 C6H10O2 

  

Michael 

Furane 
C, H, K, R 96.058 96.127 C6H8O 

 

Imine K, R 96.058 96.127 C6H8O 

  

Schiff 

Pyrrole 
K, R 78.047 78.112 C6H6 

 

Type of 

adduct 

Specificity 

site 

Monoisotopic 

mass 

Average 

mass 
Composition Proposed structure 

4-hydroxy-nonenal (HNE) 

Michael C, H, K, W 156.115 156.222 C9H16O2 

 

Imine H, K, W 138.104 138.207 C9H14O 
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Schiff 

Pyrrole 
H, K, W 140.120 140.222 C9H16O 

 

Type of 

adduct 

Specificity 

site 

Monoisotopic 

mass 

Average 

mass 
Composition Proposed structure 

Malondialdehyde (MDA) 

Propenal H, K  54.011 54.047 C3H2O 

 

Propenal 

reduced 
K 56.026 56.063 C3H4O 

 

Pyrimidine R 36.000 36.032 C3 

 

Dihydropyri

dine 
K 134.037 134.132 C8H6O2 

 

Dihydropyri

dine 

reduced 

K 138.068 138.164 C8H10O2 
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Type of 

adduct 

Specificity 

site 

Monoisotopic 

mass 

Average 

mass 
Composition Proposed structure 

2-chlorohexadecanal 

Schiff 

reduced  
H, K, R 258.211 258.870 C16H31Cl 

 

Schiff 

reduced 

minus Cl 

H, K, R 222.235 222.409 C16H30 

 

Attack at 

CHCl 
C 240.245 240.425 C16H32O 
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