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Abstract 

Background: Low-dose X-ray images have become increasingly popular in the last 
decades, due to the need to guarantee the lowest reasonable patient’s exposure. 
Dose reduction causes a substantial increase of quantum noise, which needs to be 
suitably suppressed. In particular, real-time denoising is required to support common 
interventional fluoroscopy procedures. The knowledge of noise statistics provides pre-
cious information that helps to improve denoising performances, thus making noise 
estimation a crucial task for effective denoising strategies. Noise statistics depend on 
different factors, but are mainly influenced by the X-ray tube settings, which may vary 
even within the same procedure. This complicates real-time denoising, because noise 
estimation should be repeated after any changes in tube settings, which would be 
hardly feasible in practice. This work investigates the feasibility of an a priori characteri-
zation of noise for a single fluoroscopic device, which would obviate the need for infer-
ring noise statics prior to each new images acquisition. The noise estimation algorithm 
used in this study was tested in silico to assess its accuracy and reliability. Then, real 
sequences were acquired by imaging two different X-ray phantoms via a commercial 
fluoroscopic device at various X-ray tube settings. Finally, noise estimation was per-
formed to assess the matching of noise statistics inferred from two different sequences, 
acquired independently in the same operating conditions.

Results: The noise estimation algorithm proved capable of retrieving noise statistics, 
regardless of the particular imaged scene, also achieving good results even by using 
only 10 frames (mean percentage error lower than 2%). The tests performed on the real 
fluoroscopic sequences confirmed that the estimated noise statistics are independ-
ent of the particular informational content of the scene from which they have been 
inferred, as they turned out to be consistent in sequences of the two different phan-
toms acquired independently with the same X-ray tube settings.

Conclusions: The encouraging results suggest that an a priori characterization of 
noise for a single fluoroscopic device is feasible and could improve the actual imple-
mentation of real-time denoising strategies that take advantage of noise statistics to 
improve the trade-off between noise reduction and details preservation.
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Background
Fluoroscopy is a medical imaging modality that provides continuous, real-time X-ray 
screening of patient’s organs and of various radiopaque objects involved in surgi-
cal procedures (e.g., surgical instruments, catheters, wire-guides, prosthetic implants, 
implanted devices), which make it an invaluable tool for image-guided procedures in 
surgery [1, 2], as well as in diagnosis [3–5] and therapy [6]. However, its use in clinical 
practice should always be carefully evaluated, as X-rays are ionizing radiations that may 
cause serious damages to human tissues and organs [7–10], and that is why the rigor-
ous monitoring of the X-ray dose delivered to the patients and to the exposed medi-
cal staff has gained progressively more attention in the last decades, also being subject 
to formal regulations from national and international health organizations [11–13]. The 
X-ray dose depends on a number of parameters and conditions, such as the X-ray tube 
settings (tube current and voltage), the exposure time, the distance between the X-ray 
source and the irradiated tissue, the additional filtration, the number of anti-scatter grids 
[14]. Generally, most of these parameters are selected to optimize determined features of 
the imaged scene, thus, only the tube current and, sometimes, the exposure time can be 
modified to reduce the overall dose delivered to the patient. As an example, a common 
practice to limit the overall exposure time in fluoroscopy during surgical procedures is 
to turn off the X-ray source periodically and/or to use pulsed protocols, which place a 
limitation on frame rate though [14]. However, the exposure times are still very long and 
unpredictable in interventional fluoroscopy [10, 15], as they depend on the particular 
needs of the surgeon in each procedure.

In practice, the dose is mainly limited by reducing the tube current, which implies a 
reduction of the X-ray radiation intensity, i.e., the number of X-ray photons that reach 
the detector. This low photons availability gives rise to a signal-dependent, Poisson-
distributed noise, usually referred to as “quantum noise” or “Poisson noise” [16]. The 
signal-to-noise ratio (SNR) of quantum noise decreases as the square root of the mean 
luminance, which means that the lower the dose, the lower the image quality [16]. More-
over, quantum noise is inherent to the image formation process and cannot be avoided 
or even limited by improving detectors technology, thus requiring the application of 
proper denoising strategies in the digital domain [16].

Simple smoothing filters usually do not achieve acceptable results, as they introduce 
significant blurring effects (in space and time), thus accomplishing noise reduction to 
the detriment of fine image details (e.g., edges, textures, etc.). As for many denoising 
approaches devised for AWGN, the knowledge of noise statistics provides precious 
information that helps to improve the denoising performances [16–29]. While scien-
tific literature is rich in approaches for AWGN estimation, much lower effort has been 
devoted to Poisson noise [16, 26–28, 30–34], even though it is by far the dominant noise 
source in low-dose X-ray images [16, 35–37], as well as in other low-light images, e.g., 
night photography, fluorescence microscopy, astronomical imaging.

Quantum noise estimation could be used, e.g., to allow denoising algorithms discrimi-
nate between the noisy pixels to be filtered and those lying on the edges, which need 
to be preserved as much as possible to maintain the image details. This is the case, as 
an example, for the noise variance conditioned average (NVCA) algorithm [16–21]. 
This denoising strategy is based on a conditioned moving average filter that acts on a 
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determined spatio-temporal neighborhood by including in the average computation only 
those pixels whose difference in luminance with the central pixel is lower than a multiple 
of the local noise standard deviation (SD). NVCA derives local estimates of noise SD by 
assuming a linear relationship between the variance and the expected value of the noise 
(Poisson–Gaussian noise model), whose slope and intercept, referred to as noise param-
eters, must be determined prior to the filtering operation. Other approaches involves 
the use of variance stabilizing transformations [27, 38–40], the most common of which 
is the generalized Anscombe transform [41, 42]. This point-wise operation transforms a 
Poisson–Gaussian distribution in a practically Gaussian distribution with unit variance, 
thus allowing the use of any AWGN denoising scheme also for Poisson–Gaussian noise. 
However, the generalized Anscombe transform also requires the a priori knowledge of 
noise parameters.

Essentially, the denoising approaches that make direct use of Poisson statistics, as well 
as those based on the combination of generalized Anscombe transform with AWGN 
denoising schemes, both require the noise parameters to be accurately estimated from 
noisy images prior to their actual processing, in order to achieve a reasonable trade-off 
between noise reduction and edge preservation, especially in images that are heavily 
affected by noise (e.g., low-dose X-ray images). While it is not usually a major concern 
in offline implementations, it could be a serious limitation in real-time operation, which 
undoubtedly represents the most appealing application of fluoroscopic sequence denois-
ing. Indeed, during an image-guided procedure the variations of tube settings and of 
detector gain would modulate the statistics of quantum noise. Hence, the noise param-
eters estimation should be repeated ideally after any change in X-ray tube settings to 
ensure the highest denoising performances, but this is hardly feasible in practice.

This study aims to test the hypothesis that the noise parameters mostly depend on 
the X-ray tube settings and presents a feasibility analysis of an a priori noise parameters 
characterization. Indeed, this approach would obviate the need for inferring noise stat-
ics prior to each new image sequence acquisition, thus enabling the effective real-time 
operation of edge-aware denoising strategies that take advantage of noise statistics to 
improve the image quality in fluoroscopic sequences. The influence of the X-ray tube set-
tings on the noise parameters has never been investigated before in literature, although 
this greatly affects real applications. The study also suggests a practical approach to pro-
vide denoising algorithms with accurate noise estimates to ensure the highest perfor-
mances in real-time.

The noise estimation algorithm has already been used in previous publications 
about the NVCA denoiser [16, 17, 20, 21], but its performances have never been 
assessed thoroughly. In this study, the algorithm was first tested in silico on several 
synthetic fluoroscopic sequences, which were corrupted by different levels of simu-
lated mixed Poisson–Gaussian noise. The ability of the algorithm to retrieve the noise 
parameters with reasonable accuracy was assessed by varying the number and distri-
bution of grey levels within the designed sequences, as well as the number of frames 
exploited for noise estimation. Afterward, real fluoroscopic sequences were acquired 
by imaging two different X-ray phantoms via the same commercial fluoroscopic 
device with various X-ray tube settings. Then, the matching of noise parameters was 
assessed between data acquired independently in the same operating conditions, as 
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it would support the prospect of pre-calibrating the noise parameters at many differ-
ent tube settings and using them directly in real-time denoising of new fluoroscopic 
sequences acquired in the same conditions.

Results
Performance assessment on synthetic sequences

Figure 1 shows an example of a typical measured EVaR with its linear regression. In 
Additional file 1: Table S1 (available in the Additional file 1, along with Tables S2, S3, 
S4) the noise parameters estimates extracted from all the 14 synthetic sequences with 
variable number of grey levels are reported. For each sequence, the parameters were 
subdivided by the corresponding noise level and the number of frames used for noise 
estimation. Additional file 1: Table S2 outlines the relative estimation errors, except 
for the errors related to null nominal values of parameter b (i.e., noise levels 1 to 3), 
which were reported as absolute errors and highlighted in blue. A substantial differ-
ence was observed in the estimation errors obtained in sequences 1–7 and sequences 
8–14, which turned out to be on average consistently higher than those of the former. 
Mean and standard deviation (SD) of the estimation errors are reported in Table 1.

Fig. 1 An example of a typical measured EVaR with its linear regression and the estimated noise parameters 
(a, b)

Table 1 Mean and standard deviation of the noise parameters estimation errors

The statistics are computed for sequences 1–7 and 8–14 separately, and for each considered number of available frames (F)

Parameter error Sequences Errors on noise parameters estimates

F = 100 F = 50 F = 25 F = 10

Mean SD Mean SD Mean SD Mean SD

aerrp 1–7 − 0.0025 0.0056 − 0.0042 0.0065 − 0.0062 0.0105 −  0.0126 0.0176

8–14 − 0.0226 0.0422 − 0.0280 0.0503 − 0.0467 0.0825 −  0.1078 0.1643

berrp 1–7 0.0051 0.0083 0.0068 0.0094 0.0115 0.0144 0.0175 0.0235

8–14 0.0362 0.0724 0.0458 0.0920 0.0751 0.1610 0.1686 0.2793

berrabs 1–7 0.2755 0.5082 0.3763 0.7232 0.6742 0.8471 1.5837 2.1418

8–14 3.2800 6.7123 4.0795 7.5838 7.5403 16.832 14.885 30.1688
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Since noise estimation serves as a support for improving noise suppression perfor-
mances, its efficacy should be rather assessed by analyzing the effect of estimation errors 
on the final denoising results. To this aim, the noisy synthetic test sequences described 
in the “Materials and methods” section, and depicted in Fig.  10, were filtered via the 
NVCA algorithm by using the most inaccurate noise parameters estimates, so as to iden-
tify the worst cases from the denoising point of view. Then, the worst results obtained 
for estimates extracted by using 25 and 10 frames, from sequences 1–7 and 8–14, were 
identified according to measures of dissimilarity between the sequences filtered with 
inaccurate noise parameters, referred to as the sub-optimal filtered sequences, and the 
sequence filtered with the actual noise parameters, referred to as the optimal filtered 
sequence. Two well-established image quality assessment indices were adopted, namely 
the mean squared error (MSE), which is a global measure of dissimilarity between 
images, and the full width at half maximum (FWHM) of the edge spread function, which 
is a no-reference local measure of edge sharpness [20]. As a first dissimilarity measure 
to quantify the global deviation from the optimal denoising result, the MSE between the 
sub-optimal and the optimal filtered sequences was computed. However, MSE is known 
to have high sensitivity to the overall image noise, but poor sensitivity to edge blurring 
effects, especially in noisy conditions like those encountered in low-dose fluoroscopy 
[22]. Since the edge-awareness is a major concern of medical image denoising, the local 
loss of edge sharpness, due to the noise parameters estimation errors, was considered as 
a further measure of dissimilarity, and was evaluated by estimating the Δ FWHM, that 
is the difference in FWHM between the sub-optimal and the optimal filtered sequences. 
The quantitative results of this analysis are summarized in Tables 2 and 3, where it could 
be noticed that the worst results were always obtained by using the parameters extracted 
from the sequences 8–14, which were also those affected by the highest estimation 
errors.

Table 2 Results of the denoising performance analysis on the sequence with the moving rectangle

The dissimilarity scores between the sub‑optimal and optimal filtered sequences are reported, along with the 
corresponding noise parameters estimates, the number of frames (F) used in the estimation, and the actual noise 
parameters values

Sequences a b F aest best MSE
(

Sfilt , Sfilterr

)

�FWHM

1–7 2 0 25 1.979 3.007 0.090284 0.001851

2 0 10 1.937 7.186 0.199485 0.002836

8–14 2 0 25 1.425 74.866 2.276551 0.041098

2 0 10 0.984 131.379 5.324343 0.256335

Table 3 Results of the denoising performance analysis on the sequence with the moving circle

The dissimilarity scores between the sub‑optimal and optimal filtered sequences are reported, along with the 
corresponding noise parameters estimates, the number of frames (F) used in the estimation, and the actual noise 
parameters values

Sequences a b F aest best MSE
(

Sfilt , Sfilterr

)

�FWHM

1–7 2 0 25 1.979 3.007 0.017391 0.002190

2 0 10 1.937 7.186 0.082492 0.005973

8–14 2 0 25 1.425 74.866 1.957688 0.116500

2 0 10 0.984 131.379 4.702226 0.422549
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Figures 2 and 3 depict the sub-optimal filtered sequences, as well as the correspond-
ing image differences with the optimal filtered sequence, where it can be observed 
that the pixels with the highest differences in luminance are almost all distributed in 
the edges neighborhood, which is consistent with the measured increase in Δ FWHM.

However, it can be assessed by visual inspection that the sub-optimal results shown 
in Figs. 2a–c and 3a, b are very similar the corresponding optimal results shown in 
Fig. 10c and d, respectively.

The results of the noise parameters extraction from the four synthetic sequences 
designed via the X-ray simulator are reported in Additional file 1: Tables S3 and S4. 
The mean and SD of relative errors, outlined in Table 4, turned out to be almost com-
parable with those obtained in the 14 synthetic sequences, thus proving that the pres-
ence of clinically relevant structures does not alter the estimates accuracy, which, 
more generally, is not influenced by the particular informational content of the scene.

Fig. 2 Synthetic sequences with the moving rectangle filtered via the NVCA algorithm by considering the 
noise parameters estimates reported in Table 2. The images in each row were obtained by using the noise 
parameters in the corresponding row of Table 2. On the first column the end frames of the sub-optimal 
filtered sequences were depicted, while the differences of the same images with the end frame of the 
optimal filtered sequence were reported on the second column
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Noise estimation in real sequences

Figure 4 shows four frames of the real fluoroscopic sequences, acquired as described in 
paragraph 5 of the “Materials and methods” section. In particular, the frames in the left 
column depict the TOR-18FG phantom, while the ones in the right column refer to the 
TOR-CDR phantom.

The frames in the first row were acquired with X-ray tube setting #5 (40 kVp, 50 mA), 
while those in the second row with setting #1 (40 kVp, 10  mA). Due to the very low 
tube currents involved, the original images turned out to be too dark for practical visu-
alization, as indeed the luminance values were confined within very narrow ranges in 
the lower part of the representation interval. For this reason, the images in Fig. 4 have 
been processed with a full-scale histogram stretch, disregarding the grey levels of the 
few lightest pixels in the leftmost part of the images. This processing obviously altered 
the mean luminance, which was originally much lower in the images acquired at 10 mA 
compared to those acquired at 50 mA, but made the noise much more visible, allowing 
easier comprehension of the effect of X-ray tube current reduction on the SNR of the 
images.

Fig. 3 Synthetic sequences with the moving circle filtered via the NVCA algorithm by considering the noise 
parameters estimates reported in Table 3. The images in each column were obtained by using the noise 
parameters in the corresponding row of Table 3. On the first row the end frames of the sub-optimal filtered 
sequences were depicted, while the differences of the same images with the end frame of the optimal 
filtered sequence were reported on the second row

Table 4 Mean and standard deviation of the errors on noise parameters estimated in the sequences 
designed via the X-ray simulator by using 25 frames

Parameter error Errors on noise parameters estimates

F = 25

Mean SD

aerrp − 0.0135 0.0114

berrp 0.0226 0.0244

berrabs 1.0811 1.3120
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Fig. 4 Static frames from the real fluoroscopic sequences. The frames shown in the first and second rows 
were acquired at 50 mA and 10 mA (40 kVp), respectively. The frames in the left column depict the TOR-18FG 
phantom, while those in the right column depict the TOR-CDR

Table 5 Noise parameters estimates retrieved from the real fluoroscopic sequences, with relative 
errors on single parameters extracted from TOR-CDR sequences with respect to TOR-18FG ones for 
each tube setting

kVp mA TOR-18FG TOR-CDR Errors

a b a b aerr berr

40 10 7.15091 123.033 7.20909 125.312 0.00814 0.01852

40 20 4.37212 401.807 4.32512 384.611 − 0.01075 − 0.04280

40 30 3.45425 522.778 3.45683 526.265 0.00075 0.00667

40 40 2.99311 615.161 2.95042 633.000 − 0.01426 0.02900

40 50 2.66481 702.262 2.65917 704.725 − 0.00212 0.00351
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The noise parameters extracted from the real fluoroscopic sequences are reported 
in Table  5, along with the relative errors of the parameters retrieved from TOR-CDR 
sequences with respect to those obtained from the TOR-18FG sequences for corre-
sponding X-ray tube settings.

The relative errors (mean and SD) were -0.36% ± 0.90% and 0.30% ± 2.8%, for param-
eters a and b, respectively, and turned out to be comparable to those obtained in the 
analyses of the performances of the noise parameters estimation algorithm. The noise 
parameters extracted from the two phantoms sequences are also plotted in Fig. 5, where 
it can be verified that their trends with the tube current are very similar.

Discussion
This study investigated the feasibility of an a priori noise characterization at different 
X-ray tube settings for a single fluoroscopic device, which would obviate the need for 
inferring noise statics prior to each new image sequence acquisition, in order to enable 
the implementation of real-time algorithms that exploit the a priori knowledge of noise 
statistics to provide an effective, edge-aware denoising. To this aim, first the accuracies 
of the noise parameters provided by the considered noise estimation algorithm were 

Fig. 5 Noise parameters estimated from real fluoroscopic sequences. Static frames from the real fluoroscopic 
sequences. The frames shown in the first and second rows were acquired at 50 mA and 10 mA (40 kVp), 
respectively. The frames in the left column depict the TOR-18FG phantom, while those in the right column 
depict the TOR-CDR



Page 10 of 20Andreozzi et al. BioMed Eng OnLine           (2021) 20:36 

assessed to ascertain their reliability. In particular, a first set of 7 synthetic sequences 
with increasing number of grey levels equally spaced in a 128-wide interval, and a fur-
ther set of 7 synthetic sequences with 8 grey levels equally spaced in intervals of decreas-
ing width were designed via software and, then, corrupted by six different levels of 
simulated Poisson–Gaussian noise, for a total of 84 noisy sequences. The noise param-
eters were extracted from each sequence, at each distinct noise level by considering four 
different numbers of available frames (i.e., 100, 50, 25, 10). The algorithm achieved very 
low estimation errors in the first seven sequences, while performing substantially worse 
on the last seven sequences. Indeed, it is worth noting that, even with only 10 turned out 
to exceed these value, even for estimations performed by using the maximum number 
of available frames. Furthermore, it could be assessed by visual inspection that, even the 
worst errors achieved in the sequences 1–7, produced sub-optimal filtered sequences 
which were very similar to the optimal one, as opposed to the sub-optimal sequences 
produced by the estimates from sequences 8–14, which clearly showed edge blurring 
(confirmed by increases in Δ FWHM). These results clarify that ensuring a reasonable 
contrast in the test sequences to be used for noise characterization is mandatory to 
achieve reliable estimates. Moreover, the very small number of frames required by the 
noise estimation algorithm to achieve a reasonable accuracy allows for its application 
also to very short static scenes. The algorithm accomplished comparable performances 
also on four synthetic sequences designed via an X-ray simulator to include realistic 
medical information, thus proving that the presence of clinically relevant structures does 
not alter the performances of the noise estimation algorithm.

Once accuracy and reliability of the noise parameters estimation had been assessed, 
the algorithm was applied to the real fluoroscopic sequences acquired by imaging two 
commercial X-ray phantoms with different tube settings. The noise parameters extracted 
from pairs of sequences acquired independently with the same tube settings turned out 
to be comparable, as the mean relative errors turned out to be less than 1%.

Conclusions
The noise estimation algorithm considered in this study proved reliable in extracting 
noise parameters estimates with a reasonable accuracy, even from very short static 
scenes of only 10 frames. The tests performed on the real fluoroscopic sequences con-
firmed that the estimated noise parameters are independent of the particular infor-
mational content of the scene from which they have been extracted, as they turned 
out to be consistent in sequences acquired independently with the same X-ray tube 
settings. To the best of our knowledge, this is the first attempt to pre-characterize the 
noise of a single fluoroscopic device at different operating conditions, to obviate the 
need to repeat noise estimation after any change in X-ray tube settings. Moreover, it 
is also the first time that the trends of Poisson–Gaussian noise parameters with the 
X-ray tube settings are reported in literature. The encouraging results of this study 
suggest that an a priori characterization of noise for a single fluoroscopic device is 
feasible and could support the actual implementation of real-time edge-aware denois-
ing strategies that take advantage of noise statistics to improve the trade-off between 
noise reduction and details preservation. Future studies could focus on a further 
characterization of noise, e.g., on an extended grid of X-ray tube settings (mA, kVp), 
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also evaluating the possibility of obtaining part of these estimates via interpolation, as 
well as on an hardware implementation of the proposed approach, to directly assess 
its performances in real-time denoising of low-dose fluoroscopic sequences.

Materials and methods
Noise model

In an X-ray system, the number of photons that emerge from a patient and reach a 
single pixel of the detector plane can be modeled by a temporally stochastic Pois-
son process [16, 36, 37, 43], whose probability density function (pdf ) is described in 
Eq. (1):

where � is the expected photon count. Simple calculations allow deriving a very impor-
tant feature of Poisson distribution, namely the expected value – variance relationship 
(EVaR), which is reported in Eq. (2):

Therefore, the variance of the number of photons that reach a single pixel is equal to 
the expected photon count. However, in practice, the information carried by this ran-
dom process occurring at a single detector pixel is usually coded in a digital image, and 
particularly in the grey level of the corresponding image pixel, which is proportional to 
the actual photon count, thus being characterized by a modified EVaR, as reported in 
Eq. (3):

where g is the grey level of the digital image pixel corresponding to the detector pixel 
that is reached by a number of photons described by p, and a is the coefficient of pro-
portionality between g and p, also known as “detector gain”. The EVaR clarify the signal-
dependent nature of quantum noise (heteroscedasticity), which, unlike the well-known 
AWGN, cannot be characterized by a single, global noise variance estimate (homosce-
dasticity), but rather requires the estimation of the detector gain, in order to be able to 
estimate the local, signal-dependent noise variance from the local mean luminance.

X-ray images are also affected by other sources of noise that are usually modeled as 
AWGN, hence, they introduce a constant noise floor, i.e., a constant contribution to the 
noise variance, which can be included in the noise model, as shown in Eq. (4):

where b corresponds to the variance of the AWGN component. This model is known as 
Poisson–Gaussian mixture and has been used in various denoising approaches devised 
for low-intensity images [16–24, 26, 32–34, 42]. However, it requires the knowledge of 
the EVaR parameters, referred to as noise parameters, which are generally unknown 
and, thus, need to be estimated from the X-ray images.

(1)p(n) =
�
n

n!
e−�,

(2)σ
2
p

(

µp

)

= µp.

(3)g(�) = a · p(�) → σ
2
g
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)

= a · µg ,

(4)σ
2
g

(

µg

)

= a · µg + b,
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Noise parameters estimation

The algorithm analyzed in this work infers the statistics of noise by taking advantage 
of the temporal dimension that is available in image sequences, such as those acquired 
in fluoroscopy. This approach can be applied only to static scenes, as it assumes the 
ideal, noiseless luminance of each pixel to be constant in time and ascribes all its fluc-
tuations to the noise. Based on this assumption, the algorithm first calculates the sam-
ple mean and variance for each pixel along the temporal dimension, which describe the 
EVaR of the noise, and, then, it performs a linear regression to estimate the slope (a) 
and intercept (b) of the EVaR, i.e., the noise parameters. The number of frames available 
for noise characterization (i.e., the length of the static scene extracted from the fluoro-
scopic sequence of interest) poses a limitation on the actual number of observations of 
the random processes that describe each pixel luminance. This results in a certain vari-
ability of the variance values corresponding to the same mean value. This issue has been 
addressed in the performance analysis presented in this work, by evaluating the accuracy 
of noise parameters estimation also as a function of the number of available frames.

Synthetic sequences design

Static sequences with variable number of grey levels

The estimation of noise parameters depends on the number and distribution of EVaR 
points (i.e., the expected value–variance couples) on which the linear regression is per-
formed, i.e., on the number and distribution of grey levels within the scene. For this 
reason, 14 synthetic sequences were designed to represent static scenes with different 
number and distribution of grey levels. Each sequence was composed by 100 frames of 
128 × 128 pixels represented on 8 bits. The grey levels were assigned to the 128 columns 
of the scenes in a periodic fashion, from the darkest to the lightest level and then start-
ing again from the darkest one. The first seven sequences, depicted in Fig. 6, included 2 
up to 128 grey levels in powers of 2, equally spaced in the interval [64;192], which is 128 
wide and centered at the half of the whole representation interval.

The other seven sequences, shown in Fig. 7, included 8 grey levels, equally spaced in 
the intervals described in (5), which are centered at the half of the representation inter-
val and have a decreasing width from 48 down to 16:

Sequences with moving objects

Considering that the actual concern of denoising is not the mere errors on noise param-
eters, but rather the reconstruction errors on the processed images, a qualitative and 
quantitative performance assessment of the noise estimation algorithm analyzed in this 
study was carried out by comparing the denoising results achieved via the NVCA algo-
rithm with the actual and the estimated noise parameters. To this aim, two synthetic 
noiseless test sequences were designed, which represented a dark rectangle and a dark 
circle moving from the left to the right at a speed of 1 pixel per frame over a brighter, 
uniform background. The noiseless sequences are depicted in Fig. 8.

(5)[64 + 8k; 192− 8k], k = 1, 2, . . . 7.
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Fig. 6 Static frames of the seven synthetic sequences with increasing number of grey levels (2 to 128 in 
power of 2) equally spaced in the range [64; 192]

Fig. 7 Static frames of the seven synthetic sequences with 8 grey levels equally spaced in narrowing ranges

Fig. 8 Synthetic sequences with: a a moving rectangle and b a moving circle, adopted to test the effect of 
the noise estimation errors on NVCA filtering performances
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Sequences from X‑ray simulator

The 14 synthetic sequences described in the previous paragraph were characterized 
by scenes that are very uncommon in medical applications, therefore four additional 
sequences (see Fig. 9) were produced via an X-ray simulator [44–46], which allowed test-
ing the noise estimation algorithm on scenes with content of clinical relevance, while 
still having a ground truth to derive quantitative measures for performance assessment.

Performance analysis

Each of the 14 sequences with variable number of grey levels was corrupted with six dif-
ferent levels of simulated mixed Poisson–Gaussian noise, by using all the combinations 
of values considered for noise parameters (reported in Table 6). Noise estimation was 

Fig. 9 Static frames of the four synthetic sequences devised via the X-ray simulator
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performed in each of the resulting 84 noisy sequences by considering 4 different number 
of available frames, i.e., 10, 25, 50, 100. Therefore, a total of 336 noise estimates were 
actually retrieved (i.e., 56 for each noise level).

The sequences with moving objects were corrupted with two different levels of mixed 
Poisson–Gaussian noise, corresponding to level 3 and level 6 reported in Table 6. The 
contrast in the two noiseless sequences was set to obtain a contrast-to-noise ratio 
(CNR) of 4 for both sequences. Figure 10 shows a frame from the noisy versions of the 
sequences with moving objects and the result of NVCA filtering with the actual noise 
parameters.

Table 6 Noise parameters of the noise levels used to corrupt the synthetic scenes

Noise level a b

Level 1 0.5 0

Level 2 1 0

Level 3 2 0

Level 4 0.5 144

Level 5 1 144

Level 6 2 144

Fig. 10 Synthetic sequences with moving objects adopted to test the effect of the noise estimation errors 
on NVCA filtering performances. In the first row, panels a, b, the noisy sequences are reported, in which the 
contrast was set in order to obtain a CNR = 4. In the last row, panels c, d, the sequences denoised via the 
NVCA algorithm by using the actual noise parameters are shown
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The five sequences devised via the X-ray simulator were corrupted with the same noise 
levels reported in Table 6 (an example of noiseless and noisy versions of a sequence is 
depicted in Fig.  11), and noise estimation was performed by using 25 frames, which 
turned out to be the minimum number of frames to retrieve noise parameters with a 
reasonable accuracy, according to the results reported in paragraph 1 of the “Results” 
section.

Real fluoroscopic sequences

The real fluoroscopic sequences were acquired by imaging two commercial X-ray phan-
toms, namely TOR-18FG [47] and TOR-CDR [48] (Leeds Test Objects, 7 Becklands Cl, 

Fig. 11 Comparison of noiseless and noisy versions (noise level 6) of the same static frame of sequence #2 
from X-ray simulator, depicted in Fig. 9b
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Roecliffe, York YO51 9NR, UK), via a commercial fluoroscopic device (INTERMEDI-
CAL S.r.l. IMD Group, Via E. Fermi 26, 24,050 Grassobbio (BG), Italy). The fluoroscope 
acquired frames of 1536 × 1536 pixels, represented on 16 bit, with a pulsed protocol 
at 15 frames per second (fps). Each phantom was placed over an anti-scatter grid, just 
above the flat panel detector, between two blocks of five Plexiglass square sheets of 
25 cm × 25 cm × 1 cm (see Fig. 12), which were used to produce an equivalent Compton 
scattering noise that would occur when imaging the human body. Five sequences were 
acquired for each phantom by using the X-ray tube settings reported in Table 7.

The noise estimation algorithm was applied to extract the noise parameters estimates 
from the ten acquired fluoroscopic sequences. Then, a comparison was carried out 
between parameters extracted from each couple of sequences acquired with the same 
X-ray tube settings.

Fig. 12 Pictures of the X-ray phantoms with Plexiglass sheets: a top view of TOR-18FG; b top view of 
TOR-CDR; c side view of TOR-18FG; d side view of TOR-CDR

Table 7 X-ray tube settings used to acquire the real fluoroscopic sequences

X-ray tube setting Kilovoltage peak (kV) Current (mA)

#1 40 10

# 2 40 20

# 3 40 30

# 4 40 40

# 5 40 50
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