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We characterise by the nonlinear Fourier transform (NFT) the build-up and dynamics of optical
combs in the framework of the Lugiato-Lefever equation both for anomalous and normal dispersion.
We demonstrate that NFT signal processing technique can simplify analysis of the formation of
dissipative dark solitons and regimes exploiting modulation instability for a generation of coherent
structures, by approximating comb with several discrete eigenvalues providing a platform for the
analytical description of dissipative coherent structures.

Optical spectral comb technology enables a range of
existing and emerging applications (see, [1–7] and ref-
erences therein). Due to their chip-scale size and po-
tential for integration, micro-resonator frequency combs
are attractive for generating of equally spaced, coher-
ent (phase-locked) spectral lines, that is of particular in-
terest for super-channel based optical communications.
Multi-terabit per second coherent transmission has re-
cently been demonstrated using both dissipative solitons
and dark pulses in micro-resonators [8, 9]. The optical
comb technology is based on the nonlinear science under-
lying building of coherent optical structures that ensure
phase locking of spectral modes in the resonator.

Localized coherent structures and patterns formed
from noise or unstable homogeneous states occur in a
wide range of applications in physics and biology. De-
spite a great variety of these applications, they often
have similar underlying mathematical models, that offer
generic platform for new methods of analysis of localised
temporal or spatial nonlinear waves. In this Letter, we
demonstrate new applications of the nonlinear science
method – inverse scattering transform (IST), also known
as the nonlinear Fourier transform (NFT) to the charac-
terisation of optical combs in several practically impor-
tant configurations.

The master model governing the average evolution of
the envelope of the optical field in nonlinear fibre- or
micro-resonator (see for more details [1–7, 10, 11] and
references therein) reads:
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Here Ψ(T, τ) is a slowly varying field amplitude, T is a
normalised time corresponding to the cavity round trips,
τ is a dimensionless longitudinal coordinate related to
the angular characteristic inside the micro-resonator (or
the local time characteristic in case of fibre-resonator),
ζ0 is the normalized laser detuning between the pump
laser frequency and the cold-cavity resonance frequency,
and f is the normalised pump field amplitude; β = ∓1
corresponds to, respectively, focusing/de-focusing cases
(anomalous/normal dispersion in the context of fibre-

optic applications). Eq. (1) is a mean-field model widely
known as the Lugiato-Lefever equation (LLE) [12], was
originally introduced in the context of plasma physics
in [13], and first derived in the temporal domain in [14].
The left-hand-side of Eq. (1) (assuming that r.h.s is zero)
presents the nonlinear Schrödinger equation (NLSE) that
is integrable by IST [15, 16].

The IST/NFT method in application to NLSE is
well documented and details can be found, for instance,
in [15–18], therefore, here we only briefly remind the key
facts that will be used below. We limit IST/NFT consid-
eration by fields Ψ(T, τ) decaying at τ → ±∞ for all T .
The NLSE solutions Ψ(T, τ) are linked to the spectrum
of a linear operator – the Zakharov-Shabat spectral prob-
lem (ZSSP) for potential Ψ(T, τ) and a spectral parame-
ter λ = ξ + iη, as follows:

∂u

∂τ
= −i λ + Ψ(T, τ) v,

∂v

∂τ
= βΨ∗(T, τ)u+ i λ v. (2)

For β = −1 the eigenvalue problem is non-Hermitian
(ZSSP1) and for β = 1 the operator is Hermitian
(ZSSP2). Any solution of the NLSE Ψ(T, τ) with β = −1
can be presented through the corresponding nonlinear
spectrum of the ZSSP1, that in general, includes: (i) a
continuous spectrum that is defined on the real axis of
the complex plane λ = ξ by the complex function r(ξ),
and (ii) a discrete spectrum that is described by 4 × N
real parameters (the set of complex-valued eigenvalues
{λn} having a positive imaginary part together with the
complex-valued norming constants {rn}). The discrete
eigenvalues correspond to a soliton component contain-
ing of the field Ψ(T, τ), with N being the total number
of solitons. For the field Ψ(T, τ) that consists of a set
of well separated solitons, each eigenvalue λn specifies
the soliton parameters: amplitude 2Im(λn), frequency
−2Re(λn), position Tn = log[|rn|/(2Imλn)]/(2Imλn),
and phase ϕn = − arg(irn).

For the case β = −1, the field energy can be presented
as a sum of continuous (dispersive waves) and discrete
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(solitons) spectra of ZSSP1:

∞∫
−∞

|Ψ(T, τ)|2dτ =

N∑
n=1

4ηn +
1

π

∞∫
−∞

log(1 + |r(ξ)|2)dξ,

(3)
where the left side of equality corresponds to the energy
calculated in the temporal domain Et(T ), while the right
side includes a contribution of the discrete spectrum en-
ergy Ed(T ) and the continuous spectrum Ec(T ).

The initial idea (e.g. presented in [19–22]) behind using
IST/NFT beyond the traditional integrable systems, was
to exploit the fact that for some non-integrable (e.g. dis-
sipative) models the Hamiltonian part of these equations
is NLSE, and, thus, one can expect that the IST/NFT
might still be a useful tool for analysis of the whole (non-
Hamiltonian) systems. The term NFT stresses the anal-
ogy with the traditional Fourier transform that is ubiq-
uitous in science and engineering. Fourier transform has
two key properties that make it such a widely used engi-
neering method. First, use of the Fourier transform in a
number of linear equations allows to solve them, e.g. by
presenting a complex dynamics through a linear combi-
nation of non-interacting spectral components with sim-
ple evolution. Second, Fourier transform might be use-
ful in simplifying the description of complex objects by
presenting them via spectral harmonics. It was shown
in [19, 21, 22], that in a similar manner IST/NFT can be
employed not only for solving integrable equations, but
also for the characterisation of localised coherent struc-
tures in dissipative systems in the anomalous dispersion
regime. Note that in [23] periodic NFT was applied for
analysis of static (output) optical comb profiles in the
LLE model. However, in the case of periodic NFT lo-
calised structures have been presented by a large num-
ber of discrete eigenvalues that does not allow to reduce
number of the effective degrees of freedom compared to
conventional Fourier transform.

In this Letter, we demonstrate novel features and ap-
plications of NFT compared to the initial idea [19–21].
We advance this emerging signal processing technique
with the following novel applications of NFT to the char-
acterisation of the dynamics of coherent structures during
generating of optical combs: (i) for the first time we ap-
ply NFT based on ZSSP1 (with β = −1 in ZSSP (2))
to the analysis of dissipative dark solitons in Eq. (1)
with normal dispersion. This is, evidently, a dramatic
departure from the traditional IST, where the sign of β
must be the same for the NLSE and ZSSP used for its
integration; (ii) we demonstrate how NFT can be used
in the case of pulsed pumping waves; (iii) we charac-
terise in terms of NFT spectrum generation of an optical
comb through modulation instability-induced oscillations
when detuning is switched to ensure a shift from unstable
CW background to stable one; (iv) we demonstrate that
steady-state dissipative dark soliton can be well approx-

imated analytically by the N-soliton solutions of NLSE
and a small number of parameters.

A typical solution of Eq. (1) includes a CW background
Ψ0(T ) and a solitonic part Ψ1(T, τ). Evolution of the
CW background Ψ0(T ) is given by

i
∂Ψ0

∂T
+ |Ψ0|2Ψ0 = (−i+ ζ0) Ψ0 + if. (4)

There are well-known solutions of 4 in the form of a
constant CW background that can be found by solving
Eq. (4) with ∂Ψ0

∂T = 0, yielding algebraic equation on the
stationary background I0 = |Ψ0|2: I3
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and one real root otherwise. When ζ0 <
√

3 only one real
root exists [3–7].

When localised structures that define comb have time
scale much less than the round trip, it is possible to sep-
arate dynamics of the stable background field with non-
zero boundary conditions (in τ) from the evolution of the
localised in time (vanishing boundary conditions) soliton
content. This is possible when at large |τ | localised struc-
tures do not affect the CW background. Considering so-
lution of the master model (1) as a sum of the uniform (in
τ) background Ψ0 that depends only on T and the soli-
ton (localised in τ) component Ψ1, we can separate the
evolution in T of Ψ0 governed by Eq. (4), and dynamics
of the field Ψ1:

i
∂Ψ1

∂T
− β

2

∂2Ψ1

∂τ2
+ |Ψ1|2Ψ1 = R[Ψ0,Ψ1], (5)

here the perturbative term R describing deviations of
Eq. (5) from the integrable NLSE has a form:

R = (−i+ ζ0) Ψ1−2|Ψ0|2Ψ1−2Ψ0|Ψ1|2−Ψ2
0Ψ∗1−Ψ∗0Ψ2

1.

The proposed separation of the equations to the CW and
solitonic parts only works when the background is stable.
However, we will also show below how it can be used in
the case of the unstable CW under the condition that
the initial perturbation is localised in τ and detuning pa-
rameter is switched from unstable to stable background
regimes before developing oscillations reach boundaries.

The Zakharov-Shabat problem (2) has been solved nu-
merically by a hybrid method that includes computing
discrete eigenvalues using phase jump tracking [24] and
their subsequent refinement based on the Newton method
with the exponential scheme [25].

Figure 1 depicts formation of a dissipative dark soli-
ton in Eq. (1) with β = 1 from the initial condition
Ψ(T = 0, τ) = 2 − 1.8 exp[−(τ/3.1)2] [26] in the case of
the stable background I0 = 2. Figure 1 shows that ZSSP1
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FIG. 1. Dissipative dark soliton on the stable CW back-
ground: (a) evolution with T of the intensity |Ψ(T, τ)|2,
(b) the spectral power density |Ψ(T = 12, ω)|2, (c) intensity
of the field without background |Ψ1(T, τ)|2, (d) the nonlin-
ear discrete spectrum at T = 12, (e) the field reconstructed

from the discrete spectrum only |Ψ(DS)
1 (T = 12, τ)|2, (f) blue

line – evolution with T of the fraction of energy in the dis-
crete spectrum Ed(T )/Et(T ); relative integral L2-norm of the

difference between the field Ψ1 and the field Ψ
(DS)
1 recon-

structed from the nonlinear discrete spectrum (red line). Here
Ψ(T = 0, τ) = 2−1.8 exp(−(τ/3.1)2), β = 1, ζ0 = 6, f2 = 8.5.

(with β = −1) can be employed in the case of normal dis-
persion (β = 1) and that the dynamics of the field can be
reconstructed with a reasonable accuracy from the dis-
crete spectrum only. Figure 1(f) presents evolution with
T of a fraction of the energy Ed(T )/Et(T ) containing in
the discrete spectrum (blue line) and a relative error in
terms of L2-norm of the reconstruction of the total field
using only discrete eigenvalues (red line). It is seen that
dark soliton can be recovered with a good accuracy only
from the discrete eigenvalues of the ZSSP1.

Next, we apply NFT characterisation to the generation
of an optical comb through the modulation instability of
the unstable CW background induced by localised oscilla-
tions. Figure 2 illustrates formation of optical comb when
ζ0 = 2 (unstable CW) for T < 5 and ζ0 = 8.7666 (stable
CW) for T ≥ 5. We consider the localised oscillating per-
turbations at T = 0 Ψ(0, τ) = 1.8 exp(−2τ2) cos(0.3+5τ)
that induce instability of the background. However, be-
fore oscillations reach the boundaries in the LLE model,
the detuning ζ0 is switched to the stable CW background
condition. As it is seen in Fig. 2, in the considered exam-
ple, two discrete eigenvalues allow us to reconstruct the

FIG. 2. Formation of comb through the modulation insta-
bility with switched detuning: (a) full field with background
|Ψ(T, τ)|2, (b) comb spectral power density |Ψ(T = 12, ω)|2,
(c) |Ψ1(T, τ)|2, (d) dynamics of the nonlinear spectrum with
T shown in the complex plane λ = ξ + iη: the discrete spec-
trum (upper part) and the logarithm of |r(ξ)|2 for continuous
spectrum (counterplot), (e) the field reconstructed from the

discrete spectrum only |Ψ(DS)
1 (T = 20, τ)|2, (f) blue line –

evolution with T of Ed(T )/Et(T ); relative integral L2-norm

of the difference between the field Ψ1 and the field Ψ
(DS)
1 re-

constructed from the nonlinear discrete spectrum (red line).
Here ζ0 = 2 for T < 5 and ζ0 = 8.7666 for T ≥ 5. Here
β = −1, f2 = 3, Ψ(T = 0, τ) = 1.8 exp(−2τ2) cos(0.3 + 5τ).

total field with relatively good accuracy.

The proposed NFT analysis is well suited to optical
comb generation [27] with pulsed pumping wave. In this
case, there is no need to subtract CW background as
the boundary conditions are decaying at large |τ |. Con-
sider the pumping wave in the form of a well-separated
pulses of the form of f(τ) = 1.9 sech(τ/20), similar to
example studied in [27]. Figure 3 presents NFT char-
acterisation of a comb formation from the initial Gaus-
sian pulse 3 exp(−τ2/2). Steady-state field (Fig. 3(b))
has well-pronounced tails, leading to a discrete spectrum
with one detached eigenvalue and a set of equally spaced
eigenvalues with lower imaginary parts.

Finally, considering as an example a single dissipative
dark soliton comb studied in [26] (shown in Fig. 4) we
demonstrate that NFT approach can provide an analyt-
ical description for such stationary coherent structures
in the non-integrable models. First, the optical field
in the temporal domain was restored from the two dis-
crete eigenvalues shown in Fig. 5(c) using the Darboux
method. The analytical 2-soliton solution of NLSE corre-
sponding to two discrete eigenvalues has the well-known
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FIG. 3. Comb generation with a pulsed pumping wave
(f(τ) = 1.9 sech(τ/20)) generated from the Gaussian pulse
3 exp(−τ2/2): (a) dynamics of intensity |Ψ(T, τ)|2, (b)
formed comb shown at T = 10 |Ψ(T = 10, τ)|2, (c) the

field |Ψ(DS)(τ, T )|2 reconstructed from the discrete spectrum
shown in (e), (d) the spectral power density of comb |Ψ(T =
12, ω)|2, (e) dynamics of the nonlinear spectrum shown as the
evolution with T in the complex plane λ = ξ+iη: the discrete
spectrum (upper part) and the logarithm of |r(ξ)|2 for con-
tinuous spectrum (counterplot), (f) blue line – evolution with
T of Ed(T )/Et(T ); relative integral L2-norm of the difference

between the field Ψ and Ψ(DS) reconstructed only from the
nonlinear discrete spectrum (red line). Here ζ0 = 4, β = −1.

exact form [17]:

Ψ(2)(τ) = −2 〈A(τ)| [I + M(τ)∗M(τ)]−1 |B(τ)〉 . (6)

Here I is 2× 2 identity matrix, Mk,j(τ) = irj
e−i(λ

∗
k−λj)τ

λ∗
k−λj

and 2-component vectors A(τ) and B(τ) are defined as:
〈A(τ)| = 〈r1e

iλ1τ , r2e
iλ1τ |, 〈B(τ)| = 〈eiλ1τ , eiλ1τ | . For

the example considered in Fig. 5: r1 = 2.8661 + 7.4679i,
r2 = 3.2519+2.3445i, λ1 = 1.4085i, λ2 = 0.6438i. Poten-
tial Ψ(DS) reconstructed from two eigenvalues provides
analytical approximation of the dissipative dark soliton
Fig. 4(a): Ψ(T, τ) = Ψ0(T, τ) + Ψ(DS)(T, τ).

Though a straightforward reconstruction of the poten-
tial Ψ1(T, τ) from the discrete spectrum of ZSSP (2) al-
lows approximation of the original field with good accu-
racy, it has disadvantages in the form of asymmetry (the
original field is symmetric in τ). It is well-known that
the soliton modes are prone to the conversion of per-
turbations into jitter of discrete eigenvalue parameters.
Therefore, reconstruction has to be enhanced by addi-
tional signal processing, discussion of which is beyond

FIG. 4. Dissipative dark soliton: β = 1, ζ0 = 2.5, f2 = 2.61,
Ψ(T = 0, τ) = 1.7−exp(−(τ/4.4721)2). (a) |Ψ(τ, T )|2, (b) the
spectral power density |Ψ(T = 30, ω)|2.

FIG. 5. Analytical approximation of dissipative dark soli-
ton, same parameters as in Fig. 4: (a) dynamics in T of the
nonlinear spectrum in the complex plane λ = ξ + iη: the dis-
crete spectrum (upper part) and the logarithm of |r(ξ)|2 for
continuous spectrum (counterplot), (b) solution of Eq. (5)

|Ψ1(T, τ)|2, (c) the field |Ψ(DS)
1 (T, τ)|2 reconstructed from

the discrete spectrum with using L2-optimization procedure,
(d) relative integral L2-norm of the difference between the

field Ψ1 and the field Ψ
(DS)
1 reconstructed from the nonlinear

discrete spectrum by general procedure (purple line) and with
using L2-optimization procedure (red line).

the scope of this Letter. Here, we apply the Levenberg-
Marquardt algorithm to minimize the L2-norm of the
deviation between original and reconstructed fields. This
approach makes it possible to obtain symmetric field, and
to halve the L2-error (Fig. 5(d)). The optimal parame-
ters read: r1 = 2.0767 + 5.198i, r2 = 1.9037 + 0.84997i,
λ1 = 1.2797i, λ2 = 0.47663i for T = 30. We would like
to stress that the analytical formula (6) well approximate
here dissipative dark soliton in the non-integral system,
as it is seen in Fig. 5. In this case, it is not necessary
to solve the direct ZSSP to find the discrete spectrum,
which, in the general case, is a complex resource-intensive
task. However, the computed discrete spectrum pro-
vides a useful initial approximation for the optimization
method. We also note that the number of discrete eigen-
values in this approach is not fixed and can be selected
from the requirements of the reconstruction accuracy.
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In conclusion, we demonstrated that the NFT method
based on the Zakharov-Shabat spectral problem used in
the IST for NLSE with anomalous dispersion can be ap-
plied to the characterisation of optical combs in systems
with both anomalous and normal dispersion, and with
constant or pulsed pumping wave. We have shown that
NFT technique can be used to analyse comb generation
by the modulation instability of the plane wave when
detuning parameter is switched from initially unstable
background to the stable one. In the considered exam-
ples, NFT approach allowed us to present generated op-
tical comb by several discrete eigenvalues. We demon-
strated that NFT can provide the analytical description
for some classes of dissipative dark solitons in situations
when the most of the energy is contained in the dis-
crete eigenvalues. Note an interesting link to the use
of breather solution of NLSE for comb generation [28].
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