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Thesis Summary 

 

Alzheimer’s disease (AD) is the most common cause of dementia, affecting an estimated 44 

million people worldwide. Currently, there are no methods available for the definitive diagnosis 

or treatment of AD before the onset of the overt clinical features of the disease. AD is 

associated with the formation of amyloid plaques and NFTs formed as a result of the 

accumulation of Aβ and abnormally folded tau proteins. Metabolic dysfunction has been 

recognised as a preclinical pathogenic event preceding obvious clinical onset of AD by 

decades. The aim of this project was to determine if metabolic dysfunction correlates with 

exposure to Aβ peptides. Our hypothesis is that early metabolic dysfunction occurs in AD 

before the onset of symptoms, and is related to excessive production of toxic Aβ species. 

Neurons and astrocytes were differentiated from hiPSC-derived NPCs; ‘healthy’ and familial 

AD (fAD) patients. ‘Healthy’ cells were exposed to synthetic Aβ1-42 oligomers and then 

glucose uptake and glycogen storage was determined. Exposure to synthetic Aβ1-42 induced 

a significant reduction in glucose uptake in ‘healthy’ hiPSC-derived astrocytes and neurons as 

well as primary human astrocytes (HA). A significant reduction in glycogen storage was also 

recorded for the ‘healthy’ hiPSC-derived astrocytes, but not in HA. To determine if neurons 

and astrocytes from fAD patient-derived hiPSC demonstrated metabolic dysfunction, glucose 

uptake and glycogen storage was determined in these cells. Human fAD patient iPSC-derived 

astrocytes and neurons demonstrated increased Aβ production compared to ‘healthy’ controls. 

These cultures also demonstrated reduced glucose uptake. However, the conditioned media 

from the fAD cultures failed to induce metabolic dysfunction in ‘healthy’ control cells. These 

results provide evidence of early metabolic dysfunction in human fAD, and provide an 

important step in understanding the role of Aβ early in the progression of AD. 
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Chapter 1: Introduction  

 

1.1 The Overview and Prevalence of Alzheimer’s Disease 

 

Alzheimer’s disease (AD) is the most common cause of dementia worldwide. It is a chronic 

neurodegenerative disease characterised by a gradual degeneration of neurons in the brain 

due to a combination of genetic factors and environmental factors related to lifestyle and diet. 

The disease presents mainly with behavioural changes, manifesting as confusion, decline in 

memory, mental capacity, challenging behaviours and social withdrawal over time. It has 

significant effects on the quality of life of affected individuals, and often affects their ability to 

perform usual activities of daily living like personal care, meal preparations and shopping.  

 

AD is the most common cause of dementia, affecting an estimated 44 million people worldwide 

and being responsible for 60 - 70% of cases of dementia (World Health Organization, 2015). 

It presents with anterograde amnesia (loss of recent memory and inability to retain new 

information) in the early stages, and progresses to retrograde amnesia (long-term memory 

loss) as the disease advances, presenting as inability to recognise long term relatives and 

family. Increasing age is a well-known risk factor associated with the disease, however, it can 

also occur in younger individuals. 

 

1.2 History of AD 

 

The name ‘Alzheimer’s disease’ was described as an eponym in a textbook written by Kraeplin 

in 1910 (Hoff and Hippius, 1989). The disease was named after Alois Alzheimer, who first 

described the pathological hallmarks of the disease (neurofibrillary tangles and amyloid 

plaques) in 1907, after performing an autopsy on a 55 years old woman who had severe 

progressive behavioural and cognitive changes prior to her death. He presented the disease 

at a meeting of Southwest German Psychiatrists in Tübingen in 1906, and published a short 

paper in 1907 and a more detailed one in 1911 (Alzheimer, 1907). Prior to her death, the 

patient named Auguste Deter, had severe cognitive deficits characterised by unpredictable 

and unusual behaviours, confusion, delusions, and aphasia. He noted on the autopsy that the 

woman had a severe atrophy of her brain cortex and internal components. He later described 

neuritic plaques in the cortex, which were made up of collections of dystrophic neuronal 

processes surrounding a special substance. He named these neuritic plaques miliary foci 

(Alzheimer et al., 1995). The ‘special substance’ was isolated in 1984 as oligopeptides 
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containing mostly 40 or 42 amino acids (Glenner and Wong, 1984). These oligopeptides are 

now known as amyloid beta peptides (Aβ), while the miliary foci are now known as amyloid 

plaques. He also described the presence of intracellular aggregates which he named 

neurofibrillary tangles. These lesions are now known to be composed of aggregates of 

hyperphosphorylated tau protein. Since the observations made by Alzheimer and his 

colleagues in the early twentieth century, very little progress was made in gaining a better 

understanding into the natural history of the disease for several decades, until 1968 when a 

direct relationship was established, linking the existence of amyloid plaques with the 

occurrence of dementia (Blessed et al., 1968). 

 

1.3 Symptoms of AD 

 

AD patients experience different symptoms depending on the stage of the disease, as well as 

other lifestyle factors that may influence each individual. The disease usually spans over 

several years to decades, and the symptoms are often become progressively worse with time, 

although the rate of progression differs with each individual. It often presents in the early 

stages as confusing behaviours manifesting as a result of memory loss. For example, asking 

for a meal just after just having eaten, or not remembering an appointment that was recently 

organised. As the disease progresses, more symptoms occur, including reduction in problem-

solving capabilities, communication, incontinence and increased frequency of physical health 

problems (Aarsland et al., 1996). At later stages, there are severe limitations to normal bodily 

functions like walking and swallowing leading to the affected individual being bed-bound, 

completely withdrawn socially and unable to care for themselves in the terminal stages. At 

these stages, there is severe generalised atrophy of the brain due to extensive neuronal and 

brain mass loss (Fig. 1.1). 
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Figure 1.1: Representative diagrammatic overview of AD patient brain (right) with neural 

cell loss leading to shrinkage in the AD brain compared to healthy human brain (left). 

Obtained from National Institute of Aging (NIA) website. 
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1.4 Epidemiology and Risk Factors 

 

About 767,000 people were affected by dementia in the UK in 2016 (Ahmadi-Abhari et al., 

2017), and it was reported to cost the UK economy about £24.2 billion yearly as at 2015. The 

vast majority of this cost (83%) was attributed to the cost of physical care, while healthcare 

costs accounted for the remainder (Wittenberg et al., 2019). Higher costs were reported for 

those with moderate and severe dementia, rising from £24,400 for mild dementia to £46,050 

for severe dementia. The number of individuals affected by dementia in England and Wales 

is expected to rise up to 1.9 million by 2040 (Ahmadi-Abhari et. al., 2017). AD, is the most 

common cause of dementia, affecting 5.4% of the population and commonly occurs in people 

over 65 years (Ferri et al., 2005, Ferri et al., 2010). The most prominent risk factor is increasing 

age, with the highest risk around 80 years (Di Carlo et al., 2002, Bermejo-Pareja et al., 2008). 

More women than men are affected by the disease (Di Carlo et al., 2002), with a incidence of 

14.3 and 17.0 per 1000 person years in men and 17.0 per 1000 person years in women aged 

50 or more as at 2010. It affects Caucasians more than other races (Burns and Iliffe, 2009). 

Other risk factors include family history, head injury, genetic predisposition (Ward et al., 2012), 

as well as vascular and metabolic disorders like hypertension, diabetes, coronary heart 

disease, dyslipidaemias, obesity, atherosclerosis and smoking (Burns and Iliffe, 2009, 

Blennow et al., 2006). With an increasing elderly population, the prevalence of AD is expected 

to double every 20 years with an estimated 81 million people to be affected by dementia 

worldwide by 2040 (Ferri et al., 2010). 

 

1.5 Clinical Variants 

 

There are two clinical subtypes of AD. Early-onset AD is an uncommon form of the disease 

which occurs before the age of 65 years. It accounts for about 4% of AD cases (Prince et al., 

2014) and is linked to mutations in key genes. It is caused by mutations in presenilin 1 

(PSEN1), presenilin 2 (PSEN2) and amyloid precursor protein (APP) genes, that represent 

key proteins in Aβ protein metabolism (Blennow et al., 2006). PSEN1 and PSEN2 mutations 

are the most commonly found mutations, and they present at around 50 years of age (Prince 

et al., 2014). These are the most aggressive forms of the disease, leading to death of most 

patients in their 60s. PSEN1 and PSEN2 are core components of the presenilin complex, a 

group of transmembrane proteins which are important in the regulation of several cellular 

enzymes. They regulate the proteolytic activities of the gamma and beta secretase enzymes, 

which are responsible for the production of Aβ from APP.  
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The sporadic form of the disease is more common, with no currently identified cause. It is 

believed to have a multifactorial origin involving increasing age, environmental and genetic 

factors (Blennow et al., 2006). The major genetic factor associated with the sporadic form is 

the presence of the apolipoprotein E ε4 (APOE4) allele, with a higher risk in the homozygous 

state. Despite the association of APOE4 with the sporadic form of AD, it has been difficult to 

determine the mechanism by which it promotes disease formation. The normal function of 

APOE is as a brain cholesterol transporter and is important in maintenance of membrane 

integrity and neuronal function. APOE4 is defective at cholesterol transport, and its presence 

may result in a reduced repair capability in the neuron (Blennow et al., 2006). However, the 

normal APOE promotes Aβ accumulation and plaque formation (Holtzman et al., 2000), 

making it difficult to identify a clear mechanism of involvement in the disease process. In 

addition, meta-analyses of genome-wide association studies have revealed 22 genetic 

susceptibility foci for late-onset AD (Lambert et al., 2013, Seshadri et al., 2010). 

 

1.6  Genetics of AD 

 

AD is a disease with very strong genetic links; the familial form of the disease, although rare, 

is caused by genetic mutations that can be passed down generations in an autosomal 

dominant fashion. The sporadic form of the disease, although with less strong familial 

tendencies, is also characterised by the presence of the APOE4 allele which can also be 

passed down generations, increasing the risk of progeny developing the disease. While 

APOE4 has been the traditionally recognised genetic link with sporadic AD, recent studies 

have revealed other significant genetic loci that play important roles in the pathogenesis of 

sporadic AD, especially those with a high predilection for microglia (Efthymiou and Goate, 

2017, Dos Santos et al., 2017). Genome-wide studies (GWAS) have identified a particularly 

important genetic variant which exerts a significant role in AD pathogenesis (Benitez and 

Cruchaga, 2013, Guerreiro et al., 2013). This triggering receptor expressed on myeloid cells-

2 (TREM2) is a rare gene variant which has a high expression in the microglia, and exerts 

important effects on microglial function, metabolism and survival (Benitez and Cruchaga, 

2013, Guerreiro et al., 2013). TREM2 is believed to exert influence of microglial metabolism 

and survival through inhibition of apoptosis by activating the pI3K/AKTmTOR pathway which 

leads to increased cellular energy generation, and by activating the Wnt/b-catenin signalling, 

which then facilitates proliferation of microglia (Reviewed in Zheng et al., 2018).The PSEN1, 

PSEN2 and APP genes are the hallmarks of familial AD (fAD). Genetic mutations associated 

with the familial form of the disease affect either APP itself or enzymes involved in the 

processing of amyloid such as PSEN1 and PSEN2, result in increased Aβ production and 



24 
 

aggregation (Bertram and Tanzi, 2008).  

 

The strong genetic links of AD is also expressed in patients with Down syndrome, who are 

known to start accumulating Aβ plaques and neurofibrillary tangles (NFTs) from as early as 8 

years of age (Leverenz and Raskind, 1998), and have established pathologic features of AD 

by the age of 40 (Mann and Esiri, 1989). The strong association between AD and Down’s 

syndrome is likely explained by the fact that the APP gene is located on chromosome 21, the 

chromosome that is in excess in people with Down syndrome. The prevalence of AD in Down 

syndrome patients above 50 years of age is estimated at 4 - 55% (Head et al., 2012), and 15 

- 77% over the age of 60 (Prasher and Filer, 1995, Zigman et al., 1996).  

 

1.7 Aetiology and Pathogenesis of AD 

 

Despite years of research and progress in the understanding of AD, its aetiology remains 

unknown. Several hypotheses have been postulated on the origin of the disease and how the 

disease progresses. The inter-relationship of these different pathologic courses remains a 

focus of discourse amongst researchers. The two most prominent hypotheses are the amyloid 

hypothesis and the tau hypothesis. These are based on the two pathological hallmarks of the 

disease: amyloid aggregates and NFTs. 

 

1.7.1 Tau Hypothesis 

 

The ‘tau hypothesis’ suggests that the occurrence of dementia in AD patients is due to the 

presence of neurofibrillary tangles, which are aggregates of abnormally hyperphosphorylated 

tau protein. Tau protein is a cytoskeletal (microtubule) stabilising protein. Its normal function 

is to support anterograde axonal transport in neurons (Santa-Maria et al., 2007). In AD, it 

becomes hyperphosphorylated due to abnormal metabolism, causing it to aggregate and 

polymerise, resulting in the formation of neurofibrillary tangles and disruption of the neuronal 

microtubular transport mechanisms. Abnormal tau deposition has been reported to be spatially 

divided into six stages depending on the location of the brain in which deposition is detectable 

temporally. These stages are known as the Braak staging first developed in 1991 (Braak and 

Braak, 1991), and the modified Braak staging (Braak et al., 2006). The first stage of tau 

deposition was reported to begin in the entorhinal and transentorhinal cortex which are 

responsible for memory formation, time perception and spatial orientation (Solodkin et al., 
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2014). At stage 2, tau deposition becomes detectable in the hippocampus which also plays a 

major role in learning and memory (Solodkin et al., 2014). The third and fourth stages involve 

tau deposition in the temporal cortex before spreading to the other cortical regions at stage 

four. The fifth and sixth stages involve deposition in the visual association and primary visual 

cortex respectively (Braak et al., 2006).  

 

The cause of abnormal tau formation is not clear, but it has been suggested that abnormal tau 

formation may be induced by the presence of Aβ deposits or toxic Aβ oligomers, providing a 

link between the amyloid and the tau hypotheses. However, this relationship remains 

controversial, as other studies have found temporal and spatial differences in the occurrence 

of Aβ peptides and plaques, as well as tau and tangle formation (Mudher and Lovestone, 

2002). However, the fact that tau mutations do not result in AD (Houlden et al., 1999) gives 

more credence to the amyloid hypothesis. Indeed, tau protein mutations lead to clinically 

different neurodegenerative disorders like progressive supranuclear palsy and frontotemporal 

dementia (Ballatore, Lee and Trojanowski, 2007). Furthermore, there is evidence that the 

spread of AD in the brain may be due to the prion-like property to tau (Holmes et al., 2014).  

 

1.7.2 Amyloid Cascade Hypothesis  

 

The amyloid hypothesis states that the formation of amyloid plaques is the central pathogenic 

event of the disease (Hardy and Allsop, 1991). Amyloid plaques are made up of Aβ peptides. 

These 39 - 43 amino acid peptides are formed as a result of abnormal sequential proteolytic 

cleavage of APP. APP is a transmembrane protein important for neuronal growth and survival. 

Amyloidogenic processing of APP by β- and γ-secretase generates Aβ peptides containing 36 

- 43 amino acids, of which Aβ1-40 and Aβ1-42 (containing 40 and 42 amino acids, 

respectively) are the most common. Non-amyloidogenic processing of APP by γ- and α-

secretase cleaves within the APP sequence, precluding Aβ production, and generating a large 

soluble ectodomain of APP called sAPPα (Figure 1.2). Interestingly, sAPPα has opposing 

actions to Aβ, promoting neuronal plasticity and survival as well as protection against 

neurotoxicity, thus preventing the occurrence of AD (Furukawa et al., 1996, Mattson, 1997). 

The sAPPα has also been shown to play important roles in neural stem cell proliferation and 

central nervous system (CNS) differentiation (Ohsawa et al., 1999, Caille et al., 2004). 

Jonsson et al. (2012) reported that a rare APP gene mutation (A673T) results in a 40% 

reduction in amyloidogenic processing of APP in vitro, and prevents the occurrence of AD, 

and prevents cognitive decline. 
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1.7.2.1 Amyloid Processing 

 

The process of Ab generation begins from the processing of the transmembrane APP protein 

by the β-secretase enzyme (O’Brien and Wong, 2011). The β-secretase enzyme is an aspartyl 

transmembrane protease which is made up of a β-site APP-cleaving enzyme 1 (BACE1) which 

is the functional unit of the β-secretase complex, and a homologous protease called BACE2 

(Reviewed in Vassar, 2004). Classically, BACE1 cleaves the luminal portion of APP, leaving 

the C-terminal fragment (CTFβ) within the membrane, and releasing the soluble ectodomain 

(sAPPα). The CTFβ then becomes the substrate for the γ-secretase enzyme, which then 

results in the generation of Aβ species (Fernandez et al., 2016).  

 

The γ-secretase enzyme is a large integral membrane aspartyl protease complex, which is 

made up of four intramembrane subunits which include the presenilins as the catalytic 

components (Edbauer et al., 2003). The other components of the γ-secretase complex include 

the presenilin enhancer 2 (Pen-2), nicastrin and the anterior pharynx-defective1 (Aph1) 

(Chiang et al., 2010, Kimberly et al., 2003, Crystal et al., 2003). Pen-2 also has two 

transmembrane components which has both the carboxyl and amino terminals on the luminal 

side of the cellular membrane (Crystal et al., 2003). The γ-secretase active site shows a varied 

substrate cleavage sites, but is sequestered from the hydrophobic membrane side, requiring 

substrates to first bind to an external component of the complex before gaining access to the 

active site (Komilova et al., 2005).  

 

Neither the β- nor the γ-secretase show specificity of cleavage sites in their respective 

substrates (APP or CTFβ, respectively). BACE1 cleavage could occur at the Asp+1 residue 

of the sequence, leading to the classic C99 terminal fragment of Aβ, or the Glu11 position, 

leading to the N-terminally truncated form of Aβ (Sato et al., 2003) . The γ-secretase enzyme 

in turn, cleaves the transmembrane domain (TMD) in successive cleavages, beginning with 

an endoproteolytic cut at the ε-sites (Leu 49 or Thr48), releasing the APP intracellular domain 

(AICD) and generating Aβ48 or Aβ49, which is then followed by successive C-terminal 

cleavages within the membrane at every three residues (ζ and then γ sites) to produce shorter 

forms of Aβ which are then secreted (Funamoto et al., 2004, Takami et al., 2009, Fernandez 

et al., 2016). This leads to two major forms of Aβ depending on the initial cleavage site 

(tripeptide hypotheisis):  Aβ49→46→43→40 for Leu49 ε-site, and Aβ48→45→42→38 for 

Thr48 ε-site initial cleavages respectively (Takami et al., 2009). Mutations in the genes coding 

for the APP, PSEN1 or PSEN2 all result in altered Aβ processing and production. For example, 
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the London mutation (V7171) in the APP gene increases BACE1 activity and alters the γ-

secretase active site, leading to increased generation of Aβ1-42 and Aβ1-38 (Muratore et al., 

2014). Similarly PSEN1 mutations, which are the most common genetic causes of fAD, also 

result in Aβ specifies of varying lengths and structure, mostly resulting in C- or N-terminally 

truncated Aβ peptides (Sherrington et al., 1995, Cruts et al., 2012). Generally, presenilin gene 

mutations are believed to reduce C-terminal cleavage activity, leading to accumulation of 

longer Aβ fragments (Reviewed in Arber et al., 2019, Chavez-Gutierrez et al., 2012). 

 

Amyloid plaques are made up of β-sheet-rich aggregates of insoluble amyloid oligomers. 

Soluble oligomers are Aβ forms which are peptides of varying amino acid lengths, the most 

common of which is the Aβ1-42 (Reviewed in Selkoe and Hardy, 2016). These oligomers 

remain soluble in aqueous buffer after high speed centrifugation and have been shown to be 

the most cytotoxic species that are thought to induce neuronal dysfunction early in the disease 

process (Wang et al., 2002, Lesne et al., 2006). 

 

Amyloid oligomers are believed to induce neurodegeneration by initiating neuronal apoptosis 

(Turner et al., 2003). These toxic amyloid oligomers are believed to induce apoptosis by 

disrupting the cell’s calcium homeostasis, and causing oxidative stress (Mattson, 2004). 

Animal studies have shown that the removal of Aβ through passive immunisation with anti-Aβ 

antibodies reduces brain amyloid deposits, and improves cognitive function (Wilcock and 

Colton, 2008). However, human clinical trials have yielded mixed results, with some trials 

showing that short term administration of immunoglobulins to AD patients prevented cognitive 

decline, or improves cognition (Dodel et al., 2004, Relkin et al., 2009). However, other trials 

produced desirable effects in a small minority of participants, but resulted in immune cell 

activation, and sterile encephalitis, resulting in abandonment of some studies (Gilman et al., 

2005, Orgogozo et al., 2003). 
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Figure 1.2: Representative diagrammatic presentation of the sequential processing of APP 

to via the amyloidogenic and non-amyloidogenic pathways to generate Aβ peptides, sAPPα 

and sAPPβ, respectively. The toxic Aβ exist in multiple assembly states: monomers, 

oligomers, fibrils and larger amorphous aggregates; Aβ plaque. 
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1.7.2.2 The Role of Aβ 

 

It is a well-established fact that amyloid peptides are produced in excessive amounts in the 

AD brain, with resultant neurotoxic effects. However, Aβ is produced in small quantities in the 

normal human brain, especially during synaptic activity, although it produces no adverse 

clinical events at these concentrations. It has been proposed that because amyloid production 

in the normal brain is directly influenced by synaptic activity (Cirrito et al., 2003), amyloid 

peptides could play modulatory roles in synaptic activity (Plant et al., 2003). It has also been 

suggested that low levels of Aβ could work as an antioxidant and chelator because of its affinity 

for free metals like iron, copper and zinc (Atwood et al., 1998). Furthermore, Garcia-Osta and 

Alberini (2009), showed that at physiological concentrations, soluble amyloid peptides 

potentiate memory and acquisition of new knowledge. It has thus been suggested that at 

physiological concentrations, amyloid peptides may play important opposite roles in neuronal 

growth, synaptic transmission, antioxidant defence and cell survival; giving it opposing roles 

at physiological and pathological concentrations. The location of accumulation of Aβ in cells 

may also important in the pathogenic process of AD. 

 

Aβ is generated at multiple cellular sites in neural cells, including the endoplasmic reticulum, 

the endo-lysosomal and vesicular systems, the Golgi apparatus, mitochondria and cytosol. 

These are sites where the APP and β- and γ-secretases are present in considerable amounts 

(LaFerla et al., 2007). There are several isoforms of the Aβ peptide named based on the 

number of amino acids in their peptide chains. The most common are the Aβ1-40 (90%) and 

Aβ1-42 (10%). Aβ1-42 is the most toxic form, most likely to aggregate and is the most 

abundant form in the fAD (Selkoe, 2000). The higher aggregative property of the Aβ1-42 is 

believed to be due to the presence of two extra hydrophobic amino acids (Kim and Hecht, 

2006). 

 

In AD, Aβ peptides accumulate at cellular locations where they do not exist in normal 

individuals - the late endosomes and lysosomes. This is believed to be due to oxidative stress-

induced activation of autophagy and a resultant lysosomal membrane damage, with release 

of lysosomal enzymes into the cytosol (Ditaranto et al., 2001). Indeed, Zheng et al. (2009) 

demonstrated that oxidative stress in neuronal cells induces accumulation of Aβ fibrils and 

macroautophagy, and is believed to be responsible for progressive disruption of neuronal 

synaptic transmission, leading to progressive synaptic loss which may be responsible for the 

cognitive changes observed in AD (Cleary et al., 2005, Townsend et al., 2006). 
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Furthermore, Aβ peptides have been shown to accumulate early on before the onset of clinical 

features in brain cells of affected individuals, with a predilection for the mitochondrial 

membranes and the synaptic ends (Oddo et al., 2003, Knobloch et al., 2007). Post-mortem 

examinations of the brains of AD patients showed that the degree of accumulation was 

positively correlated to age (Gouras et al., 2000). Studies on transgenic mouse lines have 

produced similar results (Oddo et al., 2003, Manczak et al., 2006).  

 

In contrast to the spatial pattern of tau deposition as described above (section 1.7.1), amyloid 

deposition is divided into five phases as described by Thal et al. (2002). They reported the 

first phase of amyloid deposition being detectable in the temporal lobe (particularly) and other 

neocortical areas (frontal, parietal and occipital lobes). At the second phase, amyloid 

deposition was noted to spread into the allocortical regions (hippocampus, amygdala, olfactory 

regions and the entorhinal cortex). At phases 3 and 4, the deposition was observable in the 

subcortical regions (hypothalamus, striatum and other nuclei of the diencephalon), and the 

brainstem nuclei respectively before reaching the cerebellum at the fifth phase (Thal et al., 

2002). 

 

There appears to be a clinicopathological correlation in the temporal pattern of amyloid 

deposition and the occurrence of clinical symptoms of AD, as problems with the functions of 

the earliest sites of amyloid deposition correlate with the earliest symptoms of AD, including 

difficulty with learning new information, difficulties with planning and organisation as well as 

difficulties with complex tasks are often the earliest symptoms of AD (Albert et al., 2011). The 

later stages of the disease, characterized by psychiatric symptoms, severe behavioural 

problems (aggression, disinhibition, incontinence) (Burns, 2009), also correlate with 

dysfunction of the subcortical regions and the brainstem nuclei. There is also a temporal 

clinicopathologic correlation with the areas of the brain affected by hypometabolism as 

described later (section 1.9). 

 

1.7.2.3 Links between the Amyloid Hypothesis and Tau Pathology 

 

Despite the apparent strength and evidence of support for the amyloid hypothesis in the 

pathogenesis of AD, therapeutic approaches targeting amyloid processing have largely been 

unsuccessful as highlighted in section 1.8. This has led to increased examination of possible 

links between the two main hypotheses being the central pathway to the development of the 
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disease, and the possibly therapeutic strategy that needs to be developed. It has been 

suggested that increased amyloid generation and deposition could be the trigger and potential 

facilitator for the pathogenic cascade of AD, while tau would be the main executor of the main 

pathologic events (Reviewed in Stancu et al., 2014). For example studies on some murine 

models have shown that downregulation of tau prevented the typical behavioural and cellular 

neurodegenerative changes in these models (Morris et al., 2011, Roberson et al., 2011, Jin et 

al., 2011). In vitro studies have revealed Aβ induction of tau-mediated neurodegeneration, 

although the signalling mechanisms and the exact Aβ species responsible are yet to be 

identified. These were believed to be induced by Aβ-mediated tau protein kinase/glycogen 

synthase activation, increased phosphorylation, loss of microtubule binding (De Felice et al., 

2008, Ma et al., 2009, Takashima et al., 1993, Robertson et al., 2011). It has also been 

revealed that at the molecular level, Aβ fibrils induce tau deposition in mouse neurons and 

human neuroblastoma cells (Shin et al., 2019). In vitro studies in triple transgenic AD model 

of mice (APP, PSEN2 and tau) has also shown an age-dependent synergistic induction of 

mitochondrial dysfunction by tau and Aβ (Rhein et al., 2009). 

 

Despite developments in our understanding of the pathogenesis of the disease the 

development of successful new treatments has been lacking. 

 

1.8 Therapeutic Targets 

 

Several therapeutic options have been developed for treatment of AD, but despite several 

decades of research, no definitive treatment is currently available. Current therapies involve 

preserving cognitive function and slowing down the progression of cognitive decline. This 

includes a combination of lifestyle modifications (nutritional changes, stopping smoking, 

physical activity, etc.) and pharmacological therapeutic agents. These agents include the 

acetylcholinesterase inhibitors like galantamine, rivastigmine and donepezil which are used 

for mild to moderate dementia, as well as memantine, an N-methyl-D-aspartate receptor 

antagonist which is used for moderate to severe dementia. However, these agents are unable 

to reverse any functional deficit loss that has occurred, and are unable to ultimately prevent 

the progressive decline that occurs in AD (Reviewed in De Strooper et al., 2010).  

 

Because amyloid accumulation is a central pathological event in the pathogenesis of AD, the 

possibility of blocking amyloid processing and production has been identified as a potential 

therapeutic target for treatment of AD. Indeed, γ-secretase inhibitors have been developed as 
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therapeutic agents, and currently have the greatest potential for a therapeutic cure for AD 

(Hahn et al., 2011). However, severe and extensive toxicity has precluded such therapies 

reaching fruition. γ-Secretase inhibitors that have been trialled clinically for mild to moderate 

AD include avagacestat (phase II) and semagacestat (phase III), but these trials were 

terminated because of a lack of efficacy, and an unexpected worsening of cognitive function 

as compared to placebo (Coric et al., 2012, Coric et al., 2015, Doody et al., 2013). This lack 

of efficacy and cognitive deterioration was believed to be due to the diverse important 

functions of the γ-secretase enzyme which are mediated by Notch signalling and current 

inability to induce selectivity of potential therapeutic agents to only inhibit amyloidogenic 

functions of the γ-secretase enzyme at generating toxic amyloid species. This has led to the 

development of small modulators of the γ-secretase enzyme, called γ-secretase modulators 

(GSMs) (Weggen et al., 2001). These small molecule modulators are reported to alter γ-

secretase function towards generating shorter amyloid peptides that are less toxic and less 

prone to aggregation. They are also reported to alter the amyloidogenic properties of the γ-

secretase enzyme without any significant effects on the Notch signalling activities of the 

enzyme (Leuchtenberger et al., 2006, Okochi et al., 2006).  

 

The GSMs are currently the most promising chemotherapeutic agents for a definitive treatment 

of AD. They are members of the non-steroidal anti-inflammatory drugs (NSAIDs). They were 

discovered following reports of preventive properties of NSAIDs against AD in patients 

(McGeer et al., 1996, Anthony et al., 2000). They have been reported to decrease Aβ1-42 

levels by as much as 80% (Weggen et al., 2001). These effects are believed to occur 

independent of cyclo-oxygenase inhibition, and the mechanisms are yet to be fully explained. 

However, common NSAIDs like ibuprofen and indomethacin are currently unable to produce 

clinically significant reduction in AD prevalence or progression due to low penetration of the 

blood brain barrier (BBB) and low potency at current pharmacological levels 

(Leuchtenberger et al., 2006).  

 

Ongoing clinical trials also include β-secretase 1 (BACE1) inhibitors which aim to also reduce 

the production of Aβ by blocking the initial cleavage of APP by BACE1. However, like the γ-

secretase inhibitors, this also blocks very important physiological functions, and results in 

intolerable side effect profiles (Carroll and Li, 2016). Indeed, mouse studies involving BACE 

inhibition revealed defects in neurogenesis, neuronal network formation, myelination and 

muscle spindle formation. They also exhibited defective spine formation, pigmentation and 

impaired pancreatic beta cell function (Esterhazy et al., 2011, Filser et al., 2015, Zhu et al., 

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1471-4159.2010.07118.x#b46
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1471-4159.2010.07118.x#b25
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1471-4159.2010.07118.x#b25
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2018). Several β-secretase inhibitors have been trialled for clinical use, but there are only two 

agents currently undergoing phase III clinical trials - Elenbecestat and CNP520, with other 

trials being terminated mainly due to intolerable side effects (Panza et al., 2019).  

 

Other therapeutic strategies currently being trialled include Anti-Aβ immunotherapies that aim 

to induce clearance of Aβ, one of which is currently undergoing a phase II trial (CAD 106) 

(Vandenberghe et al., 2016). Previous trials on Aβ immunotherapies resulted in significant 

reduction in Aβ levels, but no significant clinical improvement, and also resulted in potentially 

catastrophic side effects like meningoencephalitis (Gilman et al., 205) .Tau-targeting therapies 

have also been trialled, but severe toxicity has let to abandonment of most of these trials 

(Panza et al., 2019). Cell therapies are also a potential strategy at providing cure for AD, but 

no cell therapies currently have approval (Alipour et al., 2019). They also have several 

procedural, mechanistic and ethical hurdles to cross before they can become an acceptable 

mode of therapy. First, the correct cells have to be produced, and then a method fashioned to 

incorporate these newly cultured neural cells into the existing neuronal networks in the 

affected portions of the brains of affected individuals (Fang et al., 2018). 

 

It is clear that most of the therapeutic ventures at definitive management of AD have yielded 

unsatisfactory results, or very little clinical benefits in the face of potentially severe side effects. 

This begs a new approach at understanding the pathogenesis of the disease, and at identifying 

potentially exploitable upstream and downstream therapeutic targets in the development of 

the overt neurotoxicity that characterises the disease. One such mechanism could involve the 

downstream metabolic effects of Aβ in inducing neurotoxicity.  

 

1.9 Hypometabolism in AD 

 

As with other neurodegenerative diseases, hypometabolism is a feature of well-established 

and advanced AD. However, a number of studies have shown that metabolic dysfunction 

predates the appearance of recognisable structural changes and cognitive deficits in AD 

patients by at least a decade (Mosconi et al., 2008b). Small et al. (2000) and Silverman et al. 

(2001) have shown that cognitively normal carriers of the APOE4 allele exhibit decreased 

glucose metabolism. This provides a promising opportunity for early detection, and possible 

prevention of AD before the onset of the neuropathologic events heralding the disease. 

Affected neurons in AD patients are known to demonstrate decreased protein synthesis, 
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reduced glucose uptake and reduced glycogen turnover amongst other metabolic 

abnormalities (Mosconi et al., 2008a). 

 

The regions of the brain affected by hypometabolism appear to correlate with the 

corresponding functional deficits seen at different stages of the course of the disease (Fig.1.3). 

The parieto-temporal regions, responsible for memory and new learning are the first parts of 

the brain to be affected by hypometabolism, followed by the frontal association areas which 

are involved with the planning of movements and expression of emotional behaviours (Wolfe 

et al., 1995). Reduction in glucose uptake is believed to be due to several factors, including 

mitochondrial toxicity from the accumulation of Aβ, and results in oxidative stress from the 

generation of reactive oxygen species (ROS) (Chen and Yan, 2006). 
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1.9.2 Role of Metabolism and Insulin Signaling 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Fluorodeoxyglucose-positron emission tomography image (FDG-PET) 

demonstrating brain cerebral hypometabolism and severe reduction in glucose utilisation 

in AD patient brain in comparison to normal brain metabolism and utilisation of glucose 

(Mosconi et al., 2008a and 2008b). 
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Although they produce very different clinical features in affected patients, AD and diabetes 

mellitus are characterised by metabolic dysfunction in the brain, and share many pathological 

similarities including impaired glucose metabolism and insulin resistance (Bomfim et al., 2012, 

Ozes et al., 2001). Furthermore, patients with diabetes have been shown to have a two-fold 

increase in risk of developing AD compared to non-diabetic individuals (Ott et al., 1999).This 

has led some authors to postulate that AD represents a ‘type 3 diabetes mellitus’ (Steen et al., 

2005). 

 

Impaired insulin signalling also appears to play a significant role in the pathogenesis of AD. 

This is evidenced by positive changes in experiments involving alterations in the insulin 

signalling pathway. For example, the administration of insulin and glucose has been shown to 

produce a transient improvement in the memory of AD patients (Craft et al., 2000). In animal 

models, administration of the insulin agonists insulin-like growth factor-1 (IGF-1) and 

glucagon-like peptide-1 (GLP-1) causes a reversal of signalling abnormalities and produce 

positive effects on markers of neurodegeneration (Bomfim et al., 2012, Bassil et al., 2014). 

IGF-1 is a strong modulator of the phosphatidylinositol-3-kinase and protein kinase B (PI3K-

Akt) pathway, which is very important for metabolism and growth, and it is believed that IGF-

1 plays a very important role in neurogenesis, neurite outgrowth and synaptic transfer and 

maintenance of neuronal connections (Hansson et al., 1986, Cheng et al., 2003). 

 

Several key enzymes involved in the Kreb’s cycle have been found to be dysfunctional in AD 

patients (Fig.1.4), including α-keto-glutarate dehydrogenase (KDGH), which is the rate-limiting 

enzyme for the Kreb’s cycle (Gibson et al., 1998). Other affected enzymes include pyruvate 

dehydrogenase complex (PDHC), succinate dehydrogenase complex II, and isocitrate 

dehydrogenase (Perry et al., 1980, Bubber et al., 2005). Studies have reported AD-induced 

reductions in KDGH activity which clinically correlate with the degree of dementia without 

evidence of general mitochondrial failure (Gibson et al., 2000). Similarly, the consequences of 

reduced Kreb’s cycle enzyme functions also precede reductions in ATP production. For 

example, the reduction of mitochondrial membrane potential induced by KDGH inhibition is 

preceded by release of cytochrome C and activation of apoptotic pathways (Huang et al., 

2003). In addition, the inhibition of PDHC or KDGH results in reduced acetylcholine production 

before causing reduction in ATP levels (Gibson and Blass, 1976). Moreover, reduction in the 

activities of PDHC or KDGH result in decreased neurotransmitter production (including 

glutamate and gamma-amino butyric acid (GABA) derived from the Kreb’s cycle), increased 

production of ROS, reduction in ability of the brain to prevent oxidative damage, and promotes 

neurodegeneration (Klivenyi et al., 2004). 
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Furthermore, enzymes of the electron transport chain have also been shown to be affected in 

AD patients (Aksenov et al., 1999). The effects of accumulation of Aβ in mitochondria are 

believed to be exerted in part by its interaction with Aβ-binding alcohol dehydrogenase (ABAD) 

(Chen and Yan, 2006). In AD, mitochondrial dysfunction occurs because of oxidative stress 

occurring as a result of accumulation of Aβ within the mitochondria and disruption of the 

electron transport chain (Manczak et al., 2006), Aβ binding to mitochondrial proteins, a 

resultant increase in ROS and decreased ATP production (Reddy and Beal, 2008).  

 

Oxidative stress is a crucial cause of brain metabolic dysfunction in AD. This is because the 

brain shows a high susceptibility to oxidative stress, owing to its high oxygen demand, high 

lipid content, and relatively poor mechanisms to prevent damage from oxidants and free 

radicals. The presence of increased oxidative stress as an important pathogenic component 

of AD is indicated by the presence of increased accumulation of free iron stores in different 

parts of the brain in AD (Thompson et al., 1988), increased lipid peroxidation and decreased 

polyunsaturated fatty acids in the AD brain (Subbarao et al., 1990) and the presence of 

increased free radicals in NFTs and amyloid plaques (Hensley et al., 1994). 

 

It has been suggested that Aβ fibrils induce oxidative stress by several mechanisms, including 

the release of free radicals. For example, Mattson et al. (1995) demonstrated 

H2O2 accumulation in cultured hippocampal neurons and in cultures of neuroblastoma cells. 

While Butterfield et al. (1994) demonstrated Aβ induced lipid peroxidation in synaptic ends.  
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Figure 1.4: Representative overview of the effects of Aβ on key enzymes involved in energy 

metabolism. This diagram shows the metabolism of glucose and fatty acids (the latter are 

converted into acetyl-CoA upon entry into the mitochondria). Aβ exerts its toxicity at many 

points within energy metabolism. In the TCA cycle, the activity of PDHC is decreased 

reducing the conversion of pyruvate to acetyl-CoA (Bubber et al., 2005, Yao et al., 2009). 

Citrate synthase, ICDH and aKGHC are all decrease in response to Aβ treatment. Both 

MDH and SDH are increased after Aβ treatment (Casley et al., 2002a, Casley et al., 2002b, 

Bubber et al., 2005). ABAD activity is decreased upon Aβ binding therefore affecting fatty 

acid metabolism (Yan et al., 1997, Lustbader et al., 2004, Muirhead, 2010). Within the 

respiratory chain both complexes III and IV are decreased by the increased presence of 

Aβ (Caspersen et al., 2005, Manczak et al., 2006, Yao et al., 2009). 
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1.9.1 Mitochondrial Dysfunction in AD 

 

Mitochondrial dysfunction is a core component of hypometabolism in AD. Bell et al. (2018) 

showed that fibroblasts derived from both fAD and sporadic AD (sAD) displayed reduced 

mitochondrial numbers with perinuclear clustering. Similarly, Hirai et al. (2001) found evidence 

of increased oxidative damage to AD mitochondria when they conducted analyses of AD and 

normal human deceased brain specimens, where they reported the increased presence of 

deformed mitochondria and mitochondrial degradation products in the AD specimens.  

 

The mechanism of mitochondrial dysfunction in AD remains to be determined, although 

studies have revealed several postulates. Studies have shown that increased free radical 

production by Aβ peptides induced mitochondrial degradation by activating the mitochondrial 

fission proteins dynamin-1-like protein (Drp1) and fission mitochondrial 1 (Fis1) (Barsoum et 

al., 2006). Furthermore, Aβ has also been shown to induce mitochondrial membrane 

dysfunction, by blocking entry of crucial proteins into the mitochondria, thereby causing 

oxygen and glucose deprivation, reduced antioxidant capabilities and deformation of the 

mitochondria (Sirk et al., 2007). Other studies have also reported that the Aβ-induced 

mitochondrial membrane dysfunction occurs via calcium ion modulated opening of the 

permeability transition pores, and this is believed to play a key role in apoptosis (Moreira et 

al., 2001, Koo et al., 1990).  

 

1.9.2 Dysregulation of Insulin Signalling 

 
Aβ oligomers induce insulin resistance via several mechanisms. Oligomers have been shown 

to significantly impair neuronal response to insulin. This is done by rapidly inducing 

redistribution of insulin receptors from dendrites into the cytoplasm by driving calcium into 

dendrites via N-methyl-D-aspartate (NMDA) receptors. Aβ oligomers also inhibit downstream 

insulin activity by inducing tumour necrosis factor alpha (TNFα) secretion, which in turn causes 

C-Jun N-terminal kinase (JNK) stimulated suppression of PI3-kinase and serine/threonine-

specific protein kinase (AKt) (Bomfim et al., 2012, Ozes et al., 2001).  

 

Derangement in astrocyte function has also been suggested as an early event in the course 

of AD, and with a resultant reduction in anti-oxidant abilities. Neurons are continually exposed 

to oxidative stress due to their high level of oxidative metabolism (Abramov et al., 2004). AD 
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patients have been shown to have significant reductions in glutathione levels, indicative of 

reduced capacity to protect against oxidative stress. 

  

It has now become more apparent that the events indicating the presence of AD in patients 

are preceded by cellular toxicity, and loss induced by possibly prolonged periods of exposure 

to Aβ oligomers and abnormal tau proteins. It is thus important to examine the affected cell 

types, as well as the metabolic and molecular changes occurring before the appearance of 

overt disease. All cell types in the brain, predominantly the neurons and glial cells are affected 

in AD. 

 

1.10 Human Brain 

 

The brain is made up of the cerebral hemispheres, the brainstem (mid brain and pons) and 

the cerebellum. The brain is very active metabolically, and has about 750ml of blood flowing 

through per minute. This accounts for about 15% of the cardiac output. It is made up of the 

cortex, which is composed of cell bodies and synapses, making up the grey matter on the 

outside, and the white matter, which is made up mainly of axonal tracts on the inside (Lodish 

H, 2000). There are also subcortical grey matter which include the nuclei, thalamus, putamen 

etc. Microscopically, the brain is made up of multiple cell types mainly classified into nerve 

cells (neurons) and glial cells (astrocytes, microglia, oligodendrocytes and ependymal cells). 

 

The brain makes up 2% of the human body weight, but takes up a quarter of the body’s 

glucose, as well as a fifth of the body’s total oxygen consumption (Magistretti and Pellerin, 

1996). Glucose is the main energy substrate for the brain under normal physiologic conditions. 

Although brain cells have been shown to utilise energy substrates like mannose, lactate and 

pyruvate in vitro (Magistretti and Pellerin, 2000). However, these substrates are not normally 

utilised physiologically, either because of absence from the blood in normal people (mannose) 

or because they cannot penetrate the BBB (pyruvate) (Magistretti and Pellerin, 2000). The 

only other energy sources utilised by the human brain are lactate (Gallagher et al., 2009) and 

ketones, which the brain utilises at times of starvation or during diabetic crises (Magistretti and 

Pellerin, 2000). 

 

In order to understand the impact of hypometabolism on the brain the interaction between 

different brain cell types should be considered.  
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1.11 Neurons and Astrocytes 

 

Neurons and the glial cells are the basic elements of the CNS. The human brain is the most 

complex organ in the body, reported to contain about 100 billion neural cells that communicate 

with each other and transmit electrochemical signals via synapses at which the different 

neurons connected by their axons (Herculano-Houzel, 2009). There are different types of cells 

in the brain, and each type performs a different function.   

 

Neurons are the primary cells involved in electrical impulse transmission. All neurons have an 

excitable membrane, made possible by energy-dependent ion pumps which create a voltage 

gradient of Na+ and K+ ions across the intracellular and extracellular portions of the 

membrane, and calcium ion gradients at the synaptic ends of the membranes (Nowakowski, 

2006). 

 

Astrocytes are glial cells which were originally believed to simply support neuronal function. 

They are now recognised as a complex and functionally diverse group of cells that 

demonstrate important roles during development, normal function. They modulate synaptic 

function, aid neuronal metabolism, nutrition and electrolyte balance. During development, they 

associate with multiple synapses and coordinate the development of functional neuronal 

networks and synapses using both contact-mediated (Barker et al., 2008, Hama et al., 2004, 

Elmariah et al., 2005) and secreted signals (Clarke and Barres, 2013). Astrocytes also 

promote the maturation of synaptic transmission in in vitro co-cultures (Rempe et al., 2007, 

Tang et al., 2013, Hartley et al., 1999). Astrocyte processes wrap around multiple synapses 

to modulate synaptic transmission (Carmignoto, 2000). In addition, they serve as a bridge 

between capillaries and the neuronal cells. The involvement of astrocytes in the modulation of 

neuronal activity and signalling has been reported in animal models (Allaman et al., 2010). 

They are believed to form intimate relations with neuronal signalling by forming ‘tripartite 

synapses’ (Volterra and Meldolesi, 2005). The physical and physiological relationship between 

neurons and astrocytes is very crucial for neuronal function, and the metabolic coupling 

between neurons and astrocytes is an essential component of normal brain metabolism. 

 

1.12 Normal Brain Energy ‘Metabolism’ 

 

There are spatial and cellular differences in the method of glucose utilisation in the adult brain 

for energy production. On a cellular level, astrocytes mainly utilise glucose through glycolysis, 

whilst neurons predominantly utilise the oxidative phosphorylation process of the Kreb’s cycle. 
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The close physical and physiological relationship between astrocytes and neurons allows for 

a functional metabolic system coupling of synaptic activity and energy delivery, which has 

been termed the astrocyte-neuron lactate shuttle (ANLS) (Magistretti and Pellerin, 2000). 

Glutamate stimulates glucose uptake and lactate production via glycolysis in astrocytes. This 

lactate can then be used by neurons via the Kreb’s cycle for adenosine triphosphate (ATP) 

generation (Magistretti, 2000, Tarczyluk et al., 2013) (Fig. 1.5). Astrocytes play a very 

significant role in normal brain metabolism. They are the sole stores of glycogen in the brain, 

and they are important for maintenance of potassium ion homeostasis as well neurotransmitter 

reuptake (Peters et al., 2005). The spatial positioning of astrocytes is crucial to their function; 

their processes are wrapped around the synaptic ends, while their end-feet surround 

capillaries, providing a cellular conduit for transport of substances between intraparenchymal 

blood vessels and the neurons (Magistretti and Pellerin, 2000). Astrocytes are also connected 

to one another via gap junctions, creating a syncytium, which plays a vital role in spatial 

buffering of K+ ions released as a result of neuronal activity, as well as other metabolic 

functions. Astrocytes also take up glutamate released from neurons into the synaptic cleft and 

recycle it to produce glutamine for reuse as a transmitter by the neurons and as an energy 

source (Giaume et al., 2010). Since astrocytes play a very important role in normal 

metabolism, it is important to understand the crucial roles they play in the metabolic changes 

that occur during the pathogenesis of neurodegenerative conditions such as AD. It is thus 

important to examine the models for studying the metabolic changes that occur during the 

developmental stages of the disease. 
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Figure 1.5: Representative overview of the transport and utilisation of glucose by cells. 

Glucose enters the cells through the glucose transporters (GLUTs), is phosphorylated by 

hexokinase enzyme to produce glucose-6-phosphate (G6P), which is then metabolized 

through glycolysis, producing to two molecules each of pyruvate, ATP and NADH. Pyruvate 

is then reduced by pyruvate dehydrogenase to produce lactate, which is transported to the 

neurons via monocarboxylase transporters to be metabolized through oxidative 

phosphorylation and the electron transport chain, producing ATP and CO2 - ANLS. 

Astrocytes also participate in the recycling of synaptic glutamate via the glutamate-

glutamine cycle. Glutamate (Glu) released from the synaptic ends is converted to glutamine 

(gln) by glutamine synthetase (GS) and shuttled to neurons, where it is converted back to 

glutamate by glutaminases. Reproduced by the hypothesis of Magistretti and Pellerin, 

2000. 
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1.13 Studying AD: The Models 

 

While advancements in brain imaging have provided increased understanding of AD at a 

macroscopic level, one obstinate peculiarity of AD is that it can only be diagnosed by histology, 

usually post-mortem. This makes it very difficult to study the early stages of the disease and 

the preclinical stages at a cellular level before appearance of overt clinical features of AD. To 

overcome this issue many studies utilise animal models to study the disease. However, there 

are severe limitations to the use of animal models, chief being the significant differences in 

the structure and physiology between different animal models and man. This results in highly 

variable and unpredictable results depending on the animal model used. Furthermore, some 

animal models of AD do not develop the major features of the disease observed in man, such 

as neuronal loss. In vivo animal models studying changes in brain glucose metabolism have 

yielded conflicting results depending on the animal model used. These studies have tested 

models overexpressing APP (Nicolakakis et al., 2008, Luo et al., 2012, Poisnel et al., 2012) 

and Tau (Nicholson et al., 2010) mutations with mixed results without consistency in pattern 

of effects seen in the various animal models. 

 

Several authors have also used human cell lines created from transformed cells derived from 

tumours such as gliomas, phaeochromocytomas and neuroblastomas in studies on AD. The 

drawback of these models however, is that the cells are derived from tumour cells which differ 

from the naturally occurring cell types being studied cells, and their metabolism may show 

varying degrees of difference from what happens in the normal physiological environment. 

They also show a very high degree of homogeneity which is far removed from the heterogenic 

behaviours of primary human cells, both in vitro and in vivo. The homogeneity of tumour cell 

lines in culture is an advantage with producing consistent results, and understanding of 

pathways, but it may fail to properly represent the behaviours and responses of primary cells, 

which may differ, and may have important downstream effects on the response to drug 

therapies for example. 

 

In order to overcome the limitations of animal models and tumour cell lines, novel cellular 

models using disease-specific human cells could provide and more realistic and robust 

understanding of the early preclinical cellular and molecular events heralding the 

pathogenesis of metabolic dysfunction in AD. As such, human stem cell-derived models are 

currently being developed for in vitro studies. Recent work in our laboratory has produced 

important insights into Aβ-induced metabolic dysfunction using the NT2.D1 stem cell derived 

neurons (Tarczyluk et al., 2015). There is a need to build up on these results by observing the 
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occurrence of hypometabolism in cells that produce disease-associated forms of APP and Aβ 

at physiological levels. This is currently the best opportunity of observing the natural 

occurrence of these preclinical pathogenic processes in fAD. This is possible due to recent 

advancements in the development of human derived induced pluripotent stem cells (hiPSCs) 

that offer the opportunity to study this disease with greater accuracy than has previously been 

possible. It potentially gives the opportunity to model the disease process in living tissue.  

 

1.14 Human iPSCs  

 

Human iPSCs are pluripotent stem cells derived from adult mature cells and are capable of 

giving rise to differentiated progeny from the three germ layers, and would retain the genetic 

make-up of the parent source. They were first produced through the work of Yamanaka and 

Takahashi (2006), when they produced pluripotent stem cells from fully differentiated adult 

stem cells by introducing four transcription factors octamer-binding transcription factor 4 (Oct4) 

(Pou5f1), SRY (sex determining region Y)-box 2 (sox2), c-Myc, and Krüppel-like factor 4 (Klf4). 

Traditionally, neuronal cells for research were produced from animal cells or immortalised cell 

lines derived from human cancers. However, hiPSC-derived neuronal cells have the 

advantage of being able to produce physiologically relevant neural cell types, and could 

produce results that are more closely related to what occurs in the normal human brain. 

Disease-specific cells (fAD patient-derived cortical neural cells in this situation) offer a 

previously underexplored opportunity to observe the development of pathogenic processes 

such as metabolic dysfunction that precede the appearance of overt disease. These can be 

compared with cortical neural cells derived from normal individuals as controls.  

 

1.14.1 Generation and Differentiation of Human iPSC-derived Neuronal and Astrocytic 

Cells   

 

The development of human neural cells culture derived from AD patients has been made 

possible by the development of iPSC (Yamanaka and Takahashi, 2006). Furthermore, the 

development of protocols to produce neural cell types has also supported the production of in 

vitro brain neural cell cultures (Chambers et al., 2009, Shi et al., 2012a). Such methods have 

enabled the development of AD models and have demonstrated the production of mixed 

populations of GFAP-positive astrocytic glial cells and microtubule-associated proteins 

(MAP2-positive) neurons derived from AD patient hiPSCs (Anderson et al., 2015). 
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Although the process to differentiate neurons and astrocytes is complex, it is important to 

briefly explore important components the differentiation process as they may bear significant 

effects on understanding of the disease process and exploitable therapeutic targets. The 

differentiation process involves induction of the pluripotent iPSC into the multipotent neural 

precursor cell (NPC), which can then be induced to differentiate into mature astrocytes or 

neurons (Fig. 1.6). The NPC is the committed multipotent progenitor of neuronal and glial cells 

which is capable of self-renewal or differentiation into mature neurons or glial cells. It plays a 

very crucial role in embryonic development of the nervous system, and in adult life, it is located 

in certain parts of the brain, including the dentate gyrus of the hippocampus where it is 

responsible for memory and the learning process (Zhao et al., 2008), as well as the sub-

ventricular zone of the lateral ventricles (Ming and Song, 2011).  

 

The differentiation of NPCs into neuronal or astrocyte lineage is determined by a complex 

interplay of external and internal chemical stimuli. This complex biochemical interplay of 

signals interplay includes fibroblast growth factor (FGF) and vascular endothelial growth factor 

(VEGF) which facilitate NPC proliferation, while bone morphogenetic protein (BMP) signalling 

promotes astrocytic differentiation, a mechanism that is often blocked by noggin, a SMAD 

(BMP signalling cytokine) inhibitor when neuronal differentiation is the goal (Chambers et al., 

2009). Notch signalling also plays a significant role in neuronal differentiation (Reviewed in 

Ladran et al., 2013). In addition, inhibition of glycogen synthase kinase 3 (GSK-3β) and 

activation of sonic hedgehog signalling molecule (SHH), retinoic acid (RA) and fibroblast 

growth factor 8 (FGF8) have been shown to promote neuronal differentiation (Xi et al., 2012, 

Karumbayaram et al., 2009). Conversely, astrocytic differentiation of NPCs is enhanced by 

the Notch signalling activation, neuregulin (an EGF-like ligand), BMP signalling and ciliary 

neurotrophic factor (CTNF), an Interleukin 6 cytokine (IL-6) which inhibits neuronal 

differentiation and promotes astrocytic differentiation by downstream activation of Janus 

kinase/signal transducer and activator of transcription signalling (JAK/STAT) (Bonni et al., 

1997). 

 

Furthermore, astrocytes also play a significant role in the differentiation process, as astrocyte-

mediated wingless-related integration site signalling (WNT) modulates differentiation and 

replication of NPCs, they produce cholesterol and extracellular matrix proteins which exert a 

strong influence on synaptogenesis, and their spatial location with respect to intracranial blood 

vessels allows them modulate the release of factors from blood vessels and ependymal cells 

(Reviewed in Ladran et al., 2013).  
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1.14.2 Human iPSC Models of AD 

 

The development of the iPSC offered a unique opportunity, and enhanced the potential to 

generate disease-specific cells that could be utilised to study complex neurodegenerative 

diseases like AD. Historically, the challenges faced with the generation of such disease-

specific cells include the prolonged differentiation timelines as well as difficulties with 

generating pure cultures of functional cell types. The challenges have now mostly been 

significantly tackled or at least mitigated (with respect to previous efforts) by an explosive 

number of studies into developing representative models for the disease (Reviewed in Penney 

et al., 2019).  

 

Efforts at developing iPSC models of AD have mirrored the natural process and stages of 

neurogenesis (induction, neural fate determination and differentiation) (Reviewed in Arber et 

al., 2017), with intense focus on signalling determinants that speed up the differentiation 

process, and increase the specificity of the final cell types produced (Zhang et al., 2013, 

Sheltouki et al., 2013, Bardy et al., 2015, Di Lullo et al., 2017). Two dimensional models remain 

the most widely used models for studying Ad pathogenesis, and typically involves the use of 

adherent neuronal cultures to study the AD pathological changes at the cellular level 

(Reviewed in Arber et al., 2017). These models utilise alternations of signalling pathways to 

induce a neural fate (by double SMAD inhibition) (Chambers et al., 2009), and then a Wnt 

mediated cortical differentiation which can be manipulated to specific cellular fates by inhibition 

of SHH signalling and alterations of retinoid signalling (Li et al., 2009, Van de Leemput et al., 

2014, Shi et al., 2012, Nicholas et al., 2013, also reviewed in Arber et al., 2017). These two 

dimensional models however struggle to recapitulate the complex spatial interactions that may 

be important in the pathogenic process of AD. Three dimensional models have also been 

developed with the aim of tackling these deficits of the 2D models. They involve the use of 

scaffolds or the use of organoid cultures. These allow for observation of the temporal trends 

of Aβ and tau deposition that mirrors the occurrence in vivo (Choi et al., 2014, Gonzalez et al., 

2018). However, these models exhibit a higher degree of heterogeneity and variability in 

results (Qain et al., 2016), with a resultant reduction in reproducibility, and reliability of the 

results. 

 

Human iPSC models have also developed further with producing specific disease-specific 

cells for AD research which can be matched to age, disease type, as well as brain regions 

which can be studied for the earliest pathologic features of the disease. Numerous iPSC cell 

lines have now been developed for fAD, which carry the various disease causing mutations 

which are now in widespread use for studying the pathology of the early-onset form of the 
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disease. This availability of newer forms of technology like the CRSIPR/Cas9 has also made 

the understanding of these processes easier, as they can be used to generate disease-

causing mutations in iPSCs (Maeder et al., 2013, Paquet et al., 2016).  

 

1.14.3 Characterisation of Neural Lineage Cells 

 

The NPC is marked by positivity to sox2, paired box protein (pax6) and nestin (Reviewed in 

Ladran et al., 2013). During the maturation process, cortical neurons are marked by positive 

expression of neuron-specific Class III β-tubulin (TUJ1) as well as specific cortical markers 

such as CTIP2 and MAP2 (Anderson et al., 2015), while astrocytes show positive expression 

of S100 Calcium Binding Protein β (S100β) and Glial fibrillary acidic protein (GFAP) (Fig. 1.6).  

 

The metabolic changes that occur in early AD will likely be key to understanding the disease 

and developing newer diagnostic method, and novel approaches for tackling the disease for 

definitive cure. To understand these early metabolic changes, appropriate approaches should 

involve the use of patient-specific cells for understanding the natural history and metabolic 

course of the disease (Fig. 1.7). This is part of what this project hoped to achieve. 
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Figure 1.6: Diagrammatic presentation of the process of generation of various brain cell 

types from hiPSCs via the neural progenitor cells. 
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1.12 Aims and Objectives 

 

 

 

 

 

 

Figure 1.7 Schematic representation of potential sites of toxic effects of various amyloid 

species (Aβ oligomers, Aβ fibrils, Aβ plagues) on brain cells metabolism. 
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1.15 Hypothesis 

 

The main hypothesis of this project is that fAD patient-derived hiPSC neurons and 

astrocytes will show abnormal metabolic properties compared to neurons and astrocytes 

derived from hiPSCs produced from ‘healthy’ controls. A second hypothesis is that 

synthetic Aβ oligomers will induce metabolic dysfunction in human primary astrocytes and 

‘healthy’ hiPSC-derived astrocytes and neurons. 

 

The aim of this project is to: 

 

 Differentiate NPCs differentiated from ‘healthy’ human and fAD patient-derived iPSCs 

from the stage to astrocytes and neurons, and then to compare the efficiency of 

differentiation using morphology and immunohistochemical staining.  

 Assess metabolic dysfunction in the form of glucose uptake and astrocytic glycogen 

levels in human primary astrocytes and ‘healthy’ patient hiPSC-derived astrocytes and 

neurons as a result of exposure to synthetic Aβ1-42 oligomers. 

 Assess the production of Aβ peptides in both fAD patient-derived and control neurons 

and astrocytes using ELISA at defined time points during the differentiation process. 

 Explore the occurrence of metabolic dysfunction in fAD patient hiPSC-derived neurons 

and astrocytes, as measured by neuronal glucose uptake and astrocytic glycogen 

levels.  

 Determine if metabolic dysfunction correlates with the presence of disease specific Aβ 

peptides using immunodepletion studies. 
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Chapter 2: Characteristic of Healthy Human iPSC-derived NPCs Cell Line 

 

2.1 Introduction  

 

Until recent advances in neural cell culture techniques, diseases like AD have been hitherto 

impossible to re-create and study in an in vitro setting. Whilst post-mortem has provided 

valuable information it is virtually impossible to study living human brain tissue. The ability to 

study diseases like AD before the onset of overt clinical signs and symptoms may be the key 

to identifying modifiable therapeutic targets and management options. Studying the human 

brain for pre-clinical changes before the onset of AD has hitherto been impossible for several 

reasons, including the non-representative nature of animal studies and the need to 

recapitulate the complex spatial and functional characteristics of the human brain. The 

development of human iPSCs has now made it possible to be overcome some of these 

challenges. It is now possible to develop hiPSCs from both ‘healthy’ and AD patients, and then 

differentiate these into neural cells, with the aim of studying pre-clinical disease mechanisms 

at the cellular level.  

 

In order to be able to carry out studies on human brain cells in the in vitro setting, the first step 

would be to successfully differentiate pluripotent hiPSC into fully mature neural cells, 

especially those of cortical origin, and then to ensure that these differentiated cells mirror the 

naturally derived neural cells structurally and functionally, and are able to recapitulate natural 

processes as it occurs in the human brain. It is thus important to explore the process of 

differentiation of hiPSC-derived NPCs into neurons and astrocytes and to characterise them 

morphologically, by immunohistochemistry staining, and metabolic function, including 

response to known neurometabolic modulators. These cells have important roles in the 

pathologic process in AD because neurons are the major electrical impulse transmitters, and 

the astrocytic cells are the major glial cells of the human brain. They have also been reported 

to have very important complex interactions with each other, and together, they make up the 

most important cells within the human brain. They are together responsible for essential 

components of the information processing functions of the human brain. Furthermore, they 

are the cells predominantly affected in the disease. Indeed, the early neurodegenerative 

changes and neuronal losses in AD mainly affects the cerebral cholinergic and glutamatergic 

neurons and surrounding glial cells (Hampel et al., 2018). It thus bears relevance to utilise 

these cell types as a study focus for the disease process. 
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2.1.1 Astrocyte Metabolism 

 

Astrocytes are indispensable metabolic components of brain growth, function, metabolism and 

survival. They are the sole cellular stores of glycogen in the brain, and provide crucial supplies 

of lactate for neuronal function and survival. They also play significant roles in synaptic 

formation and transmission (section 1.11). Their role in neuronal metabolism, survival and in 

synaptic function highlights the need for their inclusion in cellular models of brain 

function/dysfunction. 

 

Astrocytes mainly utilise glucose via glycolysis, resulting in the generation of lactate which can 

then be transmitted to neurons for energy metabolism via the Kreb’s cycle (Hu and Wilson, 

1997, Galeffi et al., 2007) (Fig. 1.4 and 1.5). The uptake of glucose is modulated by several 

factors including availability of glucose in the surrounding, presence of neuroregulators like 

glutamate, adrenergic agonists, and metabolic hormones like glucagon and insulin (Hertz et 

al., 2007, Dienel and Hertz, 2001). They also play crucial roles in potassium and calcium ion 

buffering during neurotransmission as well as uptake of neurotransmitters released into the 

synaptic clefts (Peters et al., 2005). Although astrocytes are the primary stores of glycogen in 

the brain, they have significantly lower stores of glycogen than the liver or muscle cells, hence 

prolonged starvation or glucose deprivation would have catastrophic consequences for 

neuronal function and survival (Brown et al., 2005, Gruetter, 2003). 

 

The astrocytic glycogen stores, although very little compared to other body stores, are very 

crucial to reserving function during starvation conditions and at times of intense neural energy 

consumption, where the lactate supplies from astrocytic glycogen breakdown have been 

shown to maintain neuronal survival and function for at least 20 minutes (Brown and Ransom, 

2007). Asides from the glucose concentration in the immediate environment and extant energy 

demands, other factors also affect the rate at which glycogen is metabolised by astrocytes. 

These include neurotransmitters and other neuroregulators listed above which also affect the 

glucose uptake.  

 

The process of glycogen formation and breakdown, like other metabolic processes, is enzyme 

dependent. The rate-limiting enzyme for glycogen formation is the glycogen synthase enzyme, 

while the rate-limiting enzyme for glycogen breakdown is glycogen phosphorylase (Brown and 

Ransom, 2007). In the process of glycogen formation, glucose is transported into the astrocyte 

cells via the glucose transporter (GLUT1) after passing through the endothelial cells from the 

blood vessels. This glucose is then supplied with a phosphate unit by hexokinase to produce 

glucose-6-phosphate (G-6-P), essentially making it ‘heavy’ and preventing it from leaving the 
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cell. G-6-P is converted by phosphoglucomutase to glucose-1-phosphate (G-1-P) which is 

then conjugated with uridine triphosphate glucose (UDP-glc) by UDP glucose phosphorylase 

(Fig. 1.5). Glycogen has a protein skeleton called glycogenin, onto which UDP-glc units are 

added by glycogen synthase, through the formation of α‐1,4‐glycosidic bonds, resulting in the 

release of the UDP units. To create a complex, rather than linear molecular structure, α‐1,6‐

glycosidic bonds are added at every 8th - 10th glycosyl units by amylo‐(α‐1,4‐α‐1,6)‐

transglycosylase, creating a branching structure.  

 

The process of releasing glucose units from the glycogen molecule requires several enzymes, 

the first of which is glycogen phosphorylase which cleaves off G1P units by breaking the α‐

1,4‐glycosidic bonds, and then Oligo‐ (α‐1,4‐α‐1,4)‐glucantransferase and amylo‐α‐(1,6)‐

glucosidase translocates the three outermost glycosyl units to another non-reducing end of 

the molecule for further glycogen synthase cleavages of G1P units. The last units on the α‐1‐

6 bond branches are removed as glucose units by amylo‐α‐(1,6)‐glucosidase.  

 

Hypometabolism has been reported as an early feature of AD (Mosconi et al., 2008a), and is 

suspected to be the central pathogenic event leading up to brain cell loss as seen in 

established AD. One of the mechanisms suspected to be involved in the pathogenesis of early 

AD is impaired insulin signalling which leads to impaired uptake of glucose and altered 

glycogen turnover (Frölich et al., 1998, Ratzmann and Hampel, 1980). As glycogen turnover 

and glucose uptake in astrocytes are directly related to insulin signalling and nutrient 

availability, assessing either would be a representative method of assessing metabolic 

function in neural cells. It is important to ensure that crucial metabolic processes in hiPSC-

derived astrocytes mirror those of naturally derived human primary astrocytes. To our 

knowledge, no studies have investigated the glycogen turnover under defined conditions to 

confirm metabolic conformity between in these cells.  

 

2.1.2 Astrocytic Differentiation of Human iPSCs 

  

The process of differentiation of hiPSC-derived NPCs to astrocytes and neurons has been 

briefly described in chapter 1 (section 1.14.1). This chapter briefly examines the differentiation 

process in vitro. Astrocytes are complex and heterogeneous, in their developmental origins 

(Hall et al., 2003, Hochstim et al., 2008).  

 

Astrocyte differentiation is believed to occur through two pathways during foetal development 

and postnatally (Shaltouki et al., 2013). The first pathway, the prominent pathway, is believed 
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to mostly occur during early neurogenesis, involving the development of a CD44+ve 

intermediate before astrocytes are differentiated from neural stem cells. The second pathway, 

the indirect pathway, is believed to occur in the adult brain and in response to injury, when 

glial cell precursors produce astrocyte precursors that mature astrocytes after downregulation 

of A2B5 and NG2 immunoreactivity. The development of astrocytes in the in vitro setting has 

also shown similar developmental heterogeneity in response to environmental cues (Krencik 

et al., 2011). Previous protocols for the generation of human astrocytes from pluripotent stem 

cells have been complex and time-consuming, involving over six months of culture. Further 

studies by Shaltouki et al. (2013) showed that Neuregulin, Notch signalling, hairy enhancer of 

split (HES) and nuclear factor 1A (NF1A) pathways are important in the differentiation process, 

and could significantly shorten the duration of differentiation and maturation of the neural 

precursors into astrocytes (Shaltouki et al., 2013).   

 

The astrocytes differentiation method used in this study involves the differentiation and 

maturation protocols developed by STEMCELL Technologies Inc., UK.  

 

2.1.3 Neuronal Differentiation of Human iPSCs  

 

The neural differentiation of hiPSCs was conventionally carried out by co-culture with stromal 

cells, or by embryoid body formation (Denham and Dottori, 2011). However, more advanced 

methods have been developed to enable researchers to generate particular groups of brain 

cells including cortical (Shi et al., 2012a), dopaminergic (Yan et al., 2005) and cholinergic 

neurons (Karumbayaram et al., 2009). Some authors have successfully generated functional 

cortical neuronal models of fAD which exhibited the typical features of fAD including the 

production of insoluble intracellular and extracellular Aβ1-42 aggregates as well as the 

presence of hyperphosphorylated tau (Shi et al., 2012a, Shi et al., 2012b, Kondo et al., 2013). 

 

A protocol to differentiate hiPSCs into cortical neuronal cells was developed by Shi et al. 

(2012a). This method involves the inhibition of SMAD signalling (Chambers et al., 2009), and 

then improving the efficiency of differentiation by replacing noggin with dorsomorphin, a small-

molecule inhibitor of SMAD signalling (Kim et al., 2010). The role of Notch signalling inhibition 

in determining a neuronal fate for NPCs occurs through the suppression of HES Family BHLH 

Transcription Factor 1 (HES1) which then results in upregulation of neurogenic genes like the 

Delta like canonical Notch ligand 1 (Dll1) and Neurogenin 2 (Shimojo, Ohtsuka and 

Kageyama, 2008, Ladran et al., 2013). 
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The protocols used for this study were adapted from methods described by Shi et al. (2012a 

and 2012b), who described two methods of differentiating pluripotent cells into cortical 

neurons. The first is spontaneous differentiation method, a 40-day three-step process 

involving differentiation of hiPSCs into cortical NPCs, production of cortical projection neurons 

and then maturation for development of functional action potentials (Shi et al., 2012a). The 

second is synchronous differentiation method, which is essentially similar to spontaneous 

differentiation, but with the use of a γ-secretase inhibitor (DAPT) to induce rapid differentiation 

(Shi et al., 2012b). These methods were adapted for this project, using cortical NPCs obtained 

from Axol Biosciences (Cambridge, UK). 
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2.1.4 Aims and Objectives of the Study 

 

The aim of this chapter was to provide specific comparisons of neural cell differentiation 

methods to generate neural cells (neurons and astrocytes) from human iPSC-derived NPCs 

cell line derived from ‘healthy’ individual, and to characterise them morphologically by 

immunohistochemical staining. In addition, the differentiated hiPSC-derived astrocytic cells 

were compared morphologically and histochemically with human primary astrocytes, and then 

assessed for their ability to break down glycogen stores in response to hypoglycaemic 

conditions and pharmacological treatments (neuromodulators and glutamate). 

.  
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2.2 Materials and Methods  

 

2.2.1 Expansion of ‘Healthy’ Control Human iPSC-derived NPCs 

 

Human NPCs derived from iPSCs were obtained from Axol Bioscience. Details of cell line is 

provided in table 2.1. The ax0018 ‘healthy’ cell line a cell line used as control. The ‘healthy’ 

hiPSC-derived NPCs were cultured and expanded according to a protocol modified from the 

manufacturer’s instructions.  

 

These cell lines were expanded over three passages. Cells were expanded in Axol Neural 

maintenance basal medium (Axol Bioscience, UK) in 6-well plates (Corning®, USA). The plates 

were pre-coated with 0.2mg/ml poly-L-Orinthine stock (0.01% PLO) (Sigma-Aldrich, UK), 

which was diluted in sterile distilled water and incubated for two hours at 37°C, and then 

washed twice with sterile distilled water. Plates were then coated with 7.5μg/ml laminin 

(Sigma-Aldrich, UK), which was diluted in sterile distilled water and incubated overnight at 

37°C. Before cell seeding, the wells were washed once with Dulbecco's phosphate buffered 

saline (D-PBS) (Sigma-Aldrich, UK). At 70 - 90% confluency, cells were passaged by washing 

once with 1ml D-PBS, and then the cells dissociated with 1ml Accutase (Sigma-Aldrich, UK) 

at 37°C for 5 minutes. The cells were transferred into a 15ml sterile conical tube with 4ml Axol 

Neural maintenance basal medium or Dulbecco's modified eagle's medium (DMEM) (Sigma-

Aldrich, UK) and centrifuged for 5 minutes at 200 x g. The pellet was re-suspended in 1ml 

plating-XF medium or 50µM Rho associated protein Kinase inhibitor (ROCK) (Abcam, UK) in 

Axol Neural maintenance basal medium. The cell count was performed using trypan blue and 

a haemocytometer, and then the cells were plated at a density of 5 x104 - 20x104 cells/cm2. 

After plating, the cells were incubated at 37°C in a humidified atmosphere of 5% CO2. After 

overnight incubation, the medium was replaced with pre-warmed Axol neural maintenance 

basal medium supplemented with 10ng/ml FGF2 (Axol Bioscience, UK) every 2 - 3 days. 
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Cell Name 

 

ax0018 

 

Cell Type 

 

hiPSC-derived NPCs 

Healthy Control Line 

 

Starting material 

 

Dermal fibroblast 

 

Mutation 

 

None 

 

Karyotype 

 

Normal 

 

Donor Age  

 

74 years old 

 

Donor Gender 

 

Male 

 

Table 2.1: Description of hiPSC-derived NPCs cell line from ‘healthy’ human control donor.  
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2.2.2 Generation and Characterisation of Human Brain Neural Lineage Cells from 

iPSC-derived NPCs 

 

 The ‘healthy’ human cell line (ax0018) was differentiated into neuronal subtypes and 

astrocytic cells according to different differentiation methods (section 2.2.2.1, 2.2.2.2 and 

2.2.2.3, respectively) and were evaluated by immunocytochemistry staining (ICC) (section 

2.2.4). The NPCs derived from ‘healthy’ hiPSCs were differentiated using two neural 

differentiation protocols (section 2.2.2.1 and 2.2.2.2) to produce cerebral cortical neuronal 

cells over 40 days using spontaneous and synchronous differentiation methods. All protocols 

were adapted from Axol Bioscience.  

 

2.2.2.1 Spontaneous Neuronal Differentiation Method 

 

This method was used to generate a mixed population of cerebral cortical neurons and 

astrocytes (Fig. 2.1A). Human iPSC-derived NPCs were differentiated using the spontaneous 

differentiation method (SP); this medium formulation was based on Shi et al. (2012a). Briefly, 

expanded cells were cultured on a pre-coated 12-well plate (Corning®, USA) with 

PLO/Laminin, and pre-coated 16mm glass coverslips coated with PLO/Laminin at a density of 

7 x104 cells/cm2 (section 2.2.1). After 24 hours of plating, cells were treated with pre-warmed 

Axol Neural maintenance basal medium without supplementation (10ng/ml FGF2). The 

cultured cells were replaced every 2 - 3 days with pre-warmed Axol Neural maintenance basal 

medium over 40 days. Differentiated neuronal cells were assessed using ICC staining (section 

2.2.4).  

 

2.2.2.2 Synchronous Neuronal Differentiation Method 

 

This method was used to generate an enriched cerebral cortical neurons (Fig. 2.1B). Human 

iPSC-derived NPCs were differentiated using synchronous differentiation (SY) using medium 

formulation based on Shi et al. (2012b) containing 10μM DAPT (γ-secretase inhibitor) (Abcam, 

UK). Expanded cells (section 2.2.1) were replated on a pre-coated in 12-well plate and pre-

coated 16mm glass coverslips coated with PLO/Laminin at a density of 7 x104 cells/cm2. After 

24 hours of plating, cells were treated with pre-warmed Axol Neural maintenance basal 

medium supplemented with 10μM DAPT for a maximum 5 days (medium was replaced twice). 

Media was then replaced with pre-warmed Axol Neural maintenance basal medium without 
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supplementation. The medium was replaced every 2 - 3 days over 40 days. Differentiated 

neuronal cells were assessed using ICC staining (section 2.2.4).  
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Figure 2.1: Diagrammatic overview of generation and differentiation of cortical neuronal cells 

from hiPSC-derived NPCs over a period of 40 days. NPCs were differentiated using two 

differentiation methods: (A) spontaneous neural differentiation method to generate a mixture 

cells of both neurons and astrocytes. (B) Synchronous neuronal differentiation method using 

10µM DAPT for 5 days to produce a culture containing predominantly neurons. 
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2.2.2.3 Astrocytic Cells Differentiation and Maturation Methods 

 

Human iPSC-derived NPCs of ax0018 cell line was differentiated into astrocytic cells using 

two-step process using astrocyte differentiation kit and astrocyte maturation kit obtained from 

STEMCELL Technologies. The first step was used to generate lineage-restricted astrocyte 

precursor cells using STEMdiff™ differentiation kits for 21 days. The second step was used to 

generate mature astrocytic cells from astrocytic precursor cells using STEMdiff™ maturation 

kits for over 14 days. NPCs were cultured and differentiated according to manufacturer’s 

protocol (section 2.2.1). The protocol includes multiple passaging steps to eradicate the 

neuronal cells to promote the enrichment of astrocytic cells in culture. Astrocytic precursor 

cells and the mature astrocytic cells were characterised and confirmed using ICC staining 

(section 2.2.4). 

 

2.2.2.3.1 Astrocytic Cells Differentiation Method 

 

Human iPSC-derived NPCs were seeded onto pre-coated 6-well plates with PLO/Laminin at 

densities ranging from 4 x104 - 6 x104 cells/cm2 in Axol Neural maintenance basal medium and 

incubated overnight at 37°C and 5% CO2. Next day, the medium was replaced with pre-

warmed complete STEMdiff™ astrocyte differentiation medium (ADM) for 21 days, and a full 

medium was changed every other day. Cells were passaged at approximately 90 - 95% 

confluency or weekly (Fig. 2.2) by washing once with 1ml D-PBS, and then the cells 

dissociated with 1ml Accutase at 37°C and 5% CO2 for 5 minutes. The cells were transferred 

into a 15ml sterile conical tube with 4ml DMEM and centrifuged for 5 minutes at speed of 200 

x g. The pellet was re-suspended in 1ml complete STEMdiff™ ADM, and then the cells were 

plated at a density of 1 x105 cells/cm2. On day 21, the generated astrocytic precursors 

expanded. Additionally, the astrocytic precursor cells at day 21 were frozen for long-term 

storage in liquid nitrogen containers using cryopreservation method. Astrocytic precursor cells 

pellet 2 x106 cells/ml (2M cells) was re-suspended with 1ml of STEMdiff™ ADM containing 

10% dimethyl sulfoxide (DMSO) (Sigma-Aldrich, UK), and stored at -80°C overnight, and then 

transferred to liquid nitrogen container. 

 

2.2.2.3.2 Astrocytic Cells Maturation Method 

 

For astrocyte maturation, the astrocytic progenitor cells were plated in pre-coated 6-well plates 

with PLO/Laminin at a density of 1.5 x105 cells/cm2 in complete STEMdiff™ astrocyte 
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maturation medium (AMM) and incubated overnight at 37°C and 5% CO2. Cells were fuelled 

by pre-warmed complete STEMdiff™ AMM every other day. The cells were passaged weekly 

or at approximately 90 - 95% confluency and seeded at the same cell density for 14 days (Fig. 

2.2). At day 35 - 40 astrocytic cells were transferred to astrocytes medium (AM), at which 

stage they could be cultured and expanded or cryopreserved, by re-suspending the astrocytic 

cell pellets 2 x 106 cell/ml (2M cells) in 1ml of STEMdiff™ AMM or AM containing 10% DMSO 

(section 2.2.2.3.1). 
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Figure 2.2: Diagrammatic overview of differentiation and maturation methods to generate 

enriched astrocytes over 45 days. A two-step protocol was utilised for generation of astrocytic 

cells from hiPSC-derived NPCs. Astrocytic differentiation phase: cultured the cortical hiPSC-

derived NPCs with STEMdiff™ differentiation kits for 21 days to generate astrocytic precursor 

cells. Astrocytic maturation phase: cultured the astrocytic precursor cells with STEMdiff™ 

maturation kits for over 14 days to produce mature astrocytic cells. The cells were passaged 

4 - 5 times during the differentiation and maturation periods (~7 days between passages). 
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2.2.3 Cultures and Expansion of Cell Lines and Primary Human Cultures 

 

2.2.3.1 Human Primary Astrocytic Cells 

 

Human primary astrocytic cells (HA) were obtained from ScienCell Research Laboratories 

(California, USA). HA cells were cultured in AM containing basal astrocyte medium 

supplemented with 2% foetal bovine serum, 1% Astrocyte growth supplement, 10,000U/ml 

penicillin and 10,000µg/ml streptomycin (all from ScienCell Research Laboratories, California, 

USA). The HA were culture-expanded in pre-coated 75cm3 cell culture flask (Corning®, USA) 

using 3ml of 0.1mg/ml poly-D-Lysine hydrobromide (Sigma-Aldrich, UK) and incubated 

overnight at 37°C). The cells were passaged after reaching 70 - 90% confluency; cells were 

passaged by washing the cells once with 5ml D-PBS, and then incubated with 3ml 1X Trypsin-

EDTA (Sigma-Aldrich, UK) at 37ºC for 5 minutes. 7ml of AM was added to the flask and 

transferred into a 15ml sterile conical tube and centrifuged for 5 minutes at speed of 200 x g. 

The supernatant was discarded, and pellet was re-suspended in 1ml of AM and the cell count 

was performed using trypan blue solution (Sigma-Aldrich, UK) and a haemocytometer 

(Counting Chamber) (Weber Scientific International LTD, UK). Before seeding the cells, the 

pre-coated 75cm3 culture flask was washed twice with 5ml sterile distilled water. HA cells were 

plated in 75cm3 cell culture flask at a density of 5 x106 cell/ml (5M cells) or 1:5 diluted in AM. 

After plating, the cells were maintained by incubation at 37°C in a humidified atmosphere of 

5% CO2. The medium was replaced with pre-warmed AM every 2 days. These cells were 

expanded through 10 passages according to the manufacturer’s instructions. 

 

2.2.3.2 C2C12 Cell Line 

 

The C2C12 cell line was used to detect the presence of glycogen stores as positive control 

using glycogen storage assay (section 2.2.6). C2C12 cells are a myoblast cell line and were 

established from normal adult C3H mouse leg muscle. The C2C12 cell line was supplied by 

European collection of authenticated cell cultures (ECACC). The myoblast cells were cultured 

in DMEM–high glucose containing 4.5g/L glucose with Glutamax (Invitrogen, Paisley, UK), 

supplemented with 2mM L-Glutamine, 100U/ml Penicillin and 100μg/ml Streptomycin and 

10% (v/v) FBS. Cells were culture-expanded in 75cm3 cell culture flask and passaged after 

reaching 70% confluency or every 2 days (to avoid spontaneous differentiation). Afterwards, 

cells were passaged by washing twice with 5ml D-PBS. Cells were then dissociated with 1X 

Trypsin-EDTA and then incubated for 5 - 10 minutes at 37ºC. The cells were transferred into 
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a 15ml sterile conical tube with 9ml DMEM and centrifuged for 5 minutes at 200 x g. The pellet 

was re-suspended in 1ml supplemented DMEM. Cells were plated at a density of 1 x105 

cells/cm2 of surface area of 12-well culture plates for glycogen storage assay (section 2.2.6.1). 

After plating, the cells were maintained by incubation at 37°C in a humidified atmosphere of 

5% CO2. The Medium was replaced with pre-warmed complete medium every two days. 

 

2.2.3.3 SH-SY5Y Cell Line 

 

The SH-SY5Y cell line was used in glycogen storage assay (section 2.2.6) as a negative 

control as these cells do not store glycogen. The SH-SY5Y cell line is a neuroblastoma of a 

thrice cloned sub line of the neuroepithelioma cell line, SK-N-SH (Ross et al., 1983). The 

parental cell line was derived from a bone marrow biopsy in 1970 from a young girl with 

metastatic neuroblastoma. SHSY5Y cells were cultured and expanded in RPMI-1640 medium 

(Sigma-Aldrich, UK), supplemented with 100U/ml Penicillin and 100μg/ml Streptomycin and 

10% FBS. Cells were culture-expanded in 75cm3 cell culture flask and passaged after 

reaching 80 - 90% confluency. Cells were passaged by washing the cell once with 5ml D-PBS, 

and then the cells dissociated with 1X Trypsin-EDTA and then incubated for 5 minutes at 37ºC. 

Afterwards, cells were transferred into a 15ml sterile conical tube with 9ml DMEM and 

centrifuged for 5 minutes at 200 x g. The pellet was re-suspended in 1ml complete DMEM. 

Cells were then plated at a density of 1 x105 cells/cm2 of surface area of culture vessel of 12-

well culture plates for glycogen assay (section 2.2.6.1). After plating, the cells were maintained 

by incubation at 37°C in a humidified atmosphere of 5% CO2. The medium was replaced with 

pre-warmed supplemented RPMI-1640 medium every two days.  

 

2.2.4 Histochemical Staining Assays 

 

2.2.4.1 Glycogen Staining 

 

To define and confirm the existence of cytosolic localisation of glycogen in HA cells, astrocytic 

cells derived from hiPSCs were demonstrated using Periodic Acid-Schiff (PAS) protocol 

(Rosenberg and Dichter, 1985). This method was used for staining and detecting 

macromolecules such as glycogen stored in human astrocytes. Cells grown on 16mm glass 

coverslips (section 2.2.2.3.2 and 2.2.3.1) were washed twice with ice-cold D-PBS, and then 

fixed with methanol for 5 minutes at room temperature. Subsequently, the coverslips were 

rinsed 3 times with 70% (v/v) ethanol for 5 minutes, and then 1ml of 1% Periodic acid (w/v) 
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(dissolved in 70% ethanol) was added to the cells and incubated for 30 minutes at room 

temperature. Next, the cells were washed 3 times with 70% ethanol and stained with 500µl of 

0.5% (w/v) basic fuchsin (Sigma-Aldrich, UK) for one hour at room temperature. The 0.5% 

basic fuchsin stock was prepared by dissolving in acid ethanol (80% ethanol, 19% distilled 

water and 1% concentrated HCl). After incubation, the cells were rinsed three times with 70% 

Ethanol and the coverslips were mounted on glass slide with mounting medium with DAPI 

(Vectashield, UK) and incubated overnight in dark at room temperature.  

 

2.2.4.2 Immunohistochemical Staining 

 

The immunocytochemical staining was used to confirm and characterise cells. For ICC all the 

cells were cultured on 16mm glass coverslips (section, 2.2.1, 2.2.2 and 2.2.3.1). The cells 

were washed twice with ice-cold D-PBS, and then fixed in 4% paraformaldehyde (PFA) 

(Sigma-Aldrich, UK) for 15 - 30 minutes at room temperature. Next, cells were rinsed twice 

with D-PBS and the fixed cells were preserved with 0.05% (v/v) Sodium azide (Sigma-Aldrich, 

UK) for later staining. The fixed cells were incubated at room temperature for one hour in 

blocking buffer (0.2% Triton X-100 (Sigma-Aldrich, UK), 2% (w/v) Bovine serum albumin (BSA) 

(Sigma-Aldrich, UK) in D-PBS for permeabilization. After incubation, blocking buffer was 

replaced with the appropriated primary antibodies diluted in blocking buffer (Table 2.2) and 

incubated for 2 hours at room temperature on gyro-rocker or overnight incubation at 4°C. 

Following incubation, the cells were washed 3 times with blocking buffer for 5 minutes each. 

Subsequently, the cells were incubated with diluted secondary antibodies in blocking buffer 

(Table 2.2) and covered with foil for one hour at room temperature on a gyro-rocker (Stuart®, 

UK). Coverslips were then washed 3 times with blocking buffer for 5 minutes each, and then 

washed twice with D-PBS. The coverslips were counterstained on the slide using a drop of 

mounting medium containing DAPI (Vectashield, UK) and incubated overnight in dark at room 

temperature. 

 

2.2.4.3 Synaptic Marker Staining 

 

To assess the presence of synaptic markers within the neuronal culture (section 2.2.2.1) cells 

were stained with synaptic marker staining method. Cells cultured on 16mm glass coverslips 

were washed twice with ice-cold D-PBS, and then fixed by 4% PFA for 15 - 30 minutes at 

room temperature. Next, cells were rinsed twice with D-PBS and the fixed cells were stained 

immediately or preserved with 0.05% Sodium Azide (Sigma-Aldrich, UK) for later staining. The 
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fixed cells were washed three times with 50mM Ammonium Chloride (Sigma-Aldrich, UK). 

Next, 1ml of Ammonium Chloride solution was added and incubated for 5 minutes. After 

aspiration of Ammonium Chloride solution, 1ml of 0.1% Saponin (Sigma-Aldrich, UK) in D-

PBS was added and incubated for 10 minutes. Afterwards, the saponin solution was removed, 

and 1ml of blocking buffer (D-PBS containing 3% BSA and 0.1% saponin) was added and 

incubated for 30 minutes. Subsequently, the primary antibody was diluted in blocking buffer 

(Table 2.2). 200μl of primary antibody solution was added to the top of a piece of parafilm 

(Bemis, USA) on wet 3MM CHR Whatman chromatography paper (Whatman International 

LTD, UK) and then coverslips were placed upside down on primary antibody solution and 

incubated for 1 hour at room temperature. After incubation, the coverslips were transferred 

back to the 12-well plate and washed twice with 0.1% saponin in D-PBS. Subsequently, the 

cells were incubated for 10 minutes with blocking buffer. 200μl of secondary antibody diluted 

in blocking buffer (Table 2.2) was then added to the cells and incubated for 1 hour at room 

temperature. After incubation, the cells were washed twice with 0.1% saponin in D-PBS, and 

then washed twice with D-PBS. The stained coverslips were mounted on slides by a drop of 

mounting medium containing DAPI and incubated overnight in dark at room temperature. 

 

2.2.4.4 Co-Staining 

 

HA cells and the astrocytes derived from hiPSC-derived NPCs from the healthy cell lines were 

co-stained for glycogen staining protocol (section 2.2.4.1), and then astrocytic marker S100β 

protocol (section 2.2.4.2). The coverslips were counterstained and mounted on the slide with 

DAPI and incubated overnight at room temperature. 

 

2.2.5 Microscopes, Images Capture and Slides Storage 

 

Cell images were captured using EVOS XL Core microscope (Life Technologies, UK) for 

phase contrast images, and Leica SP2 fluorescent microscope (Leica Microsystems, UK) for 

ICC staining images with 10x, 20x ("dry" objective lens magnification) and 63x (Immersion oil 

with objective lens) and Leica Application Suite X (LAS X) software, version 3.02. All the 

fluorescent slides were stored in the dark slide box at 4°C.  
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Marker 

 

 

Expression 

 

Primary Antibody 

 

Secondary Antibody 

 

Type/Species 

 

 

Conc. 

Dilution 

 

Type/Species 

 

 

Conc. 

Dilution 

Anti-Beta III 

Tubulin 

Antibody 

ab7751 

 (TUJ1) 

(Abcam) 

Cat. No. 

ab7751 

General 

neuronal 

marker 

 

Monoclonal 

Mouse 

1:500 Donkey Anti 

mouse 

Rhodamine (Red) 

(Jackson 

ImmunoResearch) 

Lot no. 127016 

1:1000 

Pax6 

(Biolegend) 

Cat. No 

901301 

Human neural 

progenitor 

development 

marker 

Polyclonal 

Rabbit 

1:300 Goat Anti Rabbit 

FITC (Green) 

(Jackson 

immunoResearch) 

Lot no. 112581 

1:250 

Sox2 

(R&D system) 

Cat. No. 

MAB2018 

Human stem 

cells marker 

Monoclonal 

Mouse 

1:100 Donkey Anti 

mouse 

Rhodamine 

1:250 

 

GFAP 

(Millipore) 

Cat. No 

mab360 

Astrocytes 

Marker 

 

Mouse 1:250  Donkey Anti 

mouse 

Rhodamine 

1:200 

 

S100β 

(Dako) 

Lot. No. 

00095194 

Mature 

Astrocytes 

Marker 

 

Rabbit 1:250  Goat Anti Rabbit 

FITC 

1:200  

Synaptophysin 

(Abcam) 

Cat. No. 

ab68851 

Presynaptic 

terminals 

marker 

 

Rabbit  1:1000 Goat Anti Rabbit 

FITC  

1:500 
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PSD95 

(Abcam) 

Cat. No. 

ab2723 

Glutamatergic 

neurons, 

postsynaptic 

marker 

 

Mouse 1:1000 Donkey Anti 

mouse 

Rhodamine 

1:500 

Nestin Neural stem 

cell 

intermediate 

filament 

Monoclonal 

Mouse 

1:100 Donkey Anti 

mouse 

Rhodamine 

1:250 

 

Table 2.2: Table listing the different primary and secondary antibody markers used for ICC 

staining and synaptic markers staining for identification of NPCs and neural cells: neurons and 

astrocytes. 
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2.2.6 Determination of Glycogen Content Levels  

 

2.2.6.1 Samples Preparation 

 

Astrocytic cells were prepared and cultured with AM, and seeded at a density of 1 x105 

cells/cm2 into pre-coated 12-well plates (triplicate wells) (section 2.2.2.3 and 2.2.3.1). The cells 

were ready and implemented after 2 days in culture, and washed three times with ice-cold D-

PBS. Subsequently, 200µl of ice-cold D-PBS was added on the cells and scraped using cell 

scraper (Fisher Scientific, UK) and then transferred into 1.5ml microcentrifuge tubes (3 wells 

pooled) and sonicated using Ultrasonic processor (JENCONS Scientific LTD, UK) for 30 

seconds with all the tubes kept on ice. 100µl of homogenised samples were removed as lysate 

for further analysis to measure the protein content using BCA assay (section 2.2.8). The 

homogenised samples were heated at 70°C using a heat block for 10 minutes. Afterwards, 

the samples were centrifuged for 3 minutes at 4°C at 13,000rpm, and then the supernatant 

were transferred into 1.5ml sterile microcentrifuge tube and stored at -80°C for glycogen stores 

analysis. 

 

2.2.6.2 Glycogen Assay Protocol 

 

The homogenised samples were diluted into 1:2 with D-PBS, and the diluted samples were 

mixed with 0.1M acetate buffer at a pH of 4.6. The diluted sample was divided equally into two 

separated microfuge tubes one tube was used to measure the amount of glycogen and the 

second tube for measuring the free glucose in the homogenised sample to subtract the 

readings. Next, an equal volume 1mg/ml Amyloglucosidase enzyme stock (AMG.S) (Sigma-

Aldrich, UK), which was prepared by adding 75µl of Amyloglucosidase enzyme reagent (AMG) 

in 1ml of acetate buffer with a pH of 4.6. Afterwards, all the samples were incubated at 57.5°C 

on a heat block for 2 hours. After incubation, 30µl of sample was transferred into a 96-well 

plate and added 100µl of using Hexokinase enzyme reagent (HK) from glucose assay kit 

(Sigma-Aldrich, UK), and then mixed and incubated at room temperature for 15 minutes (Fig. 

2.3). The absorbance was read at 370nm using Thermo multiscan EX 96-well plate reader 

(Thermofisher, UK).The protein content levels in the cell lysate samples were also determined 

using BCA assay to normalise the glycogen values (section 2.2.8). This method allowed us to 

measure the amount of glycogen levels in homogenised samples as well as the free glucose 

and glucose-6-phosphate. 
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2.2.7 Glycogen Breakdown Assays 

 

The glycogen breakdown was investigated under hypoglycaemic conditions, and in response 

to pharmacological treatments to assess the maturity and functionality of the HA and the 

astrocytic cells derived from ax0018 cell line. These cells were assessed for their ability to 

build up and breakdown glycogen in response to physiological cues such as hypoglycaemia: 

1,4-dideoxy-1,4-imino-d-arabinitol (DAB) (Sigma-Aldrich, UK) or drugs including: Dibutyryl 

cyclic adenosine monophosphate (dbcAMP) (Tocris, UK), Isoproterenol (Tocris, UK), Ouabain 

(Tocris, UK) and DL-threob-benzyloxyaspartic acid (TBOA) (Tocris, UK).  

 

2.2.7.1 Astrocytic Cell Culture Preparation 

 

The HA cells and the astrocytic cells derived from hiPSC-derived NPCs line (ax0018) were 

prepared as described in section 2.2.3.1 and 2.2.2.3, respectively. The astrocytic cells were 

plated at a density of 1 x105 cells/cm2 on a 12-well plate in triplicate wells (3 wells pooled) 

(three independent cultures). After 2 days of plating, the cells were washed once with D-PBS 

and then treated with either DAB, dbcAMP, Isoproterenol, Ouabain and TBOA in Krebs’–

Ringer HEPES buffer (KRH) according to the following experiments. The KRH buffer was 

made with a pH of 7.4, and was composed of 115mM sodium chloride, 5mM potassium 

chloride, 1mM magnesium chloride, 24mM sodium bicarbonate, 2.5mM calcium chloride 

dehydrate, 25mM HEPES (Sigma-Aldrich, UK), prepared in 0.5L distilled water. The KRH 

buffer was sterile filtered through 0.2µm filter (Fisher Scientific, UK) and stored at 4°C. The 

glycogen content was determined using glycogen assay (section 2.2.6), and protein content 

was determined using BCA assay (section 2.2.8). The same procedure was utilised for the 

following treatments. 

 

Figure 2.3: Chemical equation demonstrating the glycogen under glycogen assay analysis 

using AMG and HK enzymes. 
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2.2.7.2 Hypoglycaemic Conditions Assay 

 

The astrocytic cells were exposed to 10µM DAB in KRH buffer without glucose for starvation 

conditions. Cells were incubated for 0, 60 and 180 minutes at 37°C in a humidified atmosphere 

of 5% CO2.  

 

2.2.7.3 Pharmacological Treatment 

 

Astrocytic cells were treated with 1mM dbcAMP and 100µM Isoproterenol independently in 

KRH buffer supplemented with 5mM glucose, and then incubated for 0 and 180 minutes at 

37°C in a humidified atmosphere of 5% CO2.   

 

2.2.7.4 Glutamate Treatment  

 

To determine the effects of glutamate on astrocytes, cells were treated with 100µM Ouabain 

and 100µM TBOA in KRH buffer supplemented with 1mM L-Glutamic Acid (Sigma-Aldrich, 

UK) and 5mM glucose, and then incubated for 0, 60, 18 and 360 minutes at 37°C in a 

humidified atmosphere of 5% CO2.   

 

2.2.8 Determination of Protein Levels 

 

Cell lysates were analysed using Bicinchoninic acid (BCA) assay Kit according to the 

manufacturer’s instructions (Thermofisher, UK). Briefly, 25μl of BSA standard and cell lysate 

samples were added to a 96-well plate with 200µl of BCA working reagent (50:1 ratio of 

reagent A:B) and incubated for 30 minutes at 37°C. The absorbance was read at 590nm using 

Thermo multiscan EX 96-well plate reader (Thermofisher, UK).  

 

2.2.9 Quantification and Statistical Analysis 

 

All quantification and statistical analyses were done using Excel software 2013 (Windows 7) 

and GraphPad Prism 7 software (Version 7.00, GraphPad Software Inc., California USA). Data 

values were determined by variance ANOVA (One-way ANOVA or two-way ANOVA) with 

Dunnett's multiple comparisons test or Tukey's multiple comparisons. All values represent 

mean ± SD, n=3 (each ‘n’ represents data replicate from an independent culture).  Significant 
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comparisons were labelled in figures as (P<0.05 (*), P<0.01 (**), P<0.001 (***) and P<0.0001 

(****)). The data for glucose assay and glycogen assay were normalised using the BCA values 

(Total cellular protein) before utilising them for creation of graphs. The quantification of hiPSC-

derived neural cell subpopulations were performed and counted using software of ImageJ. 

The neural cells were counted with automated counting of the images (3 fields for each image). 

Firstly, the image was converted to greyscale before proceeding; Edit>Options>Conversions, 

then use Image>Type>16-bit to convert to greyscale. Secondly, use Image>Adjust>Threshold 

- then highlight all the area to be counted. Then, for merged particles; Process>Binary>Waters 

and cut them apart by adding a one pixel or more thick line. Lastly, to count use 

Analyze>Analyze Particles.  
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2.3 Results    

 

2.3.1 Characterisation and Generation of ‘Healthy’ Human Brain Neural Cells from  

iPSC-derived NPCs 

 

The neural cells derived the using spontaneous and synchronous differentiation neuronal 

methods (section 2.2.2.1 and 2.2.2.2) and astrocytic cells differentiation methods (section 

2.2.2.3) were characterised by their morphology and by ICC staining for neuronal and 

astrocytic markers at different days of cell cultures. The ax0018 cell line was first characterised 

morphologically at the start of the differentiation process (section 2.3.1.1). The morphological 

and ICC staining findings for the different days of differentiation are presented separately in 

section 2.3.1.2. The cultures yielded mixed populations of astrocytes and neurons. The 

neuronal cells were also examined for synaptic markers to confirm synaptic formation and 

activity. 

 

2.3.1.1 Characterisation of ‘Healthy’ Human iPSC-derived NPCs 

 

The NPCs derived from ‘healthy’ hiPSC control line ax0018 (Fig. 2.4) were positively identified 

at day zero using ICC staining for the neural precursor cell markers sox2, pax6 and nestin (an 

intermediate filament protein and NPCs marker), after 2 passages. Cortical neural rosettes 

are morphologically identifiable structures in cultures under phase contrast microscopy (Fig. 

2.4A). Human iPSC-derived NPCs were differentiated into cortical neurons using spontaneous 

and synchronous differentiation methods over a period of 40 days. Additionally, the NPCs 

were differentiated into astrocytes using differentiation and maturation methods and cultured 

for up to 5 weeks.  

 

2.3.1.2 Characterisation and Differentiation of ‘Healthy’ Human iPSC-derived NPCs 

Control Cell Line 

 

2.3.1.2.1 Spontaneous Differentiation Method  

 

Human iPSC-derived NPCs from control cell lines ax0018 cell line was differentiated using the 

spontaneous differentiation method (section 2.2.2.1) to produce mature mixed cerebral 
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cortical neurons and astrocytes cultures over a 40 day period. The phase contrast images of 

neural cells demonstrate extensive neurite outgrowth which started to appear from days 10 

and 20 (Fig. 2.5A and 2.6A), forming denser neural networks by days 30 and 40 (Fig. 2.7A 

and 2.8A). Cortical neurons were identified using ICC staining at days 10, 20, 30 and 40 by 

positive expression of the TUJ1 general neuronal marker (Fig. 2.5B, 2.6B, 2.7B and 2.8B, 

respectively). Spontaneous differentiation method also resulted in the differentiation of the 

cells into S100β-positive astrocytes at days 10, 20, 30 and 40 (Fig. 2.5C, 2.6C, 2.7C and 2.8C, 

respectively). There was no detectable pre-synaptic marker synaptophysin or post-synaptic 

marker PSD-95 (postsynaptic density protein 95) at days 10 and 20 (data not shown). 

However, synaptic markers were detected at days 30 and 40 using synaptophysin (Fig. 2.9A 

and 2.10A, respectively) and PSD-95 (Fig. 2.9B and 2.10B, respectively). 

 

2.3.1.2.2 Synchronous Differentiation Method  

 

Human iPSC-derived NPCs from control cell lines ax0018 cell line was cultured using the 

synchronous differentiation method which involved treating the cells with 10µM DAPT for 5 

days (section 2.2.2.2) to produce cerebral cortical neuronal cell population within 40 days. The 

phase contrast images of neuronal cells demonstrated extensive neurite outgrowths and 

morphology by day 10 (Fig. 2.5B), with typical extensive neurite networks by days 20, 30 and 

40 (Fig. 2.6B, 2.7B and 2.8B, respectively). The NPCs were differentiated into TUJ1-positive 

expressing cortical neuronal networks and the networks became denser over time from day 

10 to 40 of culture (Fig. 2.5D, 2.6D, 2.7D and 2.8D, respectively). Synchronous differentiation 

method also led to the successful differentiation of the cells into S100β-positive astrocytes at 

days 10, 20, 30 and 40 (Fig. 2.5F, 2.6F, 2.7F and 2.8F, respectively). Likewise, synaptophysin 

and PSD-95 expression were not detectable at days 10 and 20 (data not shown). Whereas, 

at days 30 and 40 synaptic markers were detected by positive expression of synaptophysin 

(Fig. 2.9D and 2.10D) and PSD-95 (Fig. 2.9E and 2.10E). 

 

2.3.1.2.3 Characterisation of Human iPSC-derived Astrocytic Cells  

 

Mature astrocytic cells were produced from ‘healthy’ control hiPSC-derived NPCs cell line 

(ax0018). The human cortical neural rosettes were differentiated into mature astrocytes by 

employing a sequential two-phase methods; using astrocyte differentiation protocol to 

generate astrocytic progenitors for 3 weeks (section 2.2.2.3.1). This was followed by the 
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astrocyte maturation protocol over a period of 2 weeks to yield mature astrocytic cells (section 

2.2.2.3.2).  

 

Astrocytes derived from ax0018 cell line were identified and stained using ICC staining using 

the astrocytic markers after day 21 in astrocyte differentiation medium. The morphology of the 

astrocyte progenitors was assessed via phase-contrast images (Fig. 2.11A). The hiPSC-

derived astrocyte progenitors positively expressed the astrocytic markers GFAP and S100β 

(Fig. 2.11B and C, respectively).  

 

Phase-contrast images of astrocytes in culture of both control lines after 45+ days in astrocyte 

maturation medium displayed the stellate morphology (Fig. 2.12A). The mature astrocytes and 

neural progenitors positively stained for GFAP (Fig. 2.12B), whereas mature astrocytes were 

primarily S100β positive (Fig. 2.12C). Astrocytic culture of line ax0018 expressed a low 

number of neuronal lineage marker TUJ1-positive (Fig. 2.12F). The cell cultures of the ax0018 

cell line showed positive staining for GFAP 42.02%, S100β 53.15% and TUJ1 3.50% (Fig. 

2.12).  

 

Human iPSC-derived astrocytic cells also stained positively for glycogen using PAS staining 

(Fig. 2.13A and B). The glycogen in astrocyte cells were found to co-localised within the 

cytoplasm of cells that also stained positively for S100β (Fig. 2.13C). To definitively identify 

glycogen in astrocytic cells, cell lysates were analysed using a glycogen assay to determine 

the amount of glycogen content level in the astrocytic cells (section 2.3.3). 
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Figure 2.4: Representative images of ‘healthy’ hiPSC-derived NPCs from cell line ax0018 

using ICC staining. A phase contrast image demonstrating the neural rosettes feature of 

human healthy control NPCs (A). The NPCs were stained for neural precursor cells 

antibodies against nestin (red, B), sox2+ (red, C) and pax6+ (green, D). Merged image 

showing co-expression of both pax6+ and sox2+ (E). Cells were counterstained with DAPI+ 

(blue, F). Cells were stained at passage number 2, n=3. Scale bars: 100μM. 
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Figure 2.5: Representative images presenting the development of neural cells from 

‘healthy’ hiPSC-derived NPCs of ax0018 cell line following cultures in spontaneous and 

synchronous differentiation methods at day 10. A and B showing phase contrast images of 

differentiation cells. Immunofluorescent images showing neuronal cells that was confirmed 

using a TUJ1+ marker of positive neurons (red, C and D). Astrocytes were identified using 

S100β+ marker (green, E and F). Merged image showing expression of both TUJ1+ and 

S100β+ (G and H). Nuclei were counter stained with DAPI+ (blue, I and J). n=3. Scale bars: 

100µM.  
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Figure 2.6: Representative images showing the development of neural cells from ‘healthy’ 

hiPSC-derived NPCs of cell line ax0018 in spontaneous and synchronous differentiation 

methods at day 20. A and B showing phase contrast images of the differentiating cells. 

Immunofluorescent images presenting neuronal cells that was confirmed using a TUJ1+ 

(red, C and D). Astrocytic cells were identified using S100β+ marker (green, E and F). 

Merged image showing co-expression of both TUJ1+ and S100β+ (G and H). Nuclei were 

counter stained with DAPI+ (blue, I and J). n=3. Scale bars: 100µM. 
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Figure 2.7: Representative images showing the development of neural cells at day 30 in 

spontaneous and synchronous differentiation cultures from line ax0018 of ‘healthy’ hiPSC-

derived NPCs. A and B showing phase contrast images of neural cells in network of the 

differentiation cells. Immunofluorescent images presenting a network neuronal cells that 

was confirmed using a TUJ1+ (red, C and D). Astrocytic cells were identified using S100β+ 

marker (green, E and F). Merged image showing co-expression of both TUJ1+ and S100β+ 

(G and H). Nuclei were counter-stained with DAPI+ (blue, I and J). n=3. Scale bars: 100µM.  
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Figure 2.8: Representative images illustrating the development of neural cells at day 40 in 

spontaneous and synchronous differentiation cultures from line ax0018 of ‘healthy’ hiPSC-

derived NPCs.  A and B showing phase contrast images of neural cells in network of the 

differentiation cells. Immunofluorescent images showing a network neuronal cells that was 

confirmed using a TUJ1+ (red, C and D). Astrocytes were identified using S100β+ marker 

(green, E and F). Merged image showing co-expression of both TUJ1+ and S100β+ (G and 

H). Nuclei were counter stained with DAPI+ (blue, I and J). n=3. Scale bars: 100µM.  
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Figure 2.9: Immunofluorescent images of synaptic markers expression in neural cells 

derived from hiPSC-derived NPCs of line ax0018 using SP-differentiation (A-C) and SY-

differentiation (D-F) at day 30. Synaptic formation is confirmed by positivity of 

synaptophysin+ (red, A and D) and PSD95+ (green, B and E). Merged image showing 

expression of both synaptic markers (C and F). n=3. Scale bars: 25µM. 

 

Figure 2.10: Immunofluorescent images of synaptic markers expression in neural cells 

derived from hiPSC-derived NPCs of line ax0018 using SP-differentiation (A-C) and SY-

differentiation (D-F) at day 40. Synaptic formation is confirmed by positivity of 

synaptophysin+ (red, A and D) and PSD95+ (green, B and E). Merged image showing 

expression of both synaptic markers (C and F). n=3. Scale bars: 25µM. 
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Figure 2.11: Representative images showing ICC staining of hiPSC-derived astrocytic 

progenitor cells at day 21. The ax0018 cells were cultured using ADM and AMM 

differentiation methods. (A) Shows a phase contrast image of the differentiating astrocyte 

precursor cells. Immunofluorescent images confirming early astrocytic differentiation using 

GFAP+ (red, B). The developing astrocyte cells were also identified using S100β+ marker 

(green, C). Merged image showing expression of both GFAP+ and S100β+ (D). Nuclei 

were counter stained with DAPI+ (blue, E). n=3. Scale bars: 100µM. 
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Figure 2.12: Representative images showing ICC staining of hiPSC-derived astrocytic cells 

from line ax0018 at day 45+. The cells were cultured using the astrocytes differentiation 

and maturation protocols. (A) Shows a phase contrast image of the astrocyte cells. 

Immunofluorescent images of astrocytic markers GFAP+ (red, B), S100β+ (green, C) and 

TUJ1+ neuronal marker (F). Merged image showing expression of both GFAP+ and 

S100β+ (D). Nuclei were counter stained with DAPI+ (blue, E). Scale bars: 100µM. The 

graph shows the quantification of cell-types using ImageJ analysis of neural cell 

populations produced at this stage of differentiation, n=3, P<0.0001 (****) and P<0.01 (**). 

The statistical analysis was done using One-way ANOVA, Dunnett's post-test.  

 

 

 



87 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Representative images of hiPSC-derived astrocytic cells from line ax0018 at 

day 45+. PAS staining confirmed the presence of glycogen in astrocytes cells (red) (A and 

B). Cells were counterstained with DAPI+ (blue). Merged image showing expression of co-

staining: S100β+ and PAS+ staining (C). Merged image showing expression of S100β+, 

PAS+ staining and DAPI+ (D). n=3. Scale bars: 100µM and 50µM (A). 
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2.3.2 Characterisation of Human Primary Astrocytic Cells  

 

HA were assessed microscopically to identify their characteristic morphology (section 2.2.3.1). 

The cells took up the typical stellate morphology on phase contrast (Fig. 2.14A). The cells 

were stained using ICC staining using the astrocytic markers S100β and GFAP. GFAP is an 

intermediate filament (astrocyte cytoskeleton) that is expressed in astrocytes and astrocytic 

progenitor cells, whereas S100β is a calcium binding protein (found mainly in the cytosol of 

astrocytes) that is primarily expressed by mature astrocytes and astrocytic progenitor cells. 

These are common markers used to identify astrocytes. The cells stained positively for GFAP 

and S100β markers (Fig. 2.14B, C and D, respectively). The astrocyte cells also stained 

positively for the presence glycogen stores with PAS staining (Fig. 2.14E), and S100β co-

staining (Fig. 2.14F). Glycogen assays were carried out to definitively confirm glycogen stores 

in astrocytic cells and provide quantitative analyses (section 2.3.3). 
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Figure 2.14: Representative images of HA cells using ICC staining. Phase contrast image 

illustrating the typical star-shaped appearance of the HA cells morphology (A). The cells 

were stained with ICC staining for common astrocytic markers: GFAP+ (red, B) and 

S100β+ (green, C). Merged image showing expression of both GFAP+ and S100β+ (D). 

Cells were counterstained with DAPI+ (blue, E). Astrocytic cells also stained for glycogen 

using the PAS staining (red, F), and cells were counterstained with DAPI+ (blue). Merged 

image showing expression of co-staining: S100β+, PAS staining and DAPI+ (G). The cells 

were stained at passage number 3–5, n=3. Scale bars: 100µM and 50µM (D and E). 
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2.3.3 Determination of Glycogen Content Levels 

 

To definitively identify glycogen in human primary astrocytic cells; a glycogen assay (section 

2.2.6) was used to quantitatively assess the presence of glycogen stores in hiPSC-derived 

astrocytic cells from ax0018 cell  line was compared to C2C12 myoblast cell line as a positive 

control and SH-SY5Y neuroblastoma cell line as a negative control. The ax0018-derived 

astrocytes (27.31µg/mg) had similar glycogen content level to HA (30.41µg/mg) (Fig. 2.15). 
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Figure 2.15: Determination of glycogen content levels of different cell lines. The cellular 

glycogen content was measured using a glycogen assay. Data is expressed as glucose 

and glucose-6-phosphate µg/mg total cellular protein, ± SEM, n=3 (triplicate wells pooled 

for each run). The statistical analysis was done using One-way ANOVA, Tukey's multiple 

comparisons test. 
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2.3.4 Glycogen Breakdown Assays 

 

Having established the storage of glycogen in astrocytic cells (section 2.3.3), HA cells and 

hiPSC-derived astrocytic cells from ax0018 cell line were investigated for glycogen breakdown 

under various conditions, including hypoglycaemia and in response to known inducers and 

inhibitors of glycogen breakdown in neural cells. 

 

2.3.4.1 Hypoglycaemic Conditions Assay 

 

HA cells (Fig. 2.16A) and hiPSC-derived astrocytic cells from line ax0018 (Fig. 2.16B) were 

cultured under starvation conditions and their glycogen contents measured. Glycogen 

breakdown in the astrocytic cells was blocked by treating cells with 10µM DAB. DAB is an 

inhibitor of glycogen phosphorylase and α-1,6-glucosidases. The glycogen content of 

astrocyte cultures post treatment with DAB was compared to astrocytes cultures without DAB 

treatment over a range of time points. Breakdown of glycogen within astrocytic cells was fully 

blocked by DAB at 60 minutes and 180 minutes in comparison to control cultures at the zero 

time point and without DAB treatment at similar time in comparison to control (cell culture 

without DAB treatment) (HA; at 60min: 31.63 ± 0.5128µg/mg, P<0.001; 180min: 31.55 ± 

0.4376µg/mg, P<0.001; ax0018-astrocytes: at 60min: 21.64 ± 0.6057µg/mg, P<0.01; 180min: 

20.78 ± 0.4407µg/mg, P<0.001). 
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Figure 2.16: Analysis and comparison of glycogen breakdown in HA cells (A) and hiPSC-

derived astrocyte from cell line ax0018 (B) using a glycogen assay. Astrocytic cells were 

cultured without glucose, and with or without 10µM DAB. The cellular glycogen content was 

measured using a glycogen assay. Data is expressed as glucose and glucose-6-phosphate 

µg/mg total cellular protein, ± SEM, n=3 (triplicate wells pooled for each run), P<0.001 (***), 

P<0.01 (**). The statistical analysis was done using Two-way ANOVA, Dunnett's multiple 

comparisons test. 
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2.3.4.2 Pharmacological Treatment 

 

HA cells and hiPSC-derived astrocytic cells from line ax0018 in culture were exposed to known 

neuromodulators: Isoproterenol (a β1 and β2 adrenergic agonist) and dbcAMP (an inducer of 

glycogen phosphorylase) and glycogen levels assessed after 180 minutes. Both modulators 

induced a significant increase in glycogen breakdown induced by the HA cells (dbcAMP: 1.762 

± 7.92µg/mg, P<0.01; Isoproterenol: 1.762 ± 6.984µg/mg, P<0.05) (Fig. 2.17A). Similarly, 

dbcAMP induced a significant reduction in glycogen levels in hiPSC-derived astrocytic cells 

(dbcAMP: 1.758 ± 14µg/mg, P<0.001) while there was no significant difference in glycogen 

breakdown induced by Isoproterenol in these cells (Fig. 2.17B).  
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Figure 2.17: Analysis and comparison of glycogen breakdown in human primary astrocyte 

cells (A) and hiPSC-derived astrocytes from line ax0018 (B) in response to dbcAMP and 

Isoproterenol. Astrocytic cells were treated with 1mM dbcAMP or 100µM Isoproterenol 

versus untreated control; glycogen levels were measured after 180 minutes. The cellular 

glycogen content was measured using a glycogen assay. Data is expressed as glucose 

and glucose-6-phosphate µg/mg total cellular protein, ± SEM, n=3 (triplicate wells pooled 

for each run), P<0.001 (***), P<0.01 (**), P<0.05 (*). The statistical analysis was done using 

One-way ANOVA, Dunnett's multiple comparisons test. 
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2.3.4.3 Glutamate Treatment  

 

HA cells and hiPSC-derived astrocytic cells from line ax0018 in culture were exposed to 

neurotransmitter glutamate in order to assess the activation of the Na+/K+ ATPase, which 

would normally stimulate glycogen breakdown (DiNuzzo et al., 2013). The cells were treated 

with glutamate with and without Ouabain (an inhibitor of Na+/K+ ATPase) and TBOA 

(glutamate transporters inhibitor). Intracellular glycogen levels were measured at 60, 180 and 

360 minutes. Glutamate treatment induced significant reduction in glycogen levels in the 

hiPSC-derived astrocytes (Glutamate at 60min: 0.3001 ± 3.244µg/mg, P<0.0001; 180min: 

0.7602 ± 7.31µg/mg, P<0.0001; 360min: 1.016 ± 6.877µg/mg, P<0.001) (Fig. 2.18B), 

(Glutamate at 180min: 0.4461 ± 1.52µg/mg, P<0.05; 360min: 0.3435 ± 2.102µg/mg, P<0.001) 

(Fig. 2.19B). Treatment of HA with either Ouabain or TBOA alone or glutamate and Ouabain 

or TBOA had no significant effect on glycogen storage (Fig. 2.18A and 2.19A).  
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Figure 2.18: Analysis and comparison of glycogen breakdown in HA cells (A) and hiPSC-

derived astrocytes from line ax0018 (B) in response to 1mM glutamate in the presence and 

absence of 100µM Ouabain. Astrocytic cells were treated with 1mM glutamate in the 

presence or absence of 100µM Ouabain in comparison to the untreated control. Glycogen 

levels were measured after 60, 180 and 360 minutes. The cellular glycogen content was 

measured using a glycogen assay. Data is expressed as glucose and glucose-6-phosphate 

µg/mg total cellular protein, ± SEM, n=3 (triplicate wells pooled for each run), P<0.0001 

(****), P<0.001 (***). The statistical analysis was done using One-way ANOVA, Dunnett's 

multiple comparisons test. 
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Figure 34:  

A: human primary astrocyte cells  

B: iPSC-derived astrocyte cells from lines 

 

Figure 2.19: Analysis and comparison of glycogen levels in HA cells and hiPSC-derived 

astrocytes from line ax0018 treated with 1mM glutamate in the presence or absence of 

100µM TBOA. Glycogen levels in primary astrocytic cells (A) and hiPSC-derived astrocytes 

(B) were measured using a glycogen assay. Astrocytic cells were treated with 1mM 

glutamate in the presence or absence of 100µM TBOA and compared to the untreated 

control; measurements were taken after 60, 180 and 360 minutes of treatment. The cellular 

glycogen content was measured using a glycogen assay. Data is expressed as glucose 

and glucose-6-phosphate µg/mg total cellular protein, ± SEM, n=3 (triplicate wells pooled 

for each run), P<0.001 (***), P<0.05 (*). The statistical analysis was done using One-way 

ANOVA, Dunnett's multiple comparisons test. 
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Figure 2.20: Diagram illustrating a summary of the development of cerebral cortical 

neurons and astrocytes and mixed population from line ax0018 of ‘healthy’ hiPSC-derived 

NPCs. Neural cells cultured using spontaneous and synchronous differentiation methods 

over 40 days period, and astrocytes differentiation and maturation protocols over 45+ days. 
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2.4 Discussion  

 

Understanding the early preclinical metabolic mechanisms of AD has previously been 

problematic, as a definite diagnosis can only be made post-mortem, and animal models have 

largely been unable to fully recapitulate the disease process. The use of patient-derived neural 

cells is an alternative approach for studying the underlying pathophysiological events of AD. 

These cells can provide important information on possible exploitable diagnostic and 

therapeutic targets before the appearance of overt clinical features of AD. The development 

of hiPSC has made it possible to generate pluripotent cells from which neurons and astrocytes 

can be derived.  In addition, recent advances in differentiation procedures have allowed 

scientists to produce brain cells from regions affected by AD such as the cortex (Shi et al., 

2012a, Shi et al., 2012b). 

 

In order to be able to utilise hiPSC-derived cells in studying the early metabolic changes in 

AD, it will be necessary to first ensure that the hiPSC-derived cells are similar to their naturally 

derived counterparts. This chapter was focussed on characterising ‘healthy’ hiPSC-derived 

astrocytes and neurons, to confirm that the structural and biochemical features of these 

artificially differentiated cells mirror those of healthy, naturally-derived cells.  

 

Human iPSCs were differentiated into neural precursor cells, which are the progenitors that 

will eventually become neurons and astrocytes at the completion of the differentiation process. 

The cells in culture showed similar morphological and immunochemical characteristics to 

those differentiated by Shi et al. (2012a), with positive identification at day 0 of the NPCs 

markers sox2 (a marker of pluripotency), pax6 (neuronal fate determinant and NPCs 

proliferation) and nestin (an intermediate filament protein and NPCs marker), and the 

formation of cortical rosettes as shown in figure 2.1 for the ax0018 cell line.   

 

The hiPSC-derived NPCs after spontaneous differentiation method yielded a mixed population 

of neuronal and glial cells, demonstrating neurite networks by day 10 of culture in similitude to 

the findings by Shi et al. (2012a). Astrocyte differentiation occurred later than neuronal 

differentiation as also observed by Shi et al. (2012b), the astrocytic marker S100β was 

detectable at day 10. Cortical neurons derived from the hiPSC-derived NPCs were 

differentiated using the spontaneous and synchronous differentiation methods, showing 

extensive neurite networks by day 10 for both methods. The differentiated neuronal cells 
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expressed the neuronal marker (TUJ1) but showed no evidence of synaptic maturation until 

day 30, when the synaptic markers synaptophysin and PSD-95 were detectable (Fig. 2.9 and 

2.10). The synaptic staining was however non-specific and the image quality was suboptimal. 

This may need further optimisation, and could theoretically be improved for better clarity with 

the use of negative controls using primary antibodies such as the isotype control antibodies, 

and the specificity improved with the use of secondary antibodies. However, when the SH-

SY5Y cell line was used as control, as well as secondary only controls using goat anti rabbit 

FITC and donkey anti mouse rhodamine was unsuccessful, as there was no uptake of the 

markers with completely dark images. This thus indicates that optimisation would also involve 

re-examining relevant aspects of the process utilised. These include the blocking reagents 

use and the use of alternate antibodies like the vGlut2 and synapsin as alternate presynaptic 

markers, and Shank3 and Homer1 as alternative postsynaptic markers. Furthermore, the age 

of the cells requires further consideration, as the cells may possibly not mature enough at this 

stage the markers to be localised to the synaptic ends. 

 

When observed morphologically, the neural cells in culture at day 10 appeared almost identical 

for both the spontaneous and synchronous differentiation methods, but from day 20, the nature 

of the neurite networks show striking contrasts in culture; there appeared to be more 

numerous, haphazard and uncoordinated neurite proliferation in the spontaneous cultures, 

while the networks in the synchronous cultures appeared to be fewer, more direct and better 

coordinated. This difference is likely due to the addition of DAPT into the synchronous 

differentiation cultures. DAPT is a γ-secretase inhibitor; it speeds up the neuronal 

differentiation process by inhibiting Notch signalling in NPCs (Shi et al., 2012b). However, 

these findings may be influenced by the numbers of passages these cells had gone through 

prior purchase from the manufacturers to the culture at the time.  

 

As the neurons in the neurite networks were physically difficult to delineate for counting, 

quantification was unlikely to be precise, hence the results were excluded from the statistical 

analysis, but have been included in the Appendices for reference and posterity.  

 

The neuronal networks were assessed from day 30 for synaptic maturation. It has been 

previously reported by Shi et al. (2012a) that significant synaptic activity takes several weeks 

to develop. Indeed, they reported that functional glutamatergic synapses were only common 

after 50 days of culture. The neurons differentiated via the spontaneous and synchronous 

differentiation methods demonstrated punctate staining of synaptic markers from day 30, 
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similar to findings by Shi et al. (2012a). The neuronal networks were not assessed for synaptic 

firing in this project. However, work within our group (Mr James Crowe and Mr Alistair Grainger 

personal communication) have demonstrated the emergence of early neuronal activity for both 

SP and SY differentiation methods around this time.  

 

Astrocytes were also differentiated from the ‘healthy’ hiPSCs and compared with healthy 

human primary astrocytes. The hiPSC-derived astrocytes showed the typical stellate 

morphology, and expressed the astrocyte markers S100β and GFAP. The differentiation 

process resulted in the production of almost exclusive astrocytic cell populations (Fig. 2.12). 

When compared with the human astrocytes, the hiPSC-derived astrocytes showed no notable 

morphological or immunohistochemical differences. The differentiated cells showed very little 

expression of TUJ1 after 35 days of culture immediately after maturation stage (Fig. 2.12). 

This is in similar to the findings by Shaltouki et al. (2013) that the astrocytic cells on 

differentiated were almost purely of the astrocytic lineage, after the cells underwent passages 

and cryopreservation. (Fig. 2.12 and 2.13). 

 

Glycogen stores in the HA and hiPSC-derived astrocytes were assessed using PAS staining, 

and quantitatively assessed by the glycogen assay (section 2.3.3). The C2C12 myoblast cell 

line was used as positive control, and the SH-SY5Y neuroblastoma cell line was used as 

negative control. When assessed for glycogen stores, there was no significant difference 

between the content for the ax0018 hiPSC-derived astrocytes and the HA (Fig. 2.15). 

However, there was a significant reduction in the glycogen stores in the ax0016 (see 

Appendices) compared to the HA and ax0018.  

 

Astrocytes increase glycogen breakdown under starvation conditions in order to maintain 

survival of neurons, protect axons, and ensure synaptic activity is maintained (Brown and 

Ransom, 2007, Tarczyluk et al., 2013). The hiPSC-derived and primary astrocytes, when 

cultured under hypoglycaemic conditions, exhibited increased glycogen breakdown, 

manifested as a significant reduction in their glycogen stores when cultured under 

hypoglycaemic conditions without the blocking effect of DAB (an inhibitor of glycogenolytic 

enzymes).  

 

The cultured astrocytes produced mixed responses to exposure to known neuromodulators, 

with the HA showing a significant increase in glycogen breakdown in response to both 

dbcAMP and Isoproterenol, while the hiPSC-derived astrocytic cells recorded a significant 



102 
 

increase in response to dbcAMP, but not to the β1 and β2 adrenergic agonist. Conversely, the 

hiPSC-derived astrocytes exhibited significant increase in glycogen breakdown in response to 

glutamate and the Na+/K+ ATPase inhibitor, TBOA, while there no significant changes to 

glycogen turnover in the HA in response to these neuromodulators. Tarczyluk et al. (2013) 

reported consistent increase in glycogen breakdown when astrocytes in co-culture with 

neurons were exposed to similar neuromodulators. Walls et al. (2008), reported similar 

increase in glycogenolytic activity in response to norepinephrine and glutamate. However, 

Swanson et al. (1990), reported a dynamic response of glycogen turnover to glutamate which 

was dependent on the availability of alternate substrates and the amount of free glucose 

available. These mixed responses may be explained by the fact that our experiment was in 

single culture, as opposed to mixed neuron-astrocyte co-cultures. 

 

The importance of astrocytes to neuronal survival and function is well known, but recent 

research has shown that their roles may be larger and more central than previously thought. 

Tarczyluk et al. (2013) was able to show that astrocytes participate in the spatial and 

neurochemical components of synaptic transmission by increasing glycogen turnover, 

increasing glucose uptake and glycolysis. The complex interactions that make up this so-

called functional ANLS was first described by Pellerin and Magistretti (1994), and has been 

investigated thoroughly since (Ransom and Fern, 1997, Wender et al., 2000, Zwingmann et 

al., 2003, Amaral et al., 2011). However, this interaction has not been demonstrated using 

hiPSC-derived astrocytes and neurons.  
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2.5 Conclusion  

 

In conclusion, this chapter has demonstrated that astrocytes and neurons can be successfully 

differentiated into mature neurons and astrocytes from hiPSC-derived NPCs. These 

differentiated neurons and astrocytes bear striking similarities to their naturally derived 

counterparts in terms of structure and to a large extent for astrocytes, their neurometabolic 

functions. Neurons can be differentiated using the SP or SY differentiation methods, with the 

SY producing more mature and better defined neuronal networks than the SP. The 

differentiated neurons also exhibited the expression of synaptic markers. Astrocytes were 

differentiated in a two-step process from hiPSC-derived NPCs, and the hiPSC-derived 

astrocytes were morphologically and metabolically, with some differences from human primary 

astrocytes in their response to pharmacological treatments. This is the first time to the best of 

our knowledge, mature astrocytes and neurons have been differentiated from hiPSCs and 

tested for astrocytic metabolic function in terms of glycogenolysis. Future experiments in the 

lab will characterise metabolic functions further in terms of electrolyte, carbohydrate, protein 

metabolism and assessment of the complex astrocyte-neuron synaptic complex structurally 

and functionality. 

 

The next chapter of this project explores the metabolic response of the differentiated 

astrocytes and neurons to exogenous Aβ (chapter 3). 
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Chapter 3: Treatment of Healthy Human iPSC-derived Neurons and Astrocytes and 

Primary Astrocytes with Synthetic Aβ1-42 Oligomers 

 

3.1 Introduction 

 

It is now well recognised that hypometabolism is an important preclinical event in AD, which 

likely precedes overt clinical symptoms and signs by decades (Mosconi et al., 2008a and 

2008b). The mechanism regulating this hypometabolism in the early disease stages before 

obvious loss of brain tissue is yet to be fully explained, but is believed to be closely related to 

toxicity of Aβ molecules and aggregates to brain cells, with links to dysfunction in insulin 

signalling (Holscher, 2011). Previous studies have attempted to utilise non-human models to 

explain the mechanism of early hypometabolism in AD, but have yielded mixed results 

(Nicolakakis et al., 2008, Nicholson et al., 2010, Allaman et al., 2010, Poisnel et al., 2012, Luo 

et al., 2012, Uemura and Greenlee, 2001.). The inconsistencies in these results are likely due 

to the differences in structural and biochemical complexity between the human and non-

human species. This may explain why some species do not develop AD naturally, and possible 

differences between the in vitro and in vivo systems. Human iPSC-derived neural cells from 

'healthy or affected human neurons and astrocytes may enabling early changes in cellular 

metabolism to be studied in response to exogenous or endogenously produced Aβ. This 

chapter, explores the metabolic response of ‘healthy’ hiPSC-derived neurons and astrocytes 

to exogenous Aβ. This work builds on previous efforts in our lab regarding the effects of 

exogenous Aβ on human neurons and astrocytes (Tarczyluk et al., 2015). 

 

3.1.1 Astrocytes 

 

The role astrocytes play in acute and chronic disease states has been the focus of much 

research (Yong et al., 1991, Hu et al., 1998, Zamanian et al., 2012, Pekny and Pekna, 2014, 

Okada et al., 2006, Martin et al., 2006, Wilhelmsson et al., 2006). Astrocytes are the most 

abundant glial cells in the brain. They play very important roles in brain metabolism, 

neuroprotection and in the mechanism of dealing with metabolic stress (Reviewed in Michelle 

et al., 2018). The neuroprotective functions of astrocytes include protection against glutamate 

toxicity (Chamoun et al., 2010, Soria et al., 2014), and prevention of oxidative stress. This is 

particularly important in disease states, which result in excessive production of ROS that is 

beyond the capacity of usual cellular measures to protect against oxidative damage. 
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Astrocytes are also able to generate higher quantities than neurons, of glutathione, one of the 

most important natural antioxidants (Iwata-Ichikawa et al., 1999, Eftekharpour et al., 2000).  

 

The role of mitochondrial dysfunction and hypometabolism in AD is has typically focussed on 

neurons, however the role of astrocytes is yet to be fully explained. Astrocytes have been 

shown to engage in transfer of healthy mitochondria into neurons to replace dysfunctional 

neuronal mitochondria that produce increased ROS (Hayakawa et al., 2016), and also take 

up damaged mitochondria released from neurons (Davis et al., 2014). This protection against 

dysfunctional mitochondria may be very important in the prolonged pathogenetic course of 

AD, as Aβ is known to induce mitochondrial dysfunction and increase the release of ROS. 

 

Activation of astrocytes to the reactive state can occur via several mechanisms, including 

exposure to Aβ oligomers, inflammatory cytokines, neurodegeneration or acute traumatic 

cellular injury or inflammation (Yong et al., 1991, Hu et al., 1998). When activated, astrocytes 

are believed to alter their immediate environment to facilitate a return to normal homeostasis 

and repair in the short term by reducing inflammation and reducing white blood cell infiltration 

(Bush et al., 1999, Myer et al., 2006). However, with prolonged or continuous damage, reactive 

astrocytes create a glial scar and are unable to maintain long term neuronal survival and 

function, and indeed inhibit axonal outgrowth from neurons (Pekny and Pekna, 2014, Sun et 

al., 2012, Yong et al., 1991, Hu et al., 1998). 

 

While the pathogenic role of activated astrocytes in AD are yet to be completely explained, 

reactive astrocytes have been shown to be localised around amyloid plaques in post-mortem 

tissue of AD patients (Serrano-Pozo et al., 2013, Davis et al., 1992, Yan et al., 1996, El Khoury 

et al., 1996, Le Y Gong et al., 2001). A number of studies have now shown that astrocytes 

demonstrate altered glucose metabolism, insulin signalling and response to oxidative stress 

in AD. Similarly, astrocytes derived from human post-mortem tissue demonstrate down 

regulation of a number of genes associated with phosphatidylinositol-3-kinase and protein 

kinase B (PI3K-AKT) and mitogen-activated protein kinase (MAPK) signalling-associated 

transcripts, which may reflect the impact of impaired insulin signalling on subsequent 

downstream processes (Hansson et al., 1986, Cheng et al., 2003). 

 

3.1.2 Astrocyte-Neuron Metabolic Coupling 

 

The synaptic functions, metabolic needs, as well as the survival and protection of neurons 

against oxidative stress are closely related, and sometimes dependent on supportive roles 
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offered by astrocytes. It is therefore important to examine the complex metabolic and spatial 

relationships between the astrocytes and neurons that could play a crucial role in the early 

pathogenic course of AD. One crucial component of this relationship is the ANLS (Pellerin and 

Magistretti, 1994). It was shown that glutamate released during synaptic activity is taken up 

by astrocytes, with a resultant cascade of metabolic changes in the astrocytes including 

increased glucose uptake, increased glycolysis and lactate production, which is then released 

back to the neurons for utilisation via oxidative decarboxylation, a mechanism that has also 

been demonstrated in stem cell derived neurons and astrocytes (Tarczyluk et al., 2013). 

 

3.1.3 Effects of Aβ on Metabolism 

 

The amyloid hypothesis of AD aetiology is based on the idea that the AD pathogenesis is 

determined by the excessive production, accumulation and toxicity of Aβ, which then creates 

a chain of events leading to chronic inflammation, neuronal metabolism dysfunction, and 

eventual cell death (Hardy and Allsop, 1991). Further refinements of the hypothesis have 

suggested that specific isoforms of Aβ are likely to be responsible for the pathogenetic events 

leading up to clinically evident features of AD. The soluble forms of Aβ, especially the Aβ1-40 

and Aβ1-42 oligomers have now been shown to be more toxic and responsible for ultimate 

cellular damage, rather than the insoluble accumulations of Aβ which are seen as amyloid 

plaque deposits in the brain (Reviewed in Selkoe and Hardy, 2016). Several other isoforms of 

Aβ also exist, which may also contribute to the disease process in varying degrees 

(Mawuenyega et al., 2013). 

 

It is known that Aβ induces metabolic dysfunction in neuronal cells and astrocytes, and several 

studies have revealed possible mechanisms of this action (Mattson et al., 1995, Butterfield et 

al., 1994, Oddo et al., 2003, Knobloch et al., 2007). One mechanism that has been proposed 

is induction of oxidative stress by excessive release of ROS (Mattson et al., 1995, Butterfield 

et al., 1994). This is likely because Aβ induces mitochondrial dysfunction by accumulating in 

the mitochondrial membranes and at synaptic sites where there is a huge presence of 

mitochondria (Oddo et al., 2003, Knobloch et al., 2007). Aβ accumulation in the mitochondrial 

results in increased mitochondrial permeability (Canevari et al., 1999, Parks et al., 

2001, Shevtzova et al., 2001, Kim et al., 2002, Moreira et al., 2002). It has also been shown 

to cause impaired calcium signalling, especially in astrocytes, leading to calcium influx into 

astrocytes (Abramov et al., 2003). In addition, Aβ alters the function of several important 

enzymes of the Kreb’s cycle and the respiratory chain, with α-ketoglutarate dehydrogenase, 

https://www.jneurosci.org/content/24/2/565#ref-8
https://www.jneurosci.org/content/24/2/565#ref-32
https://www.jneurosci.org/content/24/2/565#ref-32
https://www.jneurosci.org/content/24/2/565#ref-37
https://www.jneurosci.org/content/24/2/565#ref-24
https://www.jneurosci.org/content/24/2/565#ref-30
https://www.jneurosci.org/content/24/2/565#ref-1
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and aconitase showing greater susceptibility to Aβ toxicity, as well as generating ROS (Figure 

1.4) (Casley et al., 2002, Longo et al., 2000).  

 

It has been previously demonstrated in our laboratory that exogenous amyloid induces 

metabolic dysfunction in human neurons and astrocytes derived from the NT2.D1 

embryocarcinoma cell line (Tarczyluk et al., 2015). It was shown that there were reductions in 

uptake of glucose, lactate, glutamate as well as an increase in glycogen content level, with 

significant impairments to the protective mechanisms against oxidative stress.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.jneurosci.org/content/24/2/565#ref-26
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3.1.4 Aims and Objectives of the Study 

 

Our hypothesis was that treatment of neurons and astrocytes derived from ‘healthy’ hiPSCs 

with synthetic Aβ1-42 oligomers would induce changes in glucose uptake and glycogen 

metabolism as previously reported in NT2.D1 derived neurons and astrocytes (Tarczyluk et 

al., 2015). The specific aim of this chapter of the project was to explore the occurrence of 

metabolic dysfunction in response to Aβ. 

 

The objectives of this study were to:  

 

 Assess the effects of synthetic Aβ1-42 oligomers on cell viability in primary human and 

hiPSC-derived astrocytes and neurons using the MTT and cell count assays.  

 Determine the effect of synthetic Aβ1-42 oligomers on neuronal glucose uptake (using 

glucose assay) and astrocytic glycogen content (using glycogen assay) in hiPSC-

derived neural cells and primary astrocytes.  
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3.2 Materials and Methods 

 

3.2.1 Preparation of Synthetic Aβ1-42 Oligomers 

 

Synthetic Aβ1-42 oligomers were prepared as previously reported (Tarczyluk et al., 2015). 

Amyloid oligomers were prepared by dissolving synthetic Hexafluoroisopropanol (HFIP)-

treated amyloid-β1-42 (Aβ1‐42) (AnaSpec, Belgium) in 200mM HEPES buffer (pH 8.5) to 

generate a stock solution concentration of 100µM. The stock solution was then aliquoted into 

sterile microcentrifuge tubes and stored at ‐80°C. 

 

3.2.2 Electrophoresis Studies 

 

3.2.2.1 SDS-PAGE Gel Electrophoresis 

 

The presence of synthetic Aβ1‐42 oligomers (section 3.2.1) was assessed using sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Mini Protean® 3 Cell 

(Biorad, UK) system was used according to the manufacturer’s guidelines. An 8% resolving 

gel was prepared using 30% Bis-Acrylamide (Geneflow, UK) with a 4% stacking gel. The 

synthetic Aβ1‐42 was then serially diluted from a concentration of 100µM to 0.39µM in sample 

buffer (sample buffer: 25% glycerol, 62.5mM Tris-HCl pH 6.8, 2% SDS, 0.01% bromophenol 

blue and 5% β-Mercaptoethanol). 10µl of Page Ruler Plus Prestained Protein Ladder 

(Thermofisher, UK) and 20µl of sample buffer and samples were loaded onto the gel. 

Electrophoresis was carried out at 200V (max) for 35 - 45 minutes until the bromophenol blue 

reached the bottom of the resolving gel. The plates were then carefully separated, and the gel 

removed. Gels were prepared for western blotting (section 3.2.2.2) or incubated overnight in 

Coomassie Brilliant blue stain (0.1% Coomassie, 50% methanol with 7% acetic acid) on slowly 

rotating using gyro-rocker (Stuart®, UK). Gels were then destained using (50% methanol and 

7% acetic acid). Picture images were taken using GeneSys image acquisition software and 

GBOX-Chemi-XRQ gel documentation system (Syngene, UK). 
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3.2.2.2 Western Blotting 

 

SDS-PAGE gel followed by Western blotting was performed on the serially diluted synthetic 

Aβ1‐42 oligomers samples. Following separation by SDS-PAGE (section 3.2.2.1), the gels 

were incubated in transfer buffer (25mM Tris, 192mM Glycine, 10% Methanol in deionised 

water) for 15 minutes. Afterwards, the SDS gels and Nitrocellulose Hybond ECL membranes 

(Amersham, GE Healthcare, Buckinghamshire, UK), nitrocellulose membranes were then 

sandwiched between four pieces of Whattman cellulose chromatography paper and two 

pieces of sponge, pre-soaked in transfer buffer. Transfers were performed using the mini 

trans-blot electrophoretic transfer cell (Bio-Rad Laboratories Ltd., Hemel Hempsted, UK) at 

30V, 90mA for 16 hours on ice. Next day, the Nitrocellulose membranes were transferred and 

blocked in TBS-Tween (TBS: 138mM NaCl, 2.68mM KCl, 24.8mM Tris-base in deionized 

water, pH 8.0), (0.1% (v/v) Tween) and 5% (w/v) powdered milk (Marvel) for 2 hours on gyro-

rocker at room temperature. After 2 hours, 10µl of a primary antibody Beta Amyloid 1-16 

(6E10) (1:1000) (Covance, USA) was diluted in 10ml of 3% (w/v) dried milk powder in TBS 

0.1% (v/v) Tween, and then the membranes placed inside 50ml conical tubes on a rolling 

platform and incubated overnight at 4°C.  

 

On the following day, the membranes were washed six times (5 minutes for each wash) with 

TBS-0.1%Tween on gyro-rocker at room temperature to eliminate the excess unbound 

antibody. After this washing step, the membranes were incubated and diluted in 10ml of 3% 

(w/v) dried milk powder in TBS 0.1% (v/v) Tween with secondary antibody (Anti-mouse IgG 

HRP-linked antibody (1:2000) (Cell Signalling Technology, UK) to visualise bound primary, 

which was diluted in 10ml of 3% (w/v) dried milk powder in TBS 0.1% (v/v) and Tween, and 

then the membranes placed inside 50ml conical tubes. The membranes were incubated for 

one hour on a rolling platform at room temperature. After incubation with secondary antibody, 

the blot were washed six times 5 minutes for each wash with TBS-0.1% Tween on gyro-rocker 

at room temperature to eliminate the excess unbound antibody.  

 

Next, the blot was incubated with Pierce™ ECL Western blotting substrate (Thermo Fisher 

Scientific, USA) for one minute at room temperature. Subsequently, the membranes were 

placed in an autoradiography cassette (Hypercassette, Amersham, GE Healthcare, 

Buckinghamshire, UK) between two pieces of acetate. In a dark room, the blot was exposed 

to X-ray film (CL-XPosure Film, ThermoFisher Scientific, UK) for 5 minute to 1 hour. After 

exposure, the X-ray film was placed in developer solution developer (Kodak, Sigma-Aldrich, 
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Dorset, UK) for 30 second to 1 minute, and then washed thoroughly in water for 30 second, 

and then the blot transferred in fixer solution (Kodak, Sigma-Aldrich, Dorset, UK) for 1 minute 

and then washed thoroughly in water 30 second. The blot films were then left to dry, and then 

picture images were captured using GeneSys image acquisition software and GBOX-Chemi-

XRQ gel documentation system (Syngene, UK). 

 

3.2.3 Treatment of Human Primary Astrocytes and iPSC-derived Neurons and 

Astrocytic Cells with Synthetic Aβ1-42 Oligomers 

 

To determine the possible toxic effects of synthetic Aβ1-42 oligomers on the metabolism of 

HA, astrocytic cells derived from ‘healthy’ hiPSCs (ax0018), and neuronal cells derived from 

SP and SY differentiation methods from ax0018 ‘healthy’ cell line. All cells were exposed to 

synthetic oligomeric Aβ1-42 over a range of concentrations based on the findings from 

Tarczyluk et al. (2015). The HA (section 2.2.3.1) and astrocytes derived from hiPSCs (section 

2.2.2.3) were plated at a density of 5 x105 cells/cm2 in 12-well plates in triplicate and left in 

culture for 2 - 3 days. The hiPSC-derived were plated at a density of 25 x103 cells/cm2 in 12-

well plates in triplicate. Then, the neuronal cells were spontaneously and synchronously 

differentiated (section 2.2.2.1 and 2.2.2.2, respectively) for 30 days in culture. All the cells 

were treated with synthetic Aβ1-42 oligomers (section 3.2.1) diluted in 1ml of appropriate cell 

culture medium to working concentration range of 2μM, 1μM and 0.2μM, and were compared 

to untreated cells. The cells were incubated for 48 hours at 37°C in a humidified atmosphere 

of 5% CO2. Subsequently, the conditioned media (CM) were collected and centrifuged at 

speed of 200 x g for 5 minutes, and then the supernatants were transferred into 1.5ml sterile 

microcentrifuge and stored at -20°C for analysing glucose uptake using Hexokinase assay 

(section 3.2.6.1). Homogenised samples of astrocytic cells were collected for analysis using 

the glycogen assay (section 2.2.6) and protein determination assay (section 2.2.8). 

 

3.2.4 Cell Viability and Cytotoxicity Studies 

  

The viability of cells treated with synthetic Aβ1-42 oligomers in comparison with untreated cells 

was determined using MTT assay (3.2.4.1) (Mosmann, 1983) and cell nucleus count assay 

(section 3.2.4.2). 
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3.2.4.1 MTT Assay 

 

The MTT assay is a colorimetric assay that was used to assess cell viability by measuring the 

reduction of yellow tetrazolium dye to purple formazan in active metabolic living cells. The HA 

and astrocytes derived from hiPSCs were plated at a density of 3 x104 cells/cm2 in 96-well 

plates in triplicate, and left in culture for 2 - 3 days prior to treatment with synthetic Aβ1-42 

oligomers. The cells were treated with serially diluted synthetic Aβ1-42 oligomers over a 

concentration range of 2 - 0.001953μM, and were compared to an untreated cells as a control, 

over 48 hours. Cell culture media was removed by gently inverting the 100µl of 2.5µg/ml MTT 

stock in the appropriate cell culture medium was added to the cells. Additionally, neuronal 

cells were spontaneously and synchronously differentiated (sections 2.2.2.1 and 2.2.2.2, 

respectively) for 30 days in 96-well plates prior to treatment, which hiPSCs-derived NPCs of 

ax0018 cell line were plated in triplicate at a density of 10 x103 - 20 x103 cells/cm2. Next, 100µl 

of 1.25µg/ml MTT stock in the appropriate cell culture medium was added to the cells. All the 

cells were covered with foil and incubated for 3 hours at 37°C. After incubation, MTT solution 

was aspirated and 50μl of DMSO (Sigma-Aldrich, UK) was added to each well and mixed on 

shaker for 30 second. Plates were then incubated for 10 minutes at 37°C. Absorbance was 

measured at a wavelength 590nm using a Thermo multiscan EX 96-well plate reader. 

  

3.2.4.2 Cell Nucleus Count Assay 

 

To confirm results obtained from the MTT assay (section 3.2.4.1) the viability of cells was also 

assessed using NucleoCounters® system (Chemometec, Denmark). The astrocytes derived 

from hiPSCs of ax0018 cell line (section 2.2.2.3) were plated at a density of 20 x105 cells/cm2 

in 6-well plates and left in culture for 2 - 3 days. Afterwards, astrocytic cells were exposed to 

synthetic oligomeric Aβ1-42 that diluted in 2ml AM to working concentration of 2μM, 1μM, and 

untreated cells. The treated cells were incubated for 48 hours at 37°C in a humidified 

atmosphere of 5% CO2. After incubation, the CM were collected and spun at speed of 200 x 

g for 5 minutes, and then supernatant was discarded and re-suspended with 1ml AM. The 

astrocytic cells were detached by washing the cells once with D-PBS, and then adding 1ml of 

Accutase and incubated for 5 minutes at 37°C in a humidified atmosphere of 5% CO2. 4ml of 

AM was added to each well and transferred into a 15ml sterile conical tube and centrifuged 

for 5 minutes at speed of 200 x g. The supernatant was discarded, and pellet was re-

suspended in 1ml of AM. Subsequently, the CM and cell pellet were vortexed for 30 second 

before assessment using Via1-Cassette™ (Chemometec, Denmark). The cell viability and cell 
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counting was measured using ChemoMetecNucleoView NC-3000 software (Chemometec, 

Denmark). Due to issues with producing a single cell suspension of neurons, it was not 

possible to repeat this experiment using neuronal cultures. 

 

3.2.5 Determination the Effects on Carbohydrate Levels 

 

3.2.5.1 Determination the Effects on Glucose Uptake Levels 

 

The CM samples collected from cells treated with synthetic Aβ1-42 oligomers in comparison 

with untreated cells as a control (section 3.2.3) were assessed for glucose uptake level over 

time using glucose assay kit. The experiment was carried out according to the manufacturer’s 

instructions (modified for a 96-well plate). Briefly, the standard and samples were serially 

diluted (1:2) to generate a standards curve giving concentration range between 500 - 3.9µg/ml. 

30µl of standard and samples were mixed with 200µl of HK reagent and incubated for 15 

minutes at room temperature. The absorbance was read at 370nm Thermo multiscan EX 96-

well plate reader (Thermofisher, UK). All readings were corrected for background and total 

protein levels (section 2.2.8). 

 

3.2.5.2 Determination the Effects on Glycogen Content Levels 

 

The homogenised samples from the HA and hiPSCs-derived astrocytes (ax0018) treated with 

synthetic Aβ1-42 oligomers in comparison with untreated cells (section 3.2.4) were measured 

for glycogen content levels according to glycogen assay method described in section 2.2.6. 

All readings were corrected for background, free glucose in homogenised samples and protein 

levels (section 2.2.8). 

 

3.2.6 Cell Lysis 

 

Human iPSC- derived Neuronal cells from SP and SY neuronal differentiation methods were 

washed with ice-cold D-PBS, and then 300µl of 1X Radioimmunoprecipitation assay (RIPA) 

lysis buffer (Millipore) containing complete tablets mini EDTA-free, Easypack protease cocktail 

inhibitors (Roche, USA) was added and incubated for 10 minutes on ice. The cells were then 
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scraped and the lysate transferred to a 1.5ml sterile microcentrifuge tube, and centrifuged at 

12,000rpm at 4°C for 20 minutes. The supernatant was collected and stored at -20°C for 

protein quantification. Preparation of cell lysate from astrocytic cells for protein quantification 

was described in section 2.2.6.1. 

 

3.2.7 Determination of Protein Levels  

 

All the protein concentration of cells samples were measured according to protocol described 

in section 2.2.8.  

 

3.2.8 Quantification and Statistical Analysis 

  

All quantification and statistical analyses were done according to the methods described in 

section 2.2.9. 
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3.3  Results  

 

3.3.1 Synthetic Aβ1-42 Oligomers Examination  

 

Synthetic Aβ1-42 was prepared and then aliquoted at a concentration of 100μM using the 

method described in (section 3.2.1). The synthetic Aβ1‐42 was then serially diluted from a 

concentration of 100µM to 0.39µM in sample buffer, and the presence of monomers and 

oligomers in the preparation were assessed using SDS-PAGE (section 3.2.2.1) and western 

blotting (section 3.2.2.2). 

 

3.3.2 Electrophoresis Studies 

 

3.3.2.1 SDS-PAGE Gel  

 

To determine the presence of SDS-stable Aβ oligomers, synthetic Aβ1-42 was separated on 

a SDS-PAGE gel and then stained with Coomassie brilliant blue stain (section 3.2.2.1). Under 

denaturing and reducing conditions; the gel shows that the majority of synthetic Aβ1-42 as 

monomeric bands from lane 2 - 7 (~4kDa) (Fig. 3.1A). SDS stable oligomers were also visible 

from lane 2 - 5. These oligomers can be estimated at ~10 - 17kDa and represent SDS stable 

tetramers and trimers. The lowest level of synthetic Aβ1-42 detected using Coomassie 

staining was 3.125µM.  

 

3.3.2.2 Western Blotting 

 

Western blotting was carried out to sensitively monitor the existence of further synthetic Aβ1‐

42 species not detected using Coomassie brilliant blue stain, as well as assess the presence 

of the various levels of synthetic Aβ1‐42, which was recognised with 6E10 antibody against 

Aβ. Synthetic Aβ1‐42 was serially diluted from a concentration of 100µM to 0.39µM and loaded 

in 8% SDS-PAGE gel followed by western blotting analysis. Western blotting detected 

synthetic Aβ1-42 between concentrations of 100µM to 1.5µM (lanes 1 - 9, respectively) (Fig. 

3.1B), with the largest molecular weights being around ~130kDa. 
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Figure 3.1: Representative 8% SDS-PAGE gel (A) confirming the presence of synthetic 

Aβ1‐42 monomers and oligomers; serially diluted from a concentration of 100µM to 

0.39µM. Proteins were stained with Coomassie brilliant blue stain. Lane 1 illustrates the 

pre-stained protein ladder molecular weight markers. Lanes: 2 - 7 show 100µM to 3.125µM 

of synthetic Aβ1‐42 concentrations. Representative western blotting analysis (B) of 

synthetic Aβ1‐42 using 6E10 antibody: lane 1 - 9 indicate concentrations of synthetic Aβ1‐

42 between 100 - 1.5µM, respectively.  (B) Generated from 2 independent blots. 
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3.3.3 Cell Viability and Cytotoxicity Studies 

 

3.3.3.1 MTT Assay 

 

The MTT cell viability assay was used to determine the possible toxic effects of synthetic Aβ1-

42 oligomers on HA, hiPSC-derived astrocytes (45+ days old) from ax0018 cell line plus neural 

cells derived from spontaneous and synchronous differentiation methods (30 days old) 

(sections 3.2.4). 

 

The cells were treated with synthetic Aβ1-42 oligomers over concentration range of 2 - 

0.001µM, and were compared to an untreated loading control. The concentration range was 

used based on the findings from Tarczyluk et al. (2015). There was a significant reduction in 

cell viability at concentration 2 - 0.003µM as a result of exposure of HA to synthetic Aβ1-42 

for 48 hours (2µM: 77.73 ± 3.6%, P<0.0001; 1µM: 80.85 ± 3.4%, P<0.0001, 0.5µM: 84.23 ± 

2.12%, P<0.0001; 0.25µM: 86.16 ± 2.24%, P<0.0001; 0.125µM: 87.90 ± 2.71%, P<0.0001; 

0.0625µM: 89.15 ± 2.42%, P<0.001; 0.03125µM: 89.91 ± 2.39%, P<0.01; 0.015625µM: 90.70 

± 1.76%, P<0.01; 0.007813µM: 91.23 ± 2.66%, P<0.01; 0.003906µM: 92.31% ± 2.62%, 

P<0.01) (Fig. 3.2A). Similarly, exposure of hiPSC-derived astrocytes to synthetic Aβ1-42 for 

48 hours yielded a significant difference in the cell viability at concentration 2 - 0.015µM (2µM: 

71.12 ± 2.90%, P<0.0001; 1µM: 76.90 ± 3.92%, P<0.0001, 0.5µM: 79.29 ± 2.32%, P<0.0001; 

0.25µM: 83.92 ± 2.25%, P<0.0001; 0.125µM: 86.51 ± 3.02%, P<0.0001; 0.0625µM: 88.69 ± 

1.97%, P<0.001; 0.03125µM: 91.19 ± 2.75%, P<0.01; 0.015625µM: 93.42 ± 2.10%, P<0.05) 

(Fig. 3.2B). 

 

The viability of ‘healthy’ hiPSC-derived neuronal cells (ax0018) from spontaneous and 

synchronous differentiation methods following treatment with synthetic Aβ1-42 demonstrated 

mixed results depending on the differentiation method used. Following neural induction using 

the spontaneous differentiation method; a significant reduction in cell viability was only 

observed with the highest concentration of synthetic Aβ1-42 oligomers (2µM, 1µM and 0.5µM) 

(2µM: 40.72 ± 5.48%, P<0.001; 1µM: 60.18 ± 10.14%; P<0.01 and 0.5µM: 63.49 ± 11.18%, 

P<0.05) (Fig 3.3A), whilst cells differentiated using the synchronous differentiation method a 

significant reduction in cell viability when treated with synthetic Aβ1-42 concentrations as low 

as 0.001µM was observed (2µM: 44.64 ± 13.23%, P<0.0001; 1µM: 69.31 ± 14.14%, P<0.05; 

0.5µM: 58.75 ± 15.43%, P<0.01; 0.0625µM: 71.88 ± 11.40%, P<0.05; 0.03125µM: 68.44 ± 
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15.51%, P<0.05; 0.007813µM: 67.68 ± 13.03%, P<0.0; 0.001953µM: 70.70 ± 10.57%, 

P<0.05) (Fig. 3.3B). 
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Figure 3.2: Determination of cell viability of astrocytes treated with synthetic Aβ1-42 

oligomers. HA (A), hiPSC-derived astrocytes (line ax0018) (B). Cells were exposed to 2 - 

0.001µM of synthetic Aβ1-42 for 48 hours. Cell viability was measured using MTT assay. 

The values are expressed as percentage of untreated cells as a control (100%), ± SEM, 

n=3, P<0.0001 (****), P<0.001 (***), P<0.01 (**), P<0.05 (*). Comparisons between 

treatments were performed using statistical analysis of One-way ANOVA, Dunnett's post-

test.  
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Figure 3.3: Determination of cell viability of neural cells treated with synthetic Aβ 1-42 

oligomers. Cells were exposed to 2 - 0.001µM of synthetic Aβ1-42 for 48 hours. Neuronal 

cells (ax0018) derived from SP (A) and SY differentiation (B) methods at day 30. Cell 

viability was measured using the MTT assay. Values are expressed as percentage of 

untreated cells as a control (100%), ± SEM, n=3 (triplicate wells for each run), P<0.0001 

(****), P<0.001 (***), P<0.01 (**), P<0.05 (*). Comparisons between treatments were 

performed using statistical analysis of One-way ANOVA, Dunnett's post-test. 
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3.3.3.2 Cell Nucleus Count Assay 

 

To confirm the toxicity of synthetic Aβ1-42 oligomers (Fig. 3.2B) to neural cell types. Cell 

viability was measured using the NucleoCounters® machine (section 3.2.4.2). Exposure to 

synthetic Aβ1-42 oligomers (2µM and 1µM versus control) on hiPSC-derived astrocytes from 

cell line ax0018 for 48 hours; did not induce significant cell death (Fig. 3.4). Due to difficulties 

in passaging neuronal cells into a single cell suspension analysis of spontaneous and 

synchronously differentiated cells was not possible (data not shown). 
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Figure 3.4: Quantitation of cell number of live and dead cells using NucleoCounter. Graph 

shows the treatment of hiPSC-derived astrocytes from cell line ax0018 at 45+ days old 

cells with synthetic Aβ1-42 oligomers doses; 2µM and 1µM versus untreated cells as a 

control for 48 hours ± SEM, n=3.  
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3.3.4 Synthetic Aβ1-42 Oligomers Treatment and the Effects on Carbohydrate Levels 

 

3.3.4.1 Determination the Effects on Glucose Uptake Levels  

 

To determine the effect of synthetic Aβ1-42 oligomers on the uptake of glucose by astrocytes 

and neurons was the concentration of glucose remaining in the CM was used to indirectly 

monitor glucose uptake over 48 hours using the glucose assay. To control for potential 

differences in cell number results were corrected for cellular protein concentration. Results are 

expressed as µg (glucose)/mg (total cellular protein). Following treatment with 2µM and 1µM 

of synthetic Aβ1-42 there was significant reduction in glucose uptake by HA and hiPSC-

derived astrocytes from cell line ax0018 (HA: 2µM: 722.20 ± 43.26µg/mg, P<0.05; 1µM: 

688.22 ± 24.38µg/mg, P<0.05 and ax0018-astrocytes: 2µM: 297.60 ± 40.64µg/mg, P<0.05; 

1µM: 280.71 ± 42.05µg/mg P<0.05, respectively), but no significant change was observed with 

0.2µM concentration of synthetic Aβ1-42 (Fig. 3.5A and B, respectively).  

 

Following exposure of hiPSC-derived neurons from cell line ax0018 to synthetic Aβ1-42 

oligomers for 48 hours, only 2µM of synthetic Aβ1-42 demonstrated a significant reduction in 

glucose uptake for neurons derived from the synchronous differentiation method (2µM: 393.69 

± 10.72µg/mg, P<0.05) (Fig. 3.6B), while neurons derived from the spontaneous differentiation 

method showed no significant changes in glucose uptake (Fig. 3.6A).  
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Figure 3.5: Determination of glucose levels remaining in the media following treatment of 

astrocytes to synthetic Aβ1-42 oligomers. Treatment of HA (A), hiPSC-derived astrocytes 

from cell line ax0018 (B) at 45+ days old cells with synthetic Aβ1-42 in the media (2µM, 

1µM and 0.2µM) versus untreated cells (control) for 48 hours. The amount of glucose 

remaining in the conditioned media following treatments were measured using glucose 

assay. Data is expressed as glucose µg/mg total cellular protein, ± SEM, n=3 (triplicate 

wells pooled for each run), P<0.05 (*). The statistical analysis was done using One-way 

ANOVA, Dunnett's post-test. 
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Figure 3.6: Determination of glucose levels remaining in the media following treatment of 

neuronal cells to synthetic Aβ1-42 oligomers. Treatment of the neuronal cells derived from: 

SP (A) and SY differentiation (B) methods from cell line ax0018 at day 30 with synthetic 

Aβ1-42 in the media (2µM, 1µM and 0.2µM) versus untreated cells (control) for 48 hours. 

The amount of glucose remaining in the conditioned media following treatments were 

measured using glucose assay. Data is expressed as glucose µg/mg total cellular protein, 

± SEM, n=3 (triplicate wells pooled for each run), P<0.001 (***). The statistical analysis was 

done using One-way ANOVA, Dunnett's post-test. 
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3.3.4.2 Determination the Effects on Glycogen Content Levels 

 

Astrocytic glycogen content levels following treatment with synthetic Aβ1-42 was measured 

using a glycogen assay to quantitatively assess the effects of glycogen content in HA and 

hiPSC-derived astrocytic cells from cell line ax0018. A significant reduction in glycogen 

content was only seen with the ax0018-dervied astrocytes following exposure with 2µM 

concentration of synthetic Aβ1-42 oligomers (12.36 ± 3.35µg/mg, P<0.01) (Fig. 3.7B), whilst 

no significant difference in glycogen content was seen in HA (Fig. 3.7A). 

 

 

 

 

 

 

 

 

 

Figure 3.7: Determination the effect of synthetic Aβ1-42 oligomers treatment on astrocytic 

glycogen stores. Treatment of HA (A), hiPSC-derived astrocytes from cell line ax0018 (B) 

at 45+ days old cells with synthetic Aβ1-42 in the media (2µM, 1µM and 0.2µM) and 

compared to untreated cells as a control for 48 hours. The cellular glycogen content was 

measured using a glycogen assay. Results are expressed as glucose and glucose-6-

phosphate µg/mg total cellular protein, ± SEM, n=3 (triplicate wells pooled for each run), 

P<0.01 (**). The statistical analysis was done using One-way ANOVA, Dunnett's post-test. 
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3.4 Discussion  

 

This chapter was focussed on confirming the metabolic changes induced by Aβ prior to the 

clinically evident onset of AD. The previous chapter demonstrated that neural cells 

differentiated from ‘healthy’ hiPSC-derived NPCs are similar to their natural counterparts in 

their morphology and in metabolic function using glycogen breakdown experiments. This 

chapter is also a follow-up to earlier studies in our lab, which demonstrated that human stem 

cell derived neural cells exhibit metabolic dysfunction following exposure to synthetic Aβ1-42 

oligomers (Tarczyluk et al., 2015). This was done using the NT2.D1 embryocarcinoma cell 

line. This chapter goes further to examine whether similar effects could be derived on 

exposure of hiPSC-derived neurons and astrocytes and human primary astrocytes to synthetic 

Aβ1-42 oligomers. It is important to note that results shown in chapter 2 suggested that hiPSC-

derived NPC from line ax0018 produced ‘healthy’ populations of neurons and astrocytes 

depending on the differentiation methods, and yielded more consistent results than the ax0016 

cell line. As such, the ax0018 cell line was used for the rest of the thesis. Data produced using 

hiPSC-derived NPC from line ax0016 cultures, images and results have been excluded from 

the study (see Appendices). 

 

The synthetic Aβ1-42 was prepared as previously described (Tarczyluk et al., 2015). The 

presence of synthetic Aβ1-42 was confirmed using SDS-PAGE gel and by western blotting to 

show the different sizes of the amyloid oligomers (section 3.3.2). 

 

The MTT assay was used to determine the toxicity of the synthetic Aβ1-42 oligomers to HA 

and the hiPSC-derived neuronal and astrocytic cells. HA and hiPSC-derived astrocytic cells 

from ax0018 cell line showed a reduction in cell viability following a 48 hours exposure to 

synthetic Aβ1-42 oligomers at day 45+ in culture. This is similar to results by Tarczyluk et al. 

(2015). 

 

However, the viability assays for the neuronal cells in culture was a lot more challenging to 

achieve, and yielded mixed results. In order to ensure consistency and representativeness of 

the results, the MTT assay for neuronal cells was done at day 30 of culture for the differentiated 

neuronal cells. Human iPSC-derived neuronal cells displayed a high degree of susceptibility 

to the MTT, which resulted in cell lifting independent of exposure to synthetic Aβ1-42 

oligomers. As a result, half the concentration of 1.25µg/ml MTT stock used for astrocytes 
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assays was used for the neuronal assays. The difference in the susceptibility of the hiPSC-

derived cells and NT2 cells to MTT may be as a result of the difference in cellular origins and 

culture conditions.  

 

Human iPSC-derived neuronal cells from the spontaneous differentiation method only 

exhibited reduction in viability to the highest concentration of synthetic Aβ1-42 oligomers 

(2µM), while a dose-response pattern was seen with neuronal cells cultured via the 

synchronous differentiation method. Despite this difference, the result still appear is similar to 

the findings of reported by Tarczyluk et al. (2015) on the embryocarcinoma cell line, in which 

there was a significant reduction in viability to the highest concentration of synthetic Aβ1-42 

oligomers used for neuronal/astrocyte co-cultures. This similarity for the SP differentiation 

method is likely due to the fact that the NT2.D1 cell line used was essentially spontaneously 

differentiated to produce mixed neuron-astrocyte populations (Tarczyluk et al., 2015, 

Woehrling et al., 2010). 

 

A cellular count was performed to confirm the validity of cellular toxicity results from the MTT 

assay, and if exposure to synthetic Aβ1-42 oligomers resulted in cell death. The results 

showed that there was no significant cell death in the astrocytes as a result of synthetic Aβ1-

42 exposure (Fig. 3.4). This may indicate that the toxicity of Aβ oligomers resulted in cellular 

metabolic damage but not immediate cell death since the MTT assay itself assesses cell 

metabolic activity. This appears to be in concert with the natural history of AD in which atrophy 

and brain tissue loss is not seen until advanced disease is well established. It would have 

been interesting to assess neuronal cell death following exposure to synthetic Aβ1-42 

oligomers, as they are the primary cells involved in important brain functions like memory and 

behaviour, which are the most commonly affected brain functions in AD. However, a similar 

cell count could not be done for neurons because the neuronal networks make it difficult to 

separate the neuronal cells into discrete entities for counting, and it was impossible to passage 

them. However, the validity of the results of cellular counts post Aβ exposure may be affected 

by the method of cell counting used. The NucleoCounters® machine counts cells by examining 

the number of fluorescent nuclei using DAPI versus inflorescent nucleus, and is this unable to 

differentiate between living cells and those undergoing apoptotic cell death. Other viability 

assays like the lactate dehydrogenase (LDH) cytotoxicity assay may provide more robust 

results on assessment of neuronal viability following Aβ oligomers exposure. This is because 

it utilises bioluminescent quantification of LDH leakage from cells, which is more accurate than 

DAPI detection.  
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To confirm one of the main hypotheses of this project, and determine that amyloid oligomers 

induced metabolic dysfunction, the HA and hiPSC-derived astrocytes and neurons cultures 

were exposed to synthetic Aβ1-42 oligomers. As this was essentially a repetition of the efforts 

by Tarczyluk et al. on the NT2 embryocarcinoma cell line in 2015, but now on hiPSC-derived 

astrocytes and neurons.  As such the synthetic Aβ1-42 was prepared using the same protocol. 

The concentration range of 0.2μM, 1μM and 2μM Aβ1-42 was also used, as this was the range 

that had previously been reported to induce metabolic dysfunction in vitro. The results showed 

that both HA cells and hiPSC-derived astrocytic cells showed a concentration-dependent 

pattern of reduction in glucose uptake. Similar amyloid-induced reductions in glucose uptake 

have been reported previously (Abeti et al., 2011, Tarczyluk et al., 2015). 

 

Neuronal cells have been shown to exhibit metabolic dysfunction in response to Aβ1-42 

oligomers as evidenced by a reduction in glucose uptake (Prapong et al., 2002) while the 

hiPSC-derived neuronal cells exhibited reduction in glucose uptake in response to the highest 

concentration of synthetic Aβ1-42 oligomers (2µM), but with significant results only for the 

neurons cultured by synchronous differentiation. These mixed results may have occurred as 

a result of the differences in the nature of the neuronal networks formed as a result of the 

different differentiation methods, with the synchronous differentiation showing what appear to 

be better directed and coordinated inter-neuronal connections. Furthermore, the astrocyte 

populations produced in the differentiation process may also account for this difference in 

glucose uptake in response to amyloid exposure; since neurons in vivo depend on cues from 

astrocytes in their networks. This may explain why the previous efforts in our lab showed a 

reduction in glucose uptake to a greater extent in co-cultures than in primary neuronal or 

astrocytic cultures (Tarczyluk et al., 2015). However, it was impossible to definitively assess 

the effect of synthetic Aβ1-42 oligomers on neuronal populations using this NPC line because 

it was not possible to produce pure neuronal cultures. 

 

The pathogenesis of amyloid-induced reduction in glucose uptake remains a focus of 

research, and several mechanisms have been demonstrated as possible pathways for 

glucose uptake reduction. For example, Prapong et al. (2002) showed that Aβ reduces 

glucose uptake by preventing expression on GLUT3 on the plasma membrane. Impaired lipid 

peroxidation has also been demonstrated as a mechanism for impaired glucose uptake in AD 

(Mark et al., 1997). However, it has been reported that endogenous amyloid exhibits more 

stability in vitro than the synthetic amyloid (Moore et al., 2009), and has also been shown to 

be at least 30 times more neurotoxic than the synthetic form (Muller-Schiffmann et al., 2016).   
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The second hallmark of metabolic dysfunction assessed in this project was glycogen turnover, 

which was assessed by glycogen assays in HA and hiPSC-derived astrocytic cells (ax0018) 

post exposure to synthetic Aβ1-42 oligomers. The hiPSC-derived astrocytes in this study 

displayed significant reduction in glycogen content. The complex mechanisms behind 

amyloid-induced reduction in glycogen turnover remain to be explained. Future application of 

Seahorse Bioanalyser (Agilent) and nuclear magnetic resonance (NMR) analysis may provide 

better explanations of pathways involved. The NMR analysis involves the use of radiolabelled 

metabolic substrates (glucose, lactate, etc) to examine the metabolic processing of these 

substrates. It may also provide key information on the function of key enzymes such as 

pyruvate dehydrogenase and hexokinase in response to treatment with Aβ.  
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3.5 Conclusion 

 

Hypometabolism is an established pathogenetic process which precedes the clinical onset of 

AD by several years. This chapter has confirmed our hypothesis that exposure to synthetic 

Aβ1-42 oligomers induces metabolic dysfunction in ‘healthy’ hiPSC-derived astrocytes and 

neurons, as demonstrated by reduction in glucose uptake, and impairment of glycogen 

turnover in these cells. This provides another step forward towards providing a complex 

functional in vitro system for studying the early preclinical changes in AD where potential novel 

therapeutic targets can be directed. It will also be important to determine if endogenously 

produced Aβ exerts similar effects on metabolism in AD patient-derived astrocytes and 

neurons. The next chapter aims to determine Aβ production from fAD patient hiPSC-derived 

neural cells, as well as to assess metabolic dysfunction induced by the endogenously 

produced amyloid (Chapter 4). 
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Chapter 4: Characteristic of Human Familial AD Patient Cell Line and Aβ Release 

 

4.1 Introduction 

 

The previous chapters of this project have been focussed on the generation of neurons and 

astrocytes from ‘healthy’ control hiPSC-derived NPCs (chapter 2), and assessment of the 

effects of exogenous amyloid on metabolism in these cells (chapter 3). This chapter focuses 

on the generation of neurons and astrocytes from fAD patient hiPSC-derived neural cells and 

establishing the occurrence of early metabolic dysfunction in these cells. This will serve as 

foundation level efforts towards identifying temporal and mechanistic targets for therapeutic 

intervention in the journey of AD from the preclinical stages to obvious clinical onset.  

 

4.1.1 Familial AD 

 

Familial AD is a rare form of AD which accounts for about 4% of all cases of AD (Prince et al., 

2014). It is inherited in an autosomal dominant fashion and is caused by mutations in genes 

coding for three proteins important in amyloid processing; APP, PSEN1 and PSEN2. Familial 

AD occurs earlier than the more common sporadic form of AD, having clinical onset from 

around 50 years of age. Although fAD is a rare form of AD, it is a very useful model to study 

the pathology and pathogenesis of AD because of the large evidence available with respect 

to increased Aβ generation or abnormal Aβ processing on the aetiology and course of AD. 

 

4.1.2 Genetic Mutations in fAD 

 

The PSEN1 and PSEN2 mutations are most common forms of fAD, and represent the most 

aggressive form of the disease. For the APP complex, there are at least 30 reported mutations 

(Cruts et al., 2012, De Jonghe et al., 2001), the most common of which is the London mutation 

which is a Val-Leu missense mutation at the 717 position of the APP transcript (Cruts et al., 

2012). This mutation increases Aβ1-42 and Aβ1-38 levels in response to increased β-site 

amyloid precursor protein cleaving enzyme 1 (BACE1) activity as well as reduced γ-secretase 

activity due to alterations in its active site (Muratore et al., 2014). All three major classes of 

fAD mutations (PSEN1, PSEN2 and APP) are characterised by altered Aβ metabolism, and 
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increased Aβ production (Ferris et al., 1980). The ax0012 cell line used as the fAD sample in 

this project has the PSEN1 (L286V) mutation (Table 4.1). 

 

The PSEN1 gene is located on the long arm of Chromosome 14 (position 24.3) (Sherrington 

et al., 1995), while the PSEN2 gene is located on the long arm of chromosome 1 (position 

42.13) (Takano et al., 1997). Mutations of the PSEN1 gene are the most common genetic 

cause of fAD, accounting for up to 30% of cases of fAD. The PSEN1 gene contains 13 exons, 

10 of which contain protein coding sequences (Sherrington et al., 1995). There are at least 

211 PSEN1 and 33 PSEN2 gene mutations which have been reported, most of which are 

missense mutations (Cruts et al., 2012). Different mutations in the presenilin genes produce 

Aβ peptides of varying lengths and structure, but most mutations tend to result in a C-terminal 

or an N-terminal truncation of the Aβ peptide. The BACE1 and γ-secretase enzymes have 

multiple potential cleavage sites at the APP sequence, thus resulting in Aβ peptides of varying 

lengths. Different mutations in the presenilin genes produce varying effects on the Aβ species 

produced, and a resultant variability in the onset and severity of the AD variant, the most 

severe forms having an onset before the age of 30. However, most variants have an average 

onset at 40 years of age (Mann and Esiri, 1989).  

 

The fAD patient-derived hiPSCs used in the current project contained the PSEN1 gene 

mutation L286V, which was isolated from a 38 years old female Caucasian (Table, 4.1). The 

L286V mutation occurs at exon 8 of the genomic sequence and has an average onset at the 

age of 47 years old (Ikeuchi et al., 2008). Exon 8 is believed to code for the sixth 

transmembrane domain and the largest loop on the cytoplasmic surface of PSEN1. The L286V 

mutation along with another PSEN1 mutation (M146L), and three other APP mutations (human 

Swedish APP(695), Florida (I716V), and London (V717I) mutations, have been reported to 

induce an aggressive form of AD characterised by early Aβ accumulation, reduced glucose 

utilisation in the brain and cognitive impairment in transgenic 5XFAD mice (Macdonald et al., 

2014).  

 

4.1.3 Presenilin Proteins 

 

The PSEN1 and PSEN2 genes code for presenilin 1 and presenilin 2, which are part of the 

presenilin complex, a group of transmembrane proteins which are important in the regulation 

of several cellular enzymes. They are both aspartyl proteases, and are made up of six to nine 
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transmembrane loops, the largest of which is the transmembrane domain 2 (TM-2). TM-2 is 

the hottest focus for presenilin mutations, accounting for about half of reported mutations in 

the PSEN1 gene. 

 

PSEN1 is the proteolytic subunit of the γ-secretase enzyme. The sequential proteolytic 

cleavage of APP by the BACE1, then γ-secretase results in Aβ production. This process 

involves intramembrane proteolysis, which occurs at multiple cleavage sites on the APP 

molecules, and thus results in the production of Aβ species of varying sizes (Chavez-Gutierrez 

et al., 2012, Fernandez et al., 2014). This proteolytic cleavage produces Aβ species which 

end in an N-terminal (most abundant) or a C-terminal peptide form of Aβ, if the APP is cleaved 

by β-secretase at the Asp1 and the Glu11 position of the Aβ domain respectively. This is then 

followed by cleavage at Leu49 or Thr48 position of the Aβ domain by γ-secretase, leading to 

shorter fragments. Mutations resulting in N-terminal deletion enhance Aβ aggregation and 

neurotoxicity, and these have been shown to be highly abundant in post-mortem brain 

samples of patients with AD (Bayer and Wirths, 2014, Dunys et al., 2018). 

 

4.1.4 Aβ 

 

The accumulation of toxic amyloid species is the central pathological trigger of the mechanistic 

cascade of metabolic events that occur in AD. It is believed to induce inflammation, metabolic 

cellular injury, gliosis and eventually neuronal cell death, which manifests clinically as cognitive 

impairment (Selkoe and Hardy, 2016). Aβ occurs in different forms based on size, and the 

degree of damage induced by Aβ is believed to be dependent on the species of Aβ 

accumulated, as well as the quantity of amyloid accumulated. Aβ can also be soluble or 

insoluble. Thus, the Aβ species can occur as soluble monomers, oligomers, insoluble fibrils or 

plaques depending on the degree of complexity (Selkoe and Hardy, 2016). The various 

isoforms of Aβ have been described in sections 1.7.2.1 and 3.1.3. 

 

Aβ is produced as a result of APP processing (Fig. 1.2), and in normal individuals, and the 

amount of Aβ produced in healthy individuals is tightly regulated normally, as accumulation of 

Aβ would normally induce uptake and clearance by glial cells in the bra in (Jekabsone et al., 

2006, Morgan, 2006). The amyloidogenic and non-amyloidogenic pathways of APP 

processing have been discussed in section 1.7.2 of this project. Aβ production mainly occurs 

in neurons in the brain, but has also been reported at other sites in the body (Puig and Combs, 

2013). Indeed, abnormal amyloid accumulation is a characteristic of a series of disorders 
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called amyloidosis, in which amyloid accumulation is present in several tissues of the body, 

including the kidneys, heart, skeletal muscles, adipose tissue and the skin (Kazmi, 2013). 

 

Aβ is known to be one of the potent activators of the proinflammatory reactive state of 

astrocytes, and continued production of excessive amounts of Aβ in AD patients causes the 

persistence of reactive astrocytes, and continued neuroinflammation and astrogliosis with 

deleterious effects in the form of neuronal cell death (Pekny and Pekna, 2014, Sun et al., 

2012). 

 

4.1.5 The Role of Astrocytes in Aβ Release 

 

There was an initial perception that Aβ production was an exclusive preserve of neurons in 

the brain, while astrocytes served to imbibe and remove excess Aβ produced from APP 

degradation. This is because neurons express high levels of the BACE1 enzyme complex 

which is responsible for initial processing of APP. However, astrocytes have also been shown 

to express this enzyme, albeit in lower quantities by individual cells (Rossner et al., 2005, Jin 

et al., 2012), but more likely in significant amounts when considering the fact that astrocytes 

vastly outnumber neurons in the brain. Furthermore, astrocytes are pleomorphic and can alter 

their metabolism in response to stress and have been shown to increase BACE1 expression 

in response to stress (Blasko et al., 2000), lending support to the possibility of a significant 

role of astrocytes in Aβ generation. The fact that astrocytes play a significant role in Aβ 

generation, clearance and the protection against amyloid-induced damage may have 

important implications in the struggle for a definitive therapeutic management strategy for AD. 
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4.1.6 Aims and Objectives 

 

The hypothesis for this portion of the project was that fAD patient-derived astrocytes and 

neurons have a higher Aβ release profile, and will exhibit metabolic dysfunction as a result of 

the excess Aβ production. 

 

The specific objectives were to: 

 

 Differentiate NPCs derived from fAD patient hiPSCs, and then differentiate them to 

produce neurons and astrocytes. 

 Characterise the astrocytes and neurons morphologically and 

immunohistochemically.  

 Assess the production of Aβ peptides in both fAD patient and ‘healthy’ control-derived 

neurons and astrocytes at defined time points during the differentiation process and 

comparing the Aβ production using ELISA.  

 Determine metabolic dysfunction in fAD patient-derived neurons and astrocytes by 

assessing glucose uptake in neurons and astrocytes, as well as astrocytic glycogen 

content level in comparison with ‘healthy’ control neurons and astrocytes. 
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4.2 Materials and Methods 

 

4.2.1 Generation and Characterisation of Human fAD Patient iPSC-derived NPCs 

 

4.2.1.1 Neural Cells Differentiation Methods  

 

The human hiPSC-derived NPCs from familial AD patient (fAD, ax0112) was obtained from 

Axol Bioscience, UK (Table 4.1). The patient cells were differentiated to produce cerebral 

cortical neuronal cells over 10, 20, 30 and 40 days using spontaneous and synchronous neural 

differentiation protocols (sections 2.2.2.1 and 2.2.2.2, respectively). Additionally, fAD-derived 

NPCs were differentiated into astrocytic cells for 45+ days using astrocytes differentiation 

methods (section 2.2.2.3). 

 

 

 
Cell Name 

 
ax0112 

 
Cell Type 

 
hiPSC-derived NPCs 

Alzheimer’s patient line 

 
Starting material 

 
Dermal fibroblast 

 
Mutation 

 
Presenilin1 (PSEN1 L286V) 

 
Donor Age  

 
38 years old 

 
Donor Gender 

 
Female (Caucasian) 

 

Table 4.1: Description of human iPSC-derived neural stem cells from familial AD patient donor.  
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4.2.2 ICC Staining  

 

The differentiated neural cells from fAD line were assessed using immunohistochemistry 

staining as described in section 2.2.4.  

 

4.2.3 Microscopes, Images Capture and Slides Storage 

 

Cell images were captured according to the methods described in section 2.2.5. 

 

4.2.4 Characterisation of Amyloid Release Profile 

 

4.2.4.1 Sample Preparation 

 

The fAD patient cells (ax0112) and healthy control cell line (ax0018) were differentiated into 

neuronal cells and astrocytic cells using the protocols described previously (section 2.2.2). 

 

4.2.4.2 Collection of Conditioned Medium 

  

Cell conditioned medium was collected from each cell lines that was differentiated using neural 

spontaneous and synchronous differentiation methods and astrocytic cells differentiation 

methods. Human iPSC-derived NPCs were differentiated to neuronal cells on 12-well plate in 

triplicate for each day (days: 0, 30 and 40) (sections 2.2.2.1 and 2.2.2.2). On days 29 and 39, 

the medium was completely replaced with 1ml of fresh medium according to differentiation 

methods. Likewise, astrocytic cells at 45+ days (section 2.2.2.3) were plated on 12-well plate 

(triplicate) for 2 - 3 days in culture, and then replaced with 1ml of fresh AM. After 48 hours, the 

conditioned medium was collected (3 wells pooled) and centrifuged at 200 x g for 5 minutes. 

Afterwards, 1ml of the supernatant was transferred into 1.5ml sterile microcentrifuge tubes 

and stored at -20°C for further analysis of Aβ1-40 and Aβ-42 using ELISA (section 4.2.4.3) 

and Immunodepletion assay (section 5.2.2). The cells were lysed to determine the protein 

levels (section 2.2.8).  
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4.2.4.3 Enzyme-Linked Immunoabsorbant Assay (ELISA) 

 

The Aβ1-40 and Aβ-42 ELISA assay was used to quantify the Aβ1-40 and Aβ1-42 separately 

(Aβ40 kit and Aβ42 kit) according to the manufacturer’s instructions (Thermofisher Scientific, 

UK). Briefly, standards and samples were diluted with standard diluent according to the 

manufacturer’s protocol. 50µl of standards (duplicated) and samples (duplicated) were added 

to the plate. 50µl of Human Aβ40 and Aβ42 detection antibody solution was then added to 

each well. The plate was then sealed and incubated at room temperature for three hours on a 

plate shaker. After incubation, the contents were aspirated and the wells were washed 4 times 

with wash buffer. 100µl anti-Rabbit IgG HRP solution was then added to each well and 

incubated at room temperature for 30 minutes. After incubation, the wells were aspirated and 

washed 4 times with wash buffer. 100µl of stabilized chromogen was added to each well and 

incubated at room temperature for 30 minutes in the dark. After incubation, 100µl of stop 

solution was added to each well and gently tapped side of the plate to mix. The absorbance 

was read within 30 minutes after adding the stop solution at 450nm using Thermo multiscan 

EX 96-well plate reader. 

 

4.2.5 Determination of Carbohydrate Levels 

 

4.2.5.1 Determination of Glucose Uptake Levels 

 

The cells from hiPSC-derived astrocytes, and neuronal cells derived from SP and SY 

differentiation methods from fAD cell line (ax0112) and ‘healthy’ control cell line (ax0018) were 

cultured according to methods described in sections 4.2.1.1 and 3.2.4. CM samples were 

collected after 48 hours in culture and measured for glucose uptake using glucose assay 

(section 3.2.5.1). All readings were corrected for background and total cellular protein levels 

(section 2.2.8).  

 

4.2.5.2 Determination of Glycogen Content Levels 

 

The homogenised samples from hiPSCs-derived astrocytes of fAD cell line and ‘healthy’ 

control cell line were measured for glycogen content levels according to glycogen assay 
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method described in section 2.2.6. All readings were corrected for background, free glucose 

in homogenised samples and total cellular protein levels (section 2.2.8). 

 

4.2.6 Cell Lysis 

 

Cells were lysed using cell lysis procedure described in section 3.2.6. 

 

4.2.7 Determination of Protein Levels  

 

Protein levels were measured according to protocol described in section 2.2.8.  

 

4.2.8 Quantification and Statistical Analysis 

 

All quantification and statistical analyses were carried out according to the methods described 

in section 2.2.9. 
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4.3 Results 

 

4.3.1 Generation and Differentiation of Human Brain Neural Lineage Cells from fAD 

Patient iPSC-derived NPCs  

 

To characterise the hiPSC-derived NPCs from human fAD patient (PSEN1 L286V) ax0112 

cell line (Axol Biosciences) differentiated cells were identified visually by their characteristic 

morphology and by ICC staining (Fig. 4.2). Quantification of the Aβ1-42 and Aβ1-40 release 

from spontaneous and synchronous differentiation methods over 40 days. At days 0, 30 and 

40, the Aβ profile release was compared between fAD patient and ‘healthy’ control (ax0018) 

cell lines using ELISA (section 4.2.4). 

 

The ax0112 cells were defrosted and passaged twice before differentiation. Cells were then 

characterised at time zero using ICC staining for the neural precursor cell markers sox2, pax6 

and Nestin after passaging (Fig. 4.1C, D and B, respectively). Cortical neural rosettes can be 

observed as morphologically identifiable structures in cultures under phase contrast 

microscopy at day 0 (Fig.4.1A). Human fAD-derived NPCs were differentiated into cortical 

neurons using spontaneous and synchronous differentiation methods over a period of time 40 

days (section 4.2.1.1). Additionally, the NPCs were differentiated into astrocytes using 

differentiation and maturation methods and cultured for up to 5 weeks prior to use (section 

4.2.1). 

 

NPCs derived from fAD patient cell line ax0112 was cultured using the spontaneous and 

synchronous differentiation methods to produce cerebral cortical neuronal cell populations 

within 40 days. The phase contrast images of neuronal cells in both differentiation methods 

revealed the typical morphology of developing neurons in culture, with extensive neurite 

outgrowths by day 10 (Fig. 4.2A and B), and extensive neural networks by days 20, 30 and 

40 (Fig. 4.3A and B, 4.5A and B, 4.5A and B, respectively).  

 

NPCs differentiated into TUJ1-positive expressing cortical neuronal networks and the 

networks became denser over time from day 10 to 40 of culture (Fig. 4.2C and D, 4.3C and 

D, 4.4C and D, 4.5C and D, respectively). These neuronal networks are more obvious 

morphologically earlier (at day 20) with synchronous differentiation (Fig. 4.3H), but only show 

similar morphological clarity from day 30 with spontaneous differentiation (Fig. 4.4G). The 
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presence of DAPT in the synchronous differentiation method resulted in subjectively higher 

number of neurons in the cultures, but the presence of dense interneuronal networks 

precluded the possibility of quantifying the cell produced for this comparison. Similarly, the 

proportions of mature neurons produced in the cultures could not be determined.    

 

Both spontaneous and synchronous differentiation methods produced S100β positive cells 

are visible at days 10, 20, 30 and 40 (Fig. 4.2E and F, 4.3E and F, 4.4E and F, 4.5E and F, 

respectively). Synaptophysin and PSD-95 expression was not detected at days 10 and 20 

(data not shown). However, positive expression of synaptophysin-positive (Fig. 4.6A, D, G and 

J) and PSD-95-positive (Fig. 4.6B and E, H and K) was detected at days 30 and 40, 

respectively.  

 

Human iPSC-derived astrocytes from fAD cell line ax0112 were characterised and stained 

using ICC staining for astrocytic markers at day 45+. The morphology of the astrocytic cells 

was assessed via phase-contrast image (Fig. 4.8A). The astrocytes displayed the typical 

stellate form and followed a similar morphological course as was shown for the ‘healthy’ 

hiPSC-derived astrocytic cells (Chapter 2). The astrocytes positively stained for GFAP and 

S100β (Fig. 4.7B and C, respectively). Quantification of the stained cells was also difficult, due 

to the density of the staining and heterogeneous nature of the cultures.  
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Figure 4.1: Representative images of hiPSC-derived NPCs from fAD patient cell line using 

ICC staining. Phase contrast image showing the development of neural rosettes in human 

‘healthy’ control NPCs (A). The NPCs were stained for neural precursor cells using 

antibodies against Nestin (red, B), sox2+ (red, C) and pax6+ (green, D). Merged image 

showing co-expression of both pax6+ and sox2+ (E). Cells were counterstained with DAPI+ 

(blue, F). The cells were stained at passage number 2, n=3. Scale bars: 100μM. 
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Figure 4.2: Representative images of neural cells differentiated from hiPSC-derived NPCs 

of fAD patient cell line using spontaneous and synchronous differentiation methods at day 

10. Phase contrast images of spontaneous (A) and synchronously (B) differentiated cells. 

Immunofluorescent images showing TUJ1+ neuronal cells (red) (C and D), and S100β+ 

astrocytic cells (green) (E and F). Merged image showing expression of both TUJ1+ and 

S100β+ (G and H). Nuclei were counter stained with DAPI+ (blue) (I and J). n=3. Scale 

bars: 100µM.  
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Figure 4.3: Representative images of neural cells differentiated from hiPSC-derived NPCs 

of fAD patient cell line using spontaneous and synchronous differentiation methods at day 

20. Phase contrast images of spontaneous (A) and synchronously (B) differentiated cells. 

Immunofluorescent images showing TUJ1+ neuronal cells (red) (C and D), and S100β+ 

astrocytic cells (green) (E and F). Merged image showing expression of both TUJ1+ and 

S100β+ (G and H). Nuclei were counter stained with DAPI+ (blue) (I and J). n=3. Scale 

bars: 100µM. 
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Figure 4.4: Representative images of neural cells differentiated from hiPSC-derived NPCs 

of fAD patient cell line using spontaneous and synchronous differentiation methods at day 

30. Phase contrast images of spontaneous (A) and synchronously (B) differentiated cells. 

Immunofluorescent images showing TUJ1+ neuronal cells (red) (C and D), and S100β+ 

astrocytic cells (green) (E and F). Merged image showing expression of both TUJ1+ and 

S100β+ (G and H). Nuclei were counter stained with DAPI+ (blue) (I and J). n=3. Scale 

bars: 100µM.  
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Figure 4.5: Representative images of neural cells differentiated from hiPSC-derived NPCs 

of fAD patient cell line using spontaneous and synchronous differentiation methods at day 

40. Phase contrast images of spontaneous (A) and synchronously (B) differentiated cells. 

Immunofluorescent images showing TUJ1+ neuronal cells (red) (C and D), and S100β+ 

astrocytic cells (green) (E and F). Merged image showing expression of both TUJ1+ and 

S100β+ (G and H). Nuclei were counter stained with DAPI+ (blue) (I and J). n=3. Scale 

bars: 100µM. 
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Figure 4.6: Representative immunofluorescent images of synaptic markers expression in 

neural cells derived from hiPSC-derived NPCs of fAD patient cell line using SP-

differentiation (A-F) and SY-differentiation (G-L) at days: 30 (A-C and G-I) and 40 (D-F and 

J-L). Images showing synaptophysin+ (red) (A, D, G, and L) and PSD95+ (green) (B, E, H 

and K). Merged images showing expression of both synaptic markers (C, F, I and L). n=3. 

Scale bars: 25µM. 
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Figure 4.7: Representative images of hiPSC-derived astrocytic cells from fAD patient cell 

line ax0112 at day 45+. Astrocytic cells were cultured using the astrocytes differentiation 

and maturation protocols. Phase contrast image showing astrocytic cells (A). 

Immunofluorescent images of astrocytic markers GFAP+ (red, B) and S100β+ (green, C). 

Merged image showing expression of both GFAP+ and S100β+ (D). Nuclei were counter 

stained with DAPI+ (blue, E). n=3. Scale bars: 100µM. 
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4.3.2 Characterisation of Aβ Profile Release from fAD Patient-derived iPSCs Using 

ELISA Analysis 

 

Results shown in sections 2.3.1 and 4.3.1 demonstrate that both neuronal and astrocytic cells 

can be produced from both control (ax0018) and fAD patient cells (ax0112). To determine if 

cells are phenotypically distinct the release of Aβ peptides was determined. 

 

Aβ production is a core pathogenic component of AD (Hardy and Allsop, 1991). The neural 

cells derived from fAD patient hiPSCs were assessed for endogenous Aβ peptides production 

by assessing the CM from the cells after differentiation. 

 

CM was collected for quantification of Aβ peptide production after cells were differentiated 

using spontaneous and synchronous differentiation methods from both fAD patient cell line 

(ax0112) and the ‘healthy’ control cell line (ax0018) using an ELISA assay. Media was fully 

replaced 48 hours before collection of CM. Aβ1-40 and Aβ1-42 release was measured at days 

0, 30 and 40 (section 4.2.4). 

 

Figure 4.9 shows a comparison of Aβ peptide normalised to total cellular protein production 

by fAD patient cell line (ax0112) and healthy control cell line (ax0018) at days zero, 30 and 

40. There was a significantly higher level of Aβ1-42 production in the fAD patient cell line at 

each assessment point of cell culture by both differentiation methods, reaching a peak of 

122.49 ±12.93pg/mg, (P<0.0001) and 142.37 ± 9.12pg/mg, (P<0.0001) at day 40 when the 

cells were cultured by the spontaneous and synchronous differentiation methods, respectively 

(Fig. 4.9A and B). However, when the cultured cells of both cell lines were assessed for Aβ1-

40 production, the concentration of Aβ1-40 was very similar at initial assessment at day 0 for 

SP and SY differentiation methods (Control: 19.67 ± 6.56pg/mg and fAD patient: 19.89 ± 

8.87pg/mg), and a significant rise in Aβ1-40 production of fAD patient cell line was seen from 

day 30 (SP: 155.57 ± 51.43pg/mg, P<0.05 and SY: 188.04 ± 20.98pg/mg, P<0.001) by the 

spontaneous and synchronous differentiation cultures, respectively (Fig. 4.9C and D). The 

delay in production of Aβ1-40 compared to Aβ1-42 however appears to result in higher peaks 

of 213.88 ± 45.38pg/mg, (P<0.001) and 256.79 ± 72.42pg/mg, (P<0.0001) at day 40 when 

fAD patient cell cultured by the spontaneous and synchronous differentiation cultures, 

respectively (Fig. 4.9C and D). This significantly higher values of Aβ1-40 appear to exert a 

significant effect when the combined total of Aβ1-42 and Aβ1-40 production by the fAD patient 

cell line was assessed for the spontaneous and synchronous differentiation methods; with the 
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higher total Aβ peptides levels only significantly higher at days 30 and 40 (SP-D30: 270.05 ± 

63.62pg/mg, P<0.05, SP-D40: 336.38 ± 58.32pg/mg, P<0.01, SY-D30: 319.65 ± 23.50pg/mg, 

P<0.01, SY-D40:  399.17 ± 61.55pg/mg, P<0.0001) (Fig. 4.8A). There was no significant rise 

in total Aβ production in the control cells as shown in figure 4.8B. 

 

When the ratios of Aβ1-40:Aβ1-42 peptides in the CM from both neuronal cell differentiation 

methods from fAD patient cell line was assessed over 40 days differentiation, the quantity of 

Aβ1-40 was greater than that of the Aβ1-42 at days 30 and 40 of assessment, with the greatest 

difference at day 40 for both the synchronous and spontaneous differentiation methods (Fig. 

4.9E). The concentration of Aβ1-42 was higher at initial assessment for both the SP and SY 

differentiation methods. In comparison, when the Aβ1-42:Aβ1-40 ratio was assessed for the 

healthy control line, although the Aβ1-42 was higher at initial assessment as seen with the 

patient-derived cells for both the SP and SY differentiation methods, the concentration of Aβ1-

42 remained slightly higher than Aβ1-40 at days 30 and 40 for the SY differentiation method, 

and a slight reversal at day 40 for the SP-differentiation method (Fig. 4.9F). 

 

As astrocytes have been previously shown to produce and process APP (Busciglio et al., 

1993, Shoji et al., 1992), the Aβ release profile of the hiPSC-derived astrocytic culture was 

assessed for the fAD patient cell line (ax0112) and ‘healthy’ control cell line (ax0018) over 48 

hours period. There was a significantly higher quantity of both Aβ1-42 and Aβ1-40 produced 

by the fAD astrocytic cells at 45+ days (Aβ1-42: 113.87 ± 11.19pg/mg, P<0.01 and Aβ1-40: 

76.67 ± 7.20pg/mg, P<0.001) (Fig. 4.10A). However, the Aβ42/40 ratio was higher for the 

control astrocytes than in the patient derived cultures (Fig. 4.10B), despite the lower Aβ 

quantities in the control astrocytes when observed grossly as seen in figure 4.10A.  
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Figure 4.8: Quantification of total Aβ peptides secretion from neuronal cells following 

spontaneous and synchronous differentiation methods. Release of Aβ1-42 and Aβ1-40 

from fAD patient cell line ax0112 (A) and ‘healthy’ control cell line ax0018 (B) was detected 

by ELISA. The CM was assayed after a 48 hours on days 0, 30 and 40. Data is expressed 

as Aβ concentration pg/mg total cellular protein, ± SEM, n=3 (triplicate wells pooled for 

each run), P<0.0001 (****), P<0.001, P<0.01 (**), P<0.05 (*). The statistical analysis was 

done using Two-way ANOVA, Tukey's multiple comparisons test. 
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Figure 4.9: Quantification of Aβ peptides secretion from neuronal cells following 

spontaneous (A and C) and synchronous (B and D) differentiation methods of fAD patient 

cell line ax0112 versus ‘healthy’ control cell line ax0018 from neural cells over 40 days. Aβ 

peptide was detected by ELISA: Aβ1-42 (A and B) and Aβ1-40 (C and D). Ratios of Aβ1-

42:Aβ1-40 released from fAD patient cell line (E) and healthy control cell line (F). The CM 

was assayed by ELISA at different developmental days 0, 30 and 40 over a 48 hours 

period. Data is expressed as Aβ concentration pg/mg total cellular protein, ± SEM, n=3 

(triplicate wells pooled for each run), P<0.0001 (****), P<0.001 (***), P<0.01 (**). The 

statistical analysis was done using Two-way ANOVA, Sidak's multiple comparisons test.  
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Figure 4.10: Quantification of Aβ peptide profile released from astrocytic cells following 

astrocytes differentiation methods of cell lines: fAD patient cell line (ax0112) versus 

‘healthy’ control cell line (ax0018) (A). Ratio of Aβ1-42:Aβ1-40 released from fAD patient 

cell line and healthy control cell line (B). The CM was assayed at 45+ days old over a 48 

hours period using ELISA test: Aβ1-42 and Aβ1-40. Data is expressed as Aβ concentration 

pg/mg total cellular protein, ± SEM, n=3 (triplicate wells pooled for each run), P<0.001 (***), 

P<0.01 (**). The statistical analysis was done using Two-way ANOVA, Tukey's multiple 

comparisons test. 
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4.3.3 Determination of Carbohydrate Levels 

 

To determine if metabolic function differs in fAD patient-derived hiPSCs, metabolite utilisation 

was determined. The glucose uptake and glycogen content levels from the cultured cells were 

assessed as a measure of metabolic activity in the fAD patient and ‘healthy’ control cells. 

 

4.3.3.1 Determination of Glucose Uptake Levels  

 

The CM from both spontaneous and synchronous differentiation methods at day 30 from fAD 

patient and ax0018 cell lines over a 48 hours period were tested for glucose levels using the 

glucose assay as an indirect measure of glucose uptake by the cells. The utilisation of glucose 

in the ax0112 cells was significantly reduced compared to the ax0018 cells at day 30 of culture 

by the synchronous differentiation method (2591.7 ± 211.72µg/mg, P<0.01) (Fig. 4.11). There 

was also a higher amount of glucose in the CM for the fAD patient-derived astrocytes 

compared to the control, indicating a significant reduction in glucose uptake (219.4 ± 

18.19µg/mg, P<0.05) (Fig. 4.12).  
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Figure 4.11: Comparison of glucose uptake by hiPSC-derived neural cells from fAD patient 

and ‘healthy’ control neural cells using SP-differentiation and SY-differentiation methods. 

The amount of glucose remaining in the conditioned media were measured using glucose 

assay at day 30 after 48 hours. Data is expressed as glucose µg/mg total cellular protein, 

± SEM, n=3 (triplicate wells pooled for each run), P<0.01 (**). The statistical analysis was 

done using One-way ANOVA, Sidak's multiple comparisons test. 
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Figure 4.12: Comparison of glucose uptake by hiPSC-derived astrocytic cells from fAD 

patient ax0112 cell line and ‘healthy’ control ax0018 cell line at day 45+. The amount of 

glucose remaining in the conditioned media were measured using glucose assay after 48 

hours. Data is expressed as glucose µg/mg total cellular protein, ± SEM, n=3 (triplicate 

wells pooled for each run), P<0.05 (*). The statistical analysis was done using Unpaired t 

test post-test. 
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4.3.3.2 Determination of Glycogen Content Levels 

 

Analysis of glycogen content levels did not demonstrate any significant changes to glycogen 

storage levels between the fAD patient-derived astrocytes and ‘healthy’ control-derived 

astrocytes as measured at 45+ days of culture (Fig. 4.13). 
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Figure 4.13: Determinations of glycogen content level of hiPSC-derived astrocytic cells 

from fAD patient cell line and ‘healthy’ control cell line. Astrocytic glycogen content was 

measured at 45+ days old over a 48 hours period using a glycogen assay. Results are 

expressed as glucose and glucose-6-phosphate µg/mg total cellular protein, ± SEM, n=3 

(triplicate wells pooled for each run). The statistical analysis was done using Unpaired t 

test post- test. 
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4.4 Discussion 

 

This project has successfully differentiated astrocytes and neurons from ‘healthy’ hiPSC-

derived NPCs, and then characterised them in comparison with their naturally derived 

counterparts. The effects of synthetic Aβ oligomers have also been examined on these cells 

to demonstrate that Aβ is indeed responsible for hypometabolism as an early pathogenic event 

in AD. This chapter was aimed at differentiating astrocytes and neurons from fAD patient 

hiPSC-derived NPCs, to observe the natural history of fAD at the cellular level, with particular 

focus on the early hypometabolism that characterises the disease before onset of gross AD 

features. This is the first time endogenous Aβ production from human AD patient iPSC-derived 

astrocyte cells have been assessed for endogenous Aβ production and assessed for 

metabolic dysfunction. This chapter also reproduces the results of other studies by Kondo et 

al. (2013) and Arber et al. (2019) in amyloid production from fAD-derived neurons.  

 

4.4.1 Differentiation of fAD Patient-derived hiPSCs to Neurons and Astrocytes 

 

The fAD patient-derived hiPSCs were successfully differentiated from the NPC stage to 

astrocytes and neurons, and showed the typical morphological features of the healthy 

counterparts. The morphological and immunohistochemical features of the cells through the 

course of differentiation showed very similar patterns to those of ‘healthy’ human-derived 

counterparts, both from hiPSCs or from human pluripotent stem cells. The NPCs showed the 

typical rosette formation initially and expressed positivity to the NPC markers (Fig. 4.1). Using 

the spontaneous and synchronous differentiation methods, the differentiation course was 

similar from NPC to neurons at day 40 of differentiation as was seen in chapter 2 for the 

‘healthy’ cell line ax0018 (Fig. 2.4 - 2.8).  

 

The neurons showed a similar course of neurite formation and neuronal connections of 

increasing density with time as well as expression of the TUJ1 neuronal marker. Synaptic 

connections were obvious morphologically and by positive expression of the synaptic markers: 

synaptophysin and PSD95. As noted in section 2.4, the synaptic staining was non-specific and 

would have benefitted from further optimisation and the use of controls. The advantage of the 

use of DAPT in the synchronous differentiation method was the potential to generate enriched 

and mature neuronal populations, since it is a γ-secretase inhibitor which would block 

astrocytic differentiation by inhibiting Notch signalling in the NPCs (Shi et al., 2012b). 
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However, this aim was not achieved, and the synchronous differentiation cell cultures still 

contained astrocytes. Future experiments would aim to optimise production of more pure 

neurons.  

 

Astrocytes were also differentiated from the fAD patient hiPSC-derived NPCs, over 45+ days 

of differentiation using the differentiation and maturation protocols. They showed the typical 

stellate appearance of their ‘healthy’ human iPSC- and non-iPSC-derived counterparts (HA). 

They expressed positivity for GFAP and S100β, known astrocytic markers (Fig. 4.7). Similar 

to our findings as reported in chapter 2 for the ‘healthy’ hiPSC cell line (Fig. 2.12), the astrocyte 

differentiation protocol resulted in almost exclusively astrocytic populations from the fAD 

patient-derived cells. 

 

4.4.2. Aβ Production by fAD Patient hiPSC-derived Neurons and Astrocytes 

 

The amyloid hypothesis is currently the most explored of all the pathogenetic mechanisms for 

the occurrence of AD, and the hallmark of this hypothesis is the excessive production of toxic 

Aβ species in patients affected by the disease. It was thus important to assess fAD patient-

derived neurons and astrocytes for Aβ production. In line with the proposals of the amyloid 

hypothesis, the fAD patient-derived neurons showed significantly higher total Aβ release 

profiles compared to their ‘healthy’ human counterparts. Increased Aβ production in hiPSC-

derived neurons from patients with fAD have been reported by other researchers previously 

(Yagi et al., 2011, Israel et al., 2012, Shi et al., 2012b). Yagi et al. (2011) recorded an 

increased Aβ42/40 ratio in fAD cell lines compared to controls, while Israel et al. (2012) 

recorded increased Aβ40 production in two fAD cell lines (patients with duplication of the Aβ 

precursor protein gene (APPDp), and in one out of two sAD cell lines (sAD2)). Shi et al. (2012b), 

recorded increased Aβ production in hiPSCs derived from patients with Down syndrome. 

 

In comparison, Kondo et al. (2013) reported a decrease in Aβ40 and Aβ42 in neurons 

differentiated from hiPSCs derived from fAD patients carrying the E693Δ APP gene mutation. 

This is interesting because the E693Δ mutation is known to cause a very rare form of familial 

early-onset AD without Aβ deposition or accumulation (Tomiyama et al., 2008, Shimada et al., 

2011, Arber et al., 2019).  

  

https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(13)00012-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS193459091300012X%3Fshowall%3Dtrue
https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(13)00012-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS193459091300012X%3Fshowall%3Dtrue
https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(13)00012-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS193459091300012X%3Fshowall%3Dtrue
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However, when Kondo et al. (2013) differentiated astrocytes from hiPSCs derived from 

patients carrying the E693Δ APP gene mutation, the authors noted the reverse, as they 

recorded intracellular accumulation of Aβ. Accumulation of Aβ in these astrocytes may have 

occurred because astrocytes produce and process APP (Busciglio et al., 1993, Shoji et al., 

1992). This also lends credibility to the possibility that astrocytes not only play a huge role in 

mitigating Aβ toxicity, they may actually play reverse roles, being the source of toxic amyloid 

species. The astrocytes in this current project had increased Aβ production profiles for the fAD 

patient-derived astrocytes as compared to astrocytes derived from ‘healthy’ patient control. 

However, we did not assess intracellular production or uptake in this project. 

 

4.4.3 Metabolic Dysfunction in fAD Patient hiPSC-derived Neurons and Astrocytes 

 
 

The metabolic dysfunction in fAD patient-derived astrocytes and neurons is the main focus of 

this project. This was assessed by checking the glucose uptake and glycogen content in these 

cells. Glucose uptake was significantly reduced in the fAD patient-derived astrocytes 

compared to their healthy counterparts. Familial AD patient-derived neurons differentiated 

using the SY differentiation method showed a significant reduction in glucose uptake, while 

the cells cultured by the SP differentiation method did not show this difference. This difference 

may be as a result of the differentiation mechanisms, with the SY differentiation method 

potentially being more mature, and this may affect the production of amyloid by these cells. 

This is supported by the fact that AD occurs usually in adulthood after a high degree of maturity 

has been established. The differences between the SP, SY as well as the differences between 

the fAD patient-derived cells and the controls may be due to amyloid production. This may be 

supported by the higher total Aβ release profiles of the fAD patient-derived neurons cultured 

using the SY differentiation method in comparison to the SP differentiation method (Fig. 4.8). 

Results shown in chapter three, demonstrate a reduction in glucose uptake in response to 

exogenous amyloid. As such the reduction in glucose uptake in fAD is likely due to the 

increased presence of endogenously produced toxic amyloid species.  

 

Furthermore, the fact that there are differences in glucose uptake in the neurons based solely 

on the differentiation method, while there was a significant reduction in glucose uptake by the 

fAD patient hiPSC-derived astrocytes also suggests that other factors may also be involved in 

the overall direction of metabolic dysfunction in neurons. Similarly, there was no significant 

difference in the glycogen content of the fAD patient hiPSC-derived astrocytes as compared 

to the controls. This is likely to be related to the complex spatial and metabolic interactions 
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with astrocytes in vivo and the astrocyte-neuron lactate shuttle. This is very relevant for the 

astrocyte glycogen turnover, as the astrocyte metabolism changes significantly when they 

become activated, a state which can be induced by Aβ (Hu et al., 1998). The fact these 

neurons were largely cultured alone, and the short timeframe of the cultures, as well as the 

high glucose concentration in the media may also be responsible for these differences. A co-

culture system which enables controlled interactions between the neurons and astrocytes may 

provide more representative results.  
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4.5 Conclusion 

 

This chapter demonstrates that fAD patient hiPSC-derived NPCs can be successfully 

differentiated into neurons and astrocytes, which bear the morphological and immunochemical 

characteristics of their naturally occurring counterparts. The chapter also demonstrates for the 

first time that these fAD patient hiPSC-derived astrocytes demonstrate hypometabolism in the 

form of reduced glucose uptake, with neurons showing similar reductions when cultured by 

SY differentiation method. There was no significant difference in glycogen stores of the fAD 

patient hiPSC-derived astrocytes. These results give credence to our overarching hypothesis 

that metabolic dysfunction occurs early in AD, and is likely directly related to increased Aβ 

release profiles in astrocytes and neurons of these patients. 
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Chapter 5: Optimising Production of Human Aβ Derived from fAD Patient iPSCs  

 

5.1  Introduction 

 

The endogenous production of Aβ by the fAD patient-derived hiPSCs has been shown in 

chapter 4 of this project. However, it is pertinent to explore if these endogenously produced 

Aβ species can induce metabolic dysfunction in a cell autonomous fashion in both fAD patient 

and ‘healthy’ hiPSC-derived brain cells. This could be done by exposing healthy brain cells to 

the CM derived from fAD patient-derived neuronal cell cultures derived from synchronous 

differentiation method, because this method produced the greatest amount of total amyloid 

production (Fig. 4.8). This could then be compared with ‘healthy’ cells exposed to the same 

CM, but from which the amyloid species have been removed via immunodepletion (Hu et al., 

2018) reported the inhibition of long term potentiation (LTP) in rat hippocampal neurons in vivo 

by secretomes derived from human fAD patient-derived neuronal cultures. They also 

confirmed that the inhibition of LTP was induced by Aβ released from the fAD patient-derived 

neurons.  

 

However, shortage of time and requisite funding prevented the completion of these 

experiments in this project. The preliminary results of exposure of the ‘healthy’ patient-derived 

hiPSCs to the concentrated CM derived from fAD patient-derived neuronal cells in culture is 

presented in this chapter as a supplement.  

 

The hypothesis being tested in this portion of the project was that Aβ isolated from fAD patient-

derived neuronal cell cultures (secretomes) would induce metabolic dysfunction in otherwise 

‘healthy’ hiPSC-derived astrocytes. The aims and objectives were to test this hypothesis by 

first retrieving the concentrated secretomes from cultures of neuronal cells differentiated using 

the SY differentiation method, and then to carry out an immunodepletion process to remove 

Aβ species from the concentrated secretomes. Healthy patient hiPSC-derived astrocytes 

would then be exposed to the secretomes to observe if the non-immunodepeleted secretomes 

would induce metabolic dysfunction in the form of impaired glucose uptake and altered 

glycogen metabolism.    
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5.2  Materials and Methods 

 

5.2.1 Preparation of Concentrated Secretomes (Amicon®-Concentration) 

 

CM (secretome) of cortical neuronal cells cultures that were differentiated using synchronous 

neural differentiation method was collected from hiPSC-derived NPCs of fAD patient cell line 

(ax0112) in cultures for 40 days at 48 hours intervals. Briefly, the secretome was pooled from 

12 wells of 12-well plates (three independent cultures), and then centrifuged at 200 x g for 5 

minutes to remove dead cells and debris. After centrifugation, the supernatant was transferred 

into 15ml sterile conical tubes and stored at -80°C for concentration of collected secretome 

samples. 12ml of secretome samples were added in a sterile Amicon® Ultra-15 (3kDa) 

centrifugal filter device (Millipore, Ireland). The Amicon devices were spun at 4000 x g 

maximum for approximately 60 - 90 minutes at 4°C. After centrifugation, secretome samples 

were concentrated 12-fold to 1ml, and then 100µl aliquots were transferred into 1.5ml sterile 

microcentrifuge tubes (Fig. 5.1A) and stored at -80°C for further analysis of amyloid 

immunoprecipitation assay, SDS-PAGE gel, western blotting and ELISA analysis.  

 

5.2.2 Immunodepletion Assay 

 

It is immunoprecipitation technique (IP) was used to deplete the Aβ from the concentrated 

secretome of neurons cultured in using synchronous differentiation method (section 4.2.4) 

from fAD patient cell line. The IP assay was performed according to the manufacturer’s 

instructions of Dynabeads® Protein A (Novex® Life Technologies, Norway). 50µl (1.5mg) of 

Dynabeads® Protein A were added to a 1.5ml Protein LoBind microfuge tube (Eppendorf, 

USA) and dynabeads were separated from the solution using magnet rack (DynaMag™-2) 

(Thermo Fisher Scientific, UK). The dynabeads were washed once with D-PBS with 0.02% 

Tween®-20 (Sigma-Aldrich, UK). To prepare antibody coated dynabeads with 10µg of purified 

anti-β-Amyloid 17-24 (BioLegend, USA) was diluted in 200µl D-PBS with Tween®-20, and then 

added to the dynabeads and incubated with rotation for one hour at 4°C. After incubation, 

microfuge tubes containing dynabeads were placed on DynaMag and the supernatant 

aspirated, and then gently washed 3 times with D-PBS with Tween®-20. Next, targeting the 

antigen (Ag) was done by adding 100µl of concentrated secretome samples and incubating 

with Ab-conjugated-beads overnight with rotation at 4°C. After incubation, the dynabeads were 

separated on DynaMag and the supernatant sample (secretome) transferred to a microfuge 

tube (Fig. 5.1B), and then stored at -80°C for ELISA, SDS-PAGE gel and western blotting 
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analysis. The dynabeads Ab-Ag complex were gently washed 3 times with D-PBS with 

Tween®-20, and then stored at -80°C for SDS-PAGE gel and western blot analysis. 

 

5.2.3 ELISA Analysis 

 

To quantify the Aβ1-40 and Aβ1-42 in concentrated secretome samples and immunodepleted 

samples of fAD patient cell (section 4.2.4) was carried out with Aβ1-40 and Aβ-42 of ELISA 

assay (section 4.2.4.3)  

 

5.2.4 Electrophoresis Studies  

 

5.2.4.1 SDS-PAGE Gel 

 

The presence of amyloid in the concentrated secretome samples in section 5.2.1 and the 

immunodepleted Aβ samples in section 5.2.2 were assessed and analysed using SDS-PAGE 

gel according to protocol described in section 3.2.2.1. The dynabeads Ab-Ag complex samples 

were eluted by re-suspended in 100µl of sample buffer, and then heated at 95°C for 10 

minutes. Next, the supernatant was collected after separating the dynabeads using DynaMag 

20µl of the supernatant was loaded onto the gel. 

 

5.2.4.2 Western Blotting Analysis 

 

The presence of amyloid in the concentrated secretome samples and immunodepleted of 

synthetic Aβ1-42 samples were performed and analysed using SDS-PAGE gel followed by 

western blotting according to method described in section 3.2.2.2.  
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Figure 5.1: Diagrammatic overview of concentrated CM preparation from cortical neuronal 

cell cultures using Amicon® (A). Immunodepletion assay to deplete the Aβ from the 

concentrated CM using IP technique (B). 
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5.2.5 Treatment with Human fAD Patient-derived Aβ and Determination the Effects 

on Carbohydrate Levels 

 

5.2.5.1 Preparation of Treatment 

 

To determine the possible toxic effects of human fAD patient derived Aβ on metabolism of 

‘healthy’ control hiPSC-derived astrocytic cells (ax0018). Astrocytic cells were plated 

according to section 3.2.5, and exposed to 1ml of 1:10 dilution of concentrated fAD-secretome 

(100µl) with AM (900µl) in comparison with untreated astrocytic cells (control) over 48 hours. 

CM samples were collected for analysing glucose uptake using glucose assay and 

homogenised samples were collected for analysing glycogen content level using the glycogen 

assay and protein determination assay. 

 

5.2.5.2 Determination the Effects on Glucose Uptake Levels 

 

The CM samples collected from astrocytic cells treated with concentrated fAD-secretome in 

comparison with untreated cells as a control were assessed for glucose uptake level over time 

using glucose assay (section 3.2.5.1). All readings were corrected for background and protein 

levels (section 2.2.8). 

 

5.2.5.3 Determination the Effects on Glycogen Content Levels 

 

The homogenised samples of hiPSC-derived astrocytic cells treated with concentrated fAD-

secretome in comparison with untreated cells (control) were measured for glycogen content 

levels according to glycogen assay (section 3.2.4). All readings were corrected for 

background, free glucose and glucose-6-phosphate values in homogenised samples and 

protein levels (section 2.2.8). 

 

5.2.6 Determination of Protein Levels  

 

Protein levels were measured according to protocol described in section 2.2.8.  
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5.2.7 Quantification and Statistical Analysis 

 

All quantification and statistical analyses were carried out according to the methods described 

in section 2.2.9. 
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5.3  Results 

 

5.3.1 Immunodepletion Experiment 

 

The CM of control (ax0018) and fAD patient (ax0112) derived from neuronal cells differentiated 

using the synchronous differentiation method at day 40 was selected for concentration (Fig. 

4.8A) to increase the concentration of Aβ. Subsequently, IP assay was performed to deplete 

the Aβ from the concentrated secretomes of fAD patient (ax0012) and ‘healthy’ control 

(ax0018) to generate a non-amyloid control. CM was analysed by SDS-PAGE gel, western 

blotting and quantitatively with ELISA. 

 

5.3.2 SDS-PAGE Gel Electrophoresis 

 

SDS-PAGE gel (8%) was performed to determine the success of media concentration from 

both fAD patient (ax0112) and control cells (ax0018). (Fig. 5.2).  

 

 

 

 

 

 

 

 

Figure 5.2: Representative SDS-PAGE gel (8%) showing the concentrated secretomes 

from CM of neuronal cells derived from SY differentiation method at day 40 of both cell 

lines: (lane 2) fAD patient cell line (ax0112) and (lane 4) ‘healthy’ control cell line (ax0018). 

Immunodepleted samples from concentrated secretomes of (lane 3) fAD patient cell line 

and (lane 5) ‘healthy’ control cell line. Proteins were stained with Coomassie brilliant blue 

stain. Lane 1 illustrates the pre-stained protein ladder molecular weight markers. n=3.  
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5.3.3 Western Blotting Analysis 

 

Western blotting analysis carried out to detect the Aβ in the concentrated secretome and 

immunodepleted samples in both cell lines of fAD patient and ax0018 ‘healthy’ control. All the 

samples were loaded in 8% SDS-PAGE gel followed by western blotting using the 6E10 

antibody. This 6E10 antibody is reactive to amino acid residue 1 - 16 of Aβ and to APP; reacts 

to the abnormally processed isoforms, as well as precursor forms (AlzForum, USA). Western 

blotting demonstrated the presence of ~250 - 130kDa species in fAD patient cell line 

concentrated secretomes (Lane 3) (Fig. 5.3). The smaller Aβ species were not detectable in 

the concentrated secretome and immunodepleted samples for both cell lines (Lanes 2 - 5); in 

comparison 25µM synthetic Aβ1-42 (Lane 1) (Fig. 5.3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Representative western blotting analysis of Aβ in concentrated CM.  25µM of 

synthetic Aβ1‐42 was used as a positive control (lane 1) comparison with concentrated CM 

of neuronal cells derived from SY differentiation method at day 40 of fAD patient cell line 

(lane 3) and concentrated CM of ‘healthy’ control cell line (lane 5). Immunodepleted 

samples from concentrated CM of fAD patient cell line (lane 2) and healthy control cell line 

(lane 4). The samples were loaded in 8% SDS-PAGE gel followed by western blotting 

analysis using 6E10 antibody. n=3. 
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5.3.4 ELISA Analysis 

 

To further confirm the presence/absence of the Aβ in concentrated secretome and 

immunodepleted samples from fAD patient cell line, samples were analysed using the Aβ1-42 

and Aβ1-40 ELISA. The total Aβ1-42 and Aβ1-40 peptides in concentrated secretomes (Fig. 

5.4) was 2243.11pg/ml and 1914.10pg/ml, respectively for the Aβ1-42 and Aβ1-40. 

Immunodepletion reduced the amount of Aβ peptides from the concentrated secretomes; 

565.05pg/ml and 602.12pg/ml, respectively. This was repeated over three runs of the 

experiment.  
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Figure 5.4: Quantification of Aβ prolife (Aβ1-42 and Aβ1-40) in the concentrated secretome 

and immunodepleted samples from fAD patient cell line using ELISA. Data is expressed as 

Aβ (pg/ml), ± SEM, n=3 (triplicate wells pooled for each run), P<0.0001 (****). The statistical 

analysis was done using One-way ANOVA, Dunnett's multiple comparisons post-test. 
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5.3.5 Treatment of Healthy hiPSC-derived Astrocytic Cells with fAD Patient-derived 

Secretome and Effects on Carbohydrate Levels 

 

To determine if treatment with concentrated secretome derived from synchronously 

differentiated fAD patient neuronal cells could induce changes in glucose uptake and glycogen 

content levels. The ‘healthy’ control hiPSC-derived astrocytes from cell line ax0018 were 

treated with the concentrated secretome derived from synchronously differentiated fAD patient 

neuronal cells versus treated cells with AM only as a control over 48 hours. The glucose uptake 

and the glycogen content levels of astrocytes was investigated to detect the effects of 

concentrated secretomes (human fAD patient-derived Aβ) on ‘healthy’ astrocytic cells. 

 

5.3.5.1 Determination the Effects on Glucose Uptake Levels 

 

Astrocytic cells derived from the ax0018 cell line were then treated with the concentrated fAD-

secretome at a 1:10 dilution with AM in comparison with astrocytic cells in AM only as control 

and the effect on glucose uptake observed over 48 hours. The concentrated secretome did 

not induce a significant reduction in the glucose uptake by the astrocytic cells (Fig. 5.5). 
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Figure 5.5: Determination of glucose levels remaining in the conditioned media following 

treatment of astrocytes with fAD patient-derived concentrated secretome. Treatment of 

hiPSC-derived astrocytes from cell line ax0018 at 45+ days old cells to fAD-derived 

concentrated secretome in the media versus astrocytic cells in AM as control for 48 hours. 

The amount of glucose remaining in the conditioned media following treatments were 

measured using glucose assay. Data is expressed as glucose µg/mg total cellular protein, 

± SEM, n=3 (triplicate wells pooled for each run). The statistical analysis was done using 

Unpaired t test post-test. 
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5.3.5.2 Determination the Effects on Glycogen Content Levels 

 

Similarly, when ‘healthy’ hiPSC-derived astrocytic cells (ax0018) were exposed to the 

concentrated fAD-secretome at a 1:10 dilution with AM in comparison with astrocytic cells in 

AM only as control. There was no significant difference in glycogen content level by the 

astrocytic cells after 48 hours (Fig. 5.6). 
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Figure 5.6: Determination of glycogen content of fAD-derived secretome treatment on 

astrocytic glycogen stores. Treatment of ‘healthy’ hiPSC-derived astrocytes from cell line 

ax0018 at 45+ days old cells with fAD patient-derived secretome and compared to 

astrocytic cells in AM as control for 48 hours. The cellular glycogen content was measured 

using a glycogen assay. Results are expressed as glucose and glucose-6-phosphate 

µg/mg total cellular protein, ± SEM, n=3 (triplicate wells pooled for each run). The statistical 

analysis was done using Unpaired t test post-test. 
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5.4  Discussion  

 

It has been shown in chapter 4 of this project that astrocytes and neurons derived from hiPSCs 

produced from the ax0112 fAD patient cell line produced higher amounts of Aβ1-40 and Aβ1-

42, and exhibited dysregulate energy metabolism in the form of reduced glucose uptake. This 

portion of the project sought to examine if the secretome of cultured fAD patient-derived 

neuronal cells could induce metabolic dysfunction in otherwise ‘healthy’ cells as a result of 

these amyloid species produced by these fAD patient-derived neural cells. This chapter 

represents a first attempt at examining the effect of endogenously produced Aβ on energy 

metabolism on ‘healthy’ human cells. The synchronous differentiation method was utilised 

because it resulted in the greatest production of Aβ (Fig. 4.8A), and it likely presented the 

production of more mature neurons compared to the spontaneous differentiation method. 

 

The results showed no significant difference in glucose uptake and glycogen metabolism (Fig. 

5.5 and 5.6). These results cannot be taken to face value because an arbitrary dilution ratio of 

10% for the concentrated secretome was used to ensure supply of glucose to prevent cell 

starvation and death. This does not provide a representative concentration of the Aβ in the 

secretome. Moreover, the results as shown in section 3.3.4 (Fig. 3.5) demonstrated a 

significant reduction in glucose uptake in a dose-dependent fashion from concentrations of 

2µM and 1µM of synthetic Aβ1-42 oligomers. This indicates that the experiment on 

endogenously produced Aβ requires optimisation, and it would be more reliable to purify and 

isolate the Aβ species and then conduct a dose-response assessment to identify appropriate 

concentrations to be used. Similar experiments also need to be conducted using different fAD 

patient models, as well as different controls to assess reproducibility of these experiments. 

 

The immunodepletion experiment confirmed the reduction of the endogenously produced Aβ 

from the concentrated secretome, to be used in control experiments on the induction of 

metabolic dysfunction by Aβ in the secretome. However, the control experiment involving 

exposure of ax0018 ‘healthy’ control cells could not be conducted due to shortage of time and 

resources. However, the use of pooled CM from different cell cultures could help provide 

higher quantities of Aβ. Moreover, a higher concentration of Aβ could be produced from older 

cells if they remain in culture for longer periods. In addition, other experiments from our lab on 

the same cell line (ax0112) confirmed the induction of oxidative stress on ax0018 cells by 

unconcentrated CM from cellular co-cultures of astrocytes and neurons derived from the 

ax0012 cells (Richard Elsworthy personal communication, awaiting publication). 
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Chapter 6: Final Conclusions and Future Directions 

6.1 Final Conclusions 

 

The search for a mechanistic understanding of the pathogenic events leading to the 

occurrence of AD as gained significant progress over the last decade. Since the discovery of 

the iPSC by Yamanaka et al. in 2006, it is now possible to generate patient-specific neurons 

and astrocytes from AD patients in order to examine the naturally history of cellular 

dysfunction. As metabolic dysfunction has been shown to precede the clinical onset of the 

disease by decades (Mosconi et al., 2008a and 2008b) hiPSC derived neuronal models enable 

the researchers to study processing of APP and metabolic dysfunction at the cellular level, 

prior to the clinically obvious onset of AD.  

 

Previous efforts in our lab have established the occurrence of early metabolic dysfunction in 

embryocarcinoma models of human neurons and astrocytes in response to synthetic Aβ 

peptides (Tarczyluk et al., 2015). However, there is a shortage of available research on the 

occurrence of metabolic dysfunction in patient-derived models of AD. This project is a follow 

up effort on these previous research endeavours in our lab, by examining the effects of Aβ in 

neurons and astrocytes derived from ‘healthy’ control hiPSCs and a fAD specific model of the 

disease. 

 

This project involved the generation of fAD patient-derived neurons and astrocytes and 

comparison them with their foetal-derived human primary astrocytes and ‘healthy’ patient 

hiPSC-derived counterparts for morphological and immunohistochemical conformity. The 

project also, for the first time, examined metabolic dysfunction as it occurs in these fAD patient-

derived astrocytes and neurons to provide an understanding of a temporal pattern of metabolic 

dysfunction as it occurs spontaneously in these cells.  

 

We generated mature astrocytes from ‘healthy’ control hiPSCs using the differentiation and 

maturation protocols, and neurons using the spontaneous and synchronous differentiation 

methods. Similar protocols were used to generate astrocytes and neurons from fAD patient-

derived hiPSCs. The results showed morphological and immunohistochemical concordance 

between the fAD patient-derived neurons and astrocytes, and their healthy HA and ‘healthy' 

patient-derived hiPSC counterparts. We also recorded the occurrence of metabolic 

dysfunction, as recorded by reduced glucose uptake induced by synthetic Aβ1-42 oligomers 

on ‘healthy’ hiPSC-derived astrocytes and neurons derived from synchronous differentiation 
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method, as well as healthy human primary astrocytes. However, significant reduction in 

glycogen stores was only recorded for the ‘healthy’ donor hiPSC-derived astrocytes, but not 

for human primary astrocytes in response to synthetic Aβ1-42 oligomers. 

 

Furthermore, the project also examined the fAD patient-derived astrocytes and neurons for 

Aβ production and recorded increased Aβ production profile as well as alterations in Aβ42/40 

ratio when compared with their ‘healthy’ donor hiPSC-derived counterparts. The occurrence 

of de novo metabolic dysfunction as recorded by reduction in glucose uptake in the fAD 

patient-derived neurons in comparison to their ‘healthy’ counterparts was recorded only for 

neurons differentiated using the synchronous differentiation method. However, there was a 

significant reduction in glucose uptake in the patient-derived astrocytes as compared to the 

control. Furthermore, there was no significant alteration in the glycogen content level of the 

cells in response to endogenous Aβ.  

 

The fact that fAD patient-derived neurons and astrocytes exhibited increased Aβ production 

and displayed evidence of metabolic dysfunction indicates that the induction pathway of 

metabolic dysfunction by endogenous Aβ may be an exploitable therapeutic target for the 

management of AD. This may provide an alternative to current therapeutic strategies being 

proposed, which involve preventing the production of toxic amyloid species by blocking the 

key enzymes involved in the production of toxic amyloid species (Panza et al., 2019). Similarly, 

while most strategies being proposed for a definitive management from AD are focussed on 

the neurons, and preventing Aβ-induced neuronal damage, the increasing roles of the 

astrocytes in Aβ production and degradation, as well as the pathogenesis of AD are becoming 

more obvious from recent studies (Blasko et al., 2000, Rossner et al., 2005, Zhao et al., 2011, 

Jin et al., 2012).  

 

This project also provides a similar perspective from the results showing increased Aβ 

generation from the astrocytes, as well metabolic dysfunction in the form of reduced glucose 

uptake. Furthermore, the important effect of astrocytes on neuronal energy metabolism, 

through the maintenance of lactate supplies for neuronal oxidative decarboxylation (Magistretti 

and Pellerin, 2000). This may also indicate that astrocytic carbohydrate metabolism may be 

an additional or alternative target that could potentially be exploited for future therapeutic 

options for AD. 

 

As expected with novel research approaches, a number of issues encountered during the 

project, and some have been discussed in the relevant chapters. Others are highlighted below, 
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such as issues with culture, differentiation, maturity of the differentiated cells, amongst others. 

Some of these issues may require addressing before the next steps in the determination of 

metabolic dysfunction induced by Aβ in AD using hiPSC-derived models can be comfortably 

achieved. 
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6.2 Future Directions  

 

Several issues were encountered during this project regarding the use of commercially 

obtained hiPSC-derived NPCs. These issues limit the power of the study as we were unable 

to compare effects in multiple control and patient cell lines.  

 

Human ‘healthy’ control and fAD patient iPSC-derived NPC cell lines were obtained from Axol 

Biosciences. Three ‘healthy’ patient-derived cell lines, ax0016, ax0018 and ax0019 were 

initially used in the project. Frequent contamination of non-neuronal cells was observed with 

the ax0019 cell line (see Appendices: Fig. A20), as such these results were excluded from the 

study. The ax0016 cell line was also used as an alternative but also showed very stark 

inconsistencies in proliferation in culture and differentiation.  As such only ax0018 was used 

as a ‘healthy’ control cell line. 

 

Ongoing work in the laboratory have begun to generate NPC lines ‘in house’ using ‘control’ 

hiPSC lines from cell repositories including HiPSci, Coriell and EBISC.  

 

The results of this project are also limited to one fAD patient model. These results will require 

further validation using additional AD patient-derived cell lines to determine the reproducibility 

of results. Ongoing work in the laboratory is currently generating a bank of fAD patient-derived 

hiPSCs for neural induction and use in future experiments. Furthermore, the question of 

whether the results of these experiments on fAD models will be representative of the vast 

majority of cases of AD, which are of the sporadic type. These may require further 

investigations. The use of isogenic lines may also be an alternative approach worth 

considering. Isogenic controls call also be produced from hiPSCs to show differences in the 

same cell based on specific genetic mutations or defects that have been removed or altered; 

diseases such as fAD, Parkinson’s disease, Rett’s syndrome and Amyotrophic Lateral 

Sclerosis (Soldner et al., 2011, Sproul et al., 2014, Ananiev et al., 2011) 

 

6.2.1 Neural Induction Method 

 

Neurons used in this study were generated using both synchronous and spontaneous 

differentiation methods. The initial aim of using synchronous induction was to generate 

enriched mature neuronal cultures containing minimal astrocyte contamination in a shorter 
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amount of time (Shi et al., 2012b). However, cultures contaminated with significant numbers 

of astrocytes. As such further optimisation of DAPT treatment is required for each cell line. 

Furthermore, the use of a mitotic inhibitor could significantly reduce the number of astrocytes 

generated in these cultures (James Crowe, personal communication). However, neuronal 

cells are likely to exhibit cellular stress in monoculture without the support of astrocytes. The 

use of conditioned media from astrocyte cultures may be able to provide this support without 

the need for the physical presence of astrocytes in future experiments.  

 

Moreover, the contribution of cellular aging over multiple passages as well as contamination 

(from source) was a time consuming and procedural hindrance encountered during the project. 

In addition, the control (ax0018) and fAD patient (ax0012) cells were not sex or age-matched, 

as the ax0012 cells were retrieved from a 38 year old female, and the ax0018 cells were from 

a 72-year old male. It is unclear how much influence these differences may have exerted on 

the results of the experiments.  

 

This project investigated the production of Aβ1-40 and Aβ1-42 by the fAD patient-derived 

astrocytes and neurons. The effects of other amyloid species which may have significant 

impact on the results may have been overlooked (Chavez-Gutierrez et al., 2012, Slemmon et 

al., 2015). However, Aβ1-40 and Aβ 1-42 are known to be the most abundant and significant 

Aβ species isolated in AD patients (Slemmon et al., 2015). Further experiments may examine 

the effects of other amyloid species, soluble and non-soluble amyloid species, as well as the 

aggregation of amyloid peptides using ELISA. There are also other aspects of APP processing 

that may exert significant relevance on the pathogenesis of AD. Unlike PSEN1 and PSEN2 

mutations which are more likely to generate longer Aβ fragments, APP mutations are more 

likely to generate shorter Aβ fragments (Szaruga et al., 2003, Chavez-Gutierrez et al., 2012). 

Moreover, as stated in the chapter 5 (preliminary results) of the immunodepletion experiment, 

future experiments should also determine if dysfunction correlates with the release of Aβ 

peptides using both pharmacological blockade of amyloid processing and immunodepletion 

studies. 

 

Furthermore, this project explored the occurrence of metabolic dysfunction using glucose 

uptake and glycogen metabolism only as markers. Future experiments may explore the 

occurrence of metabolic dysfunction through the assessment of ATP, NAD+/NADH, lactate, 

pyruvate, glutamine and glutamate levels (Tarczyluk et al., 2015). Further analysis using the 

Seahorse Bioanalyser Agilent would also enable, assessment of glycolysis and oxidative 
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phosphorylation in live cells by measuring the rate of mitochondrial activity as measured by 

their oxygen utilisation rate as well as extracellular acidification rate as a measure of 

glycolysis. It also examines fatty acid oxidation amongst other determinants of metabolic 

activity and stress.  

 

Whilst Tarczyluk et al. (2015) utilised plate based kits to measure release of metabolite more 

sensitive methods could be utilised to monitor cell metabolism analysis using labelled glucose, 

lactate and other metabolites may also be carried to provide documented mechanistic effects 

on metabolic pathways of various substrates as explained in section 3.4. This analysis can 

also provide important insights into the mechanisms involved in degradation and recycling of 

important substrates such as glutamate as well as trafficking of substrates between the 

neurons and astrocytes.  

 

Further experiments also need to explore the nuances of gene expression involved in 

metabolic dysfunction as a result of amyloid exposure. Ongoing work in our laboratory is 

currently using RNA-seq to determine gene expression changes following treatment of 

‘healthy’ hiPSC-derived astrocytes with synthetic Aβ1-42 oligomers. This study may identify 

pathways that are dysregulated, that lead to alterations in glucose uptake and glycogen 

content levels. The reduction in expression of important enzymes such as hexokinase and 

pyruvate dehydrogenase can be measured using this method, as they have been shown to 

exhibit reduced activity in AD patients (Gibson et al., 1998). 

 

6.2.2 2D vs 3D Culture 

 

In addition, although this project provides a novel assessment of metabolic dysfunction 

induced by endogenously produced Aβ, the in vitro setting of the project may not be very 

representative of the metabolic events as they occur in vivo in the human brain. Experiments 

using 3D models may provide a more reliable representation of these occurrences in vivo, as 

these may be able to reproduce complex intercellular interactions including those of the 

astrocyte-neuron lactate shunt. As it has been shown in this projects that astrocytes have a 

significant role to play in the AD pathogenic process, the role of other cell types in the aetiology 

and progression of the disease is slowly being realised (De Strooper and Karran, 2016), and 

may need 3D modelling to be properly investigated. Indeed, 3D culture models using isogenic 

APOE3 and APOE4 iPSCs have demonstrated astrocyte-dependent temporal increases in Aβ 

and phosphorylated Tau production (Lin et al., 2018).  These models can also provide an 
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insight into the mechanism of Aβ aggregation and accumulation to the development of amyloid 

plaques and neurofibrillary tangles by reproducing these processes real time. Indeed, efforts 

at 3D modelling of AD have gained good momentum since the development of cerebral 

organoids, which involves the incorporation of iPSCs into matrigel, allowing the developing 

neural precursors to self-organise and form different layers specific to different brain parts 

(Hattori, 2014, Raja et al., 2016). These organoids, when grown from iPSCs derived from AD 

patients have also been shown to demonstrate increased Aβ production and aggregation as 

well as tau phosphorylation (Gonzalez et al., 2018). 

 

Other 3D models have also been produced from NPCs carrying amyloid-generating mutations 

of fAD, and these have been shown to develop amyloid plaques and neurofibrillary tangles 

(Gonzalez et al., 2018). 

 

Overall, these models when fully developed, represent the most reliable means of 

demonstrating mechanistic changes during the pathogenic courses of several diseases like 

AD and other neurodegenerative conditions. They also represent the most reliable means for 

drug screening and understanding of the mechanisms of therapeutic changes induced by 

newer therapies during treatment. 
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Figure A1: Representative images of hiPSC-Derived NPCs from ‘healthy’ ax0016 cell line 

using ICC staining. Phase contrast image of NPCs (A). The NPCs were stained for neural 

precursor cells antibodies against nestin (red, B), sox2+ (red, C) and pax6+ (green, D). 

Merged image showing co-expression of both pax6+ and sox2+ (E). Cells were 

counterstained with DAPI+ (blue, F). Cells were stained at passage number 2, n=2. Scale 

bars: 100μM. 
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Figure A2: Representative images illustrating the development of neural cells at day 30 in 

SP and SY differentiation cultures from ax0016 cell line of ‘healthy’ hiPSC-derived NPCs. 

A and B showing phase contrast images of neural cells in network of the differentiation 

cells. Immunofluorescent images showing a network neuronal cells that was confirmed 

using a TUJ1+ (red, C and D). Astrocytic cells were identified using S100β+ marker (green, 

E and F). Merged image showing expression of both TUJ1+ and S100β+ (G and H). Nuclei 

were counter stained with DAPI+ (blue, I and J). n=3. Scale bars: 100µM.  
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Figure A3: Representative images illustrating the development of neural cells at day 40 in 

SP and SY differentiation cultures from ax0016 cell line of ‘healthy’ hiPSC-derived NPCs. 

A and B showing phase contrast images of neural cells in network of the differentiation 

cells. Immunofluorescent images showing a network neuronal cells that was confirmed 

using a TUJ1+ (red, C and D). Astrocytic cells were identified using S100β+ marker (green, 

E and F). Merged image showing expression of both TUJ1+ and S100β+ (G and H). Nuclei 

were counter stained with DAPI+ (blue, I and J). n=3. Scale bars: 100µM. 
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Figure A4: Representative images showing ICC staining of ‘healthy’ hiPSC-derived 

astrocytic cells from ax0016 cell line at day 45+. The cells were cultured using the 

astrocytes differentiation and maturation protocols. (A) shows a phase contrast image of 

the astrocyte cells. Immunofluorescent images of astrocytic markers GFAP+ (red, B) and 

S100β+ (green, C). Merged image showing expression of both GFAP+ and S100β+ (D). 

Nuclei were counter stained with DAPI+ (blue, E). Scale bars: 100µM. The graph shows 

the quantification of cell-types using ImageJ analysis of neural cell populations produced 

at this stage of differentiation, n=2. The statistical analysis was done using One-way 

ANOVA, Dunnett's post-test.  
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Figure A5: Representative images of ‘healthy’ hiPSC-derived astrocytic cells from ax0016 

cell line at day 45+. PAS staining confirmed the presence of glycogen in astrocytes cells 

(red, A) and S100β+ (green, B). Cells were counterstained with DAPI+ (blue). Merged 

image showing expression of co-staining: S100β+ and PAS+ staining (C). Merged image 

showing expression of S100β+, PAS+ staining and DAPI+ (D). n=2. Scale bars: 100µM. 
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Figure A6: Determination of cell viability of astrocytes treated with synthetic Aβ1-42. 

Healthy hiPSC-derived astrocytes from ax0016 cell line. Cells were exposed to 2µM-

0.001µM of synthetic Aβ1-42 oligomers for 48 hours. Cell viability was measured using 

MTT assay. The values are expressed as percentage of untreated cells as a control 

(100%), ± SEM, n=3, P=0.0001 (****), P<0.001 (***), P<0.01 (**), P<0.05 (*). Comparisons 

between treatments were performed using statistical analysis of One-way ANOVA, 

Dunnett's post-test.  
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Figure A7: Determination of glucose levels remaining in the media following treatment of 

astrocytes to synthetic Aβ1-42 oligomers. Treatment of ‘healthy’ hiPSC-derived astrocytes 

from ax0016 cell line at 45+ days old cells with synthetic Aβ1-42 in the media (2µM, 1µM 

and 0.2µM) versus untreated cells (control) for 48 hours. The amount of glucose remaining 

in the conditioned media following treatments were measured using glucose assay. Data 

is expressed as glucose µg/mg total cellular protein, ± SEM, n=3 (triplicate wells pooled for 

each run). The statistical analysis was done using One-way ANOVA, Dunnett's post-test 
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Figure A8: Determination of glucose levels remaining in the media following treatment of 

neuronal cells to synthetic Aβ1-42 oligomers. Treatment of the neuronal cells derived from: 

SP (A) and SY (B) differentiation methods from ax0016 cell line at day 30 with synthetic 

Aβ1-42 in the media (2µM, 1µM and 0.2µM) versus untreated cells (control) for 48hrs. The 

amount of glucose remaining in the conditioned media following treatments were measured 

using glucose assay. Data is expressed as glucose µg/mg total cellular protein, ± SEM, 

n=3 (triplicate wells pooled for each run), P<0.01 (**), P<0.05 (*).  The statistical analysis 

was done using One-way ANOVA, Dunnett's post-test. 
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Figure A9: Determination the effect of synthetic Aβ1-42 treatment on astrocytic glycogen 

stores. Treatment of ‘healthy’ hiPSC-derived astrocytes from ax0016 cell line (A) at 45+ 

days old cells with synthetic Aβ1-42 oligomers in the media (2µM, 1µM and 0.2µM) and 

compared to untreated cells as a control for 48 hours. The cellular glycogen content was 

measured using a glycogen assay. Results are expressed as glucose and glucose-6-

phosphate µg/mg total cellular protein, ± SEM, n=3 (triplicate wells pooled for each run). 

The statistical analysis was done using One-way ANOVA, Dunnett's post-test. 
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Figure A10: Representative images showing the development of neural cells from fAD 

patient hiPSC-derived NPCs of ax0112 cell line at day 30 in SP differentiation culture of 

fAD patient NPCs. Confirming the presence of cortical neuronal cell type using CTIP2+ 

marker (red, A) and confirming the glutamatergic neuronal cell type using VGLUT1+ marker 

(green, B). Merged image showing co-expression of both CTIP2+ and VGLUT1+ (C). 

Nuclei were counter-stained with DAPI+ (blue, D).  n=3. Scale bars: 100µM. 
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Figure A11: Representative images showing the development of neural cells from fAD 

patient hiPSC-derived NPCs of ax0112 cell line at day 40 in SP differentiation culture of 

fAD patient NPCs. Confirming the presence of cortical neuronal cell type using CTIP2+ 

marker (red, A) and confirming the glutamatergic neuronal cell type using VGLUT1+ marker 

(green, B). Merged image showing co-expression of both CTIP2+ and VGLUT1+ (C). 

Nuclei were counter-stained with DAPI+ (blue, D).  n=3. Scale bars: 100µM. 
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Figure A12: Representative images showing the development of neural cells from Fad 

patient hiPSC-derived NPCs of ax0112 cell line at day 30 in SY differentiation culture of 

fAD patient NPCs. Confirming the presence of cortical neuronal cell type using CTIP2+ 

marker (red, A) and confirming the glutamatergic neuronal cell type using VGLUT1+ marker 

(green, B). Merged image showing co-expression of both CTIP2+, VGLU1T+ (C) and nuclei 

were counter-stained with DAPI (blue, D).  n=3. Scale bars: 100µM. 
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Figure A13: Representative images showing the development of neural cells from fAD 

patient hiPSC-derived NPCs of ax0112 cell line at day 40 in SY differentiation culture of 

fAD patient NPCs. Confirming the presence of cortical neuronal cell type using CTIP2+ 

marker (red, A) and confirming the glutamatergic neuronal cell type using VGLUT1+ marker 

(green, B). Merged image showing co-expression of both CTIP2+, VGLUT1+ (C) and nuclei 

were counter-stained with DAPI+ (blue, D).  n=3. Scale bars: 100µM. 
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Figure A14: Representative images of ‘healthy’ hiPSC-derived astrocytic cells from ax0018 

(A) and fAD patient hiPSC-derived astrocytic cells from ax0112 (B) cell lines at day 45+. 

The cells were cultured using the astrocytes differentiation and maturation protocols. 

Merged images showing expression of both GFAP+ (red) and pax6+ (green). Nuclei were 

counter stained with DAPI+ (blue). Scale bars: 100µM. n=3.  
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Figure A16: The graph presenting the quantification of neural cell populations from ‘healthy’ 

hiPSC-derived NPCs of ax0016 cell line following culture in SP (A and B) and SY (C and 

D) differentiation methods at days 30 and 40, respectively. Analysis of quantification cells 

produced by ImageJ showing a percentage number of astrocytes and neurons; counts are 

presented as percentages with respect to DAPI controls, ± SEM, n=3, P<0.01 (**), P<0.05 

(*). The statistical analysis was done using One-way ANOVA, Dunnett's post-test. 
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Table A17: Quantification by percentages based on ImageJ analysis of neural cell 

populations produced at different stages of SP differentiation of ‘healthy’ cell lines: ax0018 

(A) and ax0016 (B). Counts are presented as percentages with respect to DAPI controls. 

n=3. 
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Table A18: Quantification by percentages based on nuclear counts of neural cell 

populations produced at different stages of SY differentiation of ‘healthy’ cell lines: ax0018 

(A) and ax0016 (B). Counts are presented as percentages with respect to DAPI controls. 

n=3. 

 



232 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P
ri
m

ar
y 

A
st

ro
cy

te

ax
00

18
-A

st
ro

cy
te

s

fA
D
-A

st
ro

cy
te

s

ax
00

16
-A

st
ro

cy
te

s

C
2C

12

S
H
-S

Y
5Y

0

10

20

30

40

Cell Lines

G
lu

c
o

s
e
 a

n
d

 G
lu

c
o

s
e

-6
-p

h
o

s
p

h
a

te

[µ
g

/m
g

 p
ro

te
in

]

ND

Figure A19: Determination of glycogen content levels of different cell lines. Cellular 

glycogen content level was measured using a glycogen assay. Data is expressed as 

glucose and glucose-6-phosphate µg/mg total cellular protein, ± SEM, n=3 (triplicate wells 

pooled for each run). The statistical analysis was done using One-way ANOVA, Tukey's 

multiple comparisons test. 
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Figure A20: Representative images of hiPSC-Derived NPCs from ‘healthy’ ax0019 cell line 

in phase contrast at day zero (A). Representative images illustrating the development of 

neural cells at days zero, 10 and 30 in spontaneous and synchronous differentiation 

cultures. Scale bars: 100μM. 
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Figure A21: Quantification of Aβ peptide secretion profile release from neuronal cells 

following SP and SY differentiation methods of fAD patient cell line was detected using 

ELISA test: Aβ1-42 (A) and Aβ1-40 (B). The CM was assayed in different developmental 

days over a 48hr period. Data is expressed as Aβ pg/mg total cellular protein, ± SEM, n=3 

(triplicate wells pooled for each run), P<0.0001 (****), P<0.001 (***), P<0.01 (**), P<0.05 

(*). The statistical analysis was done using Two-way ANOVA, Dunnett's multiple 

comparisons test. 
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Figure A22: Quantification of Aβ peptide secretion profile release from neuronal cells 

following SP and SY differentiation methods of fAD patient cell line (ax0112) (A) and 

‘healthy’ control cell line (ax0018) (B) was detected using ELISA test: Aβ1-42. The CM was 

assayed in different developmental days over a 48 hours period. Data is expressed as Aβ 

pg/ml in conditioned media, ± SEM, n=3 (triplicate wells pooled for each run), P<0.0001 

(****), P<0.001 (***), P<0.01 (**), P<0.05 (*). The statistical analysis was done using Two-

way ANOVA, Dunnett's multiple comparisons test. 
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Figure A23: Quantification of Aβ peptide secretion profile release from neuronal cells 

following SP and SY differentiation methods of fAD patient cell line (ax0112) (A) and 

‘healthy’ control cell line (ax0018) (B) was detected using ELISA test: Aβ1-40. The CM was 

assayed in different developmental days over a 48 hours period. Data is expressed as Aβ 

pg/ml in conditioned media, ± SEM, n=3 (triplicate wells pooled for each run), P<0.0001 

(****), P<0.001 (***), P<0.01 (**), P<0.05 (*). The statistical analysis was done using Two-

way ANOVA, Dunnett's multiple comparisons test. 
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Figure A24: Quantification of total Aβ peptide secretion profile release from neuronal cells 

following SP and SY differentiation methods of fAD patient cell line (ax0112) (A) and 

‘healthy’ control cell line (ax0018) (B) was detected using ELISA test. The CM was assayed 

in different developmental days over a 48 hours period. Data is expressed as Aβ pg/ml in 

conditioned media, ± SEM, n=3 (triplicate wells pooled for each run), P<0.0001 (****), 

P<0.01 (**), P<0.05 (*). The statistical analysis was done using Two-way ANOVA, 

Dunnett's multiple comparisons test. 
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A)  

Comparisons             Significant P Value 

  SP:D0 vs. SP:D30  ** 0.0020 

  SP:D0 vs. SP:D40 **** <0.0001 

  SP:D0 vs. SY:D0 ns >0.9999 

  SP:D0 vs. SY:D30 *** 0.0002 

  SP:D0 vs. SY:D40 **** <0.0001 

SP:D30 vs. SP:D40 ns 0.0953 

SP:D30 vs. SY:D0 ** 0.0020 

SP:D30 vs. SY:D30 ns 0.2008 

SP:D30 vs. SY:D40 ** 0.0042 

SP:D40 vs. SY:D0 **** <0.0001 

SP:D40 vs. SY:D30 ns 0.6560 

SP:D40 vs. SY:D40 ns 0.1122 

SY:D0 vs. SY:D30 *** 0.0002 

SY:D0 vs. SY:D40 **** <0.0001 

SY:D30 vs. SY:D40 ns 0.0507 
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B) 

Comparisons             Significant P Value 

  SP:D0 vs. SP:D30  * 0.0126 

  SP:D0 vs. SP:D40 * 0.0160 

  SP:D0 vs. SY:D0 ns 0.9171 

  SP:D0 vs. SY:D30 * 0.0176 

  SP:D0 vs. SY:D40 * 0.0384 

SP:D30 vs. SP:D40 ns 0.9004 

SP:D30 vs. SY:D0 * 0.0154 

SP:D30 vs. SY:D30 ns 0.8601 

SP:D30 vs. SY:D40 ns 0.5565 

SP:D40 vs. SY:D0 * 0.0195 

SP:D40 vs. SY:D30 ns 0.9592 

SP:D40 vs. SY:D40 ns 0.6419 

SY:D0 vs. SY:D30 * 0.0214 

SY:D0 vs. SY:D40 * 0.0465 

SY:D30 vs. SY:D40 ns 0.6784 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A25: Comparisons of total Aβ peptides secretion from neuronal cells following SP 

and SY differentiation methods (Fig. 4.8). Release of Aβ1-42 and Aβ1-40 from fAD patient 

cell line ax0112 (A) and ‘healthy’ control cell line ax0018 (B) was detected by ELISA. Data 

is expressed as Aβ concentration pg/mg total cellular protein, ± SEM, n=3 (triplicate wells 

pooled for each run). The statistical analysis was done using Two-way ANOVA, Tukey's 

multiple comparisons test.  
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A)     

Comparisons             Significant P Value 

ax0018:D0 vs. ax0018:D30 ns 0.9794 

ax0018:D0 vs. ax0018:D40 ns >0.9999 

ax0018:D0 vs. ax0112:D0 *** 0.0003 

ax0018:D0 vs. ax0112:D30 **** <0.0001 

ax0018:D0 vs. ax0112:D40 **** <0.0001 

ax0018:D30 vs. ax0018:D40 ns 0.9463 

ax0018:D30 vs. ax0112:D0 *** 0.0008 

ax0018:D30 vs. ax0112:D30 **** <0.0001 

  ax0018:D30 vs. ax0112:D40 **** <0.0001 

ax0018:D40 vs. ax0112:D0 *** 0.0002 

ax0018:D40 vs. ax0112:D30 **** <0.0001 

ax0018:D40 vs. ax0112:D40 **** <0.0001 

ax0112:D0 vs. ax0112:D30 ns 0.4848 

ax0112:D0 vs. ax0112:D40 ns 0.1648 

ax0112:D30 vs. ax0112:D40 ns 0.9631 
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B)     

Comparisons             Significant P Value 

ax0018:D0 vs. ax0018:D30 ns 0.3057 

ax0018:D0 vs. ax0018:D40 ns 0.8363 

ax0018:D0 vs. ax0112:D0 **** <0.0001 

ax0018:D0 vs. ax0112:D30 **** <0.0001 

ax0018:D0 vs. ax0112:D40 **** <0.0001 

ax0018:D30 vs. ax0018:D40 ns 0.4072 

ax0018:D30 vs. ax0112:D0 **** <0.0001 

ax0018:D30 vs. ax0112:D30 **** <0.0001 

  ax0018:D30 vs. ax0112:D40 **** <0.0001 

ax0018:D40 vs. ax0112:D0 **** <0.0001 

ax0018:D40 vs. ax0112:D30 **** <0.0001 

ax0018:D40 vs. ax0112:D40 **** <0.0001 

ax0112:D0 vs. ax0112:D30 **** <0.0001 

ax0112:D0 vs. ax0112:D40 **** <0.0001 

ax0112:D30 vs. ax0112:D40 * 0.0356 
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C)    

Comparisons             Significant P Value 

ax0018:D0 vs. ax0018:D30 ns 0.2179 

ax0018:D0 vs. ax0018:D40 ns 0.1553 

ax0018:D0 vs. ax0112:D0 ns >0.9999 

ax0018:D0 vs. ax0112:D30 **** <0.0001 

ax0018:D0 vs. ax0112:D40 **** <0.0001 

ax0018:D30 vs. ax0018:D40 ns 0.8325 

ax0018:D30 vs. ax0112:D0 ns 0.2179 

ax0018:D30 vs. ax0112:D30 *** 0.0007 

  ax0018:D30 vs. ax0112:D40 **** <0.0001 

ax0018:D40 vs. ax0112:D0 ns 0.1553 

ax0018:D40 vs. ax0112:D30 *** 0.0010 

ax0018:D40 vs. ax0112:D40 **** <0.0001 

ax0112:D0 vs. ax0112:D30 **** <0.0001 

ax0112:D0 vs. ax0112:D40 **** <0.0001 

ax0112:D30 vs. ax0112:D40 * 0.0277 
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D) 

Comparisons             Significant P Value 

ax0018:D0 vs. ax0018:D30 ns 0.8787 

ax0018:D0 vs. ax0018:D40 ns 0.8965 

ax0018:D0 vs. ax0112:D0 ns >0.9999 

ax0018:D0 vs. ax0112:D30 *** 0.0004 

ax0018:D0 vs. ax0112:D40 **** <0.0001 

ax0018:D30 vs. ax0018:D40 ns >0.9999 

ax0018:D30 vs. ax0112:D0 ns 0.8817 

ax0018:D30 vs. ax0112:D30 ** 0.0019 

  ax0018:D30 vs. ax0112:D40 **** <0.0001 

ax0018:D40 vs. ax0112:D0 ns 0.8992 

ax0018:D40 vs. ax0112:D30 ** 0.0018 

ax0018:D40 vs. ax0112:D40 **** <0.0001 

ax0112:D0 vs. ax0112:D30 *** 0.0004 

ax0112:D0 vs. ax0112:D40 **** <0.0001 

ax0112:D30 vs. ax0112:D40 ns 0.1655 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A26: Comparisons of Aβ peptides secretion from neuronal cells (Fig. 4.9) following 

SP (A and C) and SY (B and D) differentiation methods of fAD patient cell line ax0112 

versus ‘healthy’ control cell line ax0018 from neural cells over 40 days. Aβ peptide was 

detected by ELISA: Aβ1-42 (A and B) and Aβ1-40 (C and D). Data is expressed as Aβ 

concentration pg/mg total cellular protein, ± SEM, n=3 (triplicate wells pooled for each run). 

The statistical analysis was done using Two-way ANOVA, Sidak's multiple comparisons 

test.  
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Comparisons             Significant P Value 

Aß1-42:ax0018-Astrocytes vs. Aß1-42:ax0112-Astrocytes *** 0.0007 

Aß1-42:ax0018-Astrocytes vs. Aß1-40:ax0018-Astrocytes **** <0.0001 

Aß1-42:ax0018-Astrocytes vs. Aß1-40:ax0112-Astrocytes ns 0.9871 

Aß1-42:ax0112-Astrocytes vs. Aß1-40:ax0018-Astrocytes **** <0.0001 

Aß1-42:ax0112-Astrocytes vs. Aß1-40:ax0112-Astrocytes *** 0.0007 

Aß1-40:ax0018-Astrocytes vs. Aß1-40:ax0112-Astrocytes **** <0.0001 

  

 

 

    

 

 

 

 

 

 

 

 

 

 

 

Figure A27: Comparisons of Aβ peptide profile released from astrocytic cells (Fig. 4.10) 

following astrocytes differentiation methods of cell lines: fAD patient cell line (ax0112) 

versus ‘healthy’ control cell line (ax0018). Data is expressed as Aβ concentration pg/mg 

total cellular protein, ± SEM, n=3 (triplicate wells pooled for each run). The statistical 

analysis was done using Two-way ANOVA, Tukey's multiple comparisons test. 
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Comparisons             Significant P Value 

SP-differentiation:ax0018 vs. SP-differentiation:ax00112 ns 0.6532 

SP-differentiation:ax0018 vs. SY-differentiation:ax0018 ns >0.9999 

SP-differentiation:ax0018 vs. SY-differentiation:ax00112 * 0.0137 

SP-differentiation:ax00112 vs. SY-differentiation:ax0018 ns 0.5130 

SP-differentiation:ax00112 vs. SY-differentiation:ax00112 ** 0.0021 

SY-differentiation:ax0018 vs. SY-differentiation:ax00112 * 0.0189 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A28: Comparisons of glucose uptake by hiPSC-derived neural cells from fAD patient 

and ‘healthy’ control neural cells using SP and SY differentiation methods (Fig. 4.11). Data 

is expressed as Aβ concentration pg/mg total cellular protein, ± SEM, n=3 (triplicate wells 

pooled for each run). The statistical analysis was done using One-way ANOVA, Sidak's 

multiple comparisons test. 

 

 

 


