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Abstract 

With the applications of blockchain technology in various fields, the research on blockchain has 

attracted much attention. Different from the researches focusing on specific applications of blockchain 

technology in a certain field, this study devotes to capturing the attitudes of investors regarding different 

risk criteria in blockchain technology investment decision making. We use personalized quantifiers to 

extract investors’ preferences on each risk evaluation criterion. At present, the personalized quantifier 

that can reflect individual attitudes and behavior intentions have been fitted by various functions, but 

there are still limitations. In this regard, this paper introduces a cubic spline interpolation function to fit 

the personalized quantifier, and addresses the consistency of the personalized quantifier in the ordered 

weighted averaging aggregation. Moreover, we employ a qualitative information representation model 

called probabilistic linguistic term sets to express decision-makers' evaluations on each criterion. We 

give a case study to illustrate the usability of the proposed personalized quantifier in blockchain risk 

evaluation. The comparative analysis with other four types of personalized quantifiers shows that our 

proposed personalized quantifier with cubic spline interpolation has ideal geometric characteristics in 

terms of smooth curve and high fitting accuracy, thus having strong applicability. Further, we show that 

this method is relatively easy to operate. 

Keywords: Information representation of blockchain; Blockchain technology investment; risk 

evaluation; personalized quantifier; cubic spline interpolation; probabilistic linguistic information 

1   Introduction 

Because of the multiple advantages in terms of dispersion, persistence, anonymity and auditability, the 
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blockchain technique has been widely applied in various fields such as finance, logistics, public service, 

insurance, medical treatment, and digital copyright (Zheng et al., 2018; Yang, 2019). However, most of 

the current researches focused on specific applications of blockchain technology in a certain field, while 

few researches paid attention to the decision-making problems related to the blockchain technology. In 

this respect, Bai and Sarkis (2020) proposed a hybrid group decision-making method based on hesitant 

fuzzy sets and the regret theory to evaluate the applicability of the blockchain technology in the field of 

supply chain. Different from this decision-making problem, to increase the possibility of social 

investment in blockchain technology in various fields so as to promote the development of the 

blockchain technology, this paper takes the position of investors to carry out blockchain risk evaluation 

and select the low-risk fields according to the attitudinal characteristics of investors. 

For such a decision-making problem, how to aggregate the information regarding the performance 

of applying the blockchain technology in various fields under various risk criteria is the key to solve 

this problem. The ordered weighted averaging (OWA) operator proposed by Yager (1988) is a popular 

aggregation method in which a weight vector is associated with specific ordered positions instead of 

specific elements. Among various methods to determine the weight vector of the OWA operator, the 

quantifier-guided method has been widely studied (Yager, 1993; Yager, 1996; Yager, 2004; Liu, 2006; 

Zhou and Chen, 2011). However, as Guo (2014) pointed out, most quantifiers used in these researches 

were parametric quantifiers with pre-determined parameter values, which cannot reasonably reflect the 

attitude characteristics of all decision-makers. In a decision-making process, if the selected quantifier 

is not suitable for the decision-maker, it may lead to an unreliable aggregation value. To solve this 

problem, Guo (2014) proposed the personalized quantifier which is closely associated with a specific 

person and could be used as a tool to investigate and formalize the person’s decision attitude and 

behavior intention. In that study, the personalized quantifier was described as a piecewise linear 

function. However, the curve of the personalized quantifier fitted by the piecewise linear interpolation 

is rigid around the connection point, which leads to its smoothness and interpretability not high. Hence, 

Guo (2016) further adopted Bernstein polynomials to denote the personalized quantifier. Compared 

with the personalized quantifier with piecewise linear interpolation, the personalized quantifier with 

Bernstein polynomials improves the geometrical characteristics of the corresponding curve and the 

operability of the quantifier. Nevertheless, the higher-order polynomial interpolation is easy to produce 

Runge phenomenon, that is, a sharp oscillation occurs on the boundary of an interpolation interval. As 

a higher-order polynomial, the curve fitted by Bernstein polynomials is prone to errors to some extent. 

Furthermore, the interpolation condition within the unit interval cannot be satisfied by this personalized 

quantifier. To avoid the limitations of the above two types of personalized quantifiers simultaneously, 

Guo (2018) combined the Bernstein polynomials with an interpolation spline to generate a personalized 

quantifier which satisfies the interpolation condition and accelerates the global convergence. 

Deficiently, its operation procedure is complex and not suitable for the situation that the personalized 
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quantifier needs to be generated based on a large number of alternative information.  

In this sense, the current study aims to further investigate the personalized quantifier to bridge the 

above challenges. Motivated by the idea of using the cubic spline interpolation to depict functions in 

the research of Sobrie et al. (2019), in this study, we introduce the cubic spline interpolation function 

to fit the personalized quantifier. The cubic spline interpolation function is one of the commonly used 

curve characterization methods due to its advantages such as simple construction, convenient use and 

precise fitting. The proposed approach produces the same effect as the polynomial interpolation, but its 

advantage is that also overcomes the oscillation phenomenon that may occur in higher-order polynomial 

interpolation.  

In addition, in generating the personalized quantifiers regarding personal preferences, the 

subjective expectations provided by decision-makers play an important role. Many relevant literature 

(Guo, 2014; 2016; 2018) formed personal expectations on criteria of decision-makers with crisp values. 

However, for the problems with complexity and uncertainty, such as the risk assessment, it is difficult 

for decision-makers to express their subjective expectations by providing specific values directly. 

Compared with crisp values, language is a better way to express human cognition. In this respect, the 

probabilistic linguistic terms set (PLTS, Pang et al., 2016) is a powerful tool to describe linguistic 

evaluations by assigning the corresponding probability of each possible linguistic term. Hence, in this 

study, the PLTS is used for decision-makers to express their subjective expectations on criteria easily 

and accurately. 

In summary, the innovations of this study are highlighted as follows: 

1. We introduce a cubic spline interpolation function to depict the personalized quantifiers of 

decision-makers. The personalized quantifier with cubic spline interpolation can not only satisfy 

the interpolation condition within a unit interval, but also maintain the smoothness and 

interpretability of the fitted curve, and thus can be easily understood and operated; 

2. We use PLTSs to express the subjective expectations of decision-makers for the generation of 

personalized quantifiers, which is more accurate and reliable than using crisp values; 

3. Based on the personalized quantifier with cubic spline interpolation, we carry out an investment 

risk evaluation of applying the blockchain technology in various fields, and then outstand the 

advantages of the proposed personalized quantifier by comparative analysis. 

The framework of this study is arranged as follows: Section 2 briefly reviews the relevant 

knowledge. Section 3 introduces the cubic spline interpolation function to generate the personalized 

quantifier. Section 4 gives a case study to demonstrate the application of the proposed personalized 

quantifier in blockchain risk evaluation. Section 5 makes comparative analysis to highlight the 

advantages of the proposed personalized quantifier. Section 6 summarizes the research results of this 
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study and future research directions. 

2   Preliminaries 

This section reviews the relevant knowledge of the PLTS, cubic spline interpolation function and 

quantifier-guided OWA operator. 

2.1   Probabilistic linguistic term set 

The PLTS was presented by Pang et al. (2016) to express human cognition by a set of ordered and 

continuous linguistic terms and the importance of each linguistic term is distinguished by assigning the 

corresponding probability to each linguistic term. Suppose that  | 0,1 ,S s  = =   is a given 

linguistic term set. A PLTS can be defined as:  ( ) ( ) ( ) ( ) ( )

1
( ) ( ) | , 0, 1,2, , 1

Ee e e e e

S e
L p s p s S p e E p  =

=   =  , 

in which ( ) ( )( )e es p
  represents the e  th linguistic term ( )es   connected with ( )ep  , and E  

represents the number of linguistic terms in ( )SL p .  

To achieve the handy calculation among PLTSs, Pang et al. (2016) defined a calculation formula 

based on the subscripts of linguistic terms to get the score of a PLTS. However, this kind of calculation 

method may cause the operation values to exceed the bounds of the given linguistic term set (Liao et 

al., 2019; Wu and Liao, 2019). In contrast, the calculation method based on linguistic scale functions 

may be more reasonable. Hence, this paper applies the calculation method based on linguistic scale 

functions defined by Wu and Liao (2019) to convert PLTSs into expectative values within the interval 

[0, 1]. If we suppose the semantics of linguistic terms corresponding to the linguistic scale function are 

uniformly distributed, then the expectative value function of a PLTS is (Wu and Liao, 2019): 

 
( )

( ) ( )

1 1
( ( )) ( ) /

e
E Ee e

S e e
EV L p p p



= =
=                             (1) 

2.2   Cubic spline interpolation function 

A cubic spline interpolation function consists of a set of cubic polynomials with continuous second 

derivative over the entire interval (Sobrie et al., 2019).  

Definition 1. Let the domain of ( )f x  lie in the interval [a, b], and the values of the function at the 

given 1m+  connection point 
ix ( 1, 2, ,i m= ) are ( )if x . If there is a function ( )Y x  satisfying: 

1. It is a cubic polynomial on each interval 
1[ , ]i ix x +

( 1, 2, ,i m= ), 

2. ( ) ( )i iY x f x= ( 1, 2, ,i m= ) on each connection point, 

3. The second derivative continues on the interval [a, b], that is, ( )Y x  , ' ( )Y x   and '' ( )Y x   are 
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continuous on the interval [a, b]. 

Then, ( )Y x  is called a cubic spline interpolation function. In addition, '' ''

0( ) ( ) 0mY x Y x= =  is called 

the natural boundary condition, and the cubic spline interpolation function satisfying the natural 

boundary condition is called the natural spline interpolation function. 

Let ( ) ( )i iY x f x= , 
1i i iv x x −= − . Then, 

3 3
2 21 1 1

1 1

( ) ( ) ( ) ( )
( ) ( ( ) ) ( ( ) )

6 6 6 6

i i i i i i
i i i i i i

i i i i

x x x x P x x P x x
Y x P P f x v f x v

v v v v

− − −
− −

− − − −
= + + − + − ,  

1[ , ]i ix x x− 1, 2, ,i m=                             (2) 

In this function, the system of equations determining the coefficients 0 1, , , mP P P  is 

1 12i i i i i iP P P h − ++ + = , 0 i m                                (3) 

where 
1

i
i

i i

v

v v


+

=
+

, 1

1

1i
i i

i i

v

v v
 +

+

= = −
+

, and 1 1

1 1 1

( ) ( ) ( ) ( )6
( )i i i i

i

i i i i i i

f x f x f x f x
h

v v x x x x

+ −

+ + −

− −
= −

+ − −
.  

This is a system of linear equations with 1m +  unknowns and 1m −  equations. To determine 

the values of 0 1, , , mP P P  completely, we need to supplement it according to the boundary conditions 

at two end points of the interval [a, b]. For the sake of generality, we take the boundary condition as the 

natural boundary condition in this paper, that is, 0 0mP P= = . 

2.3   Quantifier guided OWA aggregation 

In many multi-criteria decision-making methods, the solution of a problem is required to perform as 

good as possible under most criteria. But, in fact, a decision-maker may have a specific expectation for 

the performance of an alternative under a criterion. Only if the solution of a problem reaches the 

expectation values under most criteria, the solution may satisfy the decision-maker. In this respect, 

Yager (1988) proposed the OWA operator guided by quantifiers. Since then, the close relationship 

between OWA operators and linguistic quantifiers have been studied (Yager, 1993). This was further 

extended by Yager (1996) to the applications of fuzzy sets to represent linguistic quantifiers in order to 

calculate the weight vector of an OWA operator. Yager (2004) used quantifiers to capture the attitude 

characteristics of decision-makers so as to determine the weight vector and aggregate information in a 

continuous interval form. Liu (2006) proposed two kinds of parameterized quantifiers with an 

exponential function and a piecewise linear function, respectively. Amin and Emrouznejad (2011) 

proposed a parametric OWA operator while Zhou and Chen (2011) employed quantifiers to derive the 

weight vector of a continuous generalized OWA operator. Jin et al. (2019) derived the weight vector 

for the data without clear linear order through the idea of quantifiers. In these studies, decision-makers 

provided a quantifier Q  to express the proportion of each criterion required for a good solution, which 
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showed the role of the quantifier Q  in determining the weight vector of an OWA operator. For a 

survey of OWA applications, please see Emrouznejad and Marra (2014). 

The mathematical explanation of an OWA aggregation guided by quantifiers is as follows: 

Consider a set of criteria 
1 2, , , , ,j nc c c c  with a weight vector 

1 2( , , , , , )T

j nw w w w  

satisfying [0,1]jw  , 
1

1
n

jj
w

=
= . An OWA operator can be expressed as:  

1 2 1
ˆ( , , , , , )

n

OWA j n j jj
F c c c c w c

=
=                            (4) 

where ˆ
jc  represents the j th largest value of all the criteria. Since the weight vector can be generated 

by the quantifier Q  provided by the decision-maker, the OWA operator can also be expressed as: 

1 2 1

1
ˆ( , , , , , ) ( ( ) ( ))

n

OWA j n jj

j j
F c c c c Q Q c

n n=

−
= − ,                    (5) 

where 

1
( ) ( )j

j j
w Q Q

n n

−
= −  for 1, 2, ,j n= .                        (6) 

Yager (1996) argued that the regular increasing monotone (RIM) quantifiers are the basis of other 

types of quantifiers. Accordingly, other types of quantifiers can be transformed by the RIM quantifiers, 

hence, in this paper, we focus on the RIM quantifiers which satisfy (0) 0Q = , (1) 1Q = , and if a b  

then ( ) ( )Q a Q b . 

3   Personalized quantifier with cubic spline interpolation 

In this section, we introduce a generation process of the personalized quantifier with cubic spline 

function and illustrate its applications. 

3.1   The generation of the personalized quantifier with cubic spline interpolation 

The creation of personalized quantifier is based on the information extracted from specific people about 

their decision-making attitudes or behavior intentions. For a multi-criteria decision-making problem 

with m  alternatives and n  criteria, it is necessary to extract the corresponding decision attitude 

from the probabilistic linguistic evaluation information provided by the decision-maker to construct the 

personalized quantifier associate with the decision-maker. In this regard, the following work can be 

carried out:  

According to the given linguistic term set, the decision-maker gives the probabilistic linguistic 

evaluation information to m alternatives under each criterion, and then a probabilistic linguistic decision 

matrix corresponding to the decision-maker can be constructed as: 
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11 12 1 1

21 22 2 2

1 2

1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j n

S S S S

j n

S S S S

i i ij in

S S S S

m m mj mn

S S S S

L p L p L p L p

L p L p L p L p

L p L p L p L p

L p L p L p L p

 
 
 
 
 
 
 
 
  

 

where ( )ij

SL p  represents the PLTS of the i th alternative under the j th criterion. Afterwards, the 

decision-maker needs to provide subjective expectations in the form of PLTSs for each criterion, 

1 2ˆ ˆ ˆ ˆ( ), ( ), , ( ), , ( )j n

S S S SL p L p L p L p . By Eq. (1), we can calculate the expectation values of all elements in 

the probabilistic linguistic decision matrix ( ( ))ij

SEV L p  ( 1, 2, ,i m=  , 1, 2, ,j n=  ) and the subjective 

expectations provided by the decision-maker, ˆ( ( ))j

SEV L p ( 1, 2, ,j n= ).  

According to the constrained non-linear optimization model established by Guo (2014) to 

minimize the total distance between the evaluation values of alternatives under each criterion and the 

subjection expectations, the attitudinal weight vector 
1 2( , , , )T

mAW AW AW   can be calculated as 

follows: 

2

1 1 2

1

1

1ˆ( ( ( )) ( ( )))
ˆ( ( ( )) ( ( )))

i
n mij j

S S nj k kj j

S Sj

AW

EV L p EV L p
EV L p EV L p

= =

=

=

−
−

 


, for 1, 2, ,i m=        (7) 

where 
1

1
m

ii
AW

=
=  and 0iAW  ( 1, 2, ,i m= ). 

The attitudinal weight vector can be regarded as the weight vector generated by the quantifiers. 

According to Eq. (7), the personalized quantifier about the decision-maker can be obtained by: 

1
( )

i

kk

i
Q AW

m =
= , 1, 2, ,i m=                            (8) 

Based on these values, we can fit a smooth and continuous function by the cubic spline 

interpolation to express the personalized quantifier: 

3 3
' '

' ' 1
1 2 2

1
( ) ( )

1 1
( ) ( ( ) )( ) ( ( ) )( )

6 6 6 6

i i
i i

i i
x x

P Pi i i im mQ x mP mP m Q x m Q x
m m m m m m

−
−

−
− −

− −
= + + − − + − − , 

1
[ , ]
i i

x
m m

−
                                        (9) 

where 1, 2, ,i m= , and the system of equations determining the coefficients 
' ' '

0 1, , , mP P P  is 

' ' ' '

1 1

1 1
2

2 2
i i i iP P P h− ++ + = , 0 i m                              (10)  
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where ' 2 1 1
3 ( ( ) 2 ( ) ( ))i

i i i
h m Q Q Q

m m m

+ −
= − +  and 

' '

0 0mP P= = .  

3.2   Applications of the personalized quantifier 

Based on the personalized quantifier generated in the previous section, we can apply them in two 

aspects: (1) the weight vector in the OWA operator can be derived. According to the aggregation results, 

we can evaluate, classify or rank a number of alternatives for such a decision-making problem. 

Particularly, after the personalized quantifier generated, if the numbers of criteria and alternatives in the 

decision-making problem change, the weight of each criterion can be deduced according to the 

generated quantifiers, instead of regenerating the quantifiers. In this sense, compared with the method 

of determining the weights of criteria based on pairwise comparisons, personalized quantifiers not only 

need less information from decision makers, but also have higher flexibility and efficiency. (2) The 

attitude characteristics (AC) of decision makers can be captured. We can get the AC value of a decision-

maker according to the total area of the personalized quantifier in each interval, where 

1

110

3 3
' '

' ' '2 '21
1 1 ' ' ' '1

' '

4 41

1 1 1

( ) ( )

1 1
( ) ( ) ( ) ( )

1
[ ( ( ) ) ( ( ) ) ]

6 66 6

1 1 1
[ ( ( ) ) ( ( ) )

6 4 6 4

−=

−
− −=

−

= − −

= =

− −
− − − −

−
= + + − + −

−
= − − + − +

 

 



i
m

m
ii ii
m

i
m i im

i i i i ii
i i i im

i i

m mm i i

i i i

m m

AC Q x dx Q x dx

i i i i
x x x x

P Pi im m m mP P Q v Q v dx
m mv v v v

mP mPi i
x x m

m m

'

21

2
1

'

2

2
1

' '

1

31

1 '

31 1

1 1
( ( ) ) ( ( ) )

26

1 1
( ( ) ) ( ( ) ) ]

26

1 1
[ ( ( ) ( )) ]
2 24

1 1 1
1

2 12

−

−

−

−

=

−

= =

−
− − −

−
+ − −

+−
= + −

= − + −



 

i

m
i

i

m

i

m
i

i

m

m i i

i

m m

i ii i

Pi i
Q x

m mm

Pi i
m Q x

m mm

P Pi i
Q Q

m m m m

iAW P
m m m

            

(11) 

According to the value of AC, we can divide the decision-making attitudes of decision-makers into 

several pre-set categories. For example, if the decision-making attitude of a decision-maker is supposed 

to be divided into three categories, negative, neutral and positive, in advance, then referring to the idea 

that each category is evenly distributed in the interval [0,1], the decision-making attitude with the AC 

value in [0,0.33] can be classified as negative, the decision-making attitude with the AC value in 

[0.34,0.66] can be classified as neutral, and the decision-making attitude with the AC value in [0.67,1] 

can be classified as positive. Decision-makers with positive attitude think that the performance of 

alternatives is better at a higher level, decision-makers with neutral attitude think that the performance 

of alternatives is better at a medium level, and those with negative attitude think that the performance 
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of alternatives is better at a lower level. 

Furthermore, in the case of large-scale group decision making (Tang & Liao, 2021), we classify 

the decision-makers according to the attitude characteristic of each decision-maker, and assign 

corresponding weights to different types of decision-makers. For example, if the performance value of 

an alternative is considered to be the larger the better, then, the decision-makers with positive attitude 

will be assigned higher weights, and those with negative attitude will be assigned lower weights. 

3.3   The consistency of the OWA aggregation derived by Q  

To prove the applicability of the personalized quantifier with the cubic spline interpolation in OWA 

aggregation, we test the consistency of the OWA aggregation guided by the personalized quantifier. The 

content of the test is inspired by Guo (2016). 

Let Q  and 'Q  be two personalized quantifiers with the cubic spline interpolation deduced from 

the attitudinal weight vectors 1 2( , , , )T

mAW AW AW AW=   and 
' ' '

1 2' ( , , , )T

mAW AW AW AW=  . In 

Eq. (11) on the calculation of AC , since the value of 
1 '

3 1

1

12

m

ii
P

m

−

=  is small, the default value of it is 

close to 0 here (the calculation of 'AC   value is the same). For AW   and 'AW  , let 

1
( / )

i

kk
Q i m AW

=
=   and '

1
'( / )

i

kk
Q i m AW

=
=   ( 1, 2, ,i m=  ). OWAF   and 

'

OWAF   are the OWA 

operators guided by Q  and 'Q , respectively. 

Theorem 1. If ''Q   is deduced from 1 1'' ( , , , )T

m mAW AW AW AW−=   (the reverse order of AW  ), 

then, the attitudinal characteristic related to ''Q  is: '' 1AC AC= − . 

Proof. Similar to that of the Theorem 1 in Guo (2014). 

 

Theorem 2. If ( / ) '( / )Q i m Q i m , then: 1) ( ) '( )Q x Q x ( [0,1]x ); 2) 'AC AC ; 3) 
'

OWA OWAF F . 

Proof. First, according to Eq. (9), ( )Q x  increases with the increase of (( 1) / )Q i m−  and ( / )Q i m . 

Similarly, '( )Q x   increases with the increase of '(( 1) / )Q i m−   and '( / )Q i m  . Since 

( / ) '( / )Q i m Q i m  which represents ( 1/ ) '( 1/ )Q i m Q i m−  − , we can derive ( ) '( )Q x Q x . 

Secondly, according to Eq. (11), 
' '

1

31

1 1
[ ( ( ) ( )) ]
2 24

m i i

i

P Pi i
AC Q Q

m m m m

−

=

+−
= + −  . Since 

' '

1

324

i iP P

m

− +
 

1 '

3 1

1
0

12

m

ii
P

m

−

=
=   , 

1

1 1
[ ( ( ) ( ))]
2

m

i

i i
AC Q Q

m m m=

−
= +  . Similarly, 

1

1 1
' [ ( '( ) '( ))]

2

m

i

i i
AC Q Q

m m m=

−
= +  . ( 1/ ) '( 1/ )Q i m Q i m−  −   can be derived by 
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( / ) '( / )Q i m Q i m  , which can further derive 

1 1

1 1 1 1
[ ( ( ) ( ))] [ ( '( ) '( ))]
2 2

m m

i i

i i i i
Q Q Q Q

m m m m m m= =

− −
+  +  . Thus, we can deduce ( ) '( )Q x Q x . 

Finally, Similar to that of the first point of Theorem 2 in Guo (2016). 

 

Theorem 3. If ( ) '( )Q x Q x ( [0,1]x ), then: 1) 
'

OWA OWAF F ; 2) 'AC AC . 

Proof. First, Since ( ) '( )Q x Q x  , [0,1]x   , we have 
1 1

( ) ( ) '( ) '( )
j j j j

Q Q Q Q
n n n n

− −
−  −

( 1, 2, ,j n= ), which represents   
1 1

1 1
ˆ ˆ( ( ) ( )) ( '( ) '( ))

n n

j jj j

j j j j
Q Q c Q Q c

n n n n= =

− −
− = −  , where ˆ

jc  

is a non-negative value. According to Eq. (5), we can deduce 
'

OWA OWAF F .  

Secondly, It is obvious that ( / ) '( / )Q i m Q i m   derived by ( ) '( )Q x Q x  ( [0,1]x  ). Then, 

'AC AC  can be obtained based on Theorem 2. 

 

Theorem 4. If 
'

OWA OWAF F , then ( ) '( )Q x Q x ( [0,1]x ). 

Proof. Similar to that of Theorem 5 in Guo (2016). 

 

Theorem 5. If 
' '

u v u vAW AW AW AW  for any v u ( , 1, 2, ,v u m= ), then ( / ) '( / )Q i m Q i m . 

Proof. Similar to that of Theorem 2 in Liu and Han (2008). 

 

Theorem 6. If ' '

1 1j j j jAW AW AW AW+ +−  −  for any 1, 2, , 1j m= − , then ( / ) '( / )Q i m Q i m . 

Proof. Similar to that of Theorem 3 in Liu and Han (2008). 

4   Case study: Blockchain risk evaluation 

In this section, a case study on the blockchain risk evaluation is given to illustrate the applicability of 

the personalized quantifier with the cubic spline interpolation. The influence of initial information 

change on the decision results is also considered. 

4.1   Case description 

Blockchain represents a different paradigm of transaction and record handling, which is mainly used to 

promote authentication and trust between various entities (Berdik, 2021). From the perspective of 

application, blockchain is a distributed shared ledger and database, which has the characteristics of 

decentralization, tamper-resistant, immutability, whole process trace, traceability, collective 
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maintenance, openness and transparency. These characteristics enable the blockchain to solve the 

problem of information asymmetry and realize the cooperative trust and concerted action among 

multiple agents. In recent years, more and more attention has been paid to the blockchain technology, 

and the blockchain technique has been widely used in many fields. For example, Li et al. (2020) utilized 

the blockchain technique to develop a novel public auditing scheme for verifying data integrity in cloud 

storage; Zhao et al. (2020) used the blockchain technique to construct a novel privacy-preserving remote 

data integrity checking scheme for an Internet of Things information management system; Chen et al. 

(2020) applied the blockchain technology to determine the integrity of fake news; Baniata et al. (2021) 

combined the blockchain technology with fog computing to establish a task scheduling model.  

At present, the investment capital of blockchain is gradually rising, and the investment density is 

increasing. The capital supply of investment side is expected to promote the further development of the 

blockchain technology. Nevertheless, the risks confronted with the applications of the blockchain 

technology in various fields are different. Investors may face such a decision-making problem: how to 

evaluate the risks confronted with the applications of the blockchain technology in various fields and 

choose the field with the lowest investment risk to invest. In the process of solving such a decision-

making problem, it may be necessary to capture the attitude characteristics of decision-makers to ensure 

the reliability of decision-making results. 

Suppose an investor intends to invest in the application of blockchain technology in a certain field. 

The candidate fields are finance, logistics, public service, insurance, medical treatment and digital 

copyright, represented as 
1A  ,

2A  ,
3A  ,

4A  ,
5A  ,

6A  , respectively. The risk evaluation criteria for the 

applications of blockchain technology are lack of return on investment (
1c ), lack of business value 

(
2c ), inadequate understanding of potential technology (

3c ) and unsustainable usage scenarios (
4c ) 

(Drljevic et al., 2019). A linguistic term set for blockchain risk evaluation is given as 
0{ : ,s extremely high

1 2 3 4 5 6 7 8: : , : , : , : , : , : , }, :s very high s high s slightly high s medium s slightly low s low s very low s extremely low . 

4.2   Solve the problem by personalized quantifier with cubic spline interpolation 

First, the investor gives the subjective expectation information in form of PLTSs for the four criteria, 

 1

7 8
ˆ ( ) (0.8), (0.2)SL p s s=  ,  2

6 7
ˆ ( ) (0.4), (0.6)SL p s s=  ,  3

3 4
ˆ ( ) (0.5), (0.3)SL p s s=   and 4

4
ˆ ( ) (0.2) ,=SL p s  

5 6(0.3), (0.4)s s , and provides the probabilistic linguistic evaluation information for each field under 

each criterion according to the given linguistic term set. The probabilistic linguistic evaluation matrix 

for the problem is formed as: 
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       

       

       

1 2 3 4

4 5 6 7 3 4 6 7 8
1

5 6 7 2 3 4 5
2

5 6 7 8 4 5 33

4 6

5

6

(0.2), (0.3), (0.4) (0.7) (0.6), (0.3) (0.4), (0.3), (0.2)

(0.6) (0.3), (0.5) (0.5), (0.5) (0.3), (0.6)

(0.5), (0.5) (0.4), (0.2) (0.7), (0.2) (0.8)

(0.2),

c c c c

s s s s s s s s sA

s s s s s s sA

s s s s s s sA

A s

A

A

       

       

       

7 8 4 5 2 4 5

6 7 5 6 1 2 3

6 5 6 7 1 2 5 6

(0.5), (0.1) (0.3), (0.4) (0.8) (0.5), (0.3)

(0.4), (0.3) (0.2), (0.6) (0.6) (0.7), (0.3)

(0.8) (0.1), (0.3), (0.4) (0.5), (0.5) (0.6), (0.4)

s s s s s s s

s s s s s s s

s s s s s s s s

 
 
 
 
 
 
 
 
 
  

 

By Eq. (1), the expected values of these probabilistic linguistic information are calculated as 

follows: 

1̂( ( ))SEV L p = 0.900, 2ˆ( ( ))SEV L p = 0.825, 3̂( ( ))SEV L p = 0.422, 4ˆ( ( ))SEV L p = 0.653. 

0.653 0.875 0.417 0.847

0.625 0.828 0.313 0.583

0.688 0.917 0.528 0.375

0.859 0.571 0.250 0.547

0.804 0.719 0.125 0.288

0.750 0.797 0.188 0.675

 
 
 
 
 
 
 
 
  

 

Suppose that we take the evaluation information of the first five fields as the data information for 

generating the personalized quantifier of the investor. The decision matrix can be obtained by 

rearranging the values under each criterion in descending order: 

0.859 0.917 0.528 0.847

0.804 0.875 0.417 0.583

0.688 0.828 0.313 0.547

0.653 0.719 0.250 0.375

0.625 0.571 0.125 0.288

 
 
 
 
 
 
 
 

 

By Eq. (7), we can derive the attitudinal weight vector (0.169, 0.600, 0.147, 0.056, 0.028)T. Then, 

based on Eq. (8), the values with respect to the personalized quantifier can be obtained as 
1(0)Q = 0, 

1

1
( )
5

Q = 0.169, 1

2
( )
5

Q = 0.769, 1

3
( )
5

Q = 0.916, 1

4
( )
5

Q = 0.972 and 
1(1)Q = 1. The function values of the 

personalized quantifier with cubic spline interpolation are displayed in Table 1. 

Table 1. The function values of the personalized quantifier 

 0x  
1x  

2x  
3x  

4x  
5x  

ix  0 0.2 0.4 0.6 0.8 1 

1( )iQ x  0 0.169 0.769 0.916 0.972 1 

To fit the corresponding cubic spline interpolation function, we need to establish a system of 

equations to obtain the coefficient values in the interpolation function. By Eq. (3), we can calculate that 

'

i  = '

i  = 0.5 ( 1, 2, 3, 4, 5i =  ), '

1h  = 32.325, '

2h  = -33.975, '

3h  = -6.825 and '

4h  = -2.1. So, the 
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established equations are as follows: 

' '

1 2

' ' '

1 2 3

' ' '

2 3 4

' '

3 4

2 0.5 32.325

0.5 2 0.5 33.975

0.5 2 0.5 6.825

0.5 2 2.1

P P

P P P

P P P

P P

 + =


+ + = −


+ + = −


+ = −

 

Solving this system of equations, we can get that '

1P = 21.959, '

2P = -23.183, '

3P = 2.824 and '

4P

= -1.231. Taking these values into Eq. (2), the personalized quantifier with cubic spline interpolation 

function about the investor can be generated as: 

3

3 2

3 2
1

3 2

3 2

18.299 0.113 , 0 0.2

37.618 33.550 6.597 0.447 , 0.2 0.4

( ) 21.672 37.598 21.862 3.347 , 0.4 0.6

3.379 7.494 5.211 2.075 , 0.6 0.8

1.026 3.078 3.177 0.125 , 0.8 1

x x x

x x x x

Q x x x x x

x x x x

x x x x

 +  

− + − +  


=  − + −  

− + − +  

 − + −  

 

This personalized quantifier can be plotted as Fig. 1. According to this personalized quantifier 

and Eq. (6), the weights of five criteria used for the OWA aggregation can be derived as follows: 

1 1 1 1

1
( ) (0) (0.25) 0 0.307= − = − =w Q Q Q
n

, 

2 1 1 1 1

2 1
( ) ( ) (0.5) (0.25) 0.893 0.307 0.586= − = − = − =w Q Q Q Q
n n

, 

3 1 1 1 1

3 2
( ) ( ) (0.75) (0.5) 0.957 0.893 0.064= − = − = − =w Q Q Q Q
n n

, 

4 1 1 1 1

4 3
( ) ( ) (1) (0.75) 1 0.957 0.043= − = − = − =w Q Q Q Q
n n

. 

Then, the OWA aggregation values of all alternatives can be derived by Eq. (5): (1)

1( )OWAF A  = 0.825, 

(1)

2( )OWAF A  = 0.671, (1)

3( )OWAF A  = 0.735, (1)

4( )OWAF A  = 0.644, (1)

5( )OWAF A  = 0.692, (1)

6( )OWAF A  = 0.735. Thus, the 

ranking of these fields under the guidance of the subjective expectation of the investor is 

1 6 3 5 2 4    A A A A A A , which implies that the field with the lowest risk is finance. 
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Fig. 1. The personalized quantifier based on the information of the first five fields 

In addition, the AC value with regard to the personalized quantifier can be calculated by Eq. (11). 

The result is 
1 '

1 31 1

1 1 1
1 0.665

2 12

m m

i ii i
AC iAW P

m m m

−

= =
= − + − =   . If we divide the decision-making 

attitudes into three categories: negative, neutral and positive, then, the investment attitude of the 

investor is classified as neutral. The above results show that the investors should invest more in the 

applications of the blockchain technology in the financial field under the guidance of the decision-

making attitude of preferring the alternative with medium risk. 

4.3   Sensitive analysis 

Below we make sensitive analysis about the above decision-making process. 

Adding an evaluation criterion 

Suppose that we add another risk evaluation criterion, namely, the inadequate personal privacy 

protection (
5c  ). The probabilistic linguistic evaluation information of each alternative under this 

criterion is also provided by the investor and expressed as  15

5 6( ) (0.4), (0.5)SL p s s= ,  25

7( ) (0.8)SL p s= , 

 35

6 7( ) (0.6), (0.3)SL p s s=  ,  45

4 5 6( ) (0.2), (0.3), (0.4)SL p s s s=  ,  55

5 6( ) (0.6), (0.4)SL p s s=   and 

 65

6( ) (0.7)SL p s= , respectively. By Eq. (1), we can calculate the expected value of these information as 

15( ( ))SEV L p = 0.694, 25( ( ))SEV L p = 0.875, 35( ( ))SEV L p = 0.792, 45( ( ))SEV L p = 0.653, 55( ( ))SEV L p = 0.675 

and 65( ( ))SEV L p = 0.75. According to the personalized quantifier 
1( )Q x  and Eq. (6), we can derive the 

weights of five criteria as 
'

1w = 0.169, 
'

2w = 0.600, 
'

3w = 0.147 and 
'

4w = 0.056, 
'

5w = 0.028. Then, the 
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OWA aggregation values of all alternatives can be calculated as: (2)

1( )OWAF A = 0.806, (2)

2( )OWAF A = 0.778, 

(2)

3( )OWAF A  = 0.771, (2)

4( )OWAF A  = 0.659, (2)

5( )OWAF A  = 0.686, (2)

6( )OWAF A  =0.738. The ranking of various fields 

under the guidance of the subjective expectations of the investor is 
1 2 3 6 5 4    A A A A A A .  

Compared with the ranking result obtained in Section 4.2, although the lowest risk field is still 

finance, the ranking of alternatives 
2A  and 

6A  has changed greatly. This means that changes in the 

number of criteria will affect the final ranking result. Fortunately, the change in the numbers of criteria 

will not lead to entire solution process being used from scratch. In the case of adding or removing 

criteria, we can still easily get a solution with stability through the personalized quantifier generated 

from a part of the information selected at the beginning. 

Changing the number of alternatives for personalized quantifier generation 

Suppose that we take the evaluation information of the first four fields as the data information for 

generating personalized quantifier about the investor. The decision matrix can be obtained by 

rearranging the values under each criterion in descending order: 

0.859 0.917 0.528 0.847

0.688 0.875 0.417 0.583

0.653 0.828 0.313 0.547

0.625 0.571 0.250 0.375

 
 
 
 
 
 

 

From Eqs. (7) and (8), we can derive the attitudinal weight vector (0.326, 0.367, 0.229, 0.078)T. 

The values with respect to the personalized quantifier can be obtained as 
2 (0)Q = 0, 2

1
( )
4

Q = 0.326, 

2

2
( )
4

Q = 0.693, 2

3
( )
4

Q = 0.922 and 
2 (1)Q = 1. The personalized quantifier associated with the investor 

can be generated by the cubic spline interpolation as: 

3

3 2

2 3 2

3 2

1.161 1.231 , 0 0.25

3.182 3.257 0.417 0.068 , 0.25 0.5
( )

0.110 1.680 2.886 0.344 , 0.5 0.75

1.911 5.733 5.926 1.104 , 0.75 1

 +  

− + + +  

= 
− + −  

 − + −  

x x x

x x x x
Q x

x x x x

x x x x

 

The geometric demonstration of this personalized quantifier is shown in Fig. 2, from which we can 

find that the personalized quantifier 
2 ( )Q x   is smoother than 

1( )Q x   presented in Section 4.2. The 

reason for this is that the personalized quantifier 
2 ( )Q x  is generated based on the smaller number of 

alternatives compared with 
1( )Q x . According to this personalized quantifier and Eq. (5), the OWA 

aggregation values of all alternatives can be derived as: (3)

1( )OWAF A = 0.778, (3)

2( )OWAF A = 0.657, (3)

3( )OWAF A = 

0.702, (3)

4( )OWAF A  = 0.634, (3)

5( )OWAF A  = 0.602, (3)

6( )OWAF A  = 0.704. The ranking of the various fields is 

1 6 3 2 4 5    A A A A A A , which is similar to the ranking derived from the personalized quantifier 
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1( )Q x , and the least risky field remains finance field. This shows that in the process of personalized 

quantifier generation, the number of alternatives may not make much difference to the final ranking 

result. In the case of a large number of alternatives, we can consider to intercept a small number of 

alternatives to generate the personalized quantifier to get the ranking of all alternatives.  

 

Fig. 2. The comparison of personalized quantifiers 
1( )Q x  and 

2 ( )Q x  

Moreover, the AC value associated with this personalized quantifier generated from four 

alternatives can be measured as 0.616. The investor's investment attitude is classified as neutral, which 

is the same as the AC value with respect to the personalized quantifier generated by five alternatives. 

This means that the change of the number of alternatives has little effect on capturing the attitude 

characteristics of decision-makers. 

5   Comparative analysis 

Based on the data in Section 4, this section compares the personalized quantifier with cubic spline 

interpolation with the personalized quantifier with piecewise linear interpolation, personalized 

quantifier with Bernstein polynomials, and personalized quantifier by Bernstein polynomials combined 

with interpolation spline, respectively. 

5.1   The personalized quantifier with piecewise linear interpolation 

The personalized quantifier with piecewise linear interpolation was proposed by Guo (2014), who used 

the following piecewise linear function to denote the personalized quantifier: 
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3 ( ) ( ) ( )= − +i

i
Q x mx i AW Q

m
, 

1
[ , ]
i i

x
m m

−
 , 0 i m   

Based on the function values of the personalized quantifier in Table 1, the personalized quantifier 

with piecewise linear interpolation can be generated as: 

3

0.845 , 0 0.2

3 0.431 , 0.2 0.4

( ) 0.735 0.475 , 0.4 0.6

0.28 0.748 , 0.6 0.8

0.14 0.86 , 0.8 1

 


−  


= +  
 +  


+  

x x

x x

Q x x x

x x

x x

 

The geometric demonstration of this personalized quantifier is shown in Fig. 3. The OWA weight 

vector is derived by this personalized quantifier and Eq. (6) as (0.319, 0.524, 0.115, 0.042)T. Then, the 

OWA aggregation values of all alternatives can be calculated as: (4)

1( )OWAF A = 0.816, (4)

2( )OWAF A = 0.672, 

(4)

3( )OWAF A  = 0.730, (4)

4( )OWAF A  = 0.647, (4)

5( )OWAF A  = 0.672, (4)

6( )OWAF A  = 0.733. The ranking result can be 

obtained as 
1 6 3 5 2 4    A A A A A A , which is the same as the result derived from the personalized 

quantifier with cubic spline interpolation 
1( )Q x . Furthermore, we compute the AC value associated 

with this personalized quantifier as: 

1

3 10

1 1
( ) 1 0.665

2=
= = − + =

m

i ii
AC Q x dx iAW

m m
. 

This value is the same as the AC value corresponding to the personalized quantifier with cubic 

spline interpolation, and it is also classified as neutral. However, from Fig. 3, we can find that the curve 

of the personalized quantifier 
3 ( )Q x  is rigid at the connection point and thus its interpretability is not 

high. By contrast, the curve of the proposed personalized quantifier 
1( )Q x  is smoother. 

5.2   The personalized quantifier with Bernstein polynomials 

The personalized quantifier with Bernstein polynomials was introduced by Guo (2016), who applied 

the following Bernstein polynomials to represent the personalized quantifier to improve the geometrical 

characteristics of the personalized quantifier denoted by the piecewise linear function: 

4 0
( ) ( ) (1 ) , 0 1−

=
= −  

m i i m i

mi

i
Q x Q C x x x

m
, 0 i m   

Based on the function values of the personalized quantifier in Table 1, the personalized quantifier 

with piecewise linear interpolation can be generated as: 

5 4 3 2

4 ( ) 1.545 6.23 8.84 4.31 0.845 , 0 1= − + − + +  Q x x x x x x x  

The geometric demonstration of this personalized quantifier is shown in Fig. 3. It is clear to see 

from this figure that the smoothness of the function image is improved. By this personalized quantifier 
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and Eq. (6), the OWA weight vector can be derived as (0.365, 0.371, 0.197, 0.067)T, and the OWA 

aggregation value of each alternative can be calculated as: (5)

1( )OWAF A = 0.790, (5)

2( )OWAF A = 0.670, (5)

3( )OWAF A

= 0.719, (5)

4( )OWAF A  = 0.650, (5)

5( )OWAF A  = 0.625, (5)

6( )OWAF A  = 0.715. The ranking result 

1 3 6 2 4 5    A A A A A A   can be obtained, which is different from the result derived by the 

personalized quantifier with cubic spline interpolation 
1( )Q x  . Moreover, the AC value of this 

personalized quantifier can be computed as 

1

4 10

1
( ) 1 0.638

1 =
= = − =

+


m

i ii
AC Q x dx iAW

m
. 

It is also classified as neutral. However, from Fig. 3, we can see that there is a large gap in the fitted 

function at the given connection points. For example, the value of the fitted personalized quantifier 

should be 0.169 at x = 0.2, but the value of the personalized quantifier 
4 ( )Q x  at x = 0.2 is 0.28. In 

this sense, this personalized quantifier cannot satisfies the interpolation condition within a unit interval. 

Hence, the accuracy of the personalized quantifier fitted by Bernstein polynomials is not high. By 

contrast, the accuracy of the proposed personalized quantifier 
1( )Q x  is higher. 

5.3   The personalized quantifier by Bernstein polynomials combined with interpolation 

spline 

The personalized quantifier by Bernstein polynomials combined with the interpolation spline was 

proposed by Guo (2018), who introduced a sequence of piecewise nonlinear polynomials with an 

adjustable degree to denote the personalized quantifier: 

2
2 2

2

0

5 2
2 2

2

0

1 1 1/ 2 1 1/ 2
(2 ) ( ) ( ) ( ) , [ , ]

4
( )

1/ 2 1/ 2 1/ 2
(2 ) ( ) ( ) ( ) , [ , ]

4

−

=

−

=

− − − − −
+ − − 


= 

− − − + − − 






t
t k k t k

i t

k

t
t k k t k

i t

k

i k i i i i
m G C x x x

m mt m m m m
Q x

i k i i i i
m G C x x x

m mt m m m m

, 0  i m  

where t   is any positive integer ( t   is usually equal to 1 for ease of calculation), and the value of 

( )iG x  depends on the piecewise linear function plot composed of points (
1−i

m
, 

1
( )
−i

Q
m

), (
3 / 4−i

m
, 

1
( )
−i

Q
m

), (
1/ 2−i

m
, 

1 1
( ( ) ( ))

2

−
+

i i
Q Q

m m
), (

1/ 4−i

m
, ( )

i
Q

m
) and (

i

m
, ( )

i
Q

m
), in which the ( )Q x  value 

corresponding to x  is the value of ( )iG x . 

Based on the function values of the personalized quantifier in Table 1, the personalized quantifier 

Bernstein polynomials combined with the interpolation spline can be generated as: 
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2

2

2

2

2

5 2

2

2

8.45 , 0 0.1

8.45 3.38 0.169 , 0.1 0.2

30 12 1.369 , 0.2 0.3

-30 24 4.031 , 0.3 0.4

7.35 5.88 1.945 , 0.4 0.5
( )

-7.35 8.82 1.73 , 0.5 0.6

2.8 3.36 1.924 , 0.6 0.7

-2.8 4.48 0.802 ,

 

− + −  

− +  

+ −  

− +  
=

+ −  

− +  

+ −

x x

x x x

x x x

x x x

x x x
Q x

x x x

x x x

x x

2

2

0.7 0.8

1.4 2.24 1.868 , 0.8 0.9

-1.4 2.8 0.4 , 0.9 1













  


− +  


+ −  

x

x x x

x x x

 

The geometric demonstration of this personalized quantifier is shown in Fig. 3, and we can find 

that the fitting function image of this personalized quantifier has great fluctuation than other 

personalized quantifiers. The OWA weight vector is (0.244, 0.598, 0.141, 0.017)T. The OWA 

aggregation values of all alternatives are: (6)

1( )OWAF A = 0.819, (6)

2( )OWAF A = 0.663, (6)

3( )OWAF A = 0.716, (6)

4( )OWAF A

= 0.632, (6)

5( )OWAF A = 0.669, (6)

6( )OWAF A = 0.741. The ranking result is 
1 6 3 5 2 4    A A A A A A , which 

is the same as the result derived by the personalized quantifier with the cubic spline interpolation 
1( )Q x . 

The AC value associated with this personalized quantifier is the same as 
3AC .  

In summary, the personalized quantifier by Bernstein polynomials combined with the interpolation 

spline has a large amount of calculation and the calculation process is relatively complex, so it is not 

suitable for the situation that the personalized quantifier needs to be generated based on a large number 

of alternative information. By contrast, the proposed personalized quantifier 
1( )Q x  is more applicable. 
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Fig. 3. The comparison of personalized quantifiers generated by different fitting functions 

According to the above comparison with the four types of the personalized quantifiers, it can be 

demonstrated that the proposed personalized quantifier with the cubic spline interpolation not only 

improves the geometric characteristics in terms of smooth curve and high fitting accuracy, but also is 

relatively easy to operate. 

6   Conclusions and directions for future research 

Different from the literature on specific applications of the blockchain technique in various fields, this 

paper is about information representation of blockchain technology from position of investors to carry 

out blockchain risk evaluation. This study introduced the personalized quantifier with cubic spline 

interpolation to extract the investor’s preferences for each blockchain risk evaluation criterion and 

determined the field with the lowest risk for the investor. Compared with other decision-making 

methods, this method guided by the personalized quantifiers of decision-makers highlights the attitude 

characteristics of them, while the change in the numbers of criteria and alternatives will not lead to the 

whole solution process starting from scratch. A case study was given to demonstrate the flexible 

applicability of the proposed personalized quantifier in blockchain risk evaluation. From the 

comparative analysis, we can find that the personalized quantifier with cubic spline interpolation not 

only has good smoothness, but also has good approximation to the inserted function as a whole when 

the connection points are gradually encrypted, and the corresponding derivative values converge to the 

derivative of the inserted function. 
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One of the limitations in this study is consideration of a personalized quantifier related to one kind 

of decision-making attitude of a decision-maker. Researchers interested could extend the approach 

presented in this study to describe the corresponding personalized quantifier for other decision-making 

attitude assumptions of the decision-maker or the decision-making attitudes of multiple decision-

makers. It is also suggested to extend this idea to consider the introduction of personalized quantifiers 

in large-scale group decision making (Tang & Liao, 2021) to classify decision-makers. 
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