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Abstract

The real-world large industry has gradually become a data-rich environment

with the development of information and sensor technology, making the tech-

nology of data-driven fault diagnosis acquire a thriving development and appli-

cation. The success of these advanced methods depends on the assumption that

enough labeled samples for each fault type are available. However, in some prac-

tical situations, it is extremely difficult to collect enough data, e.g., when the

sudden catastrophic failure happens, only a few samples can be acquired before

the system shuts down. This phenomenon leads to the few-shot fault diagnosis

aiming at distinguishing the failure attribution accurately under very limited

data conditions. In this paper, we propose a new approach, called Feature

Space Metric-based Meta-learning Model (FSM3), to overcome the challenge of

the few-shot fault diagnosis under multiple limited data conditions. Our method

is a mixture of general supervised learning and episodic metric meta-learning,

which will exploit both the attribute information from individual samples and

the similarity information from sample groups. The experiment results demon-

strate that our method outperforms a series of baseline methods on the 1-shot
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and 5-shot learning tasks of bearing and gearbox fault diagnosis across various

limited data conditions. The time complexity and implementation difficulty

have been analyzed to show that our method has relatively high feasibility. The

feature embedding is visualized by t-SNE to investigate the effectiveness of our

proposed model.

Keywords: Metric-based Meta-learning, Few-shot Learning, Feature Space,

Fault Diagnosis, Limited Data Conditions

1. Introduction

Fault diagnosis has become an indispensable technology in the large indus-

trial complex systems, due to the increasing development of high-speed and

complexity of machinery. These industrial systems are gradually accumulating

massive data, which causes unprecedented research and development of data-5

driven fault diagnosis methods in recent years [1, 2, 3, 4]. However, the deep

models perform well only when enough labeled data are available for training.

Otherwise, the performance of the data-driven deep models will be significantly

decreased. With the in-depth research, the few-shot learning problem has been

revealed, which aims at training the deep model with very limited data. Specif-10

ically, industrial equipment generally operates under normal status. When cer-

tain sudden catastrophic failures come, the system will be immediately shut

down for maintenance. Hence, the data coming from these failures should be

scarce, and in contrast, the normal data is abundant. Based on these very few

fault samples, the typical data-driven supervised learning strategy will train an15

overfitting model that cannot generalize very well. An obvious way to solve

such a problem is to recollect data for all tasks or scenarios, which will incur

high costs or even be unfeasible.

We try to tackle the fault diagnosis problem with limited data from the few-

shot learning prospective. Few-shot learning is currently a very popular topic20

in computer vision area, especially in image classification [5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17]. Despite the different design of methods, one common
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characteristic among these works is that they exploit a large and fully-annotated

auxiliary set from some disjoint source domain, where a series of few-shot learn-

ing tasks are randomly sampled to simulate the few-shot learning situation and25

extract general knowledge as additional information to facilitate few-shot learn-

ing tasks in the target domain, which forms the idea of meta-learning. The

source and target domains in image classification field are constructed by ran-

domly splitting a large dataset by categories. In the fault diagnosis field, the

data are collected with clear discrimination by their working conditions and30

failure attributes. Intuitively, machinery does not often operate at high speed

and heavy load unless there is an emergency production requirement, and nor-

mally they are not allowed to work with worrying fault. In such cases, only

a few valid samples will likely be collected. Meanwhile, there are amounts of

data samples coming from other situations, which could provide transferable35

knowledge for supporting the limited data tasks. Therefore, the application of

few-shot learning with meta-learning to fault diagnosis problem is reasonable

and promising.

Based on these analyses, we propose a novel few-shot learning method named

Feature Space Metric-based Meta-learning Model (FSM3) for fault diagnosis un-40

der multiple limited data conditions. Our method is based on two popular and

effective metric-based meta-learning models for few-shot learning, i.e., Matching

Network (MN)[5] and Prototypical Network (PN)[7]. However, we argue that

mere metric-based training only teaches the model to focus on the relative sim-

ilarity information from sample groups, thus the attribute information of each45

specific category is ignored, which means that the provided labeled source data

are not fully exploited. To tackle this problem, we design a hybrid method that

combines the merit of general supervised learning and metric meta-learning.

Specifically, the first several layers of the model are trained to recognize the

fault types of source data in a global supervised manner. Then these layers are50

fixed as Feature Extractor to transform raw data into basic feature space. Fi-

nally, the rest of the model is trained by metric meta-learning with the extracted

features. In this way, our model can exploit not only the relative information

3
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between data pairs but also supervision information from individual samples.

To the best of our knowledge, our proposed method is the first attempt to ad-55

dress the few-shot learning problem in fault diagnosis by utilizing the metric

meta-learning based on deep neural networks.

The contributions of this paper are:

1. A novel FSM3 model has been proposed for the few-shot fault diagnosis

issue under various limited data conditions. The core of our method is the60

creative combination of the relative similarity information from sample

groups and the supervision information in each specific category from the

annotated source data. A hybrid training strategy with global supervised

training and episodic training in the learned feature space is designed to

support this combination.65

2. To tackle the few-shot fault diagnosis problem under limited data con-

ditions using metric-based meta-learning, the clear detail of explanation

about its interpretability and feasibility has been discussed and analyzed.

3. The effectiveness of the FSM3 model has been verified with experiments on

the bearing dataset and gearbox dataset under different fault types, speed,70

and load conditions. The results illustrate that our method outperforms

other state-of-the-art methods and presents great robustness.

The rest of the paper is organized as follows. In Section 2 we give some

background knowledge about few-shot learning and deep learning models for

fault diagnosis. In Section 3 we introduce the technical details of the proposed75

FSM3. In Section 4 we introduce experiments setup and present results and

analysis. In Section 5 we draw conclusion from this paper.

2. Background

2.1. Few-shot Learning

A supervised classification task T usually consists of a training set (support80

set, denoted as S) with labeled data to train the model and a testing set (query

4
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Figure 1: Illustration of different learning strategies. (a) Traditional supervised learning. (b)

General procedure of few-shot learning. (c) Episodic training mechanism for few-shot learning.

set, denoted as Q) with unlabeled data from the same domain to evaluate the

performance of training, see Fig. 1(a). When the amount of data in the training

set is small, the task is termed as a few-shot learning task. Recently proposed

methods for few-shot learning mostly exploit an auxiliary set from some source85

domain to extract knowledge to help the model training with the given few-shot

support set in target domain, shown in Fig. 1(b). Note that the auxiliary set

contains a large amount of labeled data and its label space is disjointed to that

of target domain. One way to exploit the source domain data is to randomly

sample a series of few-shot learning tasks. Transferable knowledge is extracted90

from the interaction procedure between these tasks and the classification model

to facilitate the tasks of the target domain, which forms the episodic training

mechanism [5], see Fig. 1(c). Here, each few-shot learning task is considered as

an episode. The whole procedure can also be viewed as meta-learning, as the

learning is performed at the task level other than the data level. In this paper,95

different data domains can be considered as different working conditions or fault

categories.

5
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According to different forms of knowledge extracted from auxiliary tasks,

there are two main branches of the recent few-shot learning area, i.e., metric-

based meta-learning and optimization-based meta-learning. Metric-based meta-100

learning models[5, 6, 7, 8, 9, 10, 11, 12] try to learn a unified, category-independent

feature space that the intra-class distance of samples is smaller than the inter-

class distance. The query samples are classified by their distance to each support

sample in the learned space. Optimization-based meta-learning models[13, 14,

15, 16, 17] exploit an additional trainable model (meta model) to perform the105

parameters update of the classification model and the meta model is trained

to generate suitable classification parameters by the limited support set that

works well on the query set. In this paper, we follow the idea of metric-based

meta-learning and propose a novel FSM3 for few-shot fault diagnosis problem.

2.2. Deep Learning Models for Fault Diagnosis110

Fault diagnosis with deep learning is the typical data-driven method, which

provides an end-to-end diagnosis model directly establishing the relationship

between increasing monitored data and fault categories [3, 4]. To solve the cross-

domain problem in the deep learning fault diagnosis, transfer learning theories

and methods have been well researched in recent years, attempting to utilize115

the knowledge from the different but related diagnosis tasks for making its wide

application in the actual industrial situation [1]. The fundamental idea is to

learn the shared feature on the high-dimensional data space by minimizing the

distribution discrepancy between the source and target domain, which is divided

by Maximum Mean Discrepancy (MMD) based method [18, 19, 20, 21, 22, 23]120

and Generative Adversarial Networks (GAN) based method [24, 25, 26, 27].

Although these methods significantly improve the adaptability of deep learning

based fault diagnosis, they still must meet the hypothesis that enough data is

available. However, the sudden catastrophic failure data samples are much less

than normal condition data samples or other slight fault samples. There may125

be only one or a few samples in a fault dataset. This kind of problem is the few-

shot fault diagnosis problem, one of the critical challenges hindering the deep

6
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models’ wide application in the actual industrial situation. This problem began

to attract the attention of the research in the fault diagnosis field [28, 29, 30].

Nevertheless, these methods have not utilized the knowledge of the different but130

related domains as an auxiliary for supporting the few-shot fault diagnosis task.

In this paper, for the first time, a novel Metric-based Meta-learning model is

proposed for the Few-shot fault diagnosis problem, called FSM3, which can rely

on learning the transferable knowledge of the source domain to overcome the

few-shot learning problem in the target domain.135

2.3. Definition of Few-shot Fault Diagnosis Problem

We follow [13] to define the few-shot fault diagnosis problem. Let T T denote

a CT -way, K-shot, M -test few-shot learning task of fault diagnosis from target

domain, which consists of a labeled few-shot support set ST and unlabeled

query set QT . ST contains K samples per class and QT contains M samples140

per class. Samples from the support set and query set are (xTSa, y
T
Sa)

NT
S

a=1 and

(xTQa)
NT

Q
a=1 respectively, where NT

S equals to CT ×K and NT
Q equals to M ×K.

K is a small value, and M is not limited. For the fault diagnosis problem, x

here denotes the vibration signal wave of length L from some mechanical device,

and y denotes its fault type. For the auxiliary set from fully annotated source145

domain, samples are defined as XS = (xSa , y
S
a )N

S

a=1. Here, NS is a relatively

large number, which means the source domain data is sufficient. We assume

that the source domain contains CS different fault types. For episodic training

mechanism, we randomly sample a series of CT -way, K-shot, M -test few-shot

learning tasks, denoted as T Ss, that have a similar data structure with target150

task T T . The only difference is that labels of the query set are also available.

The goal of episodic meta-learning is to train a metric model with the source

tasks T Ss so that it can identify the fault types of target query set QT well

based on the limited annotated data in support set ST . In this paper, we set

K to 1 or 5 following the standard protocol of few-shot image classification155

problem [13]. 5 denotes a normal few-shot learning situation, and 1 denotes the

extreme situation where only one support sample per class is available. In [13],

7
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M is much larger than K and set to 15 in during episodic training due to the

limitation of GPU memory. During testing, M can be larger since testing saves

much more computational resources than training. However, M is also set to 15160

for efficient evaluation. Since in the fault diagnosis scenario, the input samples

are 1-d signals, which take up less memory than 2-d images, we increase the M

to 25. We clarify that the setting of K and M is just for the unified and fair

comparison for academic research. They can be set flexibly based on different

working conditions or practical demands.165

3. Method

In this paper, we propose Feature Space Metric-based Meta-learning Model

(FSM3) for few-shot fault diagnosis under multiple limited data conditions. Our

method is extended from the popular and effective few-shot learning models,

Matching Network (MN) and Prototypical Network (PN), in several aspects.170
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Figure 2: Training and evaluating procedure of the proposed FSM3. We first train a classifica-

tion model with source domain data following traditional supervised learning (upper branch).

Then we fix the Feature Extractor and train the Metric Embedding module in an episodic

manner with a series of few-shot tasks sampled from the source domain. Finally, the Feature

Extractor and Metric Embedding are used for target test tasks (lower branch).
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3.1. Architecture of Feature Space Metric-based Meta-learning Model

Our proposed FSM3 consists of three modules, including a Feature Extractor

(FE), to which the Global Classifier (GC) and Metric Embedding (ME) module

are connected for different training steps, as shown in Fig.2. For the fault diag-

nosis tasks, the input samples are mechanical vibration waves, which are typical175

one-dimensional signals. Accordingly, we use one-dimensional convolution lay-

ers in our model. Following[29] and [31], the Feature Extractor contains five

convolution layers, each of which is followed by a ReLU function. We use max-

pooling in the first four convolution layers to down-sample features. We also set

the kernel size of the first layer to be large. The Global Classifier consists of a180

flatten layer and a fully connected layer with output size equal to the number of

categories in the source data domain. The Metric Embedding module contains

two convolution layers, followed by a flatten layer and a fully-connected layer

with the output size of 100, which converts fault data into 100-dimension fea-

tures for metric learning. The flatten layers are omitted in Fig.2 for simplicity.185

Architecture details are shown in Table 1.

3.2. Learning Procedure

3.2.1. Global Supervised Training

In our FSM3, we first train the Feature Extractor(FE) in a global supervised

way with the fully labeled dataset XS from the source domain. Denote the190

FE as function fFE(·) with parameters θFE , which maps the input fault data

xSa ∈ RL to convolution feature ba ∈ Rc×Lf , where c is the number of channels

and Lf is the length of feature. Then the feature is input to the Global Classifier

(GC, with parameters θGC) followed by softmax activation function to get the

possibility vector pa ∈ RCS

indicating how likely the input data belongs to each195

fault type, see the upper branch of Fig.2. The objective function LB of the

global supervised training is the cross-entropy loss defined as follows:

LB(XS ; θFE , θGC) = − 1

NS

NS∑
a=1

CS∑
i=1

I[ySa = i]log
epa(i)∑
j e

pa(j)
(1)

9
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where I[·] is the indicator function, pa(i) is the ith element of pa, ySa is the

label of fault types of input data, CS and NS are the number of categories and

samples in source domain respectively. After training, we remove the Global200

Classifier and fix the Feature Extractor for later use.

Table 1: Details of Network Architecture of FSM3

Components Layer type Kernel Stride Channels Padding

Feature Extractor

Convolution 1 64× 1 16× 1 16 No

ReLU 1

Max Pooling 1 2× 1 2× 1 16 No

Convolution 2 3× 1 1× 1 32 Yes

ReLU 2

Max Pooling 2 2× 1 2× 1 32 No

Convolution 3 3× 1 1× 1 64 Yes

ReLU 3

Max Pooling 3 2× 1 2× 1 64 No

Convolution 4 3× 1 1× 1 64 Yes

ReLU 4

Max Pooling 4 2× 1 2× 1 64 No

Convolution 5 3× 1 1× 1 64 Yes

ReLU 5

Global Classifier
Flatten

Fully Connected 1 CS

Metric Embedding

Convolution 6 3× 1 1× 1 64 Yes

ReLU 6

Convolution 7 3× 1 1× 1 64 Yes

ReLU 7

Flatten

Fully Connected 1 100

3.2.2. Episodic Training in Feature Space

We then train the Metric Embedding module denoted as fM (·) with parame-

ters θM in episodic training manner. For this purpose, we first randomly sample

a series of few-shot fault diagnosis tasks from source domain, denoted as T S ,205

that have similar data structure with the target CT -way, K-shot, M -test task

T T . Let SS = (xSSa, y
S
Sa)

NS
S

a=1 and QS = (xSQa, y
S
Qa)

NS
Q

a=1 be the support set and

10
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query set of T S respectively, where NS
S equals to CT ×K and NS

Q equals to M .

Then we extract basic features (denote as b) from all the raw fault data with

the pre-trained Feature Extractor in the last step. The extracted basic features210

are further processed by the Metric Embedding module to the metric features.

After that, we perform classification of the query samples by matching their

metric features to the support ones, see the lower branch of Fig.2. Specifically,

for the nth query sample in one task T S from source domain, the predicted

label is calculated by the weighted sum of support labels, which is (note that215

we omit the superscripts S for simplicity):

ŷQn =

NS∑
a=1

w[fM (bQn), fM (bSa)] · ySa (2)

where the weight w is calculated by softmax normalization of the distance be-

tween the query metric feature and every support metric feature:

w[fM (bQn), fM (bSa)] =
exp(−τ ∗ d[fM (bQn), fM (bSa)])∑NS
j=1 exp(−τ ∗ d[fM (bQn), fM (bSj)])

(3)

Here τ is a scale factor for fast convergence of training. We choose d[·] to be

the cosine distance following recent representative few-shot learning works [5,220

32, 33], which is:

d[xi, xj ] =
xi · xTj
|xi||xj |

(4)

The training objective of the Metric Embedding module is the cross-entropy

loss over all sampled tasks T S from source domain as follows:

LM (θM ) =
∑
T S

LM (T S ; θM ) =
∑
T S

[− 1

NS
Q

NS
Q∑

n=1

CS∑
i=1

I[yQn = i] · log(ŷQn(i))] (5)

Detailed learning procedure is shown in Alg. 1.

The matching procedure described above follows the idea of Matching Net-225

work (MN). One alternative is matching between category prototype as Proto-

typical Network (PN), where the fault type of query sample is predicted by:

ŷQn =
CS∑
a=1

w[fM (bQn), PS
a ] · ya (6)

11
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where PS
a is the mean of metric features of the ath category:

PS
a =

1

K

∑
j∈a

fM (bSj) (7)

The calculation of weights and distance and training objective are similar to

Eq.(3), (4) and (5). In this paper, both of the two versions are implemented230

and compared.

Our model belongs to the metric-based meta-learning family, but training

is performed in feature space pre-trained by global supervision other than raw

data space, so we term it as Feature Space Metric-based Meta-learning Model

(FSM3).235

Algorithm 1 Feature Space Metric-based Meta-learning Model (FSM3) Learn-

ing Procedure

Require: source data XS , mini-batch size for global training m, global training steps nB ,

learning rate αB , ME training step nM , ME learning rate αM .

1: Initialize the parameters θFE and θGC .

*********Global Supervised Training**********

2: for t = 1, . . . , nB do

3: Sample mini-batch XS
m = (xSa , y

S
a )ma=1 from XS

4: θFE , θGC ← θFE , θGC − αB∇θLB(XS
m)

5: end for

6: Fix the parameters θFE and initialize the parameters θM .

*******Episodic Training in Feature Space*******

7: for i = 1, . . . , nM do

8: Sample a few-shot task T S from source data XS .

9: Transform raw data in T S into feature space with trained θFE

10: θM ← θM − αM∇θMLM (T S)

11: end for

3.2.3. Evaluation of Target Tasks

Once the training is finished, the Feature Extractor and the Metric Embed-

ding module are used for target fault diagnosis tasks. All the samples from

target tasks are transferred into basic feature space, and a similar matching

operation is conducted to predict the fault types of query data based on the240
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provided limited support data, as shown in the lower branch of Fig.2 with tar-

get domain data.

4. Experiments

4.1. Experiment Setup

4.1.1. Few-shot Setup for Fault Diagnosis245

In this work, we assume the source domain contains sufficient labeled data,

which is used to support the few-shot fault diagnosis tasks with very limited

training data in the target domain. We consider two kinds of few-shot tasks,

1-shot and 5-shot tasks, which means the training sets contain only one or five

samples. All experiments are implemented in the following scenarios:250

(1) The source and target domain are drawn from the different working con-

ditions, which in this paper are load and speed, for 1-shot learning fault

diagnosis.

(2) The source and target domain are drawn from the different categories under

the same working condition for 1-shot learning fault diagnosis.255

(3) 5-shot learning fault diagnosis for the tasks which are challenging to address

in the 1-shot learning situation.

4.1.2. Compared Methods

To better evaluate our proposed method, we compare our FSM3 with several

baseline few-shot learning methods for all types of few-shot tasks described260

above, which are detailed as follows:

(1) Finetune Last;

(2) Finetune Whole;

(3) Feature Knn;

(4) Feature Knn Proto;265

(5) Data Space Matching Network (DSMN);

(6) Data Space Matching Network with Pre-train (DSMN-Pre);
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(7) Feature Space Matching Network (FSM3-MN, ours);

(8) Data Space Prototypical Network (DSPN);

(9) Data Space Prototypical Network with Pre-train (DSPN-Pre);270

(10) Feature Space Prototypical Network (FSM3-PN, ours).

(1) to (4) are based on pre-training FE+ME with source domain data under

supervised learning. (1) and (2) then attach a new classifier after FE+ME and

use the few-shot support data from target domain to finetune the last layer (the

classifier) or the whole model respectively. (3) and (4) classify target data by275

matching the extracted features from FE+ME backbone to those of support

samples or support class prototypes. (5) and (8) are the original Matching

Network and Prototypical Network model with FE+ME as backbone. The

whole model is completely trained in an episodic way in raw data space. (6)

and (9) are similar to (5) and (8), but the backbone is pre-trained with source280

data. (7) and (10) are our models of MN and PN version, where FE is trained

with supervised learning and then fixed, ME is trained in an episodic way.

4.1.3. Implementation Details

We use Adam optimization[34] to train all the models. For the supervised

pre-training with source domain data, we set the learning rate as 0.001, batch285

size as 16, maximum number of training iterations (epochs) as 80. We stop the

pre-training if training loss stops decreasing for 15 epochs and load the model

with the lowest loss for later use. For finetuning-based models (Finetune Last

and Finetune Whole), the number of finetuning steps is set to 100. For KNN

based methods, cosine distance is exploited. For the episodic metric training,290

we set learning rate as 0.0001, number of query samples (M) in few-shot learn-

ing tasks as 25, τ as 100 for fast convergence, maximum number of training

iterations (epochs) as 100. For each epoch, we randomly sample 100 few-shot

learning tasks from source domain to perform metric learning. For evaluation

of all methods, we sample 600 tasks from target domain and the mean accuracy295

of classification is recorded as final results. All experiments are implemented

on the computer with one Nvidia GeForce GTX 1080 Ti GPU, one Intel Core
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i7-6850K CPU of 3.60GHz and 64GB memory. A detailed list of the experiment

settings is provided in Table 2.

Table 2: Detailed experiment settings.

Description Value

optimizer Adam

pre-training

learning rate 0.001

batch size 16

maximum epochs 80

early stop duration epochs 15

finetune finetune steps 100

episodic training

distance metric cosine

learning rate 0.0001

scale factor τ 100

maximum epochs 100

tasks per epoch 100

support samples per class (K) 1 or 5

query samples per class (M) 25

evaluation tasks 600

4.2. Case Study 1: Bearing Dataset300

4.2.1. Data Preparation and Diagnosis Scenarios

Figure 3: CWRU testbed.

The bearing center of Case Western Reserve University (CWRU) [35] pro-

vides this bearing dataset, which was collected by the accelerometer fixed on
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the motor housing at the 12 o’clock position. The testbed including a motor,

accelerometer, torque transducer, and dynamometer, shown in Fig.3. There are305

ten categories in the bearing dataset which consist of Normal, 3 various fault

sizes (0.007, 0.014 and 0.021 in.) for each of 3 fault locations (inner race, outer

race, and ball), respectively. All these categories are gathered on 4 different

loads (0, 1, 2, 3 hp) and the sampling frequency is set to 12 kHz. Each category

has 500 samples and each sample is a vibration signal with 2048 points. The310

data samples of bearing dataset in both normal and fault status under different

conditions are shown in Fig. 4.

A
m

pl
itu
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/
)

Figure 4: Data samples of bearing under one normal condition and nine failure conditions.

Table 3 shows the few-shot diagnosis scenarios of the bearing dataset, in-

cluding Different Loads and Different Categories. The Different Loads contains

4 scenarios, each of which has 10 categories in both the source domain and tar-315

get domain. The Different Categories also contains 4 scenarios including ”Ball”,
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”Inner Race”, ”Outer Race”, and ”Worst IOB” as the target domain, each of

which has 7 categories in the source domain and 3 categories in the target do-

main under the same load condition. The ”Worst IOB” denotes that the target

domain contains the worst fault of Inner race, Outer race, and Ball with the320

defect size of 0.021 in., and the source domain contains other fault types includ-

ing normal, IOB with 0,07 in. and IOB with 0,014 in.. Moreover, the ”Inner

Race”, ”Outer Race” and ”Ball” scenarios denote that the target domain con-

tains 3 fault types (3 different sizes) of the particular position respectively and

the source domain contains the rest types.325

Table 3: Few-shot fault diagnosis scenarios of bearing dataset.

Different Loads Different Categories

Source Domain Target Domain Source Domain Target Domain

Load 0 Load 3 Normal, Inner Race, Outer Race Ball

Load 1 Load 3 Normal, Outer Race, Ball Inner Race

Load 2 Load 3 Normal, Inner Race, Ball Outer Race

Load 0 Load 2 Normal, IOB (0.007), IOB (0.014) Worst IOB (0.021)

4.2.2. Results and Analysis

Table 4: Accuracy (%) on 1-shot learning tasks for bearing fault under different conditions

Load 0→3 Load 1→3 Load 2→3 Load 0→2

Finetune Last 58.04 58.39 57.97 58.82

Finetune Whole 88.21 89.51 90.62 90.15

Feature Knn 98.78 99.51 99.30 98.98

DSMN 99.08 99.58 99.88 99.38

DSMN-Pre 99.38 99.58 99.91 99.39

FSM3-MN(ours) 99.42 99.48 99.96 99.86

Based on the few-shot setup, we first analyze the 1-shot learning fault diag-

nosis problem between different working conditions. The results are shown in

Table 4, which present that all the MN methods and Feature Knn perform very

well in these tasks, and there are no obvious differences between the MN meth-330

ods. These results indicate that the similarity between data pairs of different
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domains caused by changing working conditions is relatively close, thus 1-shot

learning tasks, in this case, are not difficult to solve.

We then conduct experiments in the Different Categories scenarios. Table 5

shows the results of the 1-shot task of ”Worst IOB”, ”Ball”, and ”Inner Race”,335

which illustrates that all the MN-based methods perform great in these three

1-shot tasks on 4 different working loads, with even more than 99% accuracy.

Table 5: Accuracy (%) on 1-shot learning tasks for Bearing fault with different types under

same working conditions

Load 0 Load 1

Worst IOB Ball Inner Race Worst IOB Ball Inner Race

Finetune Last 88.85 85.83 84.49 89.05 92.78 88.79

Finetune Whole 97.42 97.35 97.37 97.39 97.86 97.88

Feature Knn 98.12 94.53 99.71 98.96 98.91 99.97

DSMN 99.36 99.88 100.00 99.77 99.94 99.95

DSMN-Pre 99.48 99.91 100.00 99.87 99.96 100.00

FSM3-MN(ours) 99.24 99.84 100.00 99.95 99.96 99.88

Load 2 Load 3

Worst IOB Ball Inner Race Worst IOB Ball Inner Race

Finetune Last 90.92 87.43 84.31 89.72 88.80 79.30

Finetune Whole 96.05 94.93 96.81 97.20 94.05 95.04

Feature Knn 99.66 99.21 97.83 97.77 93.51 98.29

DSMN 99.62 99.99 99.76 99.77 99.04 99.88

DSMN-Pre 99.78 99.99 99.82 99.80 99.58 99.40

FSM3-MN(ours) 100.00 99.94 100.00 99.98 99.94 99.99

Since the accuracy of ”Outer Race” scenario is generally lower than that

of other 3 scenarios, we test it on 1-shot and 5-shot setup, and the results are

shown in Table 6. These results verify that our FSM3 performs the best com-340

pared with other baseline methods and the performance can be improved greatly

by increasing the number of support samples. It is obvious that the accuracy

of Load 2 and 3 is higher than that of low load conditions. We believe that this

phenomenon is related to the difficulty degree of distinguishing fault categories

in the source domain. The difficult task of the high load in the source domain345
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will offer a well-trained model, which will significantly help the model used in

the target domain. Otherwise, the model is easier to reach the expected perfor-

mance when the source domain is Load 0 or 1. Such a model cannot provide

sufficient support for the few-shot task in the target domain. Limited by the

mechanism [7], we can only compare between MN-based and PN-based method350

at the 5-shot situation, and the results confirm that the performance of these

two methods is very close, MN-based method is better at certain conditions.

Table 6: Accuracy (%) on 1-shot and 5-shot learning tasks for Outer Race fault under same

working conditions

Load 0 Load 1 Load 2 Load 3

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Finetune Last 56.38 64.98 65.26 67.07 83.14 85.18 76.60 77.73

Finetune Whole 65.08 85.75 75.11 89.15 93.93 95.86 92.52 97.68

Feature Knn 67.72 80.06 79.42 90.72 88.50 98.73 91.78 93.48

DSMN 66.97 87.81 81.87 86.50 90.26 97.29 84.21 95.15

DSMN-Pre 68.24 85.28 85.50 88.07 94.56 98.72 93.86 97.04

FSM3-MN(ours) 72.94 90.74 88.07 91.22 97.78 99.10 97.65 97.93

Feature Knn Proto ∗ 78.47 ∗ 87.90 ∗ 94.13 ∗ 93.55

DSPN ∗ 73.74 ∗ 84.06 ∗ 93.14 ∗ 93.22

DSPN-Pre ∗ 75.76 ∗ 87.13 ∗ 93.26 ∗ 93.76

FSM3-PN(ours) ∗ 83.69 ∗ 92.73 ∗ 98.80 ∗ 94.52

4.3. Case Study 2: Gearbox Dataset

4.3.1. Data Preparation and Diagnosis Scenarios

The second dataset is collected from a gearbox stand under various con-355

ditions [36]. Fig. 5 shows the testbed, where an accelerometer is located on

the output of the gearbox. There are three categories of gear failure: Normal,

Chipped Tooth, and Missing Tooth. Each category is split by different speeds

(30, 40, and 50 Hz) and different loads (Low and High), and contains 500 sam-

ples of each condition. The sampling frequency is 66.67 kHz, and each sample360

has 6600 points. Fig. 6 displays the data samples under different conditions in

the gearbox dataset, which are time-domain vibration waveform.

19

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Gearbox

Load
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Figure 5: Gearbox testbed.
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Figure 6: Data samples of gearbox under one normal condition and two failure conditions.
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Table 7: Few-shot fault diagnosis scenarios of gearbox dataset.

Different Loads and Speeds Different Categories

Source Domain Target Domain Source Domain Target Domain

30L 30H 30H CT/MT 30H MT/CT

40L 40H 40H CT/MT 40H MT/CT

50L 50H 50H CT/MT 50H MT/CT

40H 50H * *

The few-shot fault diagnosis scenarios of the gearbox dataset are shown in

Table 7, which incorporate different working conditions (loads and speeds) and

fault categories. Both the source domain and target domain have 3 categories,365

including Normal, Chipped Tooth, and Missing Tooth in the different working

conditions situation. There are two kinds of tasks, including CT and MT in

the few-shot diagnosis scenarios of different categories. CT denotes the data of

Normal and Chipped Tooth as the target domain, while the data of Normal and

Missing Tooth as the source domain. MT is the task with the data of Normal370

and Missing Tooth as the target domain, and the data of Normal and Chipped

Tooth as the source domain.

Table 8: Accuracy (%) on 1-shot and 5-shot learning tasks for gearbox fault under different

conditions

30L → 30H 40L → 40H 50L → 50H 40H → 50H

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Finetune Last 66.62 67.46 66.19 68.74 64.45 66.82 73.82 75.54

Finetune Whole 66.50 68.21 67.30 69.64 67.16 68.12 74.77 83.71

Feature Knn 68.71 69.71 69.12 73.77 72.00 73.89 91.83 98.45

DSMN 72.02 88.38 77.37 84.80 72.73 75.66 91.53 99.50

DSMN-Pre 74.27 83.28 74.79 79.51 74.41 76.77 89.84 98.74

FSM3-MN(ours) 76.54 88.56 78.42 86.38 75.32 77.18 91.43 99.08

Feature Knn Proto ∗ 68.80 ∗ 72.14 ∗ 74.00 ∗ 97.63

DSPN ∗ 82.81 ∗ 82.94 ∗ 78.00 ∗ 99.65

DSPN-Pre ∗ 81.94 ∗ 78.77 ∗ 76.12 ∗ 98.32

FSM3-PN(ours) ∗ 83.66 ∗ 82.48 ∗ 76.92 ∗ 98.60
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4.3.2. Results and Analysis

To further verify the performance of our proposed FSM3 method, a more

difficult evaluation on the gearbox dataset has been conducted and analyzed in375

this part. Firstly, our approach has been evaluated on the 1-shot and 5-shot

learning tasks under different load and speed conditions. The results are shown

in Table 8, which illustrate that our FSM3 has performed the best in most of

the tasks. However, due to the improvement of task difficulty degree, the overall

effect is inferior to that of the bearing dataset.380

Table 9: Accuracy (%) on 1-shot learning tasks for gearbox fault with different categories

under same conditions

30H 40H 50H

CT MT CT MT CT MT

Finetune Last 51.89 88.78 51.78 96.00 51.16 81.74

Finetune Whole 52.92 89.13 59.36 97.56 55.81 97.11

Feature Knn 55.54 89.92 61.82 92.40 64.20 96.62

DSMN 61.23 89.13 62.59 94.21 70.82 99.98

DSMN-Pre 61.48 90.84 62.73 95.31 66.35 99.60

FSM3-MN(ours) 62.28 96.31 64.54 98.44 66.71 99.47

Next, according to the above experimental settings, we test different ad-

vanced methods including our FSM3 on the few-shot learning tasks with differ-

ent gear fault types under the same condition. There are two kinds of cases in

this mission, including CT and MT. Table 9 displays the results of the 1-shot

learning task. Our FSM3 performs the best at the majority of cases compared385

with other approaches. These results present an interesting phenomenon that

the accuracy of CT is all lower than that of MT. We believe the reason is the

same as discussed in the bearing section, which is the hard task in the source

domain will offer more support for the few-shot fault diagnosis task of the target

domain.390

Finally, the experiments of 5-shot learning tasks for CT fault under the

same conditions have been carried out, and the results are shown in Table 10.

Although increasing the number of data samples does not make these tasks
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Table 10: Accuracy (%) on 5-shot learning tasks for Chipped Tooth (CT) fault under same

conditions

30H 40H 50H

Finetune Last 53.23 51.96 53.59

Finetune Whole 54.52 68.09 68.45

Feature Knn 56.33 68.64 73.44

DSMN 61.92 69.94 83.76

DSMN-Pre 62.64 68.47 76.54

FSM3-MN(ours) 62.76 74.04 76.48

Feature Knn Proto 57.95 70.73 75.45

DSPN 61.92 69.05 80.56

DSPN-Pre 62.49 68.57 77.88

FSM3-PN(ours) 63.73 70.99 75.17

perfectly solved, it does notably improve the accuracy of these methods. In a

word, our proposed FSM3 still achieves the best results in most of the cases,395

which verifies the effectiveness of our method again. When comparing the results

of 50H CT task with the tasks from other datasets, we find a phenomenon that

the accuracy of our proposed Feature Space methods (FSMN/FSPN) is lower

than Data Space ones (DSMN/DSPN) by an obvious margin. The possible

reason is: the data samples from the 50H condition cover more rotation periods400

thus contain more diagnosis information. Exploiting the data of MT type as the

source to pre-train the feature extractor in traditional supervised way will make

it too biased towards the MT task to generalize well to the target CT task.

However, DSMN and DSPN are initially trained in the episodic way, which

mainly focuses on the similarity between data samples rather than features of405

the individual sample. As a result, DSMN and DSPN perform better than our

proposed methods in this case. Despite this, the metric-based meta-learning

models still outperform the traditional finetune-based baselines.

4.4. Time Complexity and Feasibility Analysis

In Table 11, we provide the computational time of all the models on the410

Bearing dataset, Outer Race task with Load 3 and the Gearbox dataset, CT
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Table 11: Computational time (s) of all the models with different datasets and settings.

Bearing, Outer Race Load 3 Gearbox, Clipped Tooth 30H

1-shot 5-shot 1-shot 5-shot

Train Eval Train Eval Train Eval Train Eval

Finetune Last 112.25 72.58 113.00 73.86 19.74 73.25 19.38 74.52

Finetune Whole 112.34 243.78 111.09 248.42 19.80 253.77 20.22 261.02

Feature Knn 113.21 2.05 114.77 2.26 19.83 2.35 19.93 2.60

DSMN 121.83 2.17 135.19 2.56 100.73 2.25 112.51 2.77

DSMN-Pre 233.66 2.32 245.86 2.66 117.87 2.56 130.47 2.73

FSM3-MN(ours) 149.91 2.33 155.66 2.45 67.95 2.66 69.84 2.66

Feature Knn Proto * * 111.74 2.34 * * 19.76 2.62

DSPN * * 137.22 2.55 * * 112.02 2.75

DSPN-Pre * * 245.35 2.41 * * 128.35 2.78

FSM3-PN(ours) * * 154.32 2.37 * * 68.90 2.66

task with 30Hz High Load. Both the time of training with the source domain

(denote by Train) and evaluating with 600 few-shot diagnosis tasks from the

target domain (denote by Eval) are given. For a fair comparison, we remove the

early stop mechanism and train all the models for the maximum epochs listed415

in Table2. A series of conclusions can be drawn. First, the training time of

Finetune Last, Finetune Whole, Feature KNN, and Feature KNN Proto is very

close because the training procedure is identical, i.e., supervised training with

source domain data. Second, training of Gearbox data is much faster than that

of Bearing data because the Gearbox dataset is smaller and contains fewer class420

types. Third, DSMN-Pre and DSPN-Pre have the longest training time because

the whole architecture is trained by two stages. Fourth, our proposed method

saves lots of time during training compared with DSMN-Pre and DSPN-Pre

although it also requires two-stage training, because our method only trains

a part of the model in each stage. Fifth, Finetune Last and Finetune Whole425

spend much more time evaluating than other methods because they need ad-

ditional training with support data when dealing with target tasks while other

methods don’t. This indicates that their feasibility of evaluating is very low.
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Sixth, the evaluating time of other methods does not vary too much. Based

on the running time from Table 11 and the implementation difficulty, we give430

a feasibility assessment of all the methods in Table 12. The training feasibil-

ity of Finetune Last, Finetune Whole, Feature KNN, and Feature KNN Proto

are high as the standard supervised training is very easy to implement. The

training feasibility of DSMN-Pre and DSPN-Pre is low because the two-stage

training of the whole model is complex and costs the most training time. By435

contrast, the DSMN, DSPN, and our method have medium training feasibil-

ity. The evaluating feasibility of all the metric-based methods, including ours,

is high because no additional finetuning is required. We can see from Table

12 that our method has relatively high feasibility. Based on the results from

the previous subsection, our method provides the best accuracy in most cases.440

Taking accuracy and feasibility into consideration, we can say that our method

presents the best overall performance.

Table 12: Feasibility Assessment of Methods

Train Eval

Finetune Last high low

Finetune Whole high low

Feature KNN (Proto) high high

DSMN/PN medium high

DSMN/PN-Pre low high

FSM3-MN/PN(ours) medium high

4.5. Visualization Analysis

We visualize the feature embedding of source and target domain from our

FSM3 with t-SNE for both two datasets, shown in Fig.7 and Fig.8. Different445

colors represent different fault types. For each experiment setting, we select

one to visualize. For the bearing dataset, we consider the Load 0→3 task and

the Outer Race task under Load 3. For the gearbox dataset, we consider the

40H → 50H task and CT fault task with 30Hz high load. FSM3-MN trained

for the 1-shot and 5-shot task and FSM3-PN trained for the 5-shot task are450
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implemented. From these visualization results, we can see that the embeddings

from the same category are close to each other, and those from different cat-

egories are separated, indicating the effectiveness of our method. There exists

some intersection between the features of different types in the CT task, which

means this task is a little difficult to tackle. One interesting phenomenon is455

that the embeddings from the model trained with 5-shot tasks are more scat-

tered than those trained with 1-shot tasks. We believe that this is because,

for the 5-shot scenario, the model is trained to match query samples to one of

the 5 support samples, and different query samples will be matched to different

support samples, thus the embedding distribution will come to a multi-center460

mode. However, for the 1-shot scenario, all the query samples will be matched

to the same support sample, making the distribution of feature embedding more

concentrated.

(b)

(c) (d)

(a)

Figure 7: t-SNE visualization of bearing data feature embedding derived from our FSM3. (a)

denotes results of the Load 0→3 task with the same 10 categories. (b), (c) and (d) denote

results of the Outer Race fault task under Load 3, which are FSM3-MN 1-shot, FSM3-MN

5-shot and FSM3-PN 5-shot, respectively. For each sub-figure, the left figure denotes the data

feature from source domain and the right denotes the data feature from target domain.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 8: t-SNE visualization of gearbox data feature embedding derived from our FSM3.

(a), (b) and (c) denote results of FSM3-MN 1-shot, FSM3-MN 5-shot and FSM3-PN 5-shot

respectively for the 40H→50H task. (d), (e) and (f) denote results of FSM3-MN 1-shot,

FSM3-MN 5-shot and FSM3-PN 5-shot respectively for the Chipped Tooth (CT) fault task

under condition of 30Hz high load. For each sub-figure, the left figure denotes the data feature

from source domain and the right denotes the data feature from target domain.
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5. Conclusion

In this paper, we introduce the few-shot learning into the data-driven fault465

diagnosis field and proposed a novel method, FSM3, for the few-shot fault di-

agnosis with multiple limited data conditions. The performance of our method

has been evaluated on bearing and gearbox datasets, where 1-shot and 5-shot

tasks are set up in the target domain. There are four conclusions that can be

drawn from these experiments: 1) Compared with traditional finetune-based470

methods, metric-based meta-learning methods achieve higher accuracy on both

datasets; 2) More difficult tasks in the source domain can provide more trans-

ferable knowledge for the deep model of the target domain, which leads to more

effective model; 3) Our proposed FSM3 performs better than a series of baseline

methods on the 1-shot and 5-shot learning of bearing and gearbox fault diagno-475

sis under various limited data conditions, while the FSM3-MN is usually better

than FSM3-PN; 4) The feasibility of our proposed FSM3 is relatively high.
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