1 Associations between physical or psychosocial risk factors and work-related musculoskeletal

2 disorders in construction workers based on literature in the last 20 years: A systematic review

Shahnawaz Anwer, MPT^{1*}; Heng Li, PhD²; Maxwell Fordjour Antwi-Afari, PhD³; Arnold Yu Lok Wong,
PT, MPhil, PhD⁴

- 5
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong; Email:
 <u>anwerphysio@gmail.com</u>, <u>Shahnawaz.anwer@connect.polyu.hk</u>
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong; Email:
 <u>heng.li@polyu.edu.hk</u>
- Department of Civil Engineering, College of Engineering and Physical Sciences, Aston University,
 B4 7ET Birmingham, UK. Email: m.antwiafari@aston.ac.uk
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Email:
 <u>arnold.wong@polyu.edu.hk</u>
- 14
- 15 *Corresponding author
- 16 Shahnawaz Anwer, MPT
- 17 PhD student
- 18 ZN1002, Smart Construction Laboratory
- 19 Department of Building and Real Estate
- 20 Faculty of Construction and Environment
- 21 The Hong Kong Polytechnic University
- 22 Hung Hom, Kowloon, Hong Kong
- 23 Email: <u>anwerphysio@gmail.com; shahnawaz.anwer@connect.polyu.hk</u>

25 Abstract

The current systematic review aimed to summarize prevalence rates of work-related musculoskeletal 26 disorders (WRMSDs) and quantify the associations between physical or psychosocial risk factors and 27 WRMSDs in construction workers. Literature searches were conducted in Web of Science, PubMed, 28 Medline, CINAHL, and EMBASE from 1st January 2000 to 30th September 2020. The methodological 29 quality of the included studies was assessed by a validated risk of bias assessment tool used in population-30 based prevalence studies. Nineteen cross-sectional studies and one cohort study involving 194,863 31 participants were included. Eleven, five, and four included studies were classified as having high, moderate, 32 33 and low quality, respectively. The 12-month prevalence rates of WRMSDs in construction workers were high (ranging from 25% to 96%). There was strong evidence to support the relationships between awkward 34 postures (e.g., twisting, bending, or cramping positions) [odd ratio (OR)=2.4], manual material handling 35 (MMH) (OR=2.2), prolonged works (OR=4.0), high job demands (OR 1.6) or mental stress (OR 1.8) and 36 WRMSDs in construction workers. Additionally, there was moderate evidence for the associations between 37 overhead works (OR=3.1), use of vibration (OR=3.2), or low job satisfaction (OR=1.5) and WRMSDs in 38 construction workers. Furthermore, there was very limited evidence for the associations between repetitive 39 works, low job control, or high job insecurity and WRMSDs in construction workers. Although many 40 physical and psychosocial risk factors were associated with WRMSDs in construction workers, the causal 41 relationships between these factors and the prevalence of WRMSDs remain unclear. Future prospective 42

- 43 studies should determine whether these factors can predict future WRMSDs and whether the modification
- 44 of these factors can reduce the incidence and/or prevalence of WRMSDs in construction workers.
- 45 Keywords: Ergonomics; Occupational Health; Physical risk factors; Prevalence; Psychosocial risk factors;
- 46 Work-related musculoskeletal disorders
- 47 **Review registration** PROSPERO 2019: CRD42019135027.

48 1. Introduction

49	Work-related musculoskeletal disorders (WRMSDs) refer to a wide range of degenerative and/or
50	inflammatory conditions affecting joints, muscles, ligaments, cartilage, and blood vessels (Bulduk et al.,
51	2017, Eatough et al., 2012, Kee and Karwowski, 2007). WRMSDs are the leading cause of disability among
52	construction workers (Roja et al., 2017, Wang et al., 2017). The prevalence of WRMSDs is very high
53	among construction workers worldwide (Kim et al., 2011, Punnett and Wegman, 2004). For example, the
54	prevalence rates of WRMSDs in Hong Kong (3-month prevalence) (Yi and Chan, 2016), Ethiopia (12-
55	month prevalence) (Lette et al., 2018), Taiwan (12-month prevalence) (Leung et al., 2012), and Malaysia
56	(12-month prevalence) (Deros et al., 2014) were 41%, 36%, 68%, and 76%, respectively. A study found
57	that approximately 77% of American construction workers reported at least one musculoskeletal symptom
58	in the last 12 months (Goldsheyder et al., 2004).
59	In addition to physical agony, WRMSDs can lead to huge financial burdens and work absenteeism in
60	the construction industry (Cheng et al., 2010). It has been estimated that more than US\$400 million of
61	workers' compensation is incurred annually due to WRMSDs in the US construction industry (Bhattacharya,
62	2014). Okenwa Emegwa (2014) found that approximately 85% of sick leave cases in the Swedish
63	construction industry were related to WRMSDs. These findings highlight the huge negative impacts of
64	WRMSDs on the economy and productivity in the construction industry.
65	Since construction workers are often exposed to multiple physical risk factors (such as awkward

66 posture, vibration, kneeling, contact stress, environmental risk, static force, prolonged standing, sitting,

67	bending, twisting, as well as carrying and lifting heavy objects) (Antwi-Afari et al., 2017, Engholm and
68	Holmström, 2005, Inyang et al., 2012, McGaha et al., 2014, Salas et al., 2016), physical exposures may be
69	the leading cause of WRMSDs in construction workers. Low back, neck, and upper extremities are the
70	most commonly affected body parts (Alghadir and Anwer, 2015, Holmström and Engholm, 2003, Umer et
71	al., 2018, Villumsen et al., 2015, Widanarko et al., 2011). Non-neutral body postures during construction
72	works may increase the risk of developing WRMSDs (Buchholz et al., 1996, Forde and Buchholz, 2004,
73	Punnett and Wegman, 2004, Takala et al., 2010). Overhead work is also known to be a contributing factor
74	for developing shoulder and neck pain among construction workers (Charles et al., 2018, Engholm and
75	Holmström, 2005). Additionally, a prior narrative review suggested that vibration and awkward postures
76	were related to shoulder and neck pain among workers in different industries (Charles et al., 2018).
77	Therefore, reliable physical risk assessments are recommended to identify construction workers at risk of
78	WRMSDs in different construction trades (Golabchi et al., 2017).
79	The National Institute for Occupational Safety and Health (NIOSH) and the Occupational Safety and
80	Health Administration (OSHA) have made recommendations for general ergonomic practices to reduce
81	risk exposures associated with various WRMSDs, and to minimize the impact of occupational hazards on
82	the development of WRMSDs in construction workers (Albers, 2007). Early evaluation/identification of
83	potential physical risk factors for WRMSDs has been recommended at the construction planning stage
84	(Golabchi et al., 2015), while some strategies (such as prevention through design) are suggested to

85 minimize physical exposures that may lead to WRMSDs in construction workers (Golabchi et al., 2017).

However, since different construction trades may have different physical risks, it is necessary to identify 86 trade-specific physical risk factors to develop tailored occupational guidelines. 87 Although a recent literature review has compared various assessment techniques in evaluating the risk 88 of WRMSDs in the construction industry (Wang et al., 2015), it did not summarize the prevalence estimates 89 of WRMSDs and the evidence regarding the associations between physical or psychosocial risk factors and 90 WRMSDs in construction workers of different trades. To help refine the existing occupational guidelines 91 for construction workers, the current systematic review aimed to summarize the prevalence rates of 92 93 WRMSDs and to synthesize the levels of evidence regarding the associations between various physical or 94 psychosocial risk factors and WRMSDs among construction workers in different trades. 2. Methods 95 2.1. Search strategies 96 This systematic review is reported in accordance with the Preferred Reporting Items for Systematic 97 Review and Meta-analysis (PRISMA) (Panic et al., 2013). This systematic review protocol has been 98 registered in PROSPERO (CRD42019135027) and is available at 99 http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42019135027. Two independent 100 reviewers (SA and AM) searched five electronic databases (i.e., Web of Science, PubMed, Medline, 101 CINAHL, and EMBASE) for relevant studies published between 1st January 2000 and 30th September 102 2020. This period was chosen because many articles published in the last two decades focused on 103 ergonomic analysis of construction workers. The major keywords (including ergonomics, occupational, 104

105	musculoskeletal disorders, and construction workers) and their similar derivatives were used for the
106	search. The complete search strategies used in the current review is provided in Table S1. Backward and
107	forward reference searching of the included studies were conducted to identify additional potential
108	articles (Hu et al., 2011). The corresponding authors of the included studies were contacted to seek
109	recently accepted relevant papers.

110 2.2. Selection criteria

111 Potential articles were included based on the following criteria: (1) population: workers working in 112 any construction trades; (2) publication years: between 2000 and 2020; (3) types of study: observational 113 (cohort or case-control studies), or cross-sectional studies (these types of studies are important for evaluating the associations between physical risk factors and WRMSDs in construction workers); (4) 114 published in English language; and (5) WRMSD related outcomes including musculoskeletal pain, 115 repetitive motion injuries, repetitive strain injuries, regional musculoskeletal disorders, and soft tissue 116 disorders. Included papers had to report associations between physical or psychosocial exposures and 117 WRMSDs. Additionally, case reports, editorials, letters to the editor, and conference proceedings were 118 excluded due to the potentially high risk of bias. 119

120 2.3. Study selection and data extraction

Two independent reviewers (SA and AM) screened the titles and abstracts for potential articles based
on the selection criteria. Full texts of potential articles were then retrieved and reviewed. Any disagreements

were resolved by a third reviewer (AW). The agreement between reviewers at each stage of the review 123 process was analyzed by Kappa statistics (Ben-David, 2008). 124 Data extracted from each study included: authors, year of publication, country, population, study 125 design, sample size, ergonomic risk exposures, incidence and prevalence of WRMSDs, as well as strengths 126 of associations between exposure to physical or psychosocial risk factors and WRMSDs [e.g., odd ratios 127 (ORs)] among construction workers. 128 129 2.4. Quality assessments The two independent reviewers evaluated the methodological quality of each included study using a 130 131 risk of bias tool, which was developed by Hoy et al. (2012) for evaluating the risk of bias in epidemiological studies. This tool has been used in multiple systematic reviews of epidemiological studies (Fayaz et al., 132 2016, Thomas et al., 2015). The tool comprises 10 items in two sub-categories including the assessments 133 of four external validity items and six internal validity items. (Table S2) (Hoy et al., 2012). The tool has 134 demonstrated an excellent inter-rater reliability with a Kappa statistic of 0.83 (95% CI, 0.78–0.88) for the 135 10 individual items, a good inter-rater reliability with a weighted Kappa statistic of 0.48 (95% CI, 0.31-136 0.64) for the evaluation of overall methodological quality (Hoy et al., 2012). The included studies were 137 rated as high (++, low risk of bias), moderate (+, moderate risk of bias), or low quality (-, high risk of bias) 138 139 (Hoy et al., 2012). A study was considered to have a high risk of bias if it met ≤ 4 criteria in the risk of bias tool, moderate risk of bias if it met 5 or 6 criteria, and low risk of bias if it met \geq 7 criteria (Fayaz et al., 140 2016, Thomas et al., 2015). 141

142 2.5. Levels of evidence for each risk factor

The levels of evidence for physical or psychosocial risk factors for WRMSDs in construction workers 143 were examined based on four criteria modified from Bongers et al. (2002): (1) consistency of findings 144 across relevant included studies; (2) strength of the associations; (3) the quality of those studies; and (4) 145 the study design. In particular, more weight was given to longitudinal and observational studies, quality 146 score of 60% or higher, and at least 75% of the included studies had to report associations between physical 147 or psychosocial risk factors and WRMSDs to qualify the consistency of findings. Additionally, in the 148 149 current review, the updated method guidelines for systematic reviews in the Cochrane collaboration back 150 review group method to determine levels of evidence for each risk factor was used (Jun et al., 2017, Van Tulder et al., 2003). This method classifies the levels of evidence as: (1) strong evidence: consistent 151 narrative findings in multiple high-quality studies; (2) moderate evidence: consistent findings from multiple 152 studies with at least one high-quality study; (3) limited evidence: consistent findings from multiple 153 moderate- or low-quality studies; (4) very limited evidence: results obtained from one moderate- or low-154 quality study; and (5) Conflicting evidence: inconsistent findings (Jun et al., 2017, Van Tulder et al., 2003). 155

156 **3. Results**

157 *3.1. Study selection and characteristics*

After removing duplicates from 777 identified studies, 486 titles and abstracts were screened (**Figure S1**). Of 96 potential full-text articles, 20 studies involving approximately 194,863 participants were included in this review. There were high agreements between the two independent reviewers in the title,

161	abstract, and full-text screening (all kappa coefficients, ≥ 0.83). Characteristics of the included studies are
162	presented in Table 1. The included studies were conducted in 11 countries/regions including Denmark,
163	India, Japan, Lithuania, the Netherland, Nigeria, Sweden, Taiwan, Thailand, Trinidad, and the USA. While
164	13 included studies were cross-sectional, six and one included studies were an observational and a
165	longitudinal survey, respectively. Participants' ages ranged from 16 years to 66 years. Most of the included
166	studies only recruited male participants (female participants, <1%). Response rates of surveys in the
167	included studies ranged between 55% and 100%.
168	3.2. Risk of bias of the included studies
169	The risks of bias scores of the included studies are presented in Table 2. The two independent
170	reviewers showed high agreements in their risk of bias assessments (kappa coefficient = 0.86). Eleven
171	studies were considered to have a low risk of bias, five had a moderate risk, and four had a high risk. More
172	than 50% of the included studies failed to meet most of the external validity criteria.
173	3.3. Subjective assessments of incidence/prevalence of WRMSDs
174	Seven included studies used the Nordic musculoskeletal disorder questionnaire to determine the
175	prevalence of WRMSDs in construction workers (Ekpenyong and Inyang, 2014, Elders and Burdorf, 2004,
176	Jensen and Kofoed, 2002, Kaminskas and Antanaitis, 2010, Lee et al., 2005, Merlino et al., 2003, Neeraja

- 177 and Swarochish, 2014). Three included studies used self-designed questionnaires (Engholm and
- 178 Holmström, 2005, Hanklang et al., 2014, Kaneda et al., 2001), two used the modified Iowa construction
- 179 questionnaire (Goldsheyder et al., 2002, Goldsheyder et al., 2004), and one study (Egwuonwu et al., 2016)

180 used the short version Dutch musculoskeletal questionnaire to evaluate the prevalence of WRMSDs in construction workers (Table S5). The Nordic musculoskeletal disorder questionnaire is a reliable and valid 181 self-reported tool to assess the prevalence of WRMSDs in many industries, including construction. The 182 reported kappa coefficients between test and retest scores of this questionnaire ranged from 0.63 to 1.00, 183 indicating a moderate to almost perfect agreement (Fang et al., 2013, Kuorinka et al., 1987, Mesquita et al., 184 2010). Two included studies reported fair to substantial test-retest reliability of the modified Iowa 185 construction questionnaire (Kappa coefficients between test and retest scores = 0.36 to 0.81)(Goldsheyder 186 187 et al., 2002, Goldsheyder et al., 2004). The short version Dutch musculoskeletal questionnaire showed good 188 test-retest reliability (Kappa coefficients between test and retest scores = 0.83) in examining signs and symptoms of WRMSDs over the past 12 months (Egwuonwu et al., 2016). 189

190 *3.4. Subjective assessments of physical and psychosocial risk factors for WRMSDs*

Seven included studies used self-designed questionnaires to identify both physical and psychosocial 191 risk factors for WRMSDs among construction workers (Egwuonwu et al., 2016, Ekpenyong and Inyang, 192 2014, Elders and Burdorf, 2004, Engholm and Holmström, 2005, Hanklang et al., 2014, Kaneda et al., 2001, 193 Neeraja and Swarochish, 2014), while four and one included studies used self-designed questionnaire to 194 investigate either physical (Goldsheyder et al., 2002, Goldsheyder et al., 2004, Kaminskas and Antanaitis, 195 2010, Merlino et al., 2003) or psychosocial (Lee et al., 2005) risk factors for WRMSDs. One study used 196 semi-structured interviews to identified various factors (such as working methods, use of new tools, work 197 planning and organization, physical work strain, psychological work strain, and mental stress) that were 198

associated with WRMSDs (Goldsheyder et al., 2002, Goldsheyder et al., 2004, Jensen and Kofoed, 2002). 199 The contents of various self-designed questionnaires are presented in Table S3. 200 Five included studies reported the test-retest reliability of their self-designed questionnaires that 201 investigated physical (Goldsheyder et al., 2002, Merlino et al., 2003), psychological (Lee et al., 2005), or 202 both physical and psychosocial risk factors (Egwuonwu et al., 2016, Ekpenyong and Inyang, 2014) for 203 WRMSDs in construction workers (Kappa coefficients between test and retest scores = 0.36 to 0.87) (Table 204 S3). One included study reported the interrater reliability correlation coefficient (intraclass correlation 205 206 coefficient=0.95) of their self-designed questionnaire for evaluating both physical and psychosocial risk 207 factors for WRMSDs (Hanklang et al., 2014) (Table S3). However, six included studies did not report the reliability of their self-designed questionnaires (Elders and Burdorf, 2004, Engholm and Holmström, 2005, 208 Goldsheyder et al., 2004, Kaminskas and Antanaitis, 2010, Kaneda et al., 2001, Neeraja and Swarochish, 209 2014). 210

211 3.5. Observation-based assessments of physical risk factors for WRMSDs

Three observation-based assessment tools were used in the included studies to evaluate physical risk factors for WRMSDs. Six included studies used an observation-based method (e.g., postural assessment) to assess physical risk factors for WRMSDs in construction workers (Table S4)(Chatterjee and Sahu, 2018, Das, 2014, Das, 2015, Gilkey et al., 2007, Mungroo and Choi, 2018, Sain and Meena, 2018). Five included studies (Chatterjee and Sahu, 2018, Das, 2014, Das, 2015, Sain and Meena, 2018, Mungroo and Choi, 2018) used the rapid entire body assessment (REBA) to systematically assess whole body working postures, force

218	exertion, repetitions, types of movement, and coupling during job tasks. Two included studies (Mungroo
219	and Choi, 2018, Sain and Meena, 2018) used the rapid upper limb assessment (RULA) to evaluate the
220	ergonomic exposure of upper limb, neck, and trunk in terms of range of motion and force/load at work.
221	Another two included studies (Chatterjee and Sahu, 2018, Gilkey et al., 2007) used the Ovako working
222	analysis system (OWAS) to examine physical exposures (i.e., posture, and external load) of back, arms,
223	and legs during work in construction workers. These methods used a freeze-frame video to record the most
224	frequent postures adopted by the workers to draw stick diagrams. Each posture was then analyzed to
225	identify physical risk factors for WRMSDs during a given construction task (Das, 2014). Likewise, the
226	OWAS work assessment tool was used to analyze ergonomic posture-related risk factors for WRMSDs at
227	work (Karhu et al., 1981, Kivi and Mattila, 1991, Li, 2000, Mattila et al., 1993).
228	Five included studies reported high to very high physical risk (REBA scores, 8 – 14; RULA scores, 5
229	- 7) during various tasks in different construction workers (Chatterjee and Sahu, 2018, Das, 2014, Das,
230	2015, Mungroo and Choi, 2018, Sain and Meena, 2018). Two other studies also found that many
231	construction workers spent the majority of their working hours in postures that can cause some strain to
232	harmful strain leading to WRMSDs (Chatterjee and Sahu, 2018, Gilkey et al., 2007).

- 233 3.6. Prevalence rates of WRMSDs among construction workers
- Three studies reported point prevalence of WRMSDs in construction workers (Goldsheyder et al., 2002,
- Goldsheyder et al., 2004, Kaneda et al., 2001), whereas 13 included studies reported 12-month prevalence
- of WRMSDs (Egwuonwu et al., 2016, Ekpenyong and Inyang, 2014, Elders and Burdorf, 2004, Engholm

237	and Holmström, 2005, Goldsheyder et al., 2002, Goldsheyder et al., 2004, Hanklang et al., 2014, Jensen
238	and Kofoed, 2002, Kaminskas and Antanaitis, 2010, Lee et al., 2005, Merlino et al., 2003, Neeraja and
239	Swarochish, 2014, Wang et al., 2017)(Table S5). Low back pain was the most common WRMSDs (Gilkey
240	et al., 2007, Goldsheyder et al., 2004) followed by shoulder (Hanklang et al., 2014), neck (Goldsheyder et
241	al., 2004), and knee (Engholm and Holmström, 2005) in construction workers. The point prevalence rates
242	of lumbar, shoulder, neck, knee, wrist, and hand pain ranged between 14% and 54% (Gilkey et al., 2007,
243	Goldsheyder et al., 2002), between 21% and 30% (Goldsheyder et al., 2002), between 22% and 36%
244	(Engholm and Holmström, 2005, Goldsheyder et al., 2004), between 18% and 22% (Elders and Burdorf,
245	2004, Goldsheyder et al., 2002), and between 17% and 21% (Goldsheyder et al., 2002, Goldsheyder et al.,
246	2004) in construction workers, respectively. Similarly, the 12-month prevalence rates of low back pain
247	(LBP), shoulder pain, neck pain, knee pain, wrist and hand pain were from 38 to 66% (Gilkey et al., 2007,
248	Goldsheyder et al., 2004), 30% to 47% (Goldsheyder et al., 2004, Merlino et al., 2003), 24% to 44%
249	(Engholm and Holmström, 2005, Goldsheyder et al., 2004), 30% to 41% (Goldsheyder et al., 2002,
250	Hanklang et al., 2014), and 14% and 44% (Engholm and Holmström, 2005, Hanklang et al., 2014) among
251	construction workers, respectively.

252 3.7. Associations between physical risk factors and WRMSDs

Although the current review initially intended to summarize the evidence regarding trade-specific risk factors for WRMSDs, it was not possible to be conducted such a summary because the included studies mixed up workers in multiple trades together. Therefore, this review only reported the risk factors for

256	WRMSDs in construction workers as a whole. Overall, different physical exposures may differentially
257	increase the risk of WRMSDs at different body parts (details are given in Table S5). Physical risk factors
258	can be classified into eight categories: (a) awkward body postures such as twisting, bending, or cramping
259	positions; (b) strenuous arm movements such as reaching or arms over shoulders level or arms away from
260	body; (c) repetitive, forced, or prolonged works; (d) frequent or heavy lifting; (e) squatting or kneeling; (f)
261	pushing, pulling, and carrying objects; (g) manual material handling (MMH); and (h) use of vibrating
262	machines.
263	Greater physical exposures are associated with higher risks of LBP development among construction
264	workers (details are given in Table S5). For instance, prolonged works (defined as working in the same
265	position for long periods) (OR: 2.90; 95%CI: 2.23 to 3.76) (Merlino et al., 2003), overhead work with
266	elevated arms above the shoulder level (OR: 1.93; 95% CI: 0.84 to 4.45) (Elders and Burdorf, 2004), lifting
267	heavy objects frequently as compared to rarely (OR: 1.90; 95%CI: 1.72 to 2.11) (Engholm and Holmström,
268	2005), working in an awkward posture such as bent and twisted back (ORs, ranging from 1.47 to 3.66)
269	(Elders and Burdorf, 2004, Goldsheyder et al., 2004, Kaneda et al., 2001, Merlino et al., 2003), frequent
270	bending activities for long periods (half bending or deep forward bending) (OR, ranging from 1.37 to 1.80)
271	(Kaneda et al., 2001), squatting for long periods (OR: 1.14; 95%CI: 0.99 to 1.32) (Kaneda et al., 2001),
272	and MMH (OR: 1.05; 95%CI: 0.49 to 2.27) (Elders and Burdorf, 2004) increased the risk of developing

273 LBP among construction workers.

274	Three physical risk factors were specific to shoulder pain in construction workers Specifically, these
275	factors included frequent overhead work (OR: 3.66; 95%CI: 3.32 to 4.04) (Engholm and Holmström, 2005),
276	MMH (OR: 2.96; 95%CI: 1.81 to 4.85) (Neeraja and Swarochish, 2014), and repetitive work with hands
277	(e.g., repetitive movements \geq 1000 times per day) (OR: 2.01; 95%CI: 1.25 to 3.24) (Neeraja and
278	Swarochish, 2014).
279	Common physical risk factors for neck pain were prolonged working hours (> 8 hours per day) (OR:
280	7.63; 95%CI: 2.06 to 28.31) (Hanklang et al., 2014), MMH (OR: 2.96; 95%CI: 1.81 to 4.85) (Neeraja and
281	Swarochish, 2014), overhead work (OR: 2.93; 95%CI: 2.65 to 3.24) (Engholm and Holmström, 2005), and
282	repetitive works (e.g., repetitive movements \geq 1000 times per day) (OR: 2.01; 95%CI: 1.25 to 3.24)
283	(Neeraja and Swarochish, 2014).
284	Kneeling (OR: 3.94; 95%CI: 3.55 to 4.37) (Engholm and Holmström, 2005), working in the same
285	position for long periods (OR: 2.90; 95%CI: 2.20 to 3.78) (Merlino et al., 2003), and working in an
286	awkward posture such as cramped (restricted) position (OR: 1.31; 95%CI: 0.93 to 1.84) (Merlino et al.,
287	2003) were the major risk factors contributing to knee pain in construction workers.
288	Similarly, repetitive tasks (OR: 4.53; 95%CI: 3.24 to 6.34) (Merlino et al., 2003), working in the same
289	position (OR: 2.71; 95%CI: 2.09 to 3.52) (Merlino et al., 2003), using a vibrating machinery (OR: 2.21;
290	95%CI: 2.00 to 2.44) (Engholm and Holmström, 2005), and often lifting heavy objects (OR: 1.60; 95%CI:
291	1.40 to 1.84) (Engholm and Holmström, 2005) were significantly associated with wrist/hand pain among
292	construction workers.

293 *3.8. Associations between psychosocial risk factors and WRMSDs*

Psychosocial risk factors for WRMSDs in construction workers are presented in Table S5. The most 294 common psychosocial factors that were associated with a higher 12-month prevalence of WMRSDs were 295 high job demands (ORs ranging from 1.16 to 2.50) (Ekpenyong and Inyang, 2014, Elders and Burdorf, 296 2004, Engholm and Holmström, 2005, Hanklang et al., 2014, Jensen and Kofoed, 2002, Neeraja and 297 Swarochish, 2014), mental stress (ORs ranging from 1.34 to 1.80) (Engholm and Holmström, 2005, Jensen 298 and Kofoed, 2002, Kaneda et al., 2001), low job control (ORs ranging from 1.16 to 2.16) (Ekpenyong and 299 300 Inyang, 2014, Elders and Burdorf, 2004, Engholm and Holmström, 2005, Neeraja and Swarochish, 2014), 301 low job satisfaction (ORs ranging from 1.10 to 1.83) (Engholm and Holmström, 2005, Neeraja and Swarochish, 2014), and high job insecurity (ORs ranging from 1.35 to 1.42) (Egwuonwu et al., 2016, 302 Ekpenyong and Inyang, 2014). These factors were usually associated with higher 12-month prevalence 303 rates of WMRSDs at low back, upper back, shoulder, neck, elbow, wrist or hand, and knee. 304

305 *3.9. Levels of the evidence for associations between physical or psychosocial risk factors and WRMSDs*

Table 3 shows strong evidence to support relationships between awkward postures (e.g., twisting, bending, or cramping positions) (OR: 2.43), MMH (OR: 2.21), or prolonged works (OR: 4.02) and WRMSDs in construction workers. Additionally, there was moderate evidence for the associations between overhead works (OR: 3.12) or use of vibration (OR: 3.17) and WRMSDs in construction workers. Evidence for the relationship between the use of vibration and WRMSDs was downgraded from strong to moderate

- 311 effect because of a large confidence interval. Furthermore, there was very limited evidence to substantiate
- the association between repetitive works and WRMSDs in construction workers.
- Table 4 indicates strong evidence to support relationships between high job demands (OR: 1.63) or 313 mental stress (OR: 1.79) and WRMSDs in construction workers. Additionally, there was moderate evidence 314 for the associations between low job satisfaction (OR: 1.47) and WRMSDs in construction workers. Further, 315 there was very limited evidence that low job control or high job insecurity was associated with WRMSDs 316 in construction workers. Evidence for the relationship between low job satisfaction and WRMSDs was 317 318 downgraded from strong to moderate due to the large confidence interval. Likewise, the association 319 between low job control or high job insecurity and WRMSDs was degraded from limited to very limited effects because of the large confidence interval. 320
- 321 **4. Discussion**

322 This systematic review aimed to summarize the prevalence of WRMSDs in construction workers and to synthesize evidence regarding various physical or psychosocial risk factors for WRMSDs in construction 323 workers. Low back pain is the most common WRMSDs followed by shoulder, neck, and knee pain in 324 construction workers (Elders and Burdorf, 2004, Engholm and Holmström, 2005, Gilkey et al., 2007, 325 Goldsheyder et al., 2002, Goldsheyder et al., 2004, Merlino et al., 2003, Widanarko et al., 2011). Wrist and 326 327 hand pain among construction workers was also commonly reported in many studies (Engholm and Holmström, 2005, Goldsheyder et al., 2002, Goldsheyder et al., 2004, Hanklang et al., 2014). While there 328 was strong evidence that certain physical (e.g., awkward postures, MMH and prolonged works) or 329

- 330 psychosocial (high job demands, and mental stress) factors were significantly related to WRMSDs, moderate evidence also supports the relationships between other physical (e.g., overhead work and use of 331 vibrating machinery) or psychosocial (e.g., low job satisfaction) factors and WRMSDs in construction 332 workers. Additionally, there was a very limited evidence to substantiate the associations between repetitive 333 works, low job control, or high job insecurity and WRMSDs in construction workers. 334 Our prevalence findings concurred with a recent systematic review that studied the 12-month 335 prevalence estimates of musculoskeletal symptoms among construction workers (Umer et al., 2018). Umer 336 337 et al. (2018) found that LBP was the most common WRMSDs among construction workers (51%), while 338 other commonly affected body parts were knee (37%), shoulder (32%), and wrist (30%). The slight discrepancy in the prevalence of shoulder pain in the current review might be attributed to different 339 participant samples and search strategies. Since most of the included studies used the cross-sectional design 340 and only one study reported the 12-month incidence of LBP and chronic LBP in scaffolders (Elders and 341 Burdorf, 2004). Future studies are warranted to quantify the incidence of WRMSDs in different 342
- 343 construction trades.

Although LBP is the most common WRMSDs among construction workers, the relation between physical exposures and the risk of LBP remains unclear. Of various potential physical risk factors for LBP, lifting activity is the only factor that has consistently been reported as a risk factor for WRMSDs among workers in construction (Das, 2015, Engholm and Holmström, 2005), and other industries (e.g., agriculture, maritime, petroleum, paper products, transportation, automobile, aircraft, steel, and machine manufacturing)

349	(Bernard and Putz-Anderson, 1997, Vieira and Kumar, 2006, Wai et al., 2010). One systematic review
350	reported a moderate evidence for the relationship between lifting (e.g., > 25 kg loads or >35 kg loads) and
351	prevalence of LBP in people from various occupations (such as construction, firefighter, nurses, forestry,
352	postal workers, podiatrists, etc.) (Wai et al., 2010). While three physical risk factors (e.g., bending, twisting,
353	or cramped postures activity) may theoretically increase intradiscal pressure and lead to LBP (Lis et al.,
354	2007, Yip et al., 2004), findings from epidemiological studies showed inconsistent results (Roffey et al.,
355	2010, Wai et al., 2010). Future large-scale longitudinal field studies should use objective measurements
356	(e.g., wearable sensors, or validated ergonomic assessment tools) to quantify the impacts of these risk
357	factors (e.g., bending, twisting) on the development or maintenance of LBP in construction workers.
358	While the current review identified some common physical risk factors for WRMSDs at different body
359	parts (e.g., shoulder or knee) of construction workers, these risk factors differed from those reported in
360	other industries. For instance, the current review found that overhead work, and repetitive tasks with hands
361	increased the risk of shoulder pain. However, previous systematic reviews reported that awkward postures,
362	repetition works, high force (e.g., exposed to higher loads), vibration, MMH, bending and twisting, and
363	extreme temperature) were related to shoulder pain in people working in agriculture, forestry, fishery, or
364	machine manufacturing (Bernard and Putz-Anderson, 1997, Charles et al., 2018). The disparity highlights
365	that risk factors may be task specific. As such, findings from construction workers in one trade (e.g.,
366	painters) may not be generalized to workers in other construction trades (e.g., rebar workers). Unfortunately,
367	since many included studies investigated physical risk factors for WRMSDs based on a cohort of workers

368	from different construction trades, it was difficult to identify the trade-specific risk factors for WRMSDs.
369	Future studies should address this issue by investigating task- or trade-specific risk factors for WRMSDs.
370	Likewise, although previous systematic reviews have reported causal relations between certain
371	physical risk factors (such as awkward postures and repetitive work) and neck, knee, or wrist/hand pain
372	among workers in various industries (such as construction, agriculture, maritime, petroleum, etc.) (Bernard
373	and Putz-Anderson, 1997, da Costa and Vieira, 2010), their findings cannot be generalized to construction
374	workers (Bernard and Putz-Anderson, 1997, da Costa and Vieira, 2010). Future prospective field studies
375	should determine the causal relationships between different physical risk factors and WRMSDs in
376	construction workers of various trades.
377	Psychosocial risk factors (e.g., high job demands, low job satisfaction, and stress) were shown to be
378	related to WRMSDs in construction workers. Our findings concurred with those of a previous literature
379	
	review that reported a consistent association between high job stress and WRMSDs in various occupational
380	review that reported a consistent association between high job stress and WRMSDs in various occupational settings including construction (Bongers et al., 2002). Similarly, a systematic review found strong evidence
380 381	
	settings including construction (Bongers et al., 2002). Similarly, a systematic review found strong evidence
381	settings including construction (Bongers et al., 2002). Similarly, a systematic review found strong evidence for the association between high job stress or low job satisfaction and WRMSDs, and moderate evidence

Windt et al., 2000), or lower back regions (Hoogendoorn et al., 2000). Although various psychosocial

386 factors are associated with WRMSDs, the mechanisms underlying causal effects between these factors and

387	WRMSDs remain elusive. One mechanism hypothesizes that psychological stress may reduce an
388	individual's pain tolerance, which increases the perception of WRMSD-related pain (Lundberg, 2002,
389	Theorell and Karasek, 1996). Another mechanism propounds that high psychological stress may cause
390	individuals to perform their tasks differently (e.g., using extra efforts for a certain task), resulting in higher
391	biomechanical loading (Eatough et al., 2012). A third mechanism proposes that suboptimal psychological
392	wellbeing may result in greater perceived pain or disability via different cognitive and behavioral responses
393	(Eatough et al., 2012).

394 **5. Study implications**

395 Since WRMSDs are common among construction workers, the prevention of WRMSDs in these workers is crucial. The current review revealed different levels of evidence in supporting significant 396 associations between various physical or psychosocial factors and WRMSDs in construction workers. To 397 effectively allocate resources to prevent WRMSDs in construction workers, several important steps should 398 be undertaken. First, future studies are warranted to develop proactive preventive measures such as real-399 time measurements of physical or mental stress, or physical workloads to minimize the modifiable physical 400 or psychosocial risk factors, thereby reducing the incidence/prevalence of WRMSDs in construction 401 workers. Second, instead of using diverse self-developed questionnaires for risk factor assessments, future 402 403 ergonomic studies should use validated questionnaires, and/or observational risk assessment tools (e.g., 404 OWAS, WERA, and REBA) to minimize the bias in reporting and assessing risk factors for WRMSDs in construction workers. The REBA and RULA methods are the most widely used ergonomic assessment 405

406	tools for assessing posture during construction tasks such as MMH (Hignett and McAtamney, 2000,
407	Kulkarni and Devalkar, 2019, Ryu et al., 2018, Shanahan et al., 2013). These methods are inexpensive and
408	easy to analyze postures. However, trained observers are needed to minimize the inter-observer variability
409	(Sain and Meena, 2018). Third, wearable sensors (e.g., pressure insole, motion sensors, video capture with
410	machine learning) can be used to quantify physical risk factors for WRMSDs (Antwi-Afari et al., 2018a,
411	Nath et al., 2017, Valero et al., 2017, Yan et al., 2017). Although prior laboratory studies have used
412	wearable sensors to identify physical risk factors for WRMSDs during simulated construction tasks (Antwi-
413	Afari et al., 2018a, Antwi-Afari et al., 2018b, Antwi-Afari et al., 2020b, Antwi-Afari et al., 2020a, Antwi-
414	Afari et al., 2020c, Umer et al., 2017, Yang et al., 2019), these findings should be validated in field studies
415	before being generalized to construction workers. Fourth, future longitudinal studies should be conducted
416	to establish the causal relationships between various prognostic or risk factors and subsequent development
417	of WRMSDs in construction workers. In short, a better understanding of the role of these factors in the
418	etiology of WRMSDs can help design proper preventive measures for construction workers. Stakeholders
419	(e.g., construction site managers, and construction workers) will also find it difficult to select the most cost-
420	effective approaches [e.g., lower extremity exoskeleton devices (Wehner et al., 2009) or robots (Bernold et
421	al., 2001), or adopting specific work rest schedule (Geurts and Sonnentag, 2006, Goldenhar et al., 2003)]
422	to prevent WRMSDs in construction workers.

423 6. Study limitations

424	Although the current review was conducted and reported according to the PRISMA guideline, the
425	included studies had some limitations that prevented the direct application of our findings to prevent
426	WRMSDs in construction workers. First, the cross-sectional study designs of most of the included studies
427	prevented the determination of causal relationships between physical or psychosocial risk factors and
428	WRMSDs in construction workers. Second, 11 out of 20 included studies used self-reported
429	questionnaires and five of them only used self-developed questionnaires without reporting reliability and
430	validity. These questionnaires might be subject to recall bias, missing data, and misinterpretation of
431	questions by the respondents (Wai et al., 2010). Future studies should use validated questionnaires to
432	assess risk factors. Third, many included studies (38%) did not provide clear definitions nor quantifiable
433	specifications of physical risk factors, which prevented comparisons of findings across studies. Many
434	included studies ($n = 5$) used poorly defined physical risk factors (e.g., awkward posture or MMH) in
435	their OR calculations. For example, there was no measurement of flexion/rotation angles of neck or trunk
436	for a specific duration during ergonomic risk assessments. Similarly, the definitions and durations of
437	repetitive works, overhead work, the frequency of machine vibration, or the loading and duration of
438	MMH activities were not reported. Although six included studies used observation-based postural
439	assessment methods (such as OWAS, REBA, and RULA methods) to estimate physical exposures, they
440	did not report relevant statistics (e.g., ORs) to quantify the associations between physical exposures and
441	the prevalence of WRMSDs (Chatterjee and Sahu, 2018, Das, 2014, Das, 2015, Gilkey et al., 2007,

- 442 Mungroo and Choi, 2018, Sain and Meena, 2018). Therefore, these studies were excluded from the443 current review.
- In addition to the limitations of primary studies, the current review had some other limitations. First, 444 the current review only included English articles. Relevant articles in other languages might have been 445 missed. Second, given the heterogeneity of the included studies and cross-sectional nature of most 446 studies, a meta-analysis was not conducted. That said, our review highlights the needs for further 447 448 investigation of several physical or psychosocial risk factors. 449 7. Conclusions This systematic review updated the prevalence rates of WRMSDs and summarized new evidence 450 regarding the associations between physical or psychosocial risk factors and WRMSDs in construction 451 workers. Our results reveal that WRMSDs are ubiquitous in construction workers. There was strong 452 evidence that many physical (e.g., awkward postures, MMH, and prolonged works) and psychosocial (e.g., 453 high job demands and stress) risk factors were associated with WRMSDs in construction workers. 454

455 Additionally, there was moderate evidence for the relationships between other risk factors (e.g., overhead

456 works, use of vibration, or low job satisfaction) and WRMSDs in construction workers. However, causal

458 sectional nature of the included studies. Future longitudinal studies are warranted to explore the causal

relationships between these factors and the prevalence of WRMSDs remain unclear due to the cross-

- 459 effects between these factors and WRMSDs in construction workers.
- 460 **8. Relevance to the industry**

461	This review highlights that most previous studies did not investigate trade-specific risk factors. Since
462	different construction trades have different physical or psychosocial demands/risks, it is necessary to
463	identify trade-specific physical or psychosocial risk factors so as to design tailored prevention strategies.
464	Therefore, future studies should examine trade-specific risk factors. Additionally, although the current
465	review has summarized many physical or psychosocial risk factors for WRMSDs in construction
466	workers, future prospective studies should evaluate whether the modification of these risk factors can
467	lower the prevalence of WRMSDs in construction workers.
468 469	Acknowledgements
470	The authors are grateful to the funding supports from the following two grants. 1. Project title: In search
471	of a suitable tool for proactive physical fatigue assessment: an invasive to non-invasive approach. Grant
472	Number: PolyU 152047/19E. 2. Project title: The development and validation of a non-invasive tool to
473	monitor mental and physical stress in construction workers. Grant Number: PolyU 15210720.
474	Data Availability: All data, models, and code generated or used during the study appear in the submitted
475	article.
476	References
477	Agel J, Akesson K, Amadio PC, Anderson M, Badley E, Balint G, Bellamy N, Bigos S, Bishop N, Bivans
478	B, B.P., 2003. The burden of musculoskeletal conditions at the start of the new millennium. World
479	Health Organization technical report series. 919,i.

- 480 Albers, J.T., 2007. Simple solutions: Ergonomics for construction workers. US Department of Health and
- 481 Human Services, Public Health Service, Centers for Disease Control and Prevention, National
- 482 Institute for Occupational Safety and Health; 2007-122. <u>https://www.cdc.gov/niosh/nioshtic-</u>

483 <u>2/20032782.html</u>

- Sobeih, T., Salem, O., Genaidy, A., Abdelhamid, T., Shell, R., 2009. Psychosocial Factors and
 Musculoskeletal Disorders in the Construction Industry. Journal of Construction Engineering and
 Management 135 (4), 267-277. ALBERS, J. T. 2007. *Simple solutions: Ergonomics for construction workers*, US Department of Health and Human Services, Public Health Service, Centers
- ALGHADIR, A. & ANWER, S. 2015. Prevalence of musculoskeletal pain in construction workers in Saudi
 Arabia. *The Scientific World Journal*, 2015.
- ANTWI-AFARI, M., LI, H., EDWARDS, D., PÄRN, E., SEO, J. & WONG, A. 2017. Biomechanical
 analysis of risk factors for work-related musculoskeletal disorders during repetitive lifting task in
 construction workers. *Automation in Construction*, 83, 41-47.
- ANTWI-AFARI, M. F., LI, H., ANWER, S., YEVU, S. K., WU, Z., ANTWI-AFARI, P. & KIM, I. 2020a.
 Quantifying workers' gait patterns to identify safety hazards in construction using a wearable insole
 pressure system. *Safety Science*, 129, 104855.
- ANTWI-AFARI, M. F., LI, H., EDWARDS, D. J., PÄRN, E. A., OWUSU-MANU, D.-G., SEO, J. &
 WONG, A. Y. L. 2018a. Identification of potential biomechanical risk factors for low back
 disorders during repetitive rebar lifting. *Construction Innovation*.
- ANTWI-AFARI, M. F., LI, H., SEO, J., ANWER, S., YEVU, S. K. & WU, Z. 2020b. Validity and
 reliability of a wearable insole pressure system for measuring gait parameters to identify safety
 hazards in construction. *Engineering, Construction and Architectural Management*.
- ANTWI-AFARI, M. F., LI, H., UMER, W., YU, Y. & XING, X. 2020c. Construction Activity Recognition
 and Ergonomic Risk Assessment Using a Wearable Insole Pressure System. *Journal of Construction Engineering and Management*, 146, 04020077.
- ANTWI-AFARI, M. F., LI, H., YU, Y. & KONG, L. 2018b. Wearable insole pressure system for automated
 detection and classification of awkward working postures in construction workers. *Automation in Construction*, 96, 433-441.
- ARIËNS, G. A., VAN MECHELEN, W., BONGERS, P. M., BOUTER, L. M. & VAN DER WAL, G.
 2001. Psychosocial risk factors for neck pain: a systematic review. *American journal of industrial medicine*, 39, 180-193.

511 BEN-DAVID, A. 2008. Comparison of classification accuracy using Cohen's Weighted Kappa. *Expert* 512 *Systems with Applications*, 34, 825-832.

- 513 BERNARD, B. P. & PUTZ-ANDERSON, V. 1997. Musculoskeletal disorders and workplace factors; a
 514 critical review of epidemiologic evidence for work-related musculoskeletal disorders of the neck,
 515 upper extremity, and low back.
- BERNOLD, L. E., LORENC, S. J. & DAVIS, M. L. 2001. Technological intervention to eliminate back
 injury risks for nailing. *Journal of construction engineering and management*, 127, 245-250.
- 518 BHATTACHARYA, A. 2014. Costs of occupational musculoskeletal disorders (MSDs) in the United
 519 States. *International Journal of Industrial Ergonomics*, 44, 448-454.
- BONGERS, P. M., KREMER, A. M. & LAAK, J. T. 2002. Are psychosocial factors, risk factors for
 symptoms and signs of the shoulder, elbow, or hand/wrist?: A review of the epidemiological
 literature. *American journal of industrial medicine*, 41, 315-342.
- BUCHHOLZ, B., PAQUET, V., PUNNETT, L., LEE, D. & MOIR, S. 1996. PATH: a work samplingbased approach to ergonomic job analysis for construction and other non-repetitive work. *Applied ergonomics*, 27, 177-187.
- BULDUK, S., BULDUK, E. Ö. & SÜREN, T. 2017. Reduction of work-related musculoskeletal risk
 factors following ergonomics education of sewing machine operators. *International journal of occupational safety and ergonomics*, 23, 347-352.
- 529 CHARLES, L. E., MA, C. C., BURCHFIEL, C. M. & DONG, R. G. 2018. Vibration and ergonomic
 530 exposures associated with musculoskeletal disorders of the shoulder and neck. *Safety and health at*531 *work*, 9, 125-132.
- CHATTERJEE, A. & SAHU, S. 2018. A physiological exploration on operational stance and occupational
 musculoskeletal problem manifestations amongst construction labourers of West Bengal, India.
 Journal of back and musculoskeletal rehabilitation, 31, 775-783.
- CHENG, C.-W., LEU, S.-S., LIN, C.-C. & FAN, C. 2010. Characteristic analysis of occupational accidents
 at small construction enterprises. *Safety Science*, 48, 698-707.
- DA COSTA, B. R. & VIEIRA, E. R. 2010. Risk factors for work-related musculoskeletal disorders: a
 systematic review of recent longitudinal studies. *American journal of industrial medicine*, 53, 285 323.
- 540 DAS, B. 2014. Prevalence of work-related musculoskeletal disorders among the brick field workers of
 541 West Bengal, India. Archives of environmental & occupational health, 69, 231-240.
- 542 DAS, B. 2015. An evaluation of low back pain among female brick field workers of West Bengal, India.
 543 *Environmental health and preventive medicine*, 20, 360-368.
- 544 DEROS, B. M., DARUIS, D. D., KHAMIS, N. K., MOŞHAMAD, D., DAUD, S. F. M., AMDAN, S. M.,
- ABD AZIZ, R. & JAMAL, N. 2014. Prevalence of Work Related Musculoskeletal Disorders
 SympČtoms among Construction Workers: a Case Study in MalayČsia. *Iranian Journal of Public Health*, 43, 53-57.
- EATOUGH, E. M., WAY, J. D. & CHANG, C.-H. 2012. Understanding the link between psychosocial
 work stressors and work-related musculoskeletal complaints. *Applied ergonomics*, 43, 554-563.

- EGWUONWU, A., MBAOMA, C. & ABDULLAHI, A. 2016. Prevalence and associated risk factors of
 work-related muscoskeletal disorders among road construction workers in a Nigerian community.
 Ergonomics SA: Journal of the Ergonomics Society of South Africa, 28, 25-37.
- EKPENYONG, C. E. & INYANG, U. C. 2014. Associations between worker characteristics, workplace
 factors, and work-related musculoskeletal disorders: a cross-sectional study of male construction
 workers in Nigeria. *International Journal of Occupational Safety and Ergonomics*, 20, 447-462.
- ELDERS, L. A. & BURDORF, A. 2004. Prevalence, incidence, and recurrence of low back pain in
 scaffolders during a 3-year follow-up study. *Spine*, 29, E101-E106.
- ENGHOLM, G. & HOLMSTRÖM, E. 2005. Dose-response associations between musculoskeletal
 disorders and physical and psychosocial factors among construction workers. *Scandinavian Journal of Work, Environment & Health*, 57-67.
- FANG, Y., LI, S., ZHANG, Y., ZHANG, P., WU, H. & WANG, D. 2013. Test-retest reliability of Nordic
 Musculoskeletal Questionnaire in nurses. *Zhonghua lao dong wei sheng zhi ye bing za zhi= Zhonghua laodong weisheng zhiyebing zazhi=* Chinese journal of industrial hygiene and
 occupational diseases, 31, 753-758.
- FAYAZ, A., CROFT, P., LANGFORD, R. M., DONALDSON, L. J. & JONES, G. T. 2016. Prevalence of
 chronic pain in the UK: a systematic review and meta-analysis of population studies. *Bmj Open*, 6.
- FORDE, M. S. & BUCHHOLZ, B. 2004. Task content and physical ergonomic risk factors in construction
 ironwork. *International Journal of Industrial Ergonomics*, 34, 319-333.
- GEURTS, S. A. & SONNENTAG, S. 2006. Recovery as an explanatory mechanism in the relation between
 acute stress reactions and chronic health impairment. *Scandinavian journal of work, environment & health*, 482-492.
- GILKEY, D. P., KEEFE, T. J., BIGELOW, P. L., HERRON, R. E., DUVALL, K., HAUTALUOMA, J.
 E., ROSECRANCE, J. S. & SESEK, R. 2007. Low back pain among residential carpenters:
 ergonomic evaluation using OWAS and 2D compression estimation. *International Journal of Occupational Safety and Ergonomics*, 13, 305-321.
- GOLABCHI, A., HAN, S., FAYEK, A. R. & ABOURIZK, S. 2017. Stochastic modeling for assessment
 of human perception and motion sensing errors in ergonomic analysis. *Journal of Computing in Civil Engineering*, 31, 04017010.
- GOLABCHI, A., HAN, S., SEO, J., HAN, S., LEE, S. & AL-HUSSEIN, M. 2015. An automated
 biomechanical simulation approach to ergonomic job analysis for workplace design. *Journal of Construction Engineering and Management*, 141, 04015020.
- GOLDENHAR, L. M., HECKER, S., MOIR, S. & ROSECRANCE, J. 2003. The "Goldilocks model" of
 overtime in construction: not too much, not too little, but just right. *Journal of safety research*, 34,
 215-226.
- GOLDSHEYDER, D., NORDIN, M., WEINER, S. S. & HIEBERT, R. 2002. Musculoskeletal symptom
 survey among mason tenders. *American journal of industrial medicine*, 42, 384-396.

- 587 GOLDSHEYDER, D., WEINER, S. S., NORDIN, M. & HIEBERT, R. 2004. Musculoskeletal symptom
 588 survey among cement and concrete workers. *Work*, 23, 111-121.
- HANKLANG, S., KAEWBOONCHOO, O., SILPASUWAN, P. & MUNGARNDEE, S. S. 2014.
 Musculoskeletal disorders among Thai women in construction-related work. *Asia Pacific Journal* of *Public Health*, 26, 196-202.
- HIGNETT, S. & MCATAMNEY, L. 2000. Rapid entire body assessment (REBA). *Applied ergonomics*,
 31, 201-205.
- HOLMSTRÖM, E. & ENGHOLM, G. 2003. Musculoskeletal disorders in relation to age and occupation
 in Swedish construction workers. *American journal of industrial medicine*, 44, 377-384.
- HOOGENDOORN, W., VAN POPPEL, M., BONGERS, P., KOES, B. & BOUTER, L. 2000. Psychosocial
 factors at work and in the personal situation as risk for back pain. *Spine*, 25, 2114-2125.
- HOY, D., BROOKS, P., WOOLF, A., BLYTH, F., MARCH, L., BAIN, C., BAKER, P., SMITH, E. &
 BUCHBINDER, R. 2012. Assessing risk of bias in prevalence studies: modification of an existing
 tool and evidence of interrater agreement. *Journal of Clinical Epidemiology*, 65, 934-939.
- HU, X. J., ROUSSEAU, R. & CHEN, J. 2011. On the definition of forward and backward citation
 generations. *Journal of Informetrics*, 5, 27-36.
- INYANG, N., AL-HUSSEIN, M., EL-RICH, M. & AL-JIBOURI, S. 2012. Ergonomic analysis and the
 need for its integration for planning and assessing construction tasks. *Journal of construction engineering and management*, 138, 1370-1376.
- JENSEN, L. K. & KOFOED, L. B. 2002. Musculoskeletal disorders among floor layers: is prevention
 possible? *Applied occupational and environmental hygiene*, 17, 797-806.
- JUN, D., ZOE, M., JOHNSTON, V. & O'LEARY, S. 2017. Physical risk factors for developing non specific neck pain in office workers: a systematic review and meta-analysis. *International archives of occupational and environmental health*, 90, 373-410.
- KAMINSKAS, K. A. & ANTANAITIS, J. 2010. A cross-sectional survey of construction workers: an
 ergonomic approach.
- KANEDA, K., SHIRAI, Y. & MIYAMOTO, M. 2001. An epidemiological study on occupational low back
 pain among people who work in construction. *Journal of Nippon Medical School*, 68, 310-317.
- KARHU, O., HÄRKÖNEN, R., SORVALI, P. & VEPSÄLÄINEN, P. 1981. Observing working postures
 in industry: Examples of OWAS application. *Applied ergonomics*, 12, 13-17.
- KEE, D. & KARWOWSKI, W. 2007. A comparison of three observational techniques for assessing
 postural loads in industry. *International Journal of Occupational Safety and Ergonomics*, 13, 3-14.
- KIM, S., NUSSBAUM, M. A. & JIA, B. 2011. Low back injury risks during construction with prefabricated
 (panelised) walls: effects of task and design factors. *Ergonomics*, 54, 60-71.
- KIVI, P. & MATTILA, M. 1991. Analysis and improvement of work postures in the building industry:
 application of the computerised OWAS method. *Applied ergonomics*, 22, 43-48.

- KULKARNI, V. S. & DEVALKAR, R. 2019. Postural analysis of building construction workers using
 ergonomics. *International Journal of Construction Management*, 19, 464-471.
- KUORINKA, I., JONSSON, B., KILBOM, A., VINTERBERG, H., BIERING-SØRENSEN, F.,
 ANDERSSON, G. & JØRGENSEN, K. 1987. Standardised Nordic questionnaires for the analysis
 of musculoskeletal symptoms. *Applied ergonomics*, 18, 233-237.
- LEE, H. Y., YEH, W. Y., CHEN, C. W. & WANG, J. D. 2005. Prevalence and psychosocial risk factors
 of upper extremity musculoskeletal pain in industries of Taiwan: a nationwide study. *Journal of occupational health*, 47, 311-318.
- LETTE, A., AMBELU, A., GETAHUN, T. & MEKONEN, S. 2018. A survey of work-related injuries
 among building construction workers in southwestern Ethiopia. *International journal of industrial ergonomics*, 68, 57-64.
- LEUNG, M.-Y., CHAN, I. Y. S. & YU, J. 2012. Preventing construction worker injury incidents through
 the management of personal stress and organizational stressors. *Accident Analysis & Prevention*,
 48, 156-166.
- 637 LI, K. W. 2000. Improving postures in construction work. *Ergonomics in Design*, 8, 11-16.
- LIS, A. M., BLACK, K. M., KORN, H. & NORDIN, M. 2007. Association between sitting and
 occupational LBP. *European Spine Journal*, 16, 283-298.
- LUNDBERG, U. 2002. Psychophysiology of work: Stress, gender, endocrine response, and work-related
 upper extremity disorders. *American journal of industrial medicine*, 41, 383-392.
- MATTILA, M., KARWOWSKI, W. & VILKKI, M. 1993. Analysis of working postures in hammering
 tasks on building construction sites using the computerized OWAS method. *Applied ergonomics*,
 24, 405-412.
- MCGAHA, J., MILLER, K., DESCATHA, A., WELCH, L., BUCHHOLZ, B., EVANOFF, B. & DALE,
 A. M. 2014. Exploring physical exposures and identifying high-risk work tasks within the floor
 layer trade. *Applied ergonomics*, 45, 857-864.
- MERLINO, L. A., ROSECRANCE, J. C., ANTON, D. & COOK, T. M. 2003. Symptoms of
 musculoskeletal disorders among apprentice construction workers. *Applied occupational and environmental hygiene*, 18, 57-64.
- MESQUITA, C. C., RIBEIRO, J. C. & MOREIRA, P. 2010. Portuguese version of the standardized Nordic
 musculoskeletal questionnaire: cross cultural and reliability. *Journal of Public Health*, 18, 461-466.
- MUNGROO, S. & CHOI, S. D. 2018. Ergonomic Assessment of Work-Related Musculoskeletal Risks
 Among Construction Roofers in Central Trinidad. JOURNAL OF SAFETY, HEALTH &
 ENVIRONMENTAL RESEARCH, 322.
- NATH, N. D., AKHAVIAN, R. & BEHZADAN, A. H. 2017. Ergonomic analysis of construction worker's
 body postures using wearable mobile sensors. *Applied ergonomics*, 62, 107-117.
- NEERAJA, T. & SWAROCHISH, C. 2014. The factors associated with MSDS among construction
 workers. *Journal of human ergology*, 43, 1-8.

- OKENWA EMEGWA, L. 2014. Determinants of sick leave duration following occupational injuries
 among workers in the county of Gävleborg, Sweden. *Occupational Medicine & Health Affairs*, 2.
- PANIC, N., LEONCINI, E., DE BELVIS, G., RICCIARDI, W. & BOCCIA, S. 2013. Evaluation of the
 endorsement of the preferred reporting items for systematic reviews and meta-analysis (PRISMA)
 statement on the quality of published systematic review and meta-analyses. *PloS one*, 8, e83138.
- PUNNETT, L. & WEGMAN, D. H. 2004. Work-related musculoskeletal disorders: the epidemiologic
 evidence and the debate. *Journal of electromyography and kinesiology*, 14, 13-23.
- ROFFEY, D. M., WAI, E. K., BISHOP, P., KWON, B. K. & DAGENAIS, S. 2010. Causal assessment of
 occupational sitting and low back pain: results of a systematic review. *The Spine Journal*, 10, 252 261.
- ROJA, Z., KALKIS, H., ROJA, I. & ZALKALNS, J. Work related musculoskeletal disorders (WRMSD)
 in construction workers and main causes. International Conference on Applied Human Factors
 and Ergonomics, 2017. Springer, 279-286.
- RYU, J., ZHANG, L., HAAS, C. T. & ABDEL-RAHMAN, E. Motion data based construction worker
 training support tool: Case study of masonry work. ISARC. Proceedings of the International
 Symposium on Automation and Robotics in Construction, 2018. IAARC Publications, 1-6.
- SAIN, M. K. & MEENA, M. 2018. Exploring the musculoskeletal problems and associated risk-factors
 among brick kiln workers. *International Journal of Workplace Health Management*.
- SALAS, E. A., VI, P., REIDER, V. L. & MOORE, A. E. 2016. Factors affecting the risk of developing
 lower back musculoskeletal disorders (MSDs) in experienced and inexperienced rodworkers.
 Applied ergonomics, 52, 62-68.
- SHANAHAN, C. J., VI, P., SALAS, E. A., REIDER, V. L., HOCHMAN, L. M. & MOORE, A. E. 2013.
 A comparison of RULA, REBA and Strain Index to four psychophysical scales in the assessment
 of non-fixed work. *Work*, 45, 367-378.
- SOBEIH, T. M., SALEM, O., DARAISEH, N., GENAIDY, A. & SHELL, R. 2006. Psychosocial factors
 and musculoskeletal disorders in the construction industry: a systematic review. *Theoretical Issues in Ergonomics Science*, 7, 329-344.
- TAKALA, E.-P., PEHKONEN, I., FORSMAN, M., HANSSON, G.-Å., MATHIASSEN, S. E.,
 NEUMANN, W. P., SJØGAARD, G., VEIERSTED, K. B., WESTGAARD, R. H. & WINKEL, J.
 2010. Systematic evaluation of observational methods assessing biomechanical exposures at work. *Scandinavian journal of work, environment & health*, 3-24.
- THEORELL, T. & KARASEK, R. A. 1996. Current issues relating to psychosocial job strain and
 cardiovascular disease research. *Journal of occupational health psychology*, 1, 9.
- THOMAS, R., SANDERS, S., DOUST, J., BELLER, E. & GLASZIOU, P. 2015. Prevalence of Attention Deficit/Hyperactivity Disorder: A Systematic Review and Meta-analysis. *Pediatrics*, 135, E994 E1001.

- UMER, W., ANTWI-AFARI, M. F., LI, H., SZETO, G. P. & WONG, A. Y. 2018. The prevalence of
 musculoskeletal symptoms in the construction industry: a systematic review and meta-analysis.
 International archives of occupational and environmental health, 91, 125-144.
- UMER, W., LI, H., SZETO, G. P. Y. & WONG, A. Y. L. 2017. Identification of biomechanical risk factors
 for the development of lower-back disorders during manual rebar tying. *Journal of Construction Engineering and Management*, 143, 04016080.
- VALERO, E., SIVANATHAN, A., BOSCHÉ, F. & ABDEL-WAHAB, M. 2017. Analysis of construction
 trade worker body motions using a wearable and wireless motion sensor network. *Automation in Construction*, 83, 48-55.
- VAN DER WINDT, D. A., THOMAS, E., POPE, D. P., DE WINTER, A. F., MACFARLANE, G. J.,
 BOUTER, L. M. & SILMAN, A. J. 2000. Occupational risk factors for shoulder pain: a systematic
 review. *Occupational and environmental medicine*, 57, 433-442.
- VAN TULDER, M., FURLAN, A., BOMBARDIER, C., BOUTER, L. & GROUP, E. B. O. T. C. C. B. R.
 2003. Updated method guidelines for systematic reviews in the cochrane collaboration back review
 group. *Spine*, 28, 1290-1299.
- VIEIRA, E. R. & KUMAR, S. 2006. Cut-points to prevent low back injury due to force exertion at work.
 Work, 27, 75-87.
- VILLUMSEN, M., SAMANI, A., JØRGENSEN, M. B., GUPTA, N., MADELEINE, P. &
 HOLTERMANN, A. 2015. Are forward bending of the trunk and low back pain associated among
 Danish blue-collar workers? A cross-sectional field study based on objective measures. *Ergonomics*,
 58, 246-258.
- WAI, E. K., ROFFEY, D. M., BISHOP, P., KWON, B. K. & DAGENAIS, S. 2010. Causal assessment of
 occupational lifting and low back pain: results of a systematic review. *The Spine Journal*, 10, 554566.
- WANG, D., DAI, F. & NING, X. 2015. Risk assessment of work-related musculoskeletal disorders in
 construction: State-of-the-art review. *Journal of Construction Engineering and management*, 141,
 04015008.
- WANG, X., DONG, X. S., CHOI, S. D. & DEMENT, J. 2017. Work-related musculoskeletal disorders
 among construction workers in the United States from 1992 to 2014. *Occupational and environmental medicine*, 74, 374-380.
- WEHNER, M., REMPEL, D. & KAZEROONI, H. Lower extremity exoskeleton reduces back forces in
 lifting. Dynamic Systems and Control Conference, 2009. 49-56.
- 728 WIDANARKO, B., LEGG, S., STEVENSON, M., DEVEREUX, J., ENG, A., CHENG, S., DOUWES, J.,
- 729 ELLISON-LOSCHMANN, L., MCLEAN, D. & PEARCE, N. 2011. Prevalence of musculoskeletal
- symptoms in relation to gender, age, and occupational/industrial group. *International Journal of Industrial Ergonomics*, 41, 561-572.

- YAN, X., LI, H., LI, A. R. & ZHANG, H. 2017. Wearable IMU-based real-time motion warning system
 for construction workers' musculoskeletal disorders prevention. *Automation in Construction*, 74, 2 11.
- YANG, L., LU, K., FORSMAN, M., LINDECRANTZ, K., SEOANE, F., EKBLOM, Ö. & EKLUND, J.
 2019. Evaluation of physiological workload assessment methods using heart rate and accelerometry
 for a smart wearable system. *Ergonomics*, 62, 694-705.
- YI, W. & CHAN, A. 2016. Health profile of construction workers in Hong Kong. *International journal of environmental research and public health*, 13, 1232.
- YIP, Y., HO, S. & CHAN, S. 2004. Identifying risk factors for low back pain (LBP) in Chinese middleaged women: a case-control study. *Health care for women international*, 25, 358-369.
- Yi, W., Chan, A., 2016. Health profile of construction workers in Hong Kong. International journal of
- environmental research and public health 13 (12), 1232.
- Yip, Y.B., Ho, S.C., Chan, S.G., 2004. Identifying risk factors for low back pain (LBP) in Chinese

middle-aged women: A case-control study. Health care for women international 25 (4), 358-369.

747 Table 1: Study characteristics

Citations	Country of study	Study design	Participants (Construction trades), All male workers except otherwise reported	Task duration (Hrs./day)	Age, years (range)	Response rate
Kaneda et al. 2001	Japan	Cross-sectional survey	All trades (n=19,948).	8.2 ± 1.3	42.0 ± 12.3	59.5%
Goldsheyder et al. 2002	USA	Cross-sectional survey	Mason tenders (n=300); Laborers (n=135)	Not reported	39.1 ± 9.5	70.2%
Merlino et al. 2003	USA	Cross-sectional survey	Apprentice construction workers (n = 996)	6.4±1.2	27.7 ± 6.2	84.8%
Elders et al. 2004	Netherland	Longitudinal survey with three-year follow-up	Scaffolders (n = 288)	Not reported	30 to 50	85%
Goldsheyder et al. 2004	USA	Cross-sectional survey	Cement and concrete workers $(n = 200)$	Not reported	38.9±10.4	55%
Engholm et al. 2005	Sweden	Cross-sectional survey	Construction workers $(n = 85, 191)$	Not reported	(25 – 60)	94.4%
Gilkey et al. 2007	USA	Observational study using OWAS and ErgoMaster [™]	Residential carpenters (n = 94)	Not reported	37	100%
		2D software				

Kaminskas et al. 2010	Lithuania	Cross-sectional survey	Construction workers (n = 276); Female (n=36)	Not reported	38.8 ± 12.6	62.7%
Das et al. 2014	India	Observational study using REBA method	Brick Field Workers (n = 216); Female (n=112)	7-8	30.3 ± 10.7 (21 – 52)	100%
Ekpenyong et al. 2014	Nigeria	Cross-sectional survey	Ironworkers (n=143); Administrative workers (n=47); Security workers (n=93); Carpenters (n=152); Mechanical workers (n=161); Bricklaying workers (n=183); Electrical workers (n=131); Transportation workers (n=82); Storekeeper (n=67); Earth-movement unit workers (n=141)	Not reported	26.4 ± 0.4 (18 – 55)	100%
Hanklang et al. 2014	Thailand	Cross-sectional survey	Female Rebar workers $(n = 272)$	> 8	48.2 ± 9.7	100%
Neeraja et al. 2014	India	Cross-sectional survey	Construction workers (n = 220), Female (n=68)	6.3±1.2	31.5 ± 8.2	100%
Das 2015	India	Observational study using REBA method	Brick field workers (n=148)	7-8	(21 – 52)	100%
Egwuonwu et al. 2016	Nigeria	Cross-sectional descriptive survey	Road construction workers (n=100)	7.9 ± 1.2	35.9 ± 8.5 (23 – 60)	100%
Wang et al. 2017	USA	Cross-sectional survey	Multiple trades (n=82,630)	Not reported	>16	Not reported
---------------------------	----------	---	---	---------------	--	-----------------
Mungroo et al. 2018	Trinidad	Observational study using REBA and RULA methods	Construction roofers (n=61)	8	34 ± 8.5	100%
Chatterjee and Sahu, 2018	India	Observational study using REBA and OWAS methods	Construction laborer (n = 164)	8.18 ± 0.99	$34.6 \pm 2.7 (28 - 36)$ $43.1 \pm 3.0 (40 - 48)$	100%
Jensen and Kofoed 2002	Denmark	Cross-sectional survey	Floor layers (n = 102) and apprentice floor layers (n = 180)	Not reported	37 years (17–66), and 22 years (16– 54)	88% 95%
Lee et al. 2005	Taiwan	Cross-sectional survey	Construction workers (n = 1,814)	Not reported	25 - 65	85%
Sain and Meena, 2018	India	Observational study using REBA and RULA methods	Brick kiln workers (n = 328); Female (n = 111)	Not reported	17 – 53	100%

REBA: Rapid Entire Body Assessment; RULA: Rapid Upper Limb Assessment; OWAS: Ovako Working Analysis System

748

749 Table 2: Risk of Bias Scores for included studies (Quality Assessment)

Citations	External validity criteria			Inte	Internal validity criteria				Total score	%	*Overall quality		
	1	2	3	4	5	6	7	8	9	10			
Goldsheyder et al. 2002	N	N	N	N	Y	N	Y	Y	Y	Y	5/10	50	High risk
Goldsheyder et al. 2004	Ν	N	Ν	N	Y	N	N	Y	Y	Y	4/10	40	High risk
Wang et al. 2017	Ν	Y	Ν	Y	N	Y	N	Ν	N	Y	4/10	40	High risk
Mungroo et al. 2018	N	N	N	N	Y	N	N	Y	Y	Y	4/10	40	High risk
Kaneda et al. 2001	Y	Y	Ν	N	Y	N	N	Y	Y	Y	6/10	60	Moderate risk
Engholm et al. 2005	Y	N	N	Y	Y	N	N	Y	Y	Y	6/10	60	Moderate risk
Kaminskas et al. 2010	N	Ν	Y	N	Y	N	Y	Y	Y	Y	6/10	60	Moderate risk
Neeraja et al. 2014	N	N	N	Y	Y	N	Y	Y	Y	Y	6/10	60	Moderate risk
Egwuonwu et al. 2016	Ν	N	N	Y	Y	N	Y	Y	Y	Y	6/10	60	Moderate risk
Merlino et al. 2003	N	Y	N	Y	Y	N	Y	Y	Y	Y	7/10	70	Low risk
Elders et al. 2004	N	N	N	Y	Y	Y	Y	Y	Y	Y	7/10	70	Low risk
Gilkey et al. 2007	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	9/10	90	Low risk

Das et al. 2014NNYYYYYYYYYEkpenyong et al. 2014NNNYYYYYYYYHanklang et al. 2014NNYYYYNYYYYDas 2015NNYYYYNYYYChatterjee and Sahu, 2018YYYYYYYYYJensen and Kofoed 2002YYNYYYYYYYLee et al. 2005YYYYYYYYYYYSain and Meena, 2018YYNYYYYYYYY			
Hanklang et al. 2014NNYYYYNYYDas 2015NNYYYYNYYYChatterjee and Sahu, 2018YYYYYYYYYYJensen and Kofoed 2002YYNYYYYYYYLee et al. 2005YYYYYYYYYY	8/10	80	Low risk
Das 2015NNYYYNYYYChatterjee and Sahu, 2018YYYYYYYYYYYJensen and Kofoed 2002YYNYYYYYYYYLee et al. 2005YYYYYYYYYYY	7/10	70	Low risk
Chatterjee and Sahu, 2018YY	7/10	70	Low risk
Jensen and Kofoed 2002YYNYYYYYYYLee et al. 2005YYYYYYYYYY	7/10	70	Low risk
Lee et al. 2005 Y Y Y Y Y Y Y Y Y	10/10	100	Low risk
	9/10	90	Low risk
Soin and Maana 2018 V V N V V V V V V V	10/10	100	Low risk
Sain and Meena, 2018 Y Y N Y Y Y Y Y Y Y	9/10	90	Low risk

*Overall Quality criteria: Low risk: \geq 7 criteria met; Moderate risk: 5 or 6 criteria met; High risk: \leq 4 criteria met (Hoy et al., 2012)

751

752

Table 3. Strength of the evidence for the relationship between physical risk factors and work-related musculoskeletal disorders

Physical risks	Citations	Consistency of positive findings	Strength of the association (Odd ratios, OR)	Effects	* Levels of evidence of a given risk factor
1. Awkward	Egwuonwu et al. 2016; Ekpenyong et al. 2014;		OR = 2.43 (95% CI, 1.5	Risk factor	Strong effect
postures	Elders et al. 2004; Engholm et al. 2005;		to 3.4)		
All studies	Goldsheyder et al. 2002; Goldsheyder et al.				
An studies	2004; Hanklang et al. 2014; Kaminskas et al.	8/10 = 80%			
QS > 60%	2010; Kaneda et al. 2001; Merlino et al. 2003	7/8 = 88%			
QS < 60%		1/2 = 50%			
2. Repetitive works	Egwuonwu et al. 2016; Goldsheyder et al.		OR = 3.27 (95% CI, -	Risk factor	Very limited
All studies	2002; Hanklang et al. 2014; Merlino et al.		12.7 to 19.3)		effect**
All studies	2003; Neeraja et al. 2014				
QS > 60%		2/5 = 40%			
QS < 60%		2/4 = 50%			
		0/1 = 0%			

3. Overhead work	Elders et al. 2004; Engholm et al. 2005;		OR = 3.12 (95% CI, 1.7	Risk factor	Moderate effect
All studies	Goldsheyder et al. 2002; Goldsheyder et al. 2004; Merlino et al. 2003; Neeraja et al. 2014	4/6 = 67%	to 4.5)		
QS > 60%	,,,,,,,	2/4 = 50%			
QS < 60%		2/2 = 100%			
4. Vibration	Egwuonwu et al. 2016; Ekpenyong et al. 2014;		ORs = 3.17 (95% CI, -	Risk factor	Moderate
All studies	Engholm et al. 2005; Wang et al. 2017	4/4 = 100%	9.2 to 15.6)		effect**
QS > 60%		3/3 = 100%			
QS < 60%		0/1 = 0%			
5. Manual material	Ekpenyong et al. 2014; Elders et al. 2004;		ORs = 2.21 (95% CI, 1.3	Risk factor	Strong effect
handling	Goldsheyder et al. 2002; Goldsheyder et al.		to 3.2)		
All studies	2004; Neeraja et al. 2014	5/5 = 100%			
QS > 60%		3/3 = 100%			
QS < 60%		2/2 = 100%			
6. Prolonged works	Goldsheyder et al. 2004; Hanklang et al. 2014;		ORs = 4.02 (95% CI, 0.2	Risk factor	Strong effect
All studies	Merlino et al. 2003;		to 7.8)		
QS > 60%		3/3 = 100%			

QS < 60% 2/2 = 100% 1/1 = 100% Note: QS = Quality score; CI = Confidence Interval; * [**Strong evidence:** consistent narrative findings in multiple high-quality studies;

Moderate evidence: consistent findings from multiple studies with at least one high quality study; **Limited evidence:** consistent findings from multiple moderate or low-quality studies; **Very limited evidence:** results obtained from one moderate or low-quality study; **Conflicting evidence:** inconsistent findings (Jun et al., 2017; van Tulder et al., 2003)]; **Evidence downgraded from limited to very limited or strong to moderate due to large CI.

754

755

Table 4. Strength of the evidence for the relationship between psychosocial risk factors and work-related musculoskeletal disorders

Physical risks	Citations	Consistency of positive findings	Strength of the association (Odd ratios, OR)	Effects	* Levels of evidence of a given risk factor
1. Mental stress	Engholm et al. 2005; Jensen and		OR = 1.79 (95% CI, 0.1 to 3.5)	Risk	Strong effect
All studies	Kofoed 2002; Kaneda et al. 2001	3/3 = 100%		factor	
QS > 60%		3/3 = 100%			
QS < 60%					
2. High job demand	Ekpenyong et al. 2014; Elders et		OR = 1.63 (95% CI, 1.2 to 2.0)	Risk	Strong effect
All studies	al. 2004; Engholm et al. 2005;	6/6 = 100%		factor	
in studies	Hanklang et al. 2014; Jensen and	0/0 - 100/0			
QS > 60%	Kofoed 2002; Neeraja et al.	6/6 = 100%			
QS < 60%	2014;				
3. Low job satisfaction	Engholm et al. 2005; Neeraja et		ORs = 1.47 (95% CI, -3.2 to	Risk	Moderate effect**
All studies	al. 2014	2/2 = 100%	6.1)	factor	
QS > 60%		2/2 = 100%			
QS < 60%					

4. Low job control	Ekpenyong et al. 2014; Elders et		ORs = 1.43 (95% CI, 0.6 to	Risk	Very limited effect**
All studies	al. 2004; Engholm et al. 2005; Neeraja et al. 2014	2/4 = 50%	2.2.)	factor	
QS > 60%		2/2 = 100%			
QS < 60%		0/2 = 0%			
5. High job insecurity	Egwuonwu et al. 2016;		ORs = 1.96 (95% CI, -0.5 to	Risk	Very limited effect**
All studies	Ekpenyong et al. 2014	1/2 = 50%	4.5)	factor	
QS > 60%		1/2 = 50%			
QS < 60%					

Note: QS = Quality score; CI = Confidence interval; * [Strong evidence: consistent narrative findings in multiple high-quality studies; Moderate evidence: consistent findings from multiple studies with at least one high quality study; Limited evidence: consistent findings from multiple moderate or low-quality studies; Very limited evidence: results obtained from one moderate or low-quality study; Conflicting evidence: inconsistent findings (Jun et al., 2017; van Tulder et al., 2003)]; **Evidence downgraded from strong to moderate or limited to very limited due to large CI.

Table S1. Search strategy

Keywords (30-09-2020)	Web of Science	PubMed	Medline	CINAHL Complete	EMBASE
Ergonomics OR Work environment OR Workplace OR Construction Ergonomics OR Occupational Safety OR Construction Safety OR Ergonomic exposures OR Ergonomic performance OR Manual Material Handling tasks	309,361	226591	25,398	74,543	646858
Musculoskeletal dis* OR Musculoskeletal injury OR Musculoskeletal Symptom OR Musculoskeletal complaint	37,396	26118	6,706	14,511	38931
Construction workers OR Construction industry OR Construction trade OR Construction sector OR Industrial Construction OR Construction	514,811	90105	28,132	37,939	98460
Risk factor OR Occupational Risk factors OR Biomechanical risk OR Psychosocial risk	936,567	1,499,696	204,184	384,482	538389
Combined, Limit (1-1-2000 to 30- 09-2020)	142	127	161	54	293
Total after duplication removed			486		

Table S2. Risk of bias questionnaire - Adapted from the Risk of Bias Tool for Prevalence Studies [Hoy et al. (2012)]

Risk of Bias questions	Response:		
	Yes (Low risk), No (High risk)		
Questions related to external validity			
1. Whether the target population in the included studies includes adult construction workers?	-		
2. Whether the target sample a true or close representative of the target population?			
3. Whether the sampling technique includes some form of randomization?			
4. Whether the non-response bias was minimal or non-selective?			
Questions related to internal validity	-		
5. Whether the data was collected directly from the participants?	-		
6. Whether the included studies used a clear definition of work-related musculoskeletal disorders?			
7. Whether the included studies used any reliable and valid scale to assess study outcome?			
8. Whether the included studies used uniform method of data collection for all subjects?			
9. Whether the included studies provide an adequate prevalence period as required?			
10. Whether the included study keep consistency in using numerator and denominator for calculating prevalence rate			
Overall risk of bias score	Low risk: ≥7 criteria met; Moderate risk: 5 or 6 criteria met; High risk: ≤4 criteria met		

Figure S1. Study selection process and results of the literature search

1 Table S3. Contents of self-designed questionnaire to assess physical and/or psychosocial risk factors for Work-related musculoskeletal disorders in construction workers

Citations	Questions related to physical risks	Questions related to psychosocial risks	Reliability data
Kaneda et al.	Working and resting hours per day	Number of employees at their companies	Not reported
2001	Postures they often maintained during work	Length of employment	
	If they had to handle heavy objects	Number of working days and holidays per	
	The weights of the objects	month	
	Whether they wear a lumbar supporter while working	Whether they suffer stress due to personal	
		relations at work	
Goldsheyder	Performing the same task over and over		Test-retest
et al. 2002,	Performing a task very fast for short periods (lifting,		reliability, Kappa =
2004	grasping, pulling, pushing, etc.)		0.36 to 0.81
	Handling or grasping small objects		
	Taking sufficient breaks during the workday		
	Working in awkward position		
	Working in the same position for long periods of time		
	(standing, bent over, sitting, kneeling, etc.)		
	Bending or twisting your back in awkward way		

	Working near or at your physical limits	
	(e.g., when you are out of breath and heartbeat is fast)	
	Working over your head or away from your body	
	Working in hot, cold, humid, wet conditions	
	Continuing to work when in pain	
	Carrying, lifting, or moving heavy materials, equipment	
	Work scheduling (overtime, irregular shifts, length of workday)	
	Using tools (design, weight, vibration, etc.)	
Merlino et al.	Repeated tasks,	Test-retest
2003	Work fast for short time	reliability, Kappa = 0.46 to 0.68
	Grasp small objects	
	Insufficient breaks	
	Work in cramped position	
	Work in same position	
	Bend back awkwardly	

			-	
	Work near physical limits			
	Reach overhead			
	Inclement conditions			
	Work when hurt			
	Transporting heavy materials			
	Long workday			
	Tool characteristics			
Elders et al.	Lifting and carrying heavy loads,	Psychologically demanding Job	Not reported	
2004	Awkward working postures in which the back is bent or twisted, and	Low job control		
	Strenuous arm positions such as working with hands above shoulder level			
Engholm et	Lifting heavy burdens	Job satisfaction	Not reported	
ıl. 2005	Stooping or twisted posture	Low job control		
	Hands above shoulders	Information about future plans		
	Kneeling	Alternating work tasks		
	Kneeling	Alternating work tasks		

	Use of vibration tools	Task variation	
		Support from supervisors	
		Support from workmates	
		Job responsibility too heavy	
		Work health hazard anxiety	
		Work psychologically demanding	
		Difficulties to relax during leisure time	
		Hurrying without reason	
		Sleeping problems	
		Stress	
Kaminskas et	Awkward work posture,		Not reported
al. 2010	High use of physical force		
	Work in a static posture		
Ekpenyong et	The presence or absence of awkward	Decision latitude,	Test-retest
al. 2014	posture, awkward movement of the head and	Psychosocial demands	reliability, Kappa = 0.65 to 0.79
	arms,	Mental workload,	0.03 10 0.17

	Working against forces or vibration,	Social support,	
	Manual materials handling (MMH),	Job insecurity	
	Fast work pace		
Hanklang et	Prolonged working hours	Perceived high job demand	Interrater reliability
al. 2014	Awkward posture	Work experience (years)	(Interclass correlation
	Repetitive task		coefficient): 0.95
Neeraja et al.	Repetitive gesture	Job control	Not reported
2014	Force with the arms or hands	Psychological demands	
	Sitting posture	Social support	
	Standing posture	Job dissatisfaction	
	Walking		
	Arms above the height of the shoulder		
	Repetitive movement with the hands		
	Bent trunk		
	Turned trunk		
	Lifting weights		

	Mechanical pressure with the hands on the object of		
	work		
Egwuonwu et	Awkward posture such as twisting and sideway	Time pressures	Test-retest
al. 2016	bending;	Employment status	reliability, Kappa =
	Repetitive works	Supervision and training	0.83
	Vibration from hand tools;	Family and spousal support	
	Lifting, reaching, and unequal lifting	Remuneration and wages	
		Job security	
		Working hours	
		Transportation facility	
		Co-workers relationship	
Lee et al.		Job content	Test-retest
2005		Physical working condition	reliability, Kappa = 0.80 to 0.87
		Relationship	
		Organizational problem	
		Uncomfortable working environment	

Poor safety and hygiene in the workplace

Table S4. Observation-based assessments (postural assessments) of physical risk factors for work related musculoskeletal disorders (WRMSDs)

Citations	Construction trade (n = 1011)	Tasks	REBA score (Severity of risk)	RULA score (Severity of risk)	(Wo Sper	rktin nt in .	Actior (%))	Significant risk of affected body parts OR (95% CI)	Prevalence of WRMSDs
Sain and Meena, 2018	Brick kiln workers (n = 328)	Spading	11.7 ± 0.8 (Very high)	6.4 ± 0.6 (Very high)				With reference to carrying 12.55 (5.23–30.16) (Fingers) 0.44 (0.22–0.87) (Lower back) 6.27 (2.56–15.40) (Knee)	Neck = 21.2% Shoulder = 57.7% Upper arm = 25.9% Lower arm = 20.0% Wrist = 42.4% Fingers = 16.5% Upper back = 12.9% Lower back = 62.4% Knee = 16.5%

Mould filling	11.1 ± 0.8	6.1 ± 0.8	With reference to carrying	Neck = 14.7%
	(Very high)	(Very high)	0.22 (0.07–0.67) (Neck)	Shoulder = 42.1%
	mgn)		0.35 (0.17–0.73) (Shoulder)	Upper arm = 28.4%
			5.45 (2.55-11.65) (Wrist)	Lower arm = 20.0%
			2.53 (1.07-5.96) (Fingers)	Wrist = 53.7%
				Fingers = 55.8%
				Upper back = 12.6%
				Lower back = 41.1%
				Knee = 39.0%
				KHCC = 37.070
Mould	10.5 ± 0.7	5.2 ± 0.7	With reference to carrying	Neck = 13.1%
Mould evacuating	10.5 ± 0.7 (High)	5.2 ± 0.7 (High)	With reference to carrying 6.11 (2.47–15.15) (Upper	
				Neck = 13.1%
			6.11 (2.47–15.15) (Upper back) 0.25 0.11–0.57 (lower	Neck = 13.1% Shoulder = 40.5%
			6.11 (2.47–15.15) (Upper back)	Neck = 13.1% Shoulder = 40.5% Upper arm = 20.2%
			6.11 (2.47–15.15) (Upper back) 0.25 0.11–0.57 (lower	Neck = 13.1% Shoulder = 40.5% Upper arm = 20.2% Lower arm = 25.0%
			6.11 (2.47–15.15) (Upper back) 0.25 0.11–0.57 (lower	Neck = 13.1% Shoulder = 40.5% Upper arm = 20.2% Lower arm = 25.0% Wrist = 76.2%

Anwer S, Li H, Antwi-Afari MF, Wong AYL. Associations between physical or psychosocial risk factors and work-related musculoskeletal disorders in construction workers based on literature in the last 20 years: A systematic review. International Journal of Industrial Ergonomics (Accepted)

									Lower back = 56.0%
									Knee = 15.5%
	Brick	10.0 ± 0.8	5.0 ± 0.9						Neck = 29.7%
	carrying	(High)	(High)						Shoulder = 53.1%
									Upper arm = 29.7%
									Lower arm = 18.8%
									Wrist = 28.1%
									Fingers = 15.6%
									Upper back = 45.3%
									Lower back = 39.1%
									Knee = 17.2%
Residential	Sort wall			57	40	3	0	0.896 (0.414-1.938) (Point	$r = 0.290^*$ (Lifetime
Carpenters	material							prevalence of LBP)	prevalence of LBP)
(n = 94)								1.470 (0.796–2.714) (12- month prevalence of LBP)	

Gilkey et al. 2007

				1.343 (0.733–2.458)	
				(Lifetime prevalence of	
				LBP)	
Install floor	29 60	11	0	1.452 (0.595-3.544) (Point	r = 0.360* and
joists				prevalence of LBP)	0.327* (12-month
				1.855 (0.934–3.806) (12-	and lifetime
				month prevalence of LBP)	prevalence of LBP, respectively)
				1.693 (0.838–3.418)	
				(Lifetime prevalence of	
				LBP)	
Sort trusses	80 15	5	0	1.611 (0.634-4.096) (Point	r = 0.222* and
				prevalence of LBP)	0.333* (Point and
				0.795 (0.404–1.564) (12- month prevalence of LBP)	lifetime prevalence of LBP, respectively)
				1.364 (0.709–2.621)	
				(Lifetime prevalence of	
				LBP)	
Sheet floors	33 67	0	0	0.855 (0.342-2.137) (Point	R = 0.356* and 0.300
				prevalence of LBP)	(12-month and

							1.829 (0.901–3.716)	lifetime prevalence
							(12-month prevalence of LBP)	of LBP, respectively)
							0.945 (0.474–1.920) (Lifetime prevalence of LBP)	
	Stand walls		17	70	13	0	0.664 (0.286–1.538) (Point prevalence of LBP)	r = 0.288* (Lifetime prevalence of LBP,
							0.504 (0.269–0.942) (12- month prevalence of LBP)	respectively)
							1.504 (0.795–2.843)	
							(Lifetime prevalence of LBP)	
Brick Field Workers	Brick carrying	10 ± 1.0 (High)					Working posture of this task is of high risk for	12-month prevalence of WRMSDs
(n = 216)							WRMSDs.	96.3%
	Brick moulding	8 ± 0.0 (High)					Working posture of this task is of high risk for WRMSDs.	12-month prevalence of WRMSDs

Das, 2014

58.4% 10 ± 0.0 Working posture of this Brick fire 12-month prevalence task is of high risk for of WRMSDs (High) WRMSDs. 47.8% Brick 9.7 ± 0.58 Working posture of this 12-month prevalence stacking (High) task is of high risk for of WRMSDs WRMSDs. 64.5% Das, 2015 Brick field Carrying 9 (High) 12-month prevalence: 1.59 (0.411-6.207) (LBP) workers mud Awkward working posture Brick moulders: (n = 148)such as bending and LBP, 27% Moulding 8 (High) twisting the back, 70% Brick carriers: LBP, Loading raw 10 (High) prevalence of LBP 25% bricks Repetitive work, 61% Carrying raw 9 (High) prevalence of LBP bricks to kiln Constant sitting static work Unloading 10 (High) posture, 55% prevalence of raw bricks to LBP kiln

60

		Picking burn bricks from kiln Carrying burn bricks from kiln to storage	10 (High) 9 (High)	MMH, 45% prevalence of LBP Lifting of heavy objects, 40% prevalence of LBP	
Mungroo	Construction	Securing	12 (Very	Motion/position (awkward	Point prevalence:
et al. 2018	Roofers	panel in	high)	body postures such as	Back injury (54%),
	(n = 61)	place		extended shoulder and bent	sprains/strains (21%),
	. ,	Lifting	11 (Very	elbow) vs WRMSDs: 35%	rotator cuff injury
		panels	high)	Overexertion vs WRMSDs:	(13%), tendinitis
		Fastening	9 (High)	28%	(6%), carpal tunnel
		panels with	8/	Vibration vs WRMSDs:	syndrome (4%), and
		screws		24%	epicondylitis (3%).
		Purlin	12 (Very		
		installation	high)		
		Lifting I-	10 (High)		
		Beam			

		Gutter and Trim installation Soffit panel and wall angle installation		7 (Very high) 7 (Very high)	_		
Chatterjee and Sahu, 2018	Construction laborer (n = 164)	Sand carrying or filling mixture or lifting materials or sand loading	8 (High)		2,1,5,1 (Major strain)	MMH, overhead works, and awkward posture caused high risk of WRMSDs	12-month prevalence: Neck (47.6%) Shoulder (36.6%) Wrist (36.6%) Elbow (25%)
		Carrying of construction material or Burrowing soil or Brick carrying	4 – 6 (Medium)		1,3,5,1 (Some strain)	_	Lower back (69.5%) Knee (28.7%)

Cement and	14 (Very	4,1,4,3
sand mixing	high)	(Harmful)
or sand		
loading into		
vessel		

Note: REBA = Rapid entire body assessment; RULA = Rapid upper limb assessment; OWAS = Ovako working analysis system; WRMSDs = Work-related musculoskeletal disorders; LBP = Low back pain; MMH = Manual material handling; CI = Confidence interval; Action categories: (1) no risk, (2) slight risk, (3) distinct risk, and (4) extreme risk

38 Table S5. Subjective assessments of physical and psychosocial risk factors for Work-related musculoskeletal disorders (WRMSDs) in construction

Citations	Types of worker	Risk exposures	Exposure assessment methods and outcome scale	Prevalence of WRMSDs	Association between exposure and effect
Kaneda et al. 2001	All trades (n=19,948)	Physical risk: Awkward posture such as twisting and bending Squatting Stretching Prolong standing Psychosocial risk: Mental stress Living environment	Exposure assessment: Self-designed questionnaire Outcome scale: Self- administered questionnaire	Point prevalence: LBP, 29.3%	Odds ratios (ORs) for low back pain Awkward posture such as twisting and bending, OR 1.81 (95%CI 1.46—2.24) Squatting, OR 1.14 (95%CI 0.99—1.32) Stretching, OR 0.89 (95%CI 0.61—1.29) Prolong standing, OR 0.83 (95%CI 0.75—0.92) Living with Family, OR 1.26 (95%CI 1.16—1.37) Living with others, OR 1.09 (95%CI 0.98—1.21) Mental stress was significantly associated
					with LBP ($t = 16.5, p < 0.05$)
Goldsheyder et al. 2002	Mason tenders (n=300); Laborers (n=135)	Physical risk: Awkward posture such as twisting or bending MMH Repetitive works Overhead works	Exposure and outcome assessment : The modified IOWA construction questionnaire	 12-month prevalence: WRMSDs: 82%; LBP: 65%; Shoulders pain: 42%; Wrists/hands pain: 41%; Neck pain: 41%; Knee pain: 41% Point-prevalence: 	Working in awkward position such as twisting or bending, $f = 4.42$, $p=0.036$ Working over the head or away from the body, $f= 8.71$, $p=0.003$ MMH, $f= 17.91$, $p=0.001$

				LBP: 33%; Shoulders	
				pain: 21%; Wrists/hands	
				pain: 21%; neck pain:	
				22%; knee pain: 22%	
Merlino et al.	Apprentice	Physical risk:	Exposure assessment:	12-month prevalence:	Prolonged works, OR 2.90 (95%CI 2.23-
2003	construction	Prolonged works	Self-designed	LBP: 54.4% Wrist/hand	3.76) [LBP]
	workers	Working in an awkward	questionnaire	pain: 42.4%	Work in awkward posture such as twisted
	(n=996)	posture including	Outcome scale: Nordic	Knee pain: 38.4%	position, OR 3.27 (95%CI 2.47-4.37)
		cramped position	musculoskeletal disorder	Neck pain: 31.8%	[LBP]
		Overhead works	questionnaire	Shoulder pain: 27.9%	Repetitive works OR 4.53 (95%CI 3.24-
		Repetitive works			6.34) [Wrist/hand pain]
					Prolonged works, OR 2.71 (95%CI 2.09-
					3.52) [Wrist/hand pain]
					Work in awkward posture such as cramped
					position, OR 1.31 (95%CI 1.04-3.18)
					[Knee pain]
					Prolonged works, OR 2.90 (95%CI 2.20-
					3.78) [Knee pain]
Elders et al.	Scaffolders	Physical risk:	Exposure assessment:	12-month prevalence:	MMH (Lifting or carrying loads >5 kg), OF
2004	(n=288)	MMH	Self-designed	LBP: 60%; CLBP: 22%	1.05 (95% CI 0.49–2.27)
		Overhead works	questionnaire		Awkward posture such as back is bent and
		Awkward posture such as	Outcome scale: Nordic		twisted over 45 degrees, OR 1.47 (95% CI
		back is bent and twisted	musculoskeletal disorder		0.68–3.19)
		Psychosocial risk:	questionnaire		Overhead work, OR 1.93 (95% CI 0.84-

		5	5		
		High job demand and low			4.45)
		job control			High job demand and low job control, OR
					2.16 (95% CI 1.12 – 4.21)
Goldsheyder et	Cement and	Physical risk:	Exposure and outcome	12-month prevalence:	Working in an awkward position such as
al. 2004	concrete	Working in an awkward	assessment: The IOWA	WRMSDs: 77%	bending or twisting the back: Mean score,
	workers	position such as bending	construction questionnaire	LBP: 66%	5.5 (0-10 scale)
	(n=200)	or twisting the back		Shoulder pain: 47%	Working in extreme temperature: Mean
		Working in extreme		Neck pain: 44%	score, 5.3 (0-10 scale)
		temperature (hot, cold,		Knee pain: 38%	Prolonged works: Mean score, 5.2 (0-10
		humid, wet conditions),		Wrists/Hands pain: 37%	scale)
		Prolonged works,		Point-prevalence:	MMH: Mean score, 5.1 (0-10 scale)
		MMH		LBP: 31%	Overhead works: Mean score, 5.2 (0-10
		Overhead works		Shoulder pain: 30%	scale)
				Neck pain: 36%	
				Knee pain: 18%	
				Wrists/Hands pain: 17%	
Engholm et al.	Construction	Physical risk:	Exposure assessment:	12-month prevalence:	Awkward posture such as stooping or
2005	workers	Vibration	Self-administered	LBP: 39.9%	twisted back, ORs 3.05 (95% CI, 2.73-
	(n=85,191)	Lifting heavy objects	questionnaire	Shoulder pain: 29.8%	3.42) and 2.23 (95% CI, 1.89-2.63) [Lowe
		Awkward posture such as	Outcome scale: Self-	Knee pain: 28.2%	back and Upper back disorders,
		stooping or twisted back	administered	Neck pain: 23.5%	respectively]
		Overhead work	questionnaire	Wrist/hand pain: 13.5%	Overhead work, ORs 3.66 (95% CI, 3.32-
		Kneeling		Elbow pain: 12.1%	4.04) and 2.93 (95% CI, 2.65-3.24)
		Psychosocial risk:		Upper back pain: 9.7%	[Shoulder and neck disorders, respectively

Low job satisfaction	Kneeling, OR 3.94 (95% CI 3.55-4.37)
Low job control	[Knee disorders]
Poor information	Lifting heavy objects, OR 1.90 (95% CI
Lack of task variation	1.72–2.11) [LBP]
Poor supervisory support	Lifting heavy objects, ORs 1.62 (95% CI
Poor workmate support	1.42–1.85) and 1.60 (95% CI 1.40–1.84)
Job responsibility too	[elbow and wrist
heavy	or hand disorders, respectively]
Work health hazard	Vibration, OR 2.21 (95% CI 2.00–2.44)
anxiety	[wrists or hands disorders]
High job demand	Low job satisfaction, OR 1.10 (95% CI
Sleeping problems	0.94 – 1.29) (Lower back disorders)
Mental stress	Low job control, ORs 1.16 (95% CI 1.01 -
	1.33), 1.18 (95% CI 1.02 – 1.37), and 1.21
	(95% CI 1.03 – 1.41) (Shoulder, elbow, and
	wrist or hand disorders, respectively).
	Poor information, ORs 1.30 (95% CI 1.19 -
	1.42) and 1.33 (95% CI 1.22 – 1.44) (Neck
	and shoulder disorders, respectively)
	Lack of task variation, ORs 1.62 (95% CI
	1.43 – 1.83), 1.57 (95% CI 1.39–1.78), and
	1.51 (95% CI 1.34–1.70) (Shoulder, neck
	and lower back disorders, respectively)
	Poor supervisory support, OR 1.03 (95% CI

0.91–1.16) (Neck disorders) Poor workmate support, ORs 1.23 (95% CI 1.07-1.41), 1.14 (95% CI 1.03-1.28), and 1.12 (0.98–1.28) (Hip, neck, and upper back disorders, respectively) Job responsibility too heavy, OR 1.12 (95% CI 1.03–1.22) (Knee disorders) Work health hazard anxiety, ORs 2.37 (95% CI 2.18–2.59), 2.36 (95% CI 2.17–2.57), and 2.15 (95% CI 1.97-2.35) (Shoulder, lower back, and neck disorders, respectively) High job demand, ORs 1.24 (95% CI 1.05-1.45), 1.20 (95% CI 1.03-1.40), and 1.16 (95% CI 1.00–1.35) (Upper back, Elbow, and wrist or hand disorders, respectively) Sleeping problems, ORs 2.56 (95% CI 2.23-2.95), 2.44 (95% CI 2.15-2.78), and 2.41 (95% CI 2.11-2.74) (Upper back, neck, and shoulder disorders, respectively) Mental stress, ORs 1.34 (95% CI 1.09-1.64), 1.24 (95% CI 1.00-1.53), and 1.19 (95% CI 0.95-1.49) (Wrist or hand, lower back, and upper back, respectively)

Kaminskas et al. 2010	Construction workers (n=312)	Physical risk: Awkward work posture such as twisting or bending the neck or back Force	Exposure assessment Self-administered questionnaire Outcome assessment: Nordic Musculoskeletal Disorder Questionnaire	12-month prevalence: WRMSDs: 52.8%	Awkward work posture such as twisting or bending the neck or back and high use of physical force, are associated with WRMSDs.
Ekpenyong et al. 2014	Ironworkers (n=143); Administrative workers (n=47); Security workers (n=93); Carpenters (n=152); Mechanical workers (n=161); Bricklaying workers (n=183); Electrical	Physical risk: Awkward posture such as bending and twisting of the body Force or vibration MMH Fast work pace Psychosocial risk: High job demands Low job control Interpersonal conflict Job insecurity	Exposure assessment: The job content questionnaire (JCQ) scale Outcome scale: Nordic Musculoskeletal Disorder Questionnaire	12-month prevalence: WRMSDs: 39.3% Neck and upper limb pain: 48.2% Trunk and waist pain: 25.3% Lower limb pain: 26.5%	Awkward posture such as bending and twisting of the body, OR 2.54 (95% CI = 1.14-10.33) [Heavy task] Force or vibration, OR 4.15 (95% CI = 1.64-10.36) [Heavy task] Fast work pace, OR 4.11 (95% CI = $1.01-$ 16.71) [Heavy task] Fast work pace, OR 2.02 (95% CI = $1.29-$ 3.34) [Light task] MMH, OR 2.61 (95%CI $1.15 - 16.32$) [Heavy task] High job demands, ORs 1.59 (95%CI 1.43 - 1.84) and 1.62 (95%CI 1.55 , 1.89] [Heavy and light task, respectively] High job insecurity, ORs 1.42 (95%CI 0.130 - 14.3) and 1.35 (95% CI $0.640 -3.45$) [Heavy and light task, respectively]

	workers				
	(n=131);				
	Transportation				
	workers				
	(n=82);				
	Storekeeper				
	(n=67);				
	Earth-				
	movement unit				
	workers				
	(n=141)				
Hanklang et al.	Female Rebar	Physical risk:	Exposure assessment:	12-month prevalence:	Prolonged work hours, age-adjusted OR
2014	workers	Awkward posture such as	An ergonomic assessment	WRMSDs: 57.7%	7.63 (95% CI 2.06 – 28.31)
	(n=272)	bending of neck or trunk	check list Outcome scale:	Shoulder/back pain:	Awkward posture such as bending of neck
		for > 20 degrees	self-administered	46%	or trunk, age-adjusted OR 43.79 (95% CI
		Prolonged working hours	questionnaire	Wrist/hand pain: 44.1%	17.09 – 112.2)
		(> 8 hours per day)		Neck pain: 40.1%	Work experience (> 5 years), OR 1.79
		Repetitive task (1000		Knee pain: 23.9%	(95%CI 0.72 – 4.44)
		times per day)			Perceived high job demand, OR 1.16
		Psychosocial risk:			(95%CI 0.34 – 3.98)
		Perceived high job			

Work experience (years)

Neeraja et al. 2014	Construction workers (n=288)	Physical risk: Repetitive works (e.g., repetitive movements ≥ 1000 times per day) Sitting posture Standing posture Overhead work MMH Psychosocial risk: Job control Job demands Social support Low Job satisfaction	Exposure assessment: Self-administered questionnaire Outcome scale: Nordic Musculoskeletal Disorder Questionnaire	12-month prevalence: WRMSDs [elbow, arm, wrist, or hand]: 3.5% (female), 12% (Male) WRMSDs [neck, shoulder or upper back]: 27% (female), 18% (Male)	MMH, OR 2.96 (95% CI 1.81 – 4.85) [Neck, shoulder and upper back WRMSDs] Repetitive works (e.g., repetitive movements \geq 1000 times per day), OR 2.01 (95% CI 1.25 – 3.24) [Neck, shoulder and upper back WRMSDs] High job demands, OR 2.08 (95% CI 1.20 – 2.62) [Neck, shoulder and upper back WRMSDs] Low job satisfaction, OR 1.83 (95% CI 1.10 – 3.04) [Neck, shoulder and upper back WRMSDs]
Egwuonwu et al. 2016	Road construction workers (n=100)	 Physical risk: Awkward posture such as twisting and sideway bending; Repetitive works Vibration from hand tools; Lifting, reaching, unequal lifting Psychosocial risk: Time pressures 	Exposure assessment: Organizational factors Questionnaire Outcome assessment Dutch Musculoskeletal questionnaire	12-month prevalence: WRMSDs: 66% LBP: 55% Neck pain: 45%	 Working in awkward posture such as twisting and sideway bending, prolonged working hours (average 9 hours) per day and vibration, were associated with the occurrence of WRMDs. High time pressures, OR 3.52 (95%CI 1.32 - 5.96) Casual employment status, OR 2.78 (95%CI 1.45 - 6.03) Adequate supervision and training, OR 2.34 (95%CI 0.95 - 5.24)

		Employment status Supervision and training Family and spousal support Remuneration and wages Job security Working hours Transportation facility Co-workers relationship			Family and spousal support, OR 1.58 (95%CI 0.78–4.67) Adequate remuneration and wages, OR 2.53 (95%CI 1.45 – 5.56) Guaranteed job security, OR 3.12 (95%CI 1.32 - 6.26) Adequate working hours, OR 1.28 (95%CI 0.67 - 3.65) Adequate transportation facility, OR 3.07 (95%CI 1.58 – 6.06) Cordial co-workers' relationship, OR 2.46 (95%CI 0.96 – 4.79)
Wang et al.	Multiple trades $(r, 82, 620)$	Physical risk:	Exposure assessment:	12-month prevalence of WRMSDs: 24.6 to	Vibration vs WRMSDs: 0.3%
2017	(n=82,630)	Vibration Overexertion involving	Not reported Outcome scale: Not	01 WRMSDS: 24.6 to 25.9%	Overexertion involving outside sources vs WRMSDs: 65.3%
		outside sources	reported	20.370	Other exertions or bodily reactions vs
		Other exertions or bodily	1		WRMSDs: 27.6%
		reactions			
Jensen and	Floor layers	Physical risk:	Exposure assessment:	12-month prevalence:	Physical work strain (high versus low): OR
Kofoed 2002	(n=102) and	High physical work strain	Semi-structured interview	Knee pain: 56% (Floor	= 9.1, 95% CI = 1.05 – 78.8 (Knee pain)
	apprentice	Psychosocial risk:	Outcome scale: Nordic	layers) and 48%	High job demand (high versus low): OR =
	floor layers	High job demand	Musculoskeletal Disorder	(apprentice floor layers)	2.5, 95% CI = 1.02 – 6.03 (Knee pain)
	(n=180)	Presence of mental stress	Questionnaire	LBP: 61% (Floor layers)	Mental stress (yes versus no): $OR = 2.3$,
	× /			and 57% (apprentice	95% CI = 0.98 – 5.2 (Knee pain)

			floor layers)	Physical work strain (high versus low): OR = 5.6, 95% CI = $1.07 - 29.5$ (LBP) Psychological work strain (high versus low): OR = $2.0, 95\%$ CI = $0.82 - 4.8$ (LBP) Mental stress (yes versus no): OR = 3.4 , 95% CI = $1.5 - 8.2$ (LBP)
workers (n=1,814)	Job content Physical working condition Relationship Organizational problem Uncomfortable working environment Poor safety and hygiene in the workplace	Self-administered questionnaire Outcome scale : Nordic Musculoskeletal Disorder Questionnaire	Neck pain: 27.2% Shoulder pain: 32.6% Upper back pain: 15.1% Elbow pain: 19.9% Hand and wrist pain: 26.7%	Job content vs no stress: $OR = 1.8$, 95% CI = 1.5 - 2.3 and $OR = 1.6$, 95% CI = 1.1 - 2.5 (WRMSDs in Male and Female, respectively) Physical working condition vs no stress: OR = 2.5, 95% CI = 1.7 - 3.9 and $OR =2.2, 95% CI = 1.1 - 4.6 (WRMSDs in Maleand Female, respectively)Relationship vs no stress: OR = 3.3, 95%CI = 1.7 - 6.7$ and $OR = 1.9$, 95% CI = 0.8 - 4.2 (WRMSDs in Male and Female,
				respectively) Organizational problem vs no stress: OR = 1.6, 95% CI = $1.1 - 2.1$ and OR = $1.9, 95%CI = 1.2 - 3.0 (WRMSDs in Male andFemale, respectively)Uncomfortable vs comfortable workingenvironment: OR = 1.5, 95\% CI = 1.0 - 2.5$
		workers Job content (n=1,814) Physical working condition Relationship Organizational problem Uncomfortable working environment Poor safety and hygiene in the	workersJob contentSelf-administered(n=1,814)Physical workingquestionnaireconditionOutcome scale: NordicRelationshipMusculoskeletal DisorderOrganizational problemQuestionnaireUncomfortable workinguncomfortable workingenvironmentPoor safety and hygienein thein the	ConstructionPsychosocial riskExposure assessment:12-month prevalence:workersJob contentSelf-administeredNeck pain: 27.2%(n=1,814)Physical workingquestionnaireShoulder pain: 32.6%conditionOutcome scale: NordicUpper back pain: 15.1%RelationshipMusculoskeletal DisorderElbow pain: 19.9%Organizational problemQuestionnaireHand and wrist pain:Uncomfortable working26.7%environmentPoor safety and hygienein the

and OR = 0.7 , 95% CI = $0.3 - 1.6$
(WRMSDs in Male and Female,
respectively)
Safety and hygiene of the job (Unsatisfied
vs satisfied): $OR = 1.1, 95\% CI = 0.8 - 1.7$
and $OR = 3.0, 95\%$ $CI = 1.4 - 6.4$
(WRMSDs in Male and Female,
respectively)

Note: LBP = Low back pain; MMH = Manual material handling; WRMSDs = Work-related musculoskeletal disorders; CI = Confidence interval

39

40