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Futility of being selfish in optimized traffic
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Optimizing traffic flow is essential for easing congestion. However, even when globally optimal, coordinated,
and individualized routes are provided, users may choose alternative routes which offer lower individual costs.
By analyzing the impact of selfish route choices on performance using the cavity method, we find that a small
ratio of selfish route choices improves the global performance of uncoordinated transportation networks but
degrades the efficiency of optimized systems. Remarkably, compliant users always gain in the former and selfish
users may gain in the latter, under some parameter conditions. The theoretical results are in good agreement
with large-scale simulations. Iterative route switching by a small fraction of selfish users leads to Nash equilibria
close to the globally optimal routing solution. Our theoretical framework also generalizes the use of the cavity
method, originally developed for the study of equilibrium states, to analyze iterative game-theoretical problems.
These results shed light on the feasibility of easing congestion by route coordination when not all vehicles follow
the coordinated routes.
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I. INTRODUCTION

Traffic congestion is a major problem facing both
metropolitan and highway road networks, which incurs high
environmental and economic costs. While the economic costs
on their own are mind boggling ($166 billion for the United
States in 2018 [1]), the environmental costs through CO2

emissions on climate change and of fine particulate matter
(PM2.5), nitrogen dioxide (NOx), and ozone, O3 on public
health are as significant (these three air pollutants alone are
responsible for 400 000 premature deaths per year in the
European Union [2]). However, easing congestion through
additional investment in infrastructure incurs its own momen-
tary and environmental costs and one of the alternatives to
mitigating congestion is traffic optimization through coordi-
nation [3], supported by advances in information technology
[4] and potentially the penetration of autonomous vehicles
[5]. While optimization algorithms for coordinating individual
transportation routes to achieve a global objective [6–9] show
the global benefits, at the expense of a small increase in
average path length of individual users [10,11], it is clear that
affecting road-user behavior is the key to their success [12,13].

Even when optimally coordinated individual routes are
recommended, some road users may choose alternative routes
that incur lower individual costs for them. Dynamical selfish
routing has been studied using game theory and operations
research methodologies [14,15], revealing the economic in-
centives which can suppress selfish behaviors [16] as well
as the Nash equilibria in capacitated networks [17]. While
most of these studies focused on the dynamics of individ-
ual route decisions, the impact of selfish routing decisions
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on previously optimized transportation network has not yet
been explored. Such analysis is of particular importance as it
helps evaluate the potential benefit brought by global route
coordination in future intelligent transportation system, via
advanced information technology or self-driving vehicles.

Here, we introduce a transportation network model where
users are given globally optimized individual routes from
their start point to a common end point (e.g., city center or
metropolitan hub), but some choose not to follow the rec-
ommended path but minimize their own cost. We apply the
cavity approach developed for the studies of spin glasses [18]
to compute the rerouting probability by the selfish users and
reveal their impact on the system globally. Both analysis and
simulations demonstrate the benefit, for the individual, of
following the optimized suggestions. When selfish users are
allowed to switch routes multiple times, the obtained solutions
approach Nash equilibria. Finally, we simulate the model on
the highway network in England, where behaviors similar
to those observed in random regular graphs and captured by
the analytical predictions are observed. Our results reveal the
impact of individual route choices on the global cost and
the benefit in having coordinated routing in transportation
networks even when some road users do not follow the recom-
mended routes. We also demonstrate how the cavity method,
which was devised for studying equilibrium states, can be
generalized to study iterative game-theoretical problems.

The major contributions of our work are threefold: First,
we reveal the dynamics of selfish rerouting given initial glob-
ally optimized routes on a transportation network, a problem
that is unexplored and poorly understood compared to the
equilibrium case of selfish routing in repeated games [19,20].
Second, we generalized the cavity method, originally de-
veloped for analyzing equilibrium properties, to analyze the
route-changing dynamics. This distinguishes our results from
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other studies of Nash equilibria by the cavity method [21,22].
The generalized framework can be readily adapted to study
other dynamical problems. Third, our framework can be ap-
plied to improve the performance of navigation devices by
taking into account noncompliant users and to develop routing
algorithms for autonomous cars in mixed traffic environments,
where autonomous and human-driven vehicles coexist [23].

The paper is organized as follows: We will explain the
problem and the corresponding model in Sec. II and outline
the derivation of the solution in Sec. III. In Sec. IV, we
show the results obtained in synthetic and realistic network
scenarios and examine numerically the impact of selfish de-
cisions on the performance of the transportation system as a
whole, as well as of selfish and compliant users. Summary and
conclusions are presented in Sec. V.

II. MODEL

Consider M vehicles denoted by ν = 1, . . . , M traveling on
a transportation network of N nodes denoted by i = 1, . . . , N .
The density of vehicles is denoted by α = M/N . Each vehi-
cle ν starts from a random origin node Oν and travels to a
common and randomly drawn destination node D. We denote
the route of vehicle ν on the link between nodes i and j by a
variable σ ν

i j as follows:

σ ν
i j =

⎧⎨
⎩

1, ν travels from i→ j
−1, ν travels from j → i
0, if ν does not travel between i and j,

(1)

such that σ ν
ji = −σ ν

i j . The total traffic flow from node i to j
is |Ii j | = ∑

ν |σ ν
i j |. Since traffic congestion occurs when more

vehicles share the same road, one aims to minimize path
overlaps to suppress congestion. We therefore introduce the
social travel cost,

H(σ|γ ) = 1

M

∑
(i j)

(∑
ν

∣∣σ ν
i j

∣∣)γ

= 1

M

∑
(i j)

|Ii j |γ , (2)

where γ > 1 and the cost increases nonlinearly with the traffic
flow to discourage the sharing of a link by multiple vehicles
(other nonlinear costs can be accommodated within the same
framework), (i j) denotes the unordered combination of i, j,
and the bold symbol σ = {σ ν

i j}ν,i, j denotes the vector over the
variable σ ν

i j . For γ = 1, there is no interaction between routes
and users merely minimize the length of their own routes
irrespective of traffic:

H(σ|γ = 1) = 1

M

∑
ν

(∑
(i j)

∣∣σ ν
i j

∣∣). (3)

To minimize H(σ|γ ) with γ > 0, vehicles traveling on the
same link always head in the same direction [9], i.e., either
σ ν

i j � 0 or σ ν
i j � 0 for all ν on the link i → j, and the directed

traffic flow between nodes i and j is given by

Ii j =
∑

ν

σ ν
i j, (4)

such that vehicles go from i to j if Ii j > 0 and vice versa.
The route configuration which minimizes H(σ|γ ) in Eq. (2)
is found using a message-passing algorithm [9].

For simplicity, we assume that all links in the network
have equal weight, but our model and the subsequent anal-
yses can be readily generalized to accommodate the case that
links have heterogeneous weights as shown in Appendix. The
weight on a link can be considered as a traveling cost through
the link, such as the physical distance between two nodes or
the travel time for the respective type of road.

Since our primary goal is to study the impact of selfish
routing decisions on previously optimized transportation net-
work, here we study a scenario in which the social travel cost
H(σ|γ ) has already been minimized, and the corresponding
optimized route for each vehicle ν is identified and recom-
mended. We denote the optimized route for vehicle ν by
σ ν∗

i j = 1 if it includes travel from node i to j, and σ ν∗
i j = 0

otherwise, where σ∗ is

σ∗ = argminσH(σ|γ ). (5)

Hence, the total recommended traffic from node i to j is
denoted by I∗

i j = ∑
ν σ ν∗

i j . We then consider a fraction fs of
the M users to be selfish. A selfish user ν follows the route σ̃ν

that minimizes its own cost, defined as the impact of traffic on
their own route: the individual travel cost

Cν (σ̃ν |σ∗, γ ) =
∑
i, j

∣∣σ̃ ν
i j

∣∣(1 + ∣∣I∗
i j − σ ν∗

i j

∣∣)γ−1
. (6)

It implies that user ν is aware of the (recommended) traffic
induced by other vehicles in the network |I∗

i j − σ ν∗
i j | and uses

it to minimize its overlap with the traffic. The cost nonlinearity
γ −1 originates from the need to equate the sum of individual
costs and the social cost of Eq. (2) as explained below. For
γ = 2, the individual cost reflect the cumulative traffic flow
experienced by an individual over the chosen route.

We remark that the time it takes for vehicles to travel
through a road is commonly modeled by a polynomial func-
tion of the traffic volume on the road, such as the Bureau of
Public Roads (BPR) function [24], which is dominated by the
leading power of traffic volume in cases of congestion. In this
case, the individual cost Eq. (6) corresponds to the traveling
time of user ν between their origin and destination, while the
social travel cost Eq. (2) corresponds to the total traveling time
of all vehicles.

This definition (6) leads to an interesting relationship be-
tween the social H in Eq. (2) and individual travel costs Cν .
We note that when all vehicles follow the recommended path,
i.e., σ̃ ν

i j = σ ν∗
i j for all ν and i, j, the summand in Eq. (6) is

given by

∣∣σ ν∗
i j

∣∣(1 + ∣∣I∗
i j − σ ν∗

i j

∣∣)γ−1 =
{|I∗

i j |γ−1, when |σ ν∗
i j |=1,

0, when |σ ν∗
i j |=0,

(7)

such that |σ ν∗
i j |(1 + |I∗

i j − σ ν∗
i j |)γ−1 = |σ ν∗

i j ||I∗
i j |γ−1 and the

sum of all individual travel costs is given by∑
ν

Cν (σν∗|σ∗, γ )=
∑

ν

∑
i, j

∣∣σ ν∗
i j

∣∣|I∗
i j |γ−1 =

∑
i, j

|I∗
i j |γ , (8)

which is the social travel cost H. This relation implies that
if all users follow the recommended routes, the sum of their
individual costs is the same as the optimal social cost. How-
ever, if some users do not follow the recommended routes,
the social travel cost can only remain unchanged or increase,
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since the recommended path configuration already minimizes
the social cost.

To quantify the impact of selfish decisions on the social
travel cost, we measure the fractional change in H due to
rerouting by selfish users

�H(γr, γ ) = H(σ̃∗(γr )|γ ) − H(σ∗(γr )|γ )
H(σ∗(γr )|γ )

, (9)

where σ∗(γr ) is the configuration of path recommended to
the users which minimizes H(σ|γr ); however, the real travel
cost is characterized by H(σ|γ ), where γ is not necessarily
equal to γr . On the other hand, the variables σ̃∗(γr ) denote
the configuration of routes after selfish users have rerouted
from the recommended σ∗(γr ) to optimize their individual
cost C(σ̃∗|σ∗, γ ). In other words, σ̃∗(γr ) = {σ̃ν∗(γr )}ν=1,...,M

and σ̃ν∗(γr ) for vehicle ν is given by

σ̃ν∗(γr ) =
{
σν∗(γr ) for compliant users,
argminσ̃νCν (σ̃ν |σ∗(γr ), γ ) for selfish users.

(10)

In this paper, we reveal the impact of selfish route decisions
by examining the quantity �H(γr, γ ), as well as similar quan-
tities defined for both selfish and compliant users separately.
Although our theoretical derivations in Sec. III can accommo-
date all γr, γ � 1 in �H(γr, γ ), we will focus our studies on
two scenarios:

(1) the case with (γr, γ ) = (1, 2), i.e., when all users are
originally recommended to follow their shortest path σ∗(1),
i.e., γr = 1, but the social and individual costs are charac-
terized by H(σ|2) and C(σ̃∗|σ∗(1), 2) respectively, both with
γ = 2 to discourage link sharing by multiple vehicles; and

(2) the case with (γr, γ ) = (2, 2), i.e., the original con-
figuration of recommended path already minimizes the social
cost H(σ|2), but selfish users reroute to a path σ̃ν �= σ∗(2) to
minimize their own cost C(σ̃ν |σ∗(2), 2); the rerouting could
potentially increase the social cost as suggested by the relation
Eq. (8).

III. ANALYTICAL SOLUTION

We employ tools used in the study of spin-glass systems to
compute the switching probability of selfish users on a link,
which is used for the computation of �H(γr, γ ) in Eq. (9).
In Sec. III A, we first describe the approach developed in
Ref. [9] which gives the analytical solution of the system
minimizing the social travel cost H. In Sec. III B, we follow a
similar framework to derive an analytic approach to describe
the rerouting behavior of selfish users.

A. Optimization of the social travel cost H
We first describe the framework developed in Ref. [9] to

map a route optimization problem into a problem of resource
allocation. In this case, we assign a transportation load �i to
each node i, such that

�i =
⎧⎨
⎩

1, if i = Oν, ∃ν;
−∞, if i = D;
0, otherwise.

(11)

To ensure a path to the common destination is identified for
each vehicle, each of them transfers the (unit) load from their
origin to a common destination, which serves as a sink. In this
case, we restrict all traffic flows to take up integer values, and
the net resources Ri on each node i (except the destination) to
be conserved as follows:

Ri = �i +
∑
j∈Ni

I ji = 0, (12)

where Ni is the set of neighboring nodes of i.
We then employ the cavity approach [18] and assume that

for the sparsely connected networks studied only large loops
exist, such that neighbors of node i become statistically in-
dependent if it is being removed. At zero temperature, we
express the optimized energy Ei→l (Iil ) of a tree network ter-
minated at node i as a function of the traffic flow Iil from i to
l . Despite the assumption of tree topologies, similar analyses
have led to results that are in good agreement with simulations
on nontree topologies [9,25]. Next, we write down a recursion
relation to relate Ei→l (Iil ) to the energy Ej→i(I ji ) of its neigh-
bors j other than l [9], given by

Ei→l (Iil ) = min
{{I ji}|Ri=0}

[
|Iil |γ +

∑
j∈Ni\l

E j→i(I ji )

]
. (13)

We further note that Ei→l (Iil ) is an extensive quantity of which
the value of energy is dependent on the number of nodes in the
network; we therefore define an intensive quantity EV

i→l (Iil ) as

EV
i→l (Iil ) = Ei→l (Iil ) − Ei→l (0). (14)

To obtain the analytical results of the system, we have to
solve for the functional probability distribution P[EV (I )]. By
using the recursion relation in Eq. (13), we can write a self-
consistent equation in terms of P[EV (I )], by summing over all
degrees k, in the form

P[EV (I )]=
∫

dk
P(k)k

〈k〉
∫

d�d�

k−1∏
j=1

∫
dEV

j P
[
EV

j (I )
]

× δ
(
EV (I ) − R14

[{
EV

j

}
,�, I

])
, (15)

where R14 denotes the right-hand side of Eq. (14), which
indeed has to be computed by the recursion relation Eq. (13);
P(k) and 〈k〉 represent the degree distribution and its average,
respectively. The analytical results obtained by numerically
solving Eq. (15) can be found in Ref. [9]. In addition to
providing analytical results for the routing system macro-
scopically, Eq. (13) can be used as an optimization algorithm
to identify individualized optimal path configurations micro-
scopically in real instances.

B. Analysis of selfish rerouting behavior

To analyze the impact of rerouting by the selfish vehicles,
we single out a vehicle μ and analyze its rerouting behavior
from the path configuration identified by Eq. (13). In this case,
we denote the resources on node i by �i = (�μ

i ,�
\μ
i ), such

that �
μ
i and �

\μ
i denote the transportation load for vehicle μ

and any other user respectively. Similar to Eq. (11), �i given
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by

�i =

⎧⎪⎨
⎪⎩

(1, 0), if i = Oμ;
(0, 1), if i = Oν, ∃ν �= μ;
(−∞,−∞), if i = D;
(0, 0), otherwise.

(16)

We further define the net resources on node i to be Ri =
(Rμ

i , R\μ
i ), such that

Rμ
i = �

μ
i +

∑
j∈Ni

σ
μ
ji , (17)

R\μ
i = �

\μ
i +

∑
j∈Ni

I\μ
ji , (18)

where Rμ
i and R\μ

i denote the net resources for vehicle μ and
for the other users, while σ

μ
ji and I\μ

ji denote the flow of vehicle
μ and the rest of the traffic. To ensure each vehicle has a path
to the common destination, we restrict all flows to take up
integer values and (Rμ

i , R\μ
i ) = (0, 0).

Here, we analyze a scenario in which the path configuration
that optimizes the social travel cost H(σ|γr ) is computed and
known to all users; μ then reroutes to optimize its individual
cost Cμ(σ̃μ|σ∗, γ ) based on the traffic in the recommended
configuration. To achieve the goal, similar to Sec. III A, we

define the optimized energy Ei→l (σ
μ

il , I\μ
il ) of the tree network

terminated at node i to be a function of the traffic flow charac-
terized by σ

μ

il and I\μ
il from i to l . The rationale for introducing

this energy is to separate the contribution of user μ on link
i → l from the remaining traffic. We then write an equation
relating Ei→l (σ

μ

il , I\μ
il ) to Ej→i(σ

μ
ji , I\μ

ji ) from all neighboring
node j ∈ Ni of node i excluding node l , given by

Ei→l
(
σ

μ

il , I\μ
il

) = min
{σμ

ji ,I
\μ
ji |Ri=(0,0)}

[(∣∣σμ

il

∣∣ + ∣∣I\μ
il

∣∣)γr

+
∑

j∈Ni\l

E j→i
(
σ

μ
ji , I\μ

ji

)]
, (19)

where the exponent γr is adopted in the optimized path con-
figuration identified and recommended to the users.

To characterize the rerouting by vehicle μ, we introduce
another energy Ẽi→l (σ̃

μ

il , σ
μ∗
il , I\μ∗

il ) that considers the replace-
ment of the recommended edge variable σ

μ∗
il by the selfishly

optimized σ̃
μ

il , where I\μ∗
il corresponds to the traffic resulting

from the optimized paths for all other users, which minimize
H(σ|γr ). By using Eq. (19), given a set of (σμ∗

il , I\μ∗
il ), one

can express the corresponding optimal (σμ∗
ji , I\μ∗

ji ) from the
neighboring node j of node i excluding node l by

{
σ

μ∗
ji , I\μ∗

ji

}
j∈Ni\l = argmin

{σμ
ji ,I

\μ
ji |Ri=(0,0)}

⎡
⎣(∣∣σμ∗

il

∣∣+∣∣I\μ∗
il

∣∣)γr +
∑

j∈Ni\l

E j→i
(
σ

μ
ji , I\μ

ji

)⎤⎦, (20)

which is similar to Eq. (13) except for the separation of user μ. Thus, the values of (σμ∗
ji , I\μ∗

ji ) are indeed dependent on

(σμ∗
il , I\μ∗

il ) and have already been computed in Eq. (19). By using this relation, one can similarly write an equation to
relate the energy Ẽi→l (σ̃

μ

il , σ
μ∗
il , I\μ∗

il ), where the recommended path σ
μ∗
il has been replaced by the selfishly optimized σ̃

μ

il , to
Ẽ j→i(σ̃

μ
ji , σ

μ∗
ji , I\μ∗

ji ) for j ∈ Ni \ l , given by

Ẽi→l
(
σ̃

μ

il , σ
μ∗
il , I\μ∗

il

) = min
{{σ̃ μ

ji }|Rμ
i =0}

⎡
⎣∣∣σ̃ μ

il

∣∣(1+∣∣I\μ∗
il

∣∣)γ−1+
∑

j∈Ni\l

Ẽ j→i
(
σ̃

μ
ji , σ

μ∗
ji , I\μ∗

ji

)⎤⎦. (21)

We note that the exponent γ , instead γr , is used in com-
puting the above individual cost. For clarity of presentation,
we omit the dependence of (σμ∗

ji , I\μ∗
ji ) on (σμ∗

il , I\μ∗
il ) in

Eq. (21).
In summary, the message passing process is described in

Fig. 1: (i) We use Eq. (19) to minimize the social travel
cost H(σ|γr ) for all users. (ii) The corresponding optimal
configuration of (σμ∗

ji , I\μ∗
ji ) from all neighbors j for specific

values (σμ∗
il , I\μ∗

il ) is given by Eq. (20). (iii) This informa-
tion is used to compute Ẽ using Eq. (21), which is the
optimized individual cost for vehicle μ. Similar to Eq. (14),
we define the corresponding intensive quantities for E and
Ẽ as

EV
i→l

(
σ

μ

il , I\μ
il

) = Ei→l
(
σ

μ

il , I\μ
il

)−Ei→l (0, 0), (22)

ẼV
i→l

(
σ̃

μ

il , σ
μ∗
il , I\μ∗

il

) = Ẽi→l
(
σ̃

μ

il , σ
μ∗
il , I\μ∗

il

)−Ẽ (0, 0, 0).

(23)

To compute EV and ẼV in the above equations, one has to
iteratively follow the constrained optimization in Eqs. (19)–
(21).

FIG. 1. A schematic diagram showing the recursion relation in
Eqs. (19)–(21) and the dependence of (21) on (19). The recursion
relation is iterated simultaneously for all nodes to obtain the joint
functional distribution P[EV , ẼV ].
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This framework of coupled equations enables us to analyze
the dynamics of rerouting, as we iterate Eqs. (19) and (21)
in parallel, and the optimal configurations extracted in the
former become the background information for the latter. It
also generalizes the cavity method to analyze the dynamics,
which can be adapted to study other dynamical problems.
Although we only consider one step of the dynamics here, the
framework can be readily extended to consider more steps.

To obtain the analytical solution of the rerouting behavior
of vehicle μ, we have to find the joint functional proba-
bility distribution P[EV (σμ, I\μ), ẼV (σ̃ μ, σμ∗, I\μ∗)]; in the
subsequent derivation, we denote this functional probability
distribution as P[EV , ẼV ], omitting the arguments of EV and
ẼV for clarity. In this case, we have to utilize both Eqs. (19)
and (21) to write down a self-consistent equation in terms of

P[EV , ẼV ], given by

P[EV , ẼV ] =
∫

dk
P(k)k

〈k〉
∫

d�d�

k−1∏
j=1

∫
dEV

j dẼV
j P

[
EV

j , ẼV
j

]
δ
(
EV (σμ, I\μ) − R22

[{
EV

j

}
,�, σμ, I\μ])

×δ
(
ẼV (σ̃ μ, σμ∗, I\μ∗) − R23

[{
ẼV

j

}
,�, σ̃ μ, σμ∗, I\μ∗]), (24)

where R22 and R23 correspond to the right-hand side of the recursion relations in Eqs. (22) and (23) respectively. Equation (24)
can be solved numerically for P[EV , ẼV ].

1. The probability of rerouting

To derive various physical quantities of interest, we first compute the probability p(σ̃ μ∗, σμ∗, I∗), of vehicle μ rerouting from
the original recommended traffic σμ∗ on a specific link to σ̃ μ∗. For instance, p(0, 1, 3) stands for the probability of vehicle μ

switching its path away from a link with total traffic equal 3, which was part of the original optimized and recommended route.
With the obtained joint probability P[EV , ẼV ], the expression for p(σ̃ μ∗, σμ∗, I∗) is given by

p(σ̃ μ∗, σμ∗, I∗) =
∫

dEV
1 dẼV

1 P
[
EV

1 , ẼV
1

] ∫
dEV

2 dẼV
2 P

[
EV

2 , ẼV
2

]∑
I\μ∗

δ
(
(σμ∗, I\μ∗) − argmin

(σ,I )

[
EV

1 (σ, I ) + EV
2 (−σ,−I )

−|σ + I|γr
])

δ(I∗ − (σμ∗ + I\μ∗))δ
(
σ̃ μ∗ − argminσ̃

[
ẼV

1 (σ̃ ,σμ∗,I\μ∗) + ẼV
2 (−σ̃ ,−σμ∗,−I\μ∗)

− |σ̃ ||1 + I\μ∗|γ−1
])

, (25)

which relies on evaluating the energy changes linked to the specified route switching.

2. The cost of rerouting one selfish user

By marginalizing over the joint probability
p(σ̃ μ∗, σμ∗, I∗), we obtain P(I∗), the probability that the
original recommended traffic on a link is I∗,

P(I∗) =
∑

σ̃ μ∗,σμ∗
p(σ̃ μ∗, σμ∗, I∗). (26)

We can then compute the optimal social travel cost
H(σ∗(γr )|γ ) of the original system with recommended routes
σ∗(γr ) by

H(σ∗(γr )|γ ) =
∑

I∗
P(I∗)|I∗|γ , (27)

where σ∗(γr ) and I∗ are computed with respect to γr by
Eq. (25) based on the recursion relation of Eq. (19), while the
exponent γ reflects the fact that one computes the social cost
of (2). Similarly, we can also compute the cost H(σ̃∗(γr )|γ )
where only one selfish user has rerouted from the suggested
path configuration, given by

H(σ̃∗(γr )|γ ) =
∑

σ̃ μ∗,σμ∗,I∗
p(σ̃ μ∗, σμ∗, I∗)(|I∗ − σμ∗|

+ |σ̃ μ∗|)γ . (28)

Based on expressions (27) and (28), we can compute
the fractional change in cost, i.e., �H(γr, γ ) given by

Eq. (9), for the system where there is only one rerouted
vehicle.

3. The cost of rerouting multiple selfish users

To examine scenarios with multiple selfish users, one has to
consider all permutations of choosing t selfish users out of the
n users per link with rerouting probability p, which adheres to
the binomial distribution

B(n, p, t ) =
(

n

t

)
pt (1 − p)n−t , (29)

with
(n

t

) = n!/t!(n − t )! being the binomial coefficient. We
then denote P(Ĩ∗|I∗) to be the probability of having a traffic
Ĩ∗ on a link after selfish rerouting, given its original traffic I∗.
To facilitate the derivation, we define m̃∗

s to be the number
of selfish users on a link after all selfish users in the system
have rerouted their original recommended routes, and instead
of P(Ĩ∗|I∗), we first write an expression for the probability
P(Ĩ∗, m̃∗

s |I∗) that depends on the number of rerouting deci-
sions, given by

P(Ĩ∗, m̃∗
s |I∗)

=
min(M fs,I∗ )∑

ms=max(0,M fs−(M−I∗ ))

(M fs

ms

)(M(1− fs )
I∗−ms

)
(M

I∗
)
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×
ms∑

r=0

B
(

ms, r,
p(0, 1, I∗)

p(0, 1, I∗) + p(1, 1, I∗)

)

×
M fs−ms∑

s=0

B
(

M fs − ms, s,
p(1, 0, I∗)

p(1, 0, I∗) + p(0, 0, I∗)

)

×δĨ∗,I∗+(s−r)δm̃∗
s ,ms−r+s. (30)

All combinations of route changes are weighed with the ap-
propriate combinatorial factor, with respect to the number of
route changes given the number of selfish users, and the prob-
ability of the Bernoulli distribution reflects the probability of
changing route choices on a link.

With P(Ĩ∗, m̃∗
s |I∗) computed, the probability P(Ĩ∗|I∗) is

given by marginalizing over m̃∗
s :

P(Ĩ∗|I∗) =
M fs∑

m̃∗
s =0

P(Ĩ∗, m̃∗
s |I∗). (31)

Having obtained P(Ĩ∗|I∗), we can compute the global so-
cial travel cost H(σ̃∗(γr )|γ ) after rerouting, given by

H(σ̃∗(γr )|γ ) =
∑

Ĩ∗

|Ĩ∗|γ
∑

I∗
P(Ĩ∗|I∗)P(I∗). (32)

Using Eq. (30), we can compute our main quantity of interest,
i.e., the fractional change �H(γr, γ ) in the social cost given
by Eq. (9). To the impact specifically on selfish and compliant
users, we compute the travel cost averaged over the selfish
users,

Hselfish(σ̃∗(γr )|γ )= 1

M fs

∑
Ĩ∗,m̃∗

s

m̃∗
s |Ĩ∗|γ−1

∑
I∗

P(Ĩ∗, m̃∗
s |I∗)P(I∗),

(33)

and the travel cost averaged over compliant users,

Hcompliant(σ̃∗(γr )|γ ) = 1

M(1 − fs)

∑
Ĩ∗,m̃∗

s

(Ĩ∗ − m̃∗
s )|Ĩ∗|γ−1

×
∑

I∗
P(Ĩ∗, m̃∗

s |I∗)P(I∗). (34)

We note that the sum of the cost of the selfish and
the compliant users is the total cost of the system after
rerouting, i.e., M fsHselfish + M(1 − fs)Hcompliant = MH. We
can then define the fractional changes �Hselfish(γr, γ ) and
�Hcompliant (γr, γ ) for selfish and compliant users respec-
tively, similar to �H(γr, γ ) in Eq. (9).

4. Effect of distance from the universal destination

We remark that the calculation in Sec. III B 3 and the
resulting probability P(Ĩ∗|I∗) in Eq. (31) do not consider the
heterogeneity of links in the network. For instance, a link with
an original traffic I∗ = 0 would be more likely to have Ĩ∗ > 0
after rerouting if it is closer to the common destination. To
improve the equations of Sec. III B 3, we incorporate the dis-
tance between the link of interest and the common destination
within the derivation.

We define di to be the minimum distance between
node i and the common destination; with di = 0 implying

that node i is the common destination. We then modify
Eqs. (19) and (21), replacing the cavity energy functions
Ei→l (σ

μ

il , I\μ
il ) and Ẽi→l (σ̃

μ

il , σ
μ

il , I\μ
il ) by the modified cavity

functions Ei→l (σ
μ

il , I\μ
il |di ) and Ẽi→l (σ̃

μ

il , σ
μ

il , I\μ
il |di ), respec-

tively, which incorporate a given distance to destination di. In
the modified Eqs. (19) and (21), we update the variable di by

di = 1 + min
j∈Ni\l

{d j}. (35)

Next, we modify Eq. (25) to compute the rerouting probability
p(σ̃ μ∗, σμ∗, I∗|d ) given the minimum distance d to the com-
mon destination,

d = min(d1, d2), (36)

where d1 and d2 correspond to the distance variables of E1, Ẽ1

and E2, Ẽ2 respectively in Eq. (25).
Using p(σ̃ μ∗, σμ∗, I∗|d ), we modify Eq. (30) to obtain

P(Ĩ∗, m̃∗
s |I∗, d ) and consequently P(Ĩ∗|I∗, d ). The cost of the

system after rerouting is thus given by

H(σ̃∗(γr )|γ ) =
∑

Ĩ∗

|Ĩ∗|γ
∑
I∗,d

P(Ĩ∗|I∗, d )P(I∗, d ), (37)

where the joint probability P(I∗, d ) is obtained from the mod-
ified Eq. (25). Moreover, the travel cost averaged over the
selfish users is given by

Hselfish(σ̃∗(γr )|γ ) = 1

M fs

∑
Ĩ∗,m̃∗

s

m̃∗
s |Ĩ∗|γ−1

×
∑
I∗,d

P(Ĩ∗,m̃∗
s |I∗,d )P(I∗,d ), (38)

and the travel cost averaged over the compliant users is

Hcompliant(σ̃∗(γr )|γ ) = 1

M(1− fs )

∑
Ĩ∗,m̃∗

s

(Ĩ∗−m̃∗
s )|Ĩ∗|γ−1

×
∑
I∗,d

P(Ĩ∗,m̃∗
s |I∗,d )P(I∗,d ). (39)

With both costs computed, we can examine whether various
groups of users, i.e., average, selfish, or compliant users, ben-
efit after the selfish rerouting.

IV. RESULTS

As mentioned in Sec. II, we mainly study two scenarios:
(i) (γr, γ ) = (1, 2) and (ii) (γr, γ ) = (2, 2). The analytical
results we obtained by the mean-field approach of Sec. III B 4,
which considers the distance from the common destination,
are compared with simulation results and the results from
a semianalytical approach in which the rerouting probabili-
ties p(σ̃ μ∗, σμ∗, I∗|d ) are obtained from simulations instead
of Eq. (25); the empirical probabilities are then inserted in
the subsequent equations for the computation of the sys-
tem’s behavior. In general, the analytical and semianalytical
approaches exhibit very similar results, suggesting that the
rerouting probabilities p(σ̃ μ∗, σμ∗, I∗|d ) are estimated accu-
rately in the analysis.

022306-6



FUTILITY OF BEING SELFISH IN OPTIMIZED … PHYSICAL REVIEW E 103, 022306 (2021)

0 0.2 0.4 0.6 0.8 1
fs

0

0.5

1

1.5

2

2.5

3

ΔH

Analytic:α=0.1
Semi:α=0.1
Simulation:α=0.1
Analytic:α=0.5
Semi:α=0.5
Simulation:α=0.5
Analytic:α=0.9
Semi:α=0.9
Simulation:α=0.9

(γr,γ)=(1,2)

(a)

0 0.2 0.4 0.6 0.8 1
fs

0
0.5

1
1.5

2
2.5

3

ΔH
se

lfi
sh

(γr,γ)=(1,2)

(b)

0 0.2 0.4 0.6 0.8 1
fs

-0.5

-0.4

-0.3

-0.2

-0.1

0

ΔH
co

m
pl

ia
nt

(γr,γ)=(1,2)

(c)

0 0.2 0.4 0.6 0.8 1
fs

0

0.002

0.004

0.006

0.008

ΔH

(γr,γ)=(2,2)

(d)

0 0.2 0.4 0.6 0.8 1
fs

0

0.002

0.004

0.006

0.008
ΔH

se
lfi

sh
(γr,γ)=(2,2)

(e)

0 0.2 0.4 0.6 0.8 1
fs

0

0.002

0.004

0.006

0.008

ΔH
co

m
pl

ia
nt

(γr,γ)=(2,2)

(f)

FIG. 2. The fractional changes in travel costs (a) �H, (b) �Hselfish, and (c) �Hcompliant as functions of fs, averaged over all users, selfish
users, and compliant users, respectively, for (γr, γ ) = (1, 2). The corresponding results for cases with (γr, γ ) = (2, 2) are shown in panels (d),
(e), and (f). The simulation results are obtained on random regular graphs with N = 100 and k = 3 for vehicle density α = M/N = 0.1, 0.5,
and 0.9 averaged over 1000 realizations. The analytical and semianalytical results are also shown.

A. Recommended shortest path (γr, γ ) = (1, 2)

We first examine the case of (γr, γ ) = (1, 2), in which
all users are originally recommended to follow their short-
est paths, but the social cost is quadratic in traffic flow
and consequently the individual cost incurs traffic flow cost
linearly along its route. This scenario may correspond to
an ordinary daily route choices without coordination, in
which users just follow their shortest path but some may
change their route after getting prior information about traffic
loads.

As shown in Fig. 2(a), for the cases of α = M/N =
0.1, 0.5, and 0.9, the results from all the three approaches
show that �H(1, 2), the fractional change in the social travel
cost averaged over all users first becomes negative and then
increases back to a positive value as fs increases. This implies
that when users originally follow their shortest path, a small
fraction of selfish users is beneficial to the system as they
occupy less-used roads, freeing up heavily used roads, and
consequently �H becomes negative. However, the system’s
cost increases when the fraction of selfish users increases,
as they correlatively occupy the previously less-used roads,
leading to congestion. Although the analytical results capture
the negative and positive regimes as well as the trends of
the simulation results, there are discrepancies. We believe
that the discrepancies come from the mean-field nature of
Eq. (30), since the analytical and semianalytical results show
good agreement, which suggests that the analytical approach
estimates well the rerouting probabilities p(σ̃ μ∗, σμ∗, I∗|d )
in simulations. The reason is arguably the high variability of
costs and congestion levels that emerge from the randomness

of both topology and travel start points, which the mean-field
approach does not capture well.

In addition, we see in Fig. 2(a) that lower vehicle density α

correlates with larger value of fs beyond which �H becomes
positive. To better reveal the benefits brought by the selfish
rerouting, we show in Fig. 3(a) the parameter regime in terms
of α and fs in which the system gains (i.e., �H < 0) after
the selfish users rerouted. As we can see, as α increases,
the regime with �H < 0 decreases, implying that a suitable
fraction of selfish users is beneficial to the system if all users
originally just follow their shortest path. Similar to Fig. 2(a),
the analytical and the semianalytical results capture the trend
in the simulation results but show discrepancies. These results
imply that although the analytical approaches do not identify
the exact regime boundary in the case of (γr, γ ) = (1, 2), they
predict the correct picture.

Next, we examine the change in travel cost over the selfish
and compliant user groups. As shown in Fig. 2(b), we see
that �Hselfish, the fractional change in cost for the selfish
users, increases from a negative to a positive value when
fs increases. Smaller fraction of selfish users correlates with
more negative value of �Hselfish, suggesting that fewer selfish
users gain more from the rerouting as they can better exploit
less-used roads; this benefit vanishes when as the number of
selfish users increases since their correlated reroutings gener-
ate congestion on the selected roads. As shown in Fig. 3(b),
the critical fraction of selfish users beyond which they start to
lose decreases as the vehicle density α increases. More inter-
estingly, Fig. 2(c) shows that the compliant users always gain
for every fs > 0, implying that the presence of selfish users is
beneficial to compliant users which follow their shortest paths.

022306-7



HO FAI PO, CHI HO YEUNG, AND DAVID SAAD PHYSICAL REVIEW E 103, 022306 (2021)

0.2 0.4 0.6 0.8
 α

0

0.2

0.4

0.6

0.8

1

f s

Analytic
Semi-Analytic
Simulations

II: ΔH < 0   (Gain)
I: ΔH > 0   (Loss)

(γr,γ)=(1,2)

(a)

I

II

0.2 0.4 0.6 0.8
α

0

0.2

0.4

0.6

0.8

1

f s

II: ΔHselfish < 0   (Gain)
I: ΔHselfish > 0   (Loss)

(γr,γ)=(1,2)

(b)

I

II

0.2 0.4 0.6 0.8
 α

0

0.2

0.4

0.6

0.8

1

f s II: ΔHselfish < 0   (Gain)
I: ΔHselfish > 0   (Loss)

(γr,γ)=(2,2)

(c)

II

I

FIG. 3. The regimes with negative or positive (a) �H(1, 2), (b)
�Hselfish(1, 2), and (c) �Hselfish(2, 2) are shown in terms of the frac-
tion of selfish users fs and vehicle density α. The predictions of the
corresponding regime boundary by the analytical and semianalytical
approaches are shown.

B. Quadratic loss optimization (γr, γ ) = (2, 2)

In the case with (γr, γ ) = (2, 2), users are recommended
to follow the optimal configuration of paths which already
minimizes the social cost, and hence selfish rerouting is likely
to increase it. As shown in Fig. 2(d), the results from all
the three approaches show that �H > 0 for all fs > 0 as ex-
pected, and the more the selfish users there are, the larger the
cost. On the other hand, we also see that the results obtained
from the analytic and the semianalytic approaches show good
agreement with simulation results, better than that in the case
of (γr, γ ) = (1, 2) in Fig. 2(a). This is arguably since in the

optimized social cost case, traffic load is already balanced,
in spite of the inherent variability induced by the random-
ness in topology and route starting points, and therefore the
mean-field approach represents better the true localized and
individualized fields and probabilities.

Interestingly, although any changes must be detrimental to
the system’s cost, selfish users may gain in their individual
cost as shown in Fig. 2(e) at the expense of others. As we
can see, when vehicle density α is small, �Hselfish < 0 when
the fraction of selfish users is small, and �Hselfish becomes
positive when fs increases. This reflects the ability of a small
fraction of users to exploit less-used routes selfishly, a strategy
that backfires as their fraction increases, leading to correla-
tions and congestion.

We further show in Fig. 3(c) the parameter regime within
which selfish users gain, defined as the critical fraction of
selfish users fs for a given vehicle density α. This fraction fs

decreases as α increases, implying that a smaller fraction of
selfish users can gain when the vehicle density increases. The
regime where �Hselfish < 0 in the case of (γr, γ ) = (2, 2),
shown in Fig. 3(c), is much smaller than that of the case
(γr, γ ) = (1, 2) shown in Fig. 3(b), implying that less self-
ish users can gain in an initially optimized system (γr = 2)
compared to the uncoordinated system (γr = 1). This is in
agreement with the previous results, since the variability of
route loads in the uncoordinated routing allows for selfish
users to secure improved rerouting. On the other hand, as
shown in Fig. 2(f), compliant users always lose due to the
actions of selfish users, unlike the case of γr = 1, but not as
much in most fs and α values.

In summary, in cases where users are recommended to
follow paths which already minimize the social cost, rerouting
by the selfish users results in a higher social cost and increases
the cost for compliant users, but selfish users themselves may
gain if they are a small minority.

The analytical results in Secs. IV A and IV B reveal the
properties of the route-changing dynamics and its quantitative
impact, e.g., regimes of positive cost changes of selfish rerout-
ing given initially optimized path configurations. Compared
to the equilibria of selfish routing examined in conventional
transportation studies [19,20], the route-changing dynamics
and its impact are more difficult to analyze. Hence, our results
offer additional understanding of an aspect of selfish routing
which is less explored.

C. Critical values of γr beyond which users on average and
compliant users lose

In Fig. 2(a), we see that �H < 0 at small fs values with
γr = 1, i.e., users gain on average in cases where one has a
small fraction of selfish users and when users initially follow
the shortest path; on the other hand, in Fig. 2(b), �H > 0
regardless of fs value when γr = 2, i.e., users always lose in
the presence of selfish users and when users initially follow
an optimized route configuration. As shown in Figs. 2(c) and
2(f), compliant users always gain with γr = 1 but always lose
when γr = 2.

In this section, we further investigate the matter to iden-
tify the critical value of γr , denoted as γ ∗

r , beyond which
users on average, or compliant users, start losing due the
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FIG. 4. The values of γ ∗
r beyond which (a) �H > 0 and (b)

�Hcompliant > 0, as a function of the density of vehicle α. Simulation
results are obtained on random regular graphs with N = 100 and k =
3 averaged over 1000 realizations, with fs = 0.1 of the users selfishly
rerouted; semianalytical and analytical results are also shown.

existence of selfish users. At a small fraction fs = 0.1 of self-
ish users, the corresponding simulation, semianalytical, and
analytical results identify γ ∗

r values beyond which �H > 0
and �Hcompliant > 0 as shown in Figs. 4(a) and 4(b), respec-
tively. As we can see in Fig. 4, as the density α increases,
the critical values γ ∗

r increase for both groups of users. The
reason is as follows: When the initial traffic load is unevenly
distributed, selfish users would shift as a group from the
overloaded roads to the underloaded roads, leaving the over-
loaded roads less occupied to the benefit of compliant users;
when the initial traffic load become more evenly distributed,
compliant users lose. As vehicle density α increases, a larger
value of γr is needed to distribute the initial traffic evenly over
the network, and hence the critical values γ ∗

r beyond which
compliant users lose increase with α. Since simulations were
conducted with a small fraction fs of selfish users, most users
are compliant and the critical values γ ∗

r beyond which average
users lose increase with α as shown in Fig. 4(a), similar to that
in Fig. 4(b).

D. Multiple rounds of selfish rerouting and Nash equilibrium

The results of Secs. IV A and IV B show that selfish users
may benefit the transportation system after one round of
rerouting. We go on to examine the impact on the system
after multiple rounds of selfish rerouting via simulations. Both

FIG. 5. An example of consecutive rounds of selfish rerouting
by M = 14 users on a network with N = 30 nodes. The origins of
users and their common destination are shown by the filled circles
and triangle, respectively. Links with nonzero traffic are shown in
green, with width proportional to the size of the flow. (a) All users
travel via their shortest path to the destination at t = 0. (b) Half of
the users reroute at t = 1, i.e., fs = 0.5. (c) The system arrives at
a Nash equilibrium state at t = 9. (d) All users reroute to minimize
their own cost at t = 1, i.e. fs = 1; as we can see, some links close
to the destination have low or zero traffic flow. (e) At t = 2, selfish
users switch to what were less occupied links at t = 1, leaving other
links underloaded. The system then switches back and forth between
the configurations in panels (d) and (e) repeatedly.

scenarios of (γr, γ ) = (1, 2) and (2,2) will be examined. At
time t = 0, all users follow their recommended routes, which
are either the shortest path to the common destination (γr = 1)
or the path configuration which minimizes the social cost
(γr = 2). Then, at each time t � 1, a fraction fs of the users
are randomly selected and rerouted to a path that minimizes
their own individual cost, based on traffic conditions at t −1.

We find that for small fs the path configuration converges
quickly after a few iterations of selfish rerouting, similar to the
example shown in Figs. 5(a)–5(c) with fs = 0.5. No vehicle
switches their path in subsequent rounds of rerouting since
all of them are already in a path with the minimal individual
cost; the system is effectively in a Nash equilibrium state.
On the other hand, when fs is large, the path configuration
may fluctuate repeatedly or run into a limit cycle in the syn-
chronous update schedule, for instance, in the case of daily
commuters departing at the same time. An example is shown
in Figs. 5(a), 5(d), and 5(e) with fs = 1. In this example,
users follow their shortest path at time t = 0. At t = 1, most
users reroute to a path which is relatively unoccupied at t = 0,
leaving the originally busy routes at t = 0 less used at t = 1.
At time t = 2, these users switch back to the less occupied
links at t = 1, and repeatedly switch back and forth between
the occupied and unoccupied routes.

To better understand the convergence and alternating
rerouting behavior, we show in Fig. 6 time series of the
social cost H for exemplar instances. In Fig. 6(a), we show
a low vehicle density case α = 0.1 where H converges in
instances with fs = 0.1 and 0.5 where (γr, γ ) = (1, 2), and
for all three instances with fs = 0.1, 0.5 and 0.9 in the case
with (γr, γ ) = (2, 2). To reveal the convergence across in-
stances, we show in Fig. 6(c) the fraction of instances with
no change in cost for the final consecutive 2500 steps in a
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FIG. 6. [(a), (b)] The social travel cost H as a function of t , the
number of selfish rerouting rounds, measured on specific instances of
random regular graphs with N = 100, k = 3, γr = 1, 2 and various
fs for (a) α = 0.1 and (b) α = 0.9. [(c), (d)] The fraction of instances
which show no change in travel cost H for the last consecutive 2500
steps in a simulation with 5000 steps, for (c) α = 0.1 and (d) α =
0.9.

simulation totaling 5000 steps. Almost all instances converge
except those with a large fraction of selfish users fs = 0.9
in the case of (γr, γ ) = (1, 2). This is possibly due to the
large number of synchronous updates. An example of the
time series of H in this case is shown in Fig. 6(a), where
H fluctuates vigorously at high values; this case may share
similarities with the example shown in Figs. 5(a), 5(d), and
5(e). These results suggest that at low vehicle density α, most
cases of the system arrive at a Nash equilibrium via selfish
rerouting, as expected.

For cases with a high vehicle density α = 0.9, we show
the time series of H from several instances in Fig. 6(b). The
time series of H for the instances with fs = 0.5 and 0.9 and
(γr, γ ) = (1, 2) exhibit fluctuations that become more vigor-
ous compared to the corresponding instances in Fig. 6(a). As
we can see in Fig. 6(d), while most instances still converge
for cases with (γr, γ ) = (2, 2), the convergence ratio starts
to drop rapidly beyond fs = 0.1 for the case with (γr, γ ) =
(1, 2). These results suggest that with a high vehicle density
α, it is more difficult for the system to converge to a Nash
equilibrium via selfish rerouting, especially if users start from
the shortest path configuration. It also suggests that initial
route coordination (i.e., γr = 2) plays a role in facilitating
convergence.

To further examine the system state after multiple rounds
of selfish rerouting, we measure the time-averaged social cost
〈H〉t = 1

100

∑200
t=101 H(σt |γ ) and define a quantity ψ given by

ψ = 〈H〉t − H(σ∗(γ )|γ )
H(σ∗(γ )|γ )

, (40)

)b()a(

(γr, γ) = (1, 2) (γr, γ) = (2, 2)

FIG. 7. The fractional difference ψ between the cost after multi-
ple rounds of selfish rerouting and the optimal cost, as a function of α

and fs for (a) (γr, γ ) = (1, 2) and (b) (γr, γ ) = (2, 2), respectively.
The smaller the value of ψ , the closer the system’s final state to the
optimum. Simulation results are obtained on random regular graphs
with N = 100 and k = 3 over 1000 realizations.

to compare the time-averaged cost after multiple rounds of
selfish rerouting with the optimal social cost. As shown in
Fig. 7, ψ behaves similarly with respect to fs and α for
both cases of γr = 1, 2, while the values of ψ are larger for
γr = 1. In both cases, ψ increases gradually with α and fs

from ψ ≈ 0, which suggests that the system reaches a Nash
equilibrium state close to the optimal state for systems with
a small vehicle density and a small fraction of selfish users,
regardless of the initial state of the system. On the other hand,
largely suboptimal states are obtained if the fraction of selfish
users is large.

E. Selfish routing on the English highway network

To reveal the impact of selfish rerouting on a realistic
transportation network, we simulate our model on the English
highway network with 395 nodes, each representing a starting
or ending highway junction based on the data in Ref. [26].
As shown in Fig. 8(a), for simplicity, we create a node in
the location of London to serve as the common destination,
and allocate an identical weight on all links. An example
of shortest path configuration on this highway network with
M = 11 users is shown in Fig. 8(b); the path configuration
after all the 11 users rerouted is shown in Fig. 8(c).

In Fig. 9, we show �H, �Hselfish, and �Hcompliant, i.e., the
changes in cost averaged over all users, selfish users, and com-
pliant users, respectively, after one round of rerouting with
500 realizations of simulations. The corresponding parameter
regimes when all and selfish users gain are shown in Fig. 10.
Remarkably, although the topological characteristics of the
highway network are different from those in random regular
graphs, the results obtained on the English highway network
are similar to those observed in random regular graphs and
predicted by the theory, as shown in Figs. 2 and 3 for both
cases of (γr, γ ) = (1, 2) and (2,2). It also implies that al-
though the analytical results in Sec. III are derived based on
tree topologies, they capture qualitatively the impact of selfish
route decisions on real transportation networks.

We also show simulation results of multiple rounds of
selfish rerouting on the highway network in Figs. 11 and 12.
Remarkably, these results are also similar to those observed in
random regular graphs in Figs. 6 and 7, validating the efficacy
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)c()b()a(

FIG. 8. (a) The region of UK highway network used in our simulation is enclosed by the red rectangle. The network consists of 395 nodes,
each of which represents the starting or the ending junction of roads. (b) An example of the configuration of traffic flow resulted from M = 11
users traveling on the shortest paths from their origin (red filled circles) to the common destination in London (the blue triangle). (c) The
configuration of traffic flow after all users reroute. As we can see, all users switch to the initially less occupied route, leaving their original
occupied route empty.

of our approach. Nevertheless, as we can see in Fig. 11, the
specific topology makes it more difficult for repetitive selfish
routing to converge as more instances show a fluctuating H
value. In Fig. 12, we see that ψ increases with fs and α in
both cases of γr = 1, 2, suggesting a small vehicle density
and a small fraction of selfish users would lead the system
to a close-to-optimal Nash equilibria, similar to that observed
in random regular graphs. The above results also suggest that
the qualitative behaviors of selfish rerouting are robust against
network topologies.

V. CONCLUSION

We studied a model of transportation networks in which
optimized routes are recommended to users from their starting
point to a common target destination, say a city center. How-
ever, having the global routing suggestion some users choose
alternative routes to minimize their individual costs based on
the traffic experienced. The cavity approach developed in the
studies of spin glasses is employed to analyze the impact
caused by the selfish re-routing behavior, for all users as well
as separately for the groups of compliant and selfish users.
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FIG. 9. The fractional changes (a) �H, (b) �Hselfish, and (c) �Hcompliant of the travel cost averaged over all users, selfish and compliant
users, respectively; simulations were carried out for 500 realizations on the English highway network with (γr, γ ) = (1, 2) and vehicle densities
α = M/N = 0.1, 0.5, and 0.9. The corresponding simulation results for cases with (γr, γ ) = (2, 2) are shown in panels (d), (e), and (f).

022306-11



HO FAI PO, CHI HO YEUNG, AND DAVID SAAD PHYSICAL REVIEW E 103, 022306 (2021)

0.2 0.4 0.6 0.8
 α

0

0.2

0.4

0.6

0.8

1
f s

England highway network

II: ΔH < 0   (Gain)
I: ΔH > 0   (Loss)

(γr,γ)=(1,2)

(a)

I

II

0.2 0.4 0.6 0.8
 α

0

0.2

0.4

0.6

0.8

1

f s II: ΔHselfish < 0   (Gain)
I: ΔHselfish > 0   (Loss)

(γr,γ)=(1,2)

(b)

I

II

0.2 0.4 0.6 0.8
 α

0

0.2

0.4

0.6

0.8

1

f s II: ΔHselfish < 0   (Gain)
I: ΔHselfish > 0   (Loss)

(γr,γ)=(2,2)

(c)

I

II

FIG. 10. The regimes with negative or positive (a) �H(1, 2),
(b) �Hselfish(1, 2), and (c) �Hselfish(2, 2) in the simulations on the
English highway network are shown in terms of the fraction of selfish
users fs and vehicle density α.

As shown by both analytical and simulation results, in the
case of uncoordinated transportation networks with users fol-
lowing their shortest path, a small fraction of selfish users may
reduce the average cost per vehicle globally and hence benefit
the system. Their selfish reroutings exploit less-loaded routes,
which emerge due to the randomness in both topology and
starting points, freeing up overloaded routes. Nevertheless,
when the fraction of selfish users increases, the average cost
per user increases and the system suffers due to correlation
and congestion that appear due to selfish rerouting. Interest-
ingly, the average cost for compliant users which do not alter
their routes always reduces by the action of selfish users.
On the other hand, in the case of optimized transportation

FIG. 11. The social travel cost H on the English highway net-
work as a function of t , the rounds of selfish rerouting, measured on
specific instances with γr = 1, 2 and various fs values for (a) α = 0.1
and (b) α = 0.9.

networks with quadratic costs, selfish rerouting increases the
average cost for all users as well as for compliant users, as
expected. Selfish users themselves may gain if their fraction
in the user population is small but will lose out as it grows.

The theoretical framework we established for computing
the quantitative impact of selfish routing decisions on selfish
and compliant users, and the transportation networks as a
whole, can lead to promising applications. In particular, one
can design an objective function in Eq. (19) to identify spe-
cific path configurations that maximizes the decrease in cost
after selfish rerouting. This approach can be used to improve
navigation devices that coordinate routes of multiple vehicles,
by taking into account the behavior of noncompliant users, as
well as to develop algorithms for routing autonomous vehicles
in a transportation network comprising both autonomous and
human-driven vehicles.

Using numerical simulations, we show that Nash equilibria
states may result after multiple rounds of selfish rerouting,
where users no longer reroute once they have all minimized
their costs. The social travel cost per vehicle at the Nash
equilibria is close to the value at the optimal states when
the vehicle density and the fraction of selfish users are small.
Similar results are observed on the simulations on the English
highway network.

)b()a(

(γr, γ) = (1, 2) (γr, γ) = (2, 2)

FIG. 12. The fractional difference ψ between the cost after mul-
tiple rounds of selfish rerouting and the optimal cost on the English
highway network, as a function of α and fs for (a) (γr, γ ) = (1, 2)
and (b) (γr, γ ) = (2, 2) respectively. The simulation results are ob-
tained over 500 realizations.
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Our results reveal the impact of selfish routing decisions on
the performance of transportation networks, which sheds light
on benefit brought by route coordination and the importance
of influencing drivers’ behaviors. For simplicity, a specific
form of cost functions which capture the essence of realistic
costs is studied, but the model can accommodate other cost
functions and additional factors to make it more realistic and
helpful for transport engineers. Our work also demonstrates
how the cavity method can be used to study game-theoretical
problems by accommodating the responses of players. This
generalized theoretical framework can be readily adapted to
study other problems based on iterative alterations by network
participants in response to the state of the system.

ACKNOWLEDGMENTS

This work is supported by the Research Grants Coun-
cil of the Hong Kong Special Administrative Region, China
(Projects No. EdUHK ECS 28300215, No. GRF 18304316,
No. GRF 18301217, and No. GRF 18301119); the EdUHK
FLASS Dean’s Research Fund Grants No. IRS12 2019 04418

and No. ROP14 2019 04396; and EdUHK RDO Internal Re-
search Grants No. RG67 2018-2019R R4015 and No. RG31
2020-2021R R4152. D.S. acknowledges support from the
Leverhulme trust (Grant No. RPG-2018-092) and the EPSRC
Programme Grant TRANSNET (No. EP/R035342/1). D.S.
would like to thank Alfredo Braunstein and Luca Dall’Asta
for helpful discussions at early stages of this work.

APPENDIX: GENERALIZATION OF THE PROPOSED
FRAMEWORK TO NETWORKS WITH WEIGHT ON LINKS

So far we have assumed that all links in the network have
an equal weight. Here, we will generalize the analysis to
accommodate the case in which links have heterogeneous
weights. These can be considered as a cost of traveling
through the link, such as the physical distance between two
nodes or the travel time for the respective type of road. By
generalizing our analysis to links with heterogeneous weights,
realistic transportation network topologies can be considered
within our framework. Specifically, we consider the case that
each link (i j) is characterized by a weight wi j ; then the social
travel cost per vehicle is given by

H(σ|γ ) = 1

M

∑
(i j)

wi j |Ii j |γ , (A1)

and the individual travel cost by

Cν (σ̃ν |σ∗, γ ) =
∑
i, j

wi j

∣∣σ̃ ν
i j

∣∣(1 + ∣∣I∗
i j − σ ν∗

i j

∣∣)γ−1
. (A2)

We then modify Eqs (19)–(21) to analyze the rerouting behavior on the network with heterogeneous links. The optimized energy
Ei→l (σ

μ

il , I\μ
il ) of the network terminated at i is given by

Ei→l
(
σ

μ

il , I\μ
il

) = min
{σμ

ji ,I
\μ
ji |Ri=(0,0)}

⎡
⎣wil

(∣∣σμ

il

∣∣ + ∣∣I\μ
il

∣∣)γr +
∑

j∈Ni\l

E j→i
(
σ

μ
ji , I\μ

ji

)⎤⎦, (A3)

while the optimal (σμ∗
ji , I\μ∗

ji ) from the neighboring nodes j of node i excluding l can be derived by Eq. (A3) in the form of

{
σ

μ∗
ji , I\μ∗

ji

}
j∈Ni\l = argmin

{σμ
ji ,I

\μ
ji |Ri=(0,0)}

⎡
⎣wil

(∣∣σμ∗
il

∣∣ + ∣∣I\μ∗
il

∣∣)γr +
∑

j∈Ni\l

E j→i
(
σ

μ
ji , I\μ

ji

)⎤⎦. (A4)

Similarly, the optimized energy Ẽi→l (σ̃
μ

il , σ
μ∗
il , I\μ∗

il ) of the network terminated at i after vehicle μ rerouted is given by

Ẽi→l
(
σ̃

μ

il , σ
μ∗
il , I\μ∗

il

) = min
{{σ̃ μ

ji }|Rμ
i =0}

⎡
⎣wil

∣∣σ̃ μ

il

∣∣(1 + ∣∣I\μ∗
il

∣∣)γ−1 +
∑

j∈Ni\l

Ẽ j→i
(
σ̃

μ
ji , σ

μ∗
ji , I\μ∗

ji

)⎤⎦. (A5)
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