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Abstract: Following the rise in interest in transmission systems employing the nonlinear
Fourier transform (NFT) for the nonlinearity mitigation, we present the theoretical analysis of the
achievable information rates in these systems, addressing the case of continuous b-modulated
systems. Using adiabatic perturbation theory and the asymptotic analysis by means of Riemann-
Hilbert problem, we obtain a remarkably simple input-output relation for arbitrary b-modulated
transmission. Based on this model, we estimated the spectral efficiency for various single
polarization (scaled and unscaled) b-modulated systems and observed an excellent agreement
between our theory and the numerical results in the regime when the inline amplifier noise is the
dominant source of spectral distortion.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The growing demand for the IP traffic volume, escalating due to emerging number of versatile novel
on-line services, imposes progressively higher requirements on the throughput of contemporary
core fiber communication systems. Due to the ever-increasing traffic demand, we are quickly
approaching the limits of available fiber capacity provided by the current (mostly linear)
transmission technologies [1–3]. However the nonlinear transmission effects arising largely due
to the Kerr nonlinear media response in silica fibers are responsible for the capacity degradation
at high signal-to-noise (SNR) levels [2–5], thus making it impossible to gain more line capacity
by simply raising the signal power. To reduce the negative fiber nonlinearity impact, there
have been proposed a plethora of nonlinearity mitigation techniques [6]. Among the existing
methods, the nonlinear Fourier transform (NFT) [7,8] has recently attracted a lot of attention,
since within this essentially nonlinear technique, the modulation and transmission effectively
takes place inside the nonlinear Fourier (NF) domain, where the nonlinear cross-talk degrading
the performance of conventional WDM systems is virtually absent. Such a transmission method
employing the NF modes instead of linear counterparts is known as nonlinear frequency division
multiplexing (NFDM). The idea of using the NF spectrum components for modulation and
transmission was first proposed in [9], where only discrete nonlinear modes were used. Later on
the use of continuous spectrum was suggested in [7,10] and a hybrid scheme using both discrete
and continuous spectrum was developed in [11,12]. NFT has also been successfully generalized
for two polarizations [13–18].

While having the potential to overcome the nonlinearity induced limits, the NFT-based methods
still suffer from several limitations. For example, the coupling of NF modes still occurs in the
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real systems due to the deviation of the true transmission channel from the idealised model (i.e.
from the unperturbed nonlinear Schrödinger equation (NLSE) containing only the effects of the
second order dispersion and Kerr nonlinearity). The effects emerging in the multi-user NFDM
environment compared to the WDM are analyzed in [19,20]. Inline amplifier noise is also not
accounted for by the idealized model and the interaction of the signal evolving inside the NF
domain with noise is an area that is still poorly studied despite some recent progress reported in
[21–24]. In particular, there is lack of analytical estimates for the achievable information rates
for the NFT-based systems despite some results for discrete [25,26] and continuous spectrum
[21,23,27]. The main difficulty here is that even in the large SNR regime when one can use
perturbation theory, the resulting channel law is strongly input-dependent, which makes capacity
estimates notoriously difficult. However, better and more accurate analytical derivations for the
channel law are useful as they could be used for estimates for the achievable information rates
(AIR) with the mismatched decoding [28–30].

Recently, a specific type of the NFT operating with the continuous spectrum has come to
vogue: namely, the so-called b-modulation [31]. In this scheme the data is encoded on the
so-called second Jost coefficient b(ξ) [32,33]. The original suggestion [16,17,31,34] favoured
b-modulation over the original r-modulation [10] as it allows, in principle, the generation of
signals having a compact support, which helps improve spectral efficiency. At the same time,
unlike the r-modulated system, the b-modulated system suffers from the so-called "energy barrier"
[34] as the value of |b| is upper-bounded by unity. The possible ways of circumventing this
limit is using smartly tailored nonlinear signal carriers [34]. Another proposition is to apply the
nonlinear spectrum scaling which squeezes the absolute value of b coefficient into the allowed
interval at the expense of losing the time-limitedness of the pulse [16,17].

In this paper we report two new results: i) the analytical model (channel-law) for b-modulated
nonlinear spectra and ii) the capacity lower bound for these systems. We study both scaled and
unscaled b-modulation systems. Some preliminary results of this paper regarding the channel
model were reported in [35].

2. Main model and basics of NFT

2.1. Nonlinear Schrödinger equation (NLSE)

The principal master model for the slow-varying envelope of electrical field, U(z, t), propagating
down a single-mode optical fiber under the assumption of ideal distributed amplification (i.e.
assuming the flat zero-level gain-loss profile) is written as a noise-perturbed NLSE (see [5,36]):

∂U
∂Z
+ i

β2
2
∂2U
∂T2 − iγ |U |2U = N(Z, T), (1)

with Z being the distance along the fiber, T is the time in the frame co-moving with the velocity of
the envelope U. We restrict ourselves to the case of a single polarization only and the parameter β2
is the characteristic of chromatic dispersion (β2<0 for the anomalous dispersion case considered
in our study), γ is the nonlinear Kerr coefficient. Model (1) represents lossless NLSE perturbed
by the zero-mean additive white Gaussian noise (AWGN) term N(z, t) characterized by the power
spectral density (PSD) per unit of propagation distance, NASE, and the autocorrelation function
[5,36]:

E
[︁
N(Z, T) N̄(Z ′, T ′)

]︁
= (NASE/L) δ(T − T ′) δ(Z − Z ′), (2)

where the overbar stands for the complex conjugate, E[. . .] is the expectation value, δ(. . .) is the
Dirac delta-function, and L is the signal propagation distance.

The model above is exact in the case of ideal distributed Raman amplification (IDRA) and
neglecting other effects such as the third order dispersion, Raman frequency shift and so on. For
the IDRA, we have: NASE/L = h νs KT α, where α ≈ 0.2 dB/km is the fiber loss coefficient at the
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carrier wavelength λs = 1.55 µm, KT ≈ 1 is the temperature-dependent factor that characterizes
the Raman pump providing the gain, νs = 193.55 THz is the carrier frequency of the signal.

However, to be more realistic and to describe most transmission experiments, we shall assume
the model (1), and (2) to be a path-averaged limit of the lumped erbium doped fiber amplification
(EDFA) transmission [37] (see also Ref. [38] for the study of applicable limits of path-averaged
model in continuous NFDM systems). In this case the optical pulse is propagated through lossy
spans each of length La where at the end of each span the signal is regenerated via EDFA gain
G = exp(α La). The resulting path-averaged model is the same as in the distributed Raman
scheme but with the renormalized nonlinear coefficient γeff = γ(G − 1)/(G ln G) [37,39], and
the total accumulated noise ASE is then given by [5]: NASE = (G − 1)Na h νs nsp, where Na is
the total number of spans (L = Na La), and nsp<1 is the spontaneous emission factor commonly
evaluated via amplifier noise figure: F = G−1 + 2 nsp(1 − G−1) [40]. In this case the resulting
averaged model (1) represents an approximation valid when the amplifier span is much less
than the typical scale of variation of the pulse. Note that although the analytical NFT analysis
below assumes the distributed model, the numerical verification of the results was obtained by
simulating the lumped amplification link, taking into account periodic power variations and noise
injection from span to span. Now let us introduce the normalized units,

T/Ts → t, Z/Zs → z, U/
√︁

Ps → q, (3)

with Zs = T2
s /|β2 |, Ps = (γ Zs)

−1. The resulting normalized NLSE becomes:

∂q
∂z

−
i
2
∂2q
∂t2

− i |q|2q = n(z, t). (4)

The noise term n(z, t) has been normalized in accordance to (3), so that it is delta-correlated
with the intensity: 2D = NASEZs/(Ps Ts L) [21].

2.2. NFT operations

The NFT decomposes the signal q(z, t) at a fixed location z = z0 and returns the corresponding
NF spectrum. The reciprocal operation, the inverse NFT (INFT), returns the signal q(z0, t) taking
the full NFT spectrum as an input. In what follows, we shall consider the case of the signal
vanishing at infinity and anomalous dispersion fiber.

Direct NFT operation: The direct NFT is computed from specific (auxiliary) solutions
v1,2(t, ζ) = v1,2(t, ζ ; z0) (in the future we shall omit the z0 notation for brevity) to the linear
Zakharov-Shabat problem (ZSP), which we write down as [33]:

dv1
dt
= q(t) v2 − iζv1 ,

dv2
dt
= −q̄(t) v1 + iζv2 , (5)

for different values of the complex spectral parameter ζ = ξ + iη. The overbar in (5) and below
stands for the complex conjugate. Under the assumption that

∫ ∞

−∞
|q(t)| dt<∞, specific solutions

(the so-called Jost functions) ϕ1,2(t, ξ) and ψ1,2(t, ξ), for real ξ, to the ZSP can be obtained from
the boundary conditions:

ϕ1(t, ξ) → e−iξ t, ϕ2(t, ξ) → 0 for t → −∞,
ψ1(t, ξ) → 0, ψ2(t, ξ) → eiξ t for t → +∞.

(6)

Furthermore, we will also need the expression for the conjugated pairs: ϕ̃1 = ϕ̄2 and ϕ̃2 = −ϕ̄1
as well as ψ̃1 = ψ̄2 and ψ̃2 = −ψ̄1. These also solve ZSP as expressed in (5). In practical
realization of the transmission schemes, the pulse q(t) is truncated to have a finite duration, i.e.
we operate in the so-called burst mode [41], and thus one sets the initial conditions at the trailing
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and leading ends of the finite-extent pulse. The functions a(ξ) and b(ξ) forming the core of the
NFT signal decomposition, also known as the Jost scattering coefficients are defined through the
Jost solution as:

a(ξ) = lim
t→∞

ϕ1(t, ξ)eiξ t, b(ξ) = lim
t→∞

ϕ2(t, ξ)e−iξ t. (7)

These scattering coefficients satisfy: |a(ξ)|2 + |b(ξ)|2 = 1. The NF spectrum of the signal q(t)
consists of two parts. The first (continuous) part is given by the right reflection coefficient (RC),

r(ξ) = b(ξ)/a(ξ), ξ ∈ R. (8)

The second part of the NF spectrum consists of the discrete NF spectrum responsible for the
soliton component of the pulse. However, we do not consider the solitonic degrees of freedom in
our study. The z-dependence of the RC and scattering coefficients is as follows:

r(ξ, z) = r(ξ, z0) e2iξ2(z−z0), b(ξ, z) = b(ξ, z0) e2iξ2(z−z0), a(ζ , z) = a(ζ , z0). (9)

INFT operation. The INFT maps the scattering data onto the field q(t). This is achieved via
the solution of the Gelfand-Levitan-Marchanko equations (GLME) [33,42], or, alternatively,
by means of the Riemann-Hilbert problem [43]. However, we do not present here the explicit
expressions as these are not necessary for our further exposition (safe for long distance asymptotes
in the Appendix).

2.3. r and b-modulation

In all general NFT-based schemes similarly to the conventional modulated systems, one starts
with a sequence of symbols ck chosen from a modulation constellation of cardinality M. These
symbols, however, are used to modulate the nonlinear spectrum (at the transmitter, i.e. at z = 0):

uin(ξ) =
√

S
Nsc∑︂
k=1

ck ψ(ξ − k∆ξ), (10)

where ψ(ξ) is the chosen nonlinear carrier spectral shape, ∆ξ is the nonlinear carrier spacing,
and S is the effective parameter that defines an average power per carrier (the constellation
points are supposed to have standard dimensionless spacing). Often one defines a time scale
T0 = π Ts/∆ξ in the real word units, which can be loosely defined as NFDM symbol duration
[16,17]. This definition must, however, be handled with caution as it is known [10] that the
nonlinear spectral spacing defines the signal support in the time domain only in the low power
limit when the nonlinear spectrum becomes (up to a factor of 2 frequency scaling and complex
conjugation) identical to its linear counterpart [42]. As for the carrier shapes, the most popular is
the sinc-shape chosen in analogy to linear orthogonal frequency division multiplexing (OFDM)
and providing a good localization of resulting profiles in time domain, but other carrier forms can
also be employed, see below. Therefore, we shall carry out most of our theoretical analysis for the
general carrier shape and will only fix it in the numerical simulations when the specific choice is
required. Note that in all implementations of the NFT, the carrier is usually oversampled both in
the nonlinear and time domain.

The idea of the NFT-based methods is to take the spectral shape (10) (amplitude-scaled, if
desired, by a local transformation) and use it either as the reflection coefficient r(ξ) or as a
b-coefficient. The former technique is commonly known as the r-modulation (or the nonlinear
inverse synthesis [10]), and the latter technique as the b-modulation. Note that r, a and b
coefficients are not independent. They are related to each other by the following relations
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(assuming continuous spectrum only) [7,32]:

|a(ξ)|2 + |b(ξ)|2 = 1, |a(ξ)|2 = (1 + |r(ξ)|2)−1,

∠a(ξ) = −
1
2
H

{︁
log(|a(ξ)|2)

}︁
, b(ξ) = r(ξ) a(ξ),

(11)

where H{. . .} denotes the Hilbert transform.
It follows from the first expression in (11) that the absolute value of the b-coefficient is bounded

by unity: |b(ξ)|<1. Therefore, the original unscaled b-modulation suggested in [44], while
providing an attractive property of localized signal in the time domain (and hence high spectral
efficiency at the transmitter), suffered from the “energy barrier” issue – a limitation on the
input power S in (10) imposed by the above constraint [44,45]. This limitation was partially
circumvented in [34] by using cleverly tailored flat-top carrier shapes and optimized constellations.
The authors in [16,17] have chosen another path by imposing no limit on the initial power factor
S in (10) but, instead, providing a nonlinear squeezing transformation: |b| = f (|u|) and in the
latter case the exact localization property in the time domain was lost, but instead one earns the
freedom in signal power up-tuning. It was argued in [16,17] that most of the spectral efficiency
in the NFT communication is lost due to the need to insert large guard bands between the bursts
[8] and not due to the initial pulse shape within the burst so such a loss of compactness can be
tolerated. The specific choice of the exponential function to the best of our knowledge is not
dictated by any particular performance gains, but was chosen in [16,17] to provide convenient
expression for the total energy of the NFT burst, Eb, via the nonlinear version of the Parseval
identity [7,8]: the exponential scaling yields the expression for Eb, which is formally identical to
the energy of a pulse sequence with the linear spectrum given by Eq. (10). In Table 1 below we
summarise some popular choices of scaling used in recent literature. Note that there is still no
agreed standard notation in the NFT area and some authors, e.g., [7], use q instead of r to denote
the continuous spectrum.

Table 1. Some of the scaling functions used in NFT-based
transmission systems, with u(ξ) being the

information-bearing modulated function of type (10).

Modulation Scaling Ref

r None: r(ξ) = u(ξ) [10,21,22,24,46]

r(ξ) = (e|u(ξ )/2|2 − 1)1/2 ei∠u(ξ ) [19,20]

b None: b(ξ) = u(ξ) [31,34]

b(ξ) = (1 − e−|u(ξ )|2 )1/2 ei∠u(ξ ) [16,17]

The setup of a typical NFDM system using either r or b modulation is shown in Fig. 1. Our
data are encoded into the spectral waveform according to Eq. (10), after which an amplitude
scaling transform f is applied and the received spectral shape is associated either with r or
b component of the nonlinear spectrum. After that, we apply precompensation to the initial
encoded spectral shape inside the NF domain, i.e. we unroll the half of accumulated phase in the
nonlinear domain (9). This is done to reduce the required guard band of each burst and, thus,
increase the spectral efficiency [47]. After the precompensation, the INFT is performed (we use
the fast NFT implementation from [48]) and the received time domain signal after inserting the
corresponding guard band, is launched into a single mode optical fiber modelled by Eq. (4). For
the simulations, we used a standard split-step propagation algorithm and the fiber parameters
β2 = −21 ps2/km, γ = 1.27, W−1 km−1, α = 0.2 dB/km. The noise was added in a lumped
fashion as described in Section 2.1.
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Fig. 1. Basic elements of the NFDM optical communication system.

At the receiver the above operations are performed in the reversed order, with the post-
compensation equalizing the remaining half of the propagation effects, and the received spectral
sequence ur(ξ) is demodulated according to the chosen carrier shape.

The presence of the noise breaks the exact integrability of the NLSE and makes the full
equalization of the nonlinear spectrum impossible. In addition, the numerical errors of both
forward and inverse NFT as well as suboptimal processing window and inter-burst interference,
all make an independent contribution to the NF spectrum distortion [24]. There are currently
plenty of numerical studies of the performance of NFT systems for both r and b modulation
case including the achievable information rates (AIR) for these channels [16], but the analytical
models describing the properties of the amplifier noise in the NS domain are quite few and far
between, see Refs. [21,23,27] for the examples related to r-modulation. It was, however, recently
reported [16] that the b-modulated systems demonstrate higher tolerance to noise as well as
higher achievable spectral efficiency compared to r-modulation. It is, therefore, highly desirable
to develop an analytical channel model for the b-modulated NFDM systems that could serve
two goals: i) provide a possible explanation for the bit error rate (BER) improvement, and ii)
give a channel law that could be used to provide capacity estimates via AIR in such systems. In
the following section, we build such a model using the perturbation theory for b-coefficient and
the asymptotic expression for the Jost functions ϕ1,2 and ψ1,2 taken at large enough propagation
distances.

3. Analytical model for b-modulated NFT channel

In this section, we examine noise characteristics for the b-modulated transmission system. We
build on our previous approach for r-modulation [21], where the perturbation theory of Kaup and
Newell [49,50] was applied to the amplifier noise in Eq. (4) in conjunction with the long-distance
asymptotes for the Jost functions [51]. Here, our goal will be similar but we reformulate the
approach for the b-modulation. Define by bin(ξ) the modulated sequence (10) after possible
prescaling of the amplitude but prior-to precompensation. The pre-compensated b-modulated
input is given by b(ξ, 0) = bin(ξ) exp(−2i s ξ2 L/Zs) where s ∈ [0, 1] specifies the amount of
precompensation: when s = 0, no precompensation is applied and all compensation is performed
at the receiver, while s = 1 implies full precompensation. In our simulation we shall use the
most common choice, and split the precompensation half-way by setting s = 1/2, in order
to optimize spectral efficiency. After the postcompensation the output b-coefficient is given
by bout(ξ) = b(ξ, L) exp[−2i (1 − s)ξ2 L/Zs], from which uout can be restored via the inverse
amplitude scaling, if needed.

First, we will demonstrate that in the small-noise limit, the statistics of the output b-coefficient
bout conditioned on the input bin are Gaussian but with input dependent covariance. Next, we
will show that at long enough distances, one can get relatively simple analytical expressions for
these correlation functions.



Research Article Vol. 29, No. 5 / 1 March 2021 / Optics Express 6390

According to the adiabatic perturbation theory [49,50], the perturbed z-evolution of the a and
b coefficient is described by the following set of equations:

∂a
∂z
= I[ϕ,ψ],

∂b
∂z

− 2i ξ2 b = −I[ϕ, ψ̃], (12)

where I[u, v] is the projection of the perturbation (in our case of the AWGN noise n(z, t)) on the
corresponding unperturbed squared Jost functions of the unperturbed system:

I[u, v; ξ] =
∞∫

−∞

dt
[︃
n(t, z) u2(ξ, t, z) v2(ξ, t, z) + n̄(t, z) u1(ξ, t, z) v1(ξ, t, z)

]︃
.

The system (12) is incomplete unless one specifies the z-dependence of Jost functions. Since
our treatment is a perturbative one, it is sufficient to evaluate ψ(ζ , t; z) and ϕ(ζ , t; z) in the zeroth
order. The important consequence is that since the perturbation terms in the r.h.s. of Eqs. (12)
are linear with respect to noise term, the effective noise in NF domain is Gaussian albeit its
correlation properties depend on the input data and their unperturbed evolution.

Since in this work we concentrate on b-modulation, the second equation from Eqs. (12) allows
us to define the noise term in the NFT domain N(ξ, bin(ξ)) according to the following expression:

bout(ξ) = bin(ξ) +N(ξ, L). (13)

In the first order of the perturbation theory, given the input b(ξ, 0), the noise term N is zero
mean complex Gaussian and is completely characterised by its (conditional) covariance and
pseudocovariance:

E

[︃
N(ξ)N̄(ξ

′

)

]︃
= 2D e2i s l(ξ2−ξ′2)

l∫
0

e−2i(ξ2−ξ′2) z A(z; ξ, ξ ′) dz, (14)

E

[︃
N(ξ)N(ξ

′

)

]︃
= 2D e2i s l(ξ2+ξ′2)

l∫
0

e−2i (ξ2+ξ′2) z B(z; ξ, ξ ′) dz, (15)

depending on the normalized distance l = L/Zs and noise intensity D.
The functions A and B are built on the time integral of the products of the Jost functions of the

unperturbed system:

A =
∫ +∞

−∞

dt
[︃
ϕ2(ξ, t, z)ψ̃2(ξ, t, z)ϕ̄2(ξ

′, t, z) ¯̃ψ2(ξ
′, t, z)

+ ϕ1(ξ, t, z)ψ̃1(ξ, t, z)ϕ̄1(ξ
′, t, z) ¯̃ψ1(ξ

′, t, z)
]︃
,

(16a)

B =
∫ +∞

−∞

dt
[︃
ϕ2(ξ, t, z)ψ̃2(ξ, t, z)ϕ1(ξ

′, t, z)ψ̃1(ξ
′, t, z)

+ ϕ1(ξ, t, z)ψ̃1(ξ, t, z)ϕ2(ξ
′, t, z)ψ̃2(ξ

′, t, z)
]︃
.

(16b)

The Jost functions entering the expressions above generally are not available in the closed form.
However, when the propagation distances are large, one can obtain them in an asymptotic form
that was first given in [51] and later formalized rigorously by using Riemann-Hilbert technique
[52,53]. We note here that the usage of asymptotic expressions for Jost functions ϕi, ψi, and so on,
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in Eqs. (16) and, subsequently, in (14) and (15), is based i) on the assumption that they are reached
with the sufficient accuracy at the distances much smaller than the propagation distance L, and
this is proven via numerical simulations, and ii) on the cancellations of fast integrand oscillations
in integrals entering Eqs. (14) and (15), such that we can keep only the leading term in the
resulting approximate expressions. The details of the Jost asymptotics derivation are somewhat
technical and can be found in the Appendix. Briefly, finding the Jost functions asymtotics relies
on the fact that the off-diagonal elements of jump matrix for the Riemann-Hilbert problem are
fast oscillating in the large distance limit, allowing one to evaluate the Jost functions using the
nonlinear steepest descent method. The technique can be reckoned as the nonlinear analogue to
the evaluation of contour integrals containing oscillatory integrands by the conventional (linear)
steepest descent method. A more physically intuitive reasoning given in [51] (see also [54]) is
that any solution of the NLSE model evolves asymptotically in a quasilinear way and is centered
at the resonant line t = −2zξ. This observation, in turn, can be used to obtain a simplified
asymptotic solution to the direct ZSP.

Regardless of the method chosen for finding the Jost function asymptotics, the end result of
the calculation is remarkably simple. It turns out that in the large L limit the local covariance is
diagonal and symmetric:

E

[︃
N(ξ)N̄(ξ

′

)

]︃
= 2πD l B1(ξ) δ(ξ − ξ

′), where

B1(ξ) = |a(ξ, L)|2 = |a(ξ, 0|2 = 1 − |b(ξ, 0)|2 = 1 − |bin(ξ)|
2,

E

[︃
N(ξ)N(ξ

′

)

]︃
= 2πD l B2(ξ) δ(ξ − ξ

′), where B2(ξ) = 0.

(17)

In the above, the functions B1,2(ξ) represent the power spectral density (PSD) and pseudodensity
normalized to power spectra density of the linear problem (expressed in normalized units)
nASE = 2πD l [5], while recalling that in the linear limit, the linear angular frequency is equal to
twice the nonlinear case, so that ω = 2ξ and |a(ξ)| → 1 [42]. Note that the nASE scales linearly
with the normalized propagation distance, l, i.e. the noise accumulates along the link.

The expressions in Eqs. (17) are the main analytical result of the paper and according to it, the
ASE-induced contribution to the signal distortion diminishes as the input approaches the energy
barrier: |b(ξ)| → 1. This is in stark contrast with the r-modulated systems, where it was shown
[21,22] that as the energy of the burst grows so does the PSD of the noise in the NFT domain.
However, as we shall presently see, simply pushing the b-modulated signal to the energy barrier
does not necessarily improve performance insofar as, apart from the ASE, there are other factors
contributing to the nonlinear spectrum distortion. This is studied in the numerical simulations
described in the next section.

4. Numerical verification of the properties of the nonlinear noise

Throughout the paper we will use the (approximate) burst duration at the transmitter as the time
normalization parameter: TS = T0. Note that T0 differs from the actual time duration of the pulse
because of i) precompensation and ii) the nonlinear nature of the INFT, which makes the duration
of any time domain pulse generated by inverse synthesis from a given nonlinear spectrum difficult
to control [10]. Only in the limit of the linear system without precompensation does T0 actually
represent the input burst duration.

We start with the validation of the theoretical predictions (17). To this end, we consider an
NFDM input sequence (10) with Nsc = 128, 16-QAM modulated subcarriers. We have considered
both scaled and un-scaled b-modulation setups and no precompensation was employed for the
noise study, i.e. s = 0.
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In the case of the scaled b-modulation, the carrier function is the un-normalized sinc: ψ0(ξ) =
sin(ξ)/ξ with the carrier spacing∆ξ = π and the exponential scaling |b(ξ)| = (1−exp(−|u(ξ)|2))1/2
was used. For the unscaled simulations, we have used the transformed root-raised cosine carriers
(28) with the roll-off factor β = 0.05 described in Section 6.2. In both cases the maximum
propagation distance was L = 960 km: Na = 12 spans of La = 80 km.

First, we used Eq. (13) to extract the current realization of the NFT noise. Then we computed
the average PSD B̄1 and the absolute value of its average pseudo-covariance counterpart, |B̄2 |, by
averaging: i) over 600 realization of the input symbols and inline noise and ii) over the nonlinear
spectrum. The procedure is similar to that used in [24] for the r-modulation. The results obtained
by such a procedure are presented in Figs. 2, 3, panes (a) and (b). The input power was Pin = −6.8
dBm, corresponding to S = 0.1, in the scaled case, and Pin = −5.55 dBm (corresponding to
S = 0.0544) in the unscaled case. According to the theoretical predictions (17), the covariance
matrix is diagonal while the pseudocovariance should vanish. And, indeed, one can see that the
covariance matrix averaged over input symbols exhibits strong diagonal correlations, while the
pseudo-covariance is at least an order of magnitude smaller as predicted by our theory. Therefore,
in the following, we will ignore the pseudocovariance and assume the noise in the nonlinear
domain to be symmetric.

Fig. 2. Scaled b-modulation. 2D covariance (a) and pseudocovariance (b). The normalized
averaged PSD as a function of the input power for L = 960 km (c), and propagation distance
for Pin = −6.8 dBm (d). The other parameters are summarized in the beginning of Section
4. The “compensated” lines identify the case where the contribution of the processing noise
was subtracted from the overall result.

The nonlinear PSD was calculated numerically, and the results are given in Figs. 2, 3 in panes
(c), (d), where to obtain the representative quantity, the diagonal part of the covariance matrix
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Fig. 3. Unscaled b-modulation. 2D covariance (a) and pseudocovariance (b). The
normalized averaged PSD as a function of the input power for L = 960 km (c), and
propagation distance for Pin = −5.55 dBm (d). The other parameters are summarized in the
beginning of Section 4. The “compensated” lines identify the case where the contribution of
the processing noise was subtracted from the overall result.

was averaged over the input symbols and the nonlinear bandwidth. The covariance values in these
figures are normalized to the linear value B1,lin = nASE = 2πD l. The results were compared to the
theoretical prediction (18), where the averaging was performed analytically for the scaled and the
unscaled form of b-modulation, in which we used different randomly generated input sequences
(10). For the unscaled RRC-shaped carriers, the averaging can be carried out explicitly using
the fact that different subcarriers do not overlap in the nonlinear domain. For the scaled case,
the averaging amounts to averaging the exponential exp(−|uin(ξ)|

2), which cannot be carried out
explicitly. However, for a large number of subcarriers, the central limit theorem applied to i.i.d.
input symbols ck allows us to substitute uin(ξ) with an effective zero-mean complex symmetric
Gaussian process, where the variance can be easily obtained. Combining both results, we get the
theoretical prediction:

B1
B1,lin

= E

[︃
1 − |bin(ξ)|

2
]︃
→

⎧⎪⎪⎨⎪⎪⎩
≈ (1 + Sσ2

k )
−1 scaled,

= 1 − Sσ2
k (1 + β)−1 unscaled,

(18)

where σ2
k = E[|ck |

2] = 2(M−1)/3 for M-QAM. Note that for the unscaled b-modulation, we have
a natural upper bound for the power, Smax, corresponding to the requirement |bin(ξ)|<1. We also
notice here that we have a small mismatch between the theory and numerical results in Figs. 2(c)
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and 3(c), especially visible for the former. This is because the exact theoretical averaging over
the input symbols in Eq. (18) can be obtained only in the limit of infinite number of subcarriers
when the central limit theorem applies. Note, however, that even for the exponentially scaled
case of Figs. 2(c), where the central limit theorem is less applicable, the maximum discrepancy
with the compensated PSD is about 5%, while for the unscaled case of Fig. 3(c), they are almost
indistinguishable.

The dimensionless parameter S is related to the real-world unit power via the nonlinear Parseval
identity for the burst energy [7,55]:

P =
Eb

Tb
= −

Ts Ps

π Tb

∞∫
−∞

ln
[︁
1 − |bin(ξ)|

2]︁ dξ, (19)

where the burst duration is estimated by the quasilinear dispersive spread of the pulse: Tb =

εNsc B |β2 |L, where B is the nonlinear bandwidth of a single subcarrier and ε ∼ 1 is carrier-
dependent form factor usually determined empirically by considering a noise-free transmission.

As some of us have shown in the previous publication [24], only part of the signal distortion
in (13) is due to the ASE noise. Another contribution comes from the processing noise, which
arises due to the finite accuracy of the forward/inverse NFT routines and is expected to become
more and more prominent as the energy of the burst grows (i.e. |bin | → 1). And, indeed, as
seen in Figs. 2, 3(c), (d), when the input power increases, the PSD of the noise initially goes
down as predicted by the model (17) but then begins to rise. To separate the ASE contribution
from the processing noise we followed the procedure of Ref. [24] and subtracted the results
of separate runs obtained with the ASE noise switched off from the full PSD. The original,
uncompensated results are labelled as “Full model” in the graphs while the PSD graphs obtained
after the subtraction of the processing noise are labeled as “Compensated”. As one can readily
notice, this compensated model corresponding to the isolated contribution of the ASE noise only
is fitted extremely well by our theory. The remaining processing noise that becomes relevant
at high input powers near the energy barrier, currently lacks an analytical description. While it
will be beneficial to include its contribution (if only phenomenologically) into the model (17),
we leave this to further studies. Moreover, the properties of the processing noise depend on the
particular numerical (I)NFT method used, and so it required a specific discussion in the context
of the features and accuracy of particular NFT routines.

5. Input-output channel model

Let us study the implications on the derived approximate analytical model (17). The input-output
relation (13) (after pre- and post-compensation) can be written in the following form:

bout(ξ) = bin(ξ) + (1 − |bin(ξ)|
2)1/2 N(ξ), E

[︃
N(ξ)N̄(ξ

′

)

]︃
= nASE δ(ξ − ξ

′), (20)

where we have introduced the signal-independent linear noise N(ξ), and E
[︃
N(ξ)N(ξ

′

)

]︃
= 0. Also,

in the quasilinear limit |bin | → 0, one recovers an AWGN channel in the (linear) spectral domain.
In the case of unscaled transmission, the mapping b(ξ) = u(ξ) and Eq. (20) already defines a

nonlinear spectrum waveform channel. For the scaled transmission, we shall assume an arbitrary
real, differentiable, invertible scaling function f (x) such as 0 ≤ f (x) ≤ 1. In Refs. [16,17], the
choice was f (x) = (1 − exp(−x2))1/2, but we shall keep the scaling function general for now. To
get an analytical expressions for the symbol statistics, we will need to assume that |bin | ≫ |N(ξ)|,
so that the second term in (20) can be treated perturbatively. For the first order in the perturbation
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term, the amplitude and phase can be expressed as:

|uout(ξ)| = |uin(ξ)| +

√︁
1 − f 2(|uin(ξ)|)

f ′(|uin(ξ)|)
Re

[︂
N̄ ei∠uin(ξ)

]︂
,

ei∠uout(ξ) = ei∠uin(ξ)

[︄
1 +

i
√︁

1 − f 2(|uin(ξ)|)

f (|uin(ξ)|)
Im

[︂
N e−i∠uin(ξ)

]︂ ]︄
.

(21)

Combining the two results together to the same first order accuracy, one can obtain a linearized
input-output relation:

uout(ξ) = uin(ξ) + g+(|uin(ξ)|)N + g−(|uin(ξ)|) e2 i∠uin(ξ) N̄,

g±(x) =
√︁

1 − f 2(x)
2

(︃
1

f ′(x)
±

x
f (x)

)︃
.

(22)

The linearization procedure used to obtain the input-output relation (22) imposes more severe
restrictions than the original pertubative model. Indeed, one can see that if we choose larger
input power (controlled by the scaling parameter S in expression (10)), this will make |uin | tend to
+∞ and, thus, 1 − f 2(|uin |) will tend to zero. So the phase fluctuations in the relations (21) will
be squeezed to zero. The same cannot be said, however, of the amplitude fluctuations because of
the derivative term in the denominator. Case in point is the exponential squeezing factor of Refs.
[16,17], for which the pre-factor in the amplitude relation for |u| is given by (exp(x2) − 1)1/2/x,
x = |uin |, and is exponentially diverging. This is no surprise since any monotonic upper bounded
function converges to an asymptote (which is 1 in the b-modulated case). Therefore, even
small changes in the values of function |b| = f (|u|), as prescribed by our theory, Eq. (20), will
induce large changes in the argument |u|, which makes the simplified model (22) inapplicable.
It is, however, very difficult (if possible at all) to obtain the auxiliary channel law analytically
without resorting to linearization. We will, therefore, use model (22) bearing in mind that it is
strictly applicable if the input b-coefficient is not too close to unity (which renders linearisation
inapplicable) or zero (which violates the validity of the perturbation theory result (25)). The
unscaled modulation scheme, which modulates directly the b-coefficient, is free from the former
limitation: it follows from Eq. (25) that it makes sense to operate as close to the “energy barrier”
|bin | = 1 as possible inasmuch as the noise term gets effectively reduced. This fact was noticed in
our preliminary report [35].

Now let us apply the channel model obtained in this section to the capacity estimates for the
b-modulated NFDM systems.

6. Achievable information rates

Finding Shannon capacity of the NFDM-modulated optical communication channel (or of the
general nonlinear fiber channel for that matter) remains an unsolved problem. The capacity is
defined as a maximum of mutual information (MI) defined below, over the probability distribution
of the vector of symbols forming the NFDM burst subject to (average) input power constraint,
see [5]. Since the exact solution for capacity is only available for very simple channels (e.g. for
the AWGN channel), then one can only work with various lower bounds obtained by evaluating
the MI either analytically or numerically for a given (suboptimal) input distribution Px(x). For
the r-modulated system, the first capacity estimates were obtained in Ref. [21] for continuous
input alphabet representing complex values of the initial reflection coefficient: Xi = r(ξi, 0).

However, the genuine channel law for the NFDM systems is still unknown, and the models
like (25), (28) developed here for b-modulated systems, or those derived in Ref. [21,23] for
r-modulated systems, still render at best just some approximations of the genuine channel.
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Therefore, an alternative approach has recently gained popularity: the technique relying on the
AIR and the concept of mismatched decoding [28–30].

Let us begin with some definitions. At the transmitter, the bit stream of k bit forming a message
is mapped onto a complex vector of Nsc symbols: X⃗ = {c1, . . . , cNsc }, where each symbol ck is
drawn from a modulation constellation χM of cardinality M. These symbols are then scaled
by the power-tuning factor S1/2 and mapped onto the nonlinear spectrum via relation (10) and,
possibly, further scaling transformations. Our channel is defined as discrete input - complex
output (see e.g. [5]), where the output to the input sequence X⃗ is the continuous complex vector
Y⃗ ∈ CNsc . For a general communication channel with memory, the MI is defined as [5,29]:

I(X⃗, Y⃗) = N−1
sc E

[︂
log2 P(Y⃗ |X⃗)/P(Y⃗)

]︂
, (23)

where P(Y⃗ |X⃗) is the channel law with memory, P(Y⃗) is the distribution of the output complex
vector induced by the discrete input distribution, and the averaging is performed over the joint
input-output distribution P(X⃗, Y⃗). The rigorous definition of MI implies taking the limit Nsc → ∞,
but in practical settings the number of subcarriers is always limited. The capacity of the channel,
C, is defined as supremum of the MI over all input distributions P(X⃗) subject to the fixed
average input burst power, Pin. The AIR is providing a lower bound for the channel capacity by
lower-bounding the MI of a given channel for a given input. Specifically, we shall assume that
our symbols, ck, are i.i.d. uniformly drawn from the constellation χM . As for the channel law, we
substitute the (unknown) genuine channel law P(Y⃗ |X⃗) and the induced output PDF P(Y⃗) with the
auxiliary ones, P̃(Y⃗ |X⃗) and P̃(Y⃗) based on our approximate analytical model, Eqs. (25) and (28).
The averaging in (30), nonetheless, is still performed over the genuine channel by averaging over
the large number of the Monte-Carlo runs of different input bursts for a given input power and
collecting the resulting vector of complex outputs, Y⃗ . The procedure described defines the AIR,
and it can be proven that it provides a lower bound for the MI of a genuine channel and, hence,
for the capacity [28].

6.1. Scaled b-modulated transmission

The auxiliary channel law, P̃(Y⃗ |X⃗), depends on the particular type of the b-modulated scheme.
We begin with the scaled version and the (approximate) input-output relation (28) for the complex
spectral wave-form. We shall assume as in the previous section, the nonlinear version of the
OFDM scheme where the nonlinear spectral carriers in Eq. (10) are sincs. In the linear OFDM,
the demodulation of the sampled time signal at the receiver is performed by means of a discrete
Fourier transform. Although through the numerical NFT algorithm at the receiver one already
obtains the nonlinear spectral form uout the removal of guard band and oversampling necessitates
the additional linear DFT transform pair (see [16]). Mathematically, this is equivalent to the
“matched filtering” albeit in the nonlinear spectral domain, so that the output complex amplitudes
forming the output vector Y⃗ = {Y1, . . . , YNsc } are obtained via the orthogonal projection:

Yk =
t0
π
√

S

∞∫
−∞

uout(ξ)
sin(ξ t0 − kπ)
ξ t0 − k π

dξ. (24)

with t0 = T0/Ts = 1 being the useful symbol duration in the normalized units. Then, from (10)
and (28) it follows that our communication channel conditioned on the input, is input-dependent
Gaussian with memory. Moreover, the noise is no longer circularly symmetric and is characterised
by both covariance and pseudo-covariance matrices, Σk k′ and Σ̃k k′ , correspondingly, conditioned
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on the input X⃗ (below CN
{︃
. . .

}︃
stands for the multivariate complex normal distribution):

P̃(Y⃗ |X⃗) = CN
{︃
Y⃗ |X⃗, Σ̂, ˆ̃Σ

}︃
,

Σk k′(X⃗) = E
[︃
(Yk − Xk) (Ȳk′ − X̄k′)

]︃
=

nASE t20
π2S

∞∫
−∞

sinc
[︃
ξt0
π

− k
]︃

sinc
[︃
ξt0
π

− k′
]︃

×
[︁
g2
−(|uin(ξ)|) + g2

+(|uin(ξ)|)
]︁

dξ,

Σ̃k k′(X⃗) = E
[︃
(Yk − Xk) (Yk′ − Xk′)

]︃
=

nASE t20
π2S

∞∫
−∞

sinc
[︃
ξt0
π

− k
]︃

sinc
[︃
ξt0
π

− k′
]︃

× 2 g+(|uin(ξ)|) g−(|uin(ξ)|) e2i∠uin(ξ) dξ.

(25)

From the above, one can see that as the distance between the symbols k and k′ grows, the
memory fades due to the diminishing overlap between the sincs. To make the results more
tractable, we shall neglect this overlap altogether here and assume the contribution of the diagonal
k = k′ terms only, so that Σk k′ ≈ σ2

k (X⃗) δk k′ , and Σ̃kk′ ≈ σ̃2
k (X⃗) δk k′ . Furthermore, in the same

approximation we can substitute |uin(ξ)| ≈
√

S |Xk | |sinc(ξt0/π − k)| in all the integrals for the
covariance and pseudo-covariance and obtain the memoryless channel with the variance and
pseudovariance of each transmitted symbol Xk depending on this symbol alone:

σ2(Xk) =
nASE t0
π S

∫
sinc2[x]

(︂
g2
−

[︂√
S|Xk | |sincx|

]︂
+ g2
+

[︂√
S|Xk | |sincx|

]︂ )︂
dx,

σ̃2(Xk) =
nASE t0
π S

∫
sinc2[x] 2 g−

[︂√
S|Xk | |sincx|

]︂
g+

[︂√
S|Xk | |sincx|

]︂
e2 i

√
S∠(Xk sincx) dx.

Note that for a given power value S these values can be precomputed for all constellation points
Xk ∈ χM and then used in a look-up fashion in the numerical simulations.

In the same approximation for the i.i.d. input X⃗, the AIR (30) simplifies to

AIR(S) = E
[︃

log2 CN
{︃
Yk |Xk,σ2(Xk), σ̃2(Xk)

}︃
− log2 P(Yk)

]︃
,

P(Yk) =
1
M

∑︂
x∈χM

CN
{︃
Yk |x,σ2(x), σ̃2(x)

}︃
,

(26)

where the averaging is performed over multiple generated input-output pairs {Xk, Yk} obtained by
simulating the real channel.

The above results are approximate inasmuch as they neglect the channel memory due to the
small overlap between the distant sinc carriers. A better channel matching (and hence tighter
capacity bounds) can be obtained by considering the full model (32), but this makes the estimation
task more challenging numerically and so we leave it to further studies.

6.2. Unscaled b-modulated channel

In this subsection we provide the results for the unscaled b-modulation transmission considered
in [31,55]. In this scheme bin(ξ) = uin(ξ) given by (10) with the spectral carrier shape ψξ taken
to be a spectrally flat with well defined bandwidth B = ∆ξ and possibly a roll-off factor. We
are assuming that the carriers are real functions normalized to have unit peak, and the matched
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filtering sampling corresponds to the output sequence:

Yk =
1

Aψ
√

S

(k+1/2)B∫
(k−1/2)B

uout(ξ)ψ(ξ − kB) dξ, (27)

where Aψ ∼ B is the effective area under the carrier pulse. Note that unlike the case of OFDM-
related sinc-shaped carriers considered in the previous subsection, the individual subcarriers here
are not orthogonal as such and, therefore, the effective demodulation is achieved by demanding
the negligible overlap between them. The orthogonal multiplexing with overlapping subcarriers
in the unscaled b-modulation is problematic because the power scaling factor S must be adjusted
for each random burst according to the requirement that supξ |bin(ξ)|<1, which is difficult to
enforce [34,55]. But for the non-overlapping spectrally flat subcarriers of unit height, one must
simply ensure that the power-control parameter satisfies: S<Smax = 1/maxk |Xk |

2, i.e. it is
upper-bounded by the reciprocal maximum energy of a given constellation.

As for the spectral shape of each non-overlapping carrier, one of the simplest choices that we
adopt here is to use that of the root raised cosine (RRC) filter:

ψRRC(ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, |ξ |< π

2t0 (1 − β),
1√
2

(︂
1 + sin

[︂
π−2 |ξ |t0

2β

]︂ )︂1/2
, π

2t0 (1 − β) ≤ |ξ | ≤ π
2t0 (1 + β),

0, |ξ |> π
2t0 (1 + β),

(28)

with the roll-off factor 0<β<1 and the effective ξ-bandwidth is given by: Bξ = (π/t0)(1 + β).
The area under the squared subcarrier is: Aψ = π/t0. The RRC subcarriers, however, have a
non-localized linear inverse FT and, therefore, relatively large tails in the time domain. We
note that most of the results in this subsection are quite general as long as the subcarriers are
non-overlapping.

Regardless of the carrier shape used it follows that our auxiliary communication channel
conditioned on the input is again input-dependent Gaussian. Nonetheless, unlike the case
of nonlinear OFDM subcarriers considered in the previous subsection, the channel now is
memoryless because different subcarriers in (10) do not overlap. The input-output relation for
this channel is quite simple:

Yk = Xk +
1

√
SAψ

Bξ /2∫
−Bξ /2

ψ(ξ)

√︂
1 − S|Xk |2ψ2(ξ)N(ξ) dξ.

This corresponds to the circularly symmetric complex Gaussian process with the mean Xk and
the following variance:

σ2(Xk) = E[|Yk − Xk |
2] =

nASE

SA2
ψ

Bξ /2∫
−Bξ /2

ψ2(ξ)
[︁
1 − S |Xk |

2 ψ2(ξ)
]︁

dξ. (29)

In the case of RRC carriers, the integration in (29) can be carried out analytically yielding

σ2(Xk) =
nASE t0
π S

[︁
1 − (1 − β/4) S |Xk |

2]︁ .

The achievable information rate can now be estimated from (26) setting the pseudo-covariance
to zero.
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7. Simulation results

In this section we analyze the performance of both scaled and unscaled b-modulated systems
and compare the results of the simulations with the predictions of the theory given above. In
all the simulations the 12 spans of 80 km were considered and our main quantity of interest
was the spectral efficiency (SE) defined as the AIR per unit bandwidth per unit time. In our
simulations, as it is common for almost all current NFT-based systems, the transmission is
performed in a burst mode with the width of the burst, Tb, usually estimated via the linear spread
of the pulse. The total linear bandwidth W = Nsc/T0 was fixed to be 56 GHz for the scaled
b-modulation and to the half of this amount for the unscaled one. The number of subcarriers was
a free parameter that was optimized to achieve optimal performance as was done, e.g., in [16].
The fiber channel parameters, amplification scheme, the noise figure are the same as detailed
in Section 2.1. The same two types of subcarriers as in the previous section were used (sincs
for scaled, RRCs for unscaled b-modulation). To achieve maximal spectral efficiency half-way
pre-compensation, s = 1/2, was used [47]. We used 32-QAM constellations throughout and
the signal was demodulated according to the prescribed rules (24) and (27) respectively. Also
a constant phase offset of M-QAM constellation was compensated using the first burst in the
simulation as a pilot.

Following Ref. [16], we introduce an SE loss parameter η, which determines how “wasteful”
the guard band is with respect to the information content of the pulse. Assuming that a single
burst carries Nsc modulated symbols each containing log2 M bits over the total linear bandwidth
W, the connection between the SE and the AIR (26) is:

SE =
Nsc AIR
W Tb

=
AIR
η

, (30)

where η = (Tb/T0)(1+ β), and the roll-off factor β should be put to zero for the scaled sinc-carrier
modulation. For the unscaled RRC transmission, we used a range of values between β = 0.1 and
β = 0.15.

In the last equality in (30), we have made one simplifying assumption: namely, we assume
that the linear bandwidth W does not change significantly during the propagation and can be
approximated by its nonlinear counterpart (i.e. W = Nsc/T0 for the scaled b-modulation based
on sincs or W = Nsc(1 + β)/T0 for the unscaled RRC). This is strictly true only for moderate
input powers. However, we have checked that in all cases for the optimal launch powers, the
average energy contained outside the linear bandwidth did not exceed 0.17% for the scaled case
and 0.02% for the un-scaled one.

The expression in (30) has a few interesting consequences. Firstly, the AIR is upper bounded
by the entropy of the discrete input, i.e. log2 M and hence the SE cannot exceed log2 M/η
bits/s/Hz. Since the numerator is bounded, increasing the guard band η eventually degrades the
SE. On the other hand, as η decreases one starts to clip the tails of the burst, which introduces the
additional numerical error and diminishes AIR. It is theoretically possible to have a non-zero
limit of SE as η → 0 – the informational content diminishes to zero but it is spread over a
vanishing window – so the “efficiency” remains finite. This result is clearly meaningless since
no reliable communication is possible in this limit. We therefore, need to define the area of the
parameters where the expression in (30) still makes sense. For this expression, we chose the
value of η, where the corresponding BER can be made lower than the 7% hard decision FEC
threshold: BERFEC = 4.5 × 10−3 [56]. Note that this criterion is somewhat arbitrary and we did
not implement the actual FEC in our setup, but used this value as the benchmark of the tolerable
quality for the transmission. In our simulations the BER was estimated using standard techniques
of error vector magnitude evaluation [57]. It was subsequently translated into the Q-factor using

the standard relation: Q = 20 log
[︃
√

2 erfc−1(2 BER)
]︃
. We also estimated BER via direct error
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counting and found a very good agreement below FEC threshold (low Q-factor, high BER) while
above the threshold the BER was too low and the direct counting data were too noisy to be used.

The Q-factors for both scaled and unscaled b-modulated systems are shown in Figs. 4(a) and
5(a) respectively. Quite unsurprisingly, the larger values of η parameter translate into the larger
guard bands Tb and, as a result, in the larger Q-factor values. The HD-FEC threshold is shown
as solid horizontal line there. The minimum value of η above HD-FEC was found to be 1.3
in the scaled case and 1.61 in the un-scaled b-modulation. The latter value is higher, which
is non-surprising as the RRC spectra after the INFT render a poorly localized time-domain
shapes and suffer from numerical error resulting from the burst truncation. The number of
subcarriers Nsc for both schemes varied between Nsc = 210 and Nsc = 1024, and the reported
curves represent the results optimised over Nsc. The maximum achieved Baud rates Nsc/Tb were
43 Gbaud (η = 1.3, Nsc = 700) for the scaled b-modulation and 20 Gbaud (η = 1.61, Nsc = 322)
for the unscaled case, corresponding to the bit rates of 215 Gb/s and 100 Gb/s, respectively. To
demonstrate that the performance deterioration at high input powers is due to the processing
noise discussed in Section 4 and not ASE, we have also included the results of the noise-free
runs with the same parameters. One can see from Figs. 4(a), 5(a) that this is indeed the case
as both noise-free and noisy curves virtually coalesce in this regime (especially for the scaled
modulation).

Fig. 4. Scaled b-modulation. Q-factor (a) and the spectral efficiency (b) as functions of
input power.

Next, we picked three particular values of parameter η and determined the SE values for these
three specific cases. The results are given in Figs. 4(b), 5(b). Two sets of curves are given: the
first one is model-based using (26) with the symbol-variances and pseudo-variances given by
the theoretical analysis from the previous section. Superimposed on these are the data-based
results that fit these pseudo-covariances directly from the data. As one can see, in both cases the
data-based SE provides a tighter bound, which is not surprising given that our theory does not
take into account the processing noise for which no theoretical model exists to date. For this
reason we are not providing the noise-free estimates for the SE (as we did for the Q-factor), as
the processing noise takes over at the higher values of the input power, and the performance there
is starting to degrade noticeably.

Most importantly, our theory works very well in the ASE-dominated regime up to the optimal
value: the relative SE difference between the theory and the data-driven estimates does not exceed
2%. The maximum found value of SE was 3.8 bits/s/Hz for the scaled transmission and 3.04
bits/s/Hz for the unscaled transmission. The former value is very close to the reported record
theoretical SE per polarization from Ref. [16], In fact, our result is slightly higher as the maximal
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Fig. 5. Unscaled b-modulation. Q-factor (a) and the spectral efficiency (b) as functions of
input power.

dual-polarization b-modulation SE was estimated as 7.2 bits/s/Hz in that reference. Note that
here, we obtain our results under strict HD-FEC constraint and if these were relaxed, as in Ref.
[16], then even higher values of SE (up to 4.5 bits/s/Hz observed in our simulations) can be
achieved.

8. Conclusion

In this paper we have developed a rigorous theory for the ASE-induced spectral noise in the NFDM
transmission systems using b-modulation. Based on perturbation theory for the path-averaged
NLSE and far-distance asymptotes of the Jost functions derived from Riemann-Hilbert formalism,
we obtained a remarkably simple input-output relation (25) for the effective b-modulation channel.
This results predicts that the ASE part of the spectral distortion is squeezed as the input power
grows, and the b-coefficient is pushed to the limit |b| = 1. The eventual ASE degradation
observed at high power values is attributed solely to the processing noise stemming from the
inadequacy of the path-averaged model, burst truncation, and insufficient sampling rate resulting
in the (I)NFT numerical routines performance drop [24].

We have used this model to provide general analytical results for the symbol-wise covariance
and pseudo-covariance addressing the arbitrary form of b-modulation coding: both the scaled
case (where the constraint |b(ξ)|<1 is enforced by applying a squeezing transformation to the
information sequence (10)) and the unscaled, that uses flat spectral carriers (we chose root raised
cosines), within which the maximum value of the b-coefficient is easily controlled. For both
schemes we have obtained an excellent agreement between the theory and the data-based results
for the achievable information rate and spectral efficiency in the region where the spectrum is
degraded by the ASE. The theory predicts the record spectral efficiency of 3.8 bits/s/Hz for the
scaled b-modulation system with the BER remaining below 7% HD-FEC.

As the future avenue of research, we suggest exploring new nonlinear carrier shapes (rather
than sincs and RRCs) that will can help reducing the SE penalty η while our theoretical result
(25) can be used to estimate the AIR, i.e. capacity per symbol. One interesting candidate for
such shapes is the recently suggested flat-top carriers [34]. Another promising way to increase
SE can be the adaptation of faster than Nyquist signalling for the NFDM as recently reported
in [58]. Yet another perspective direction can be combining the discrete NF modes (solutitons)
with the b-modulation, which can result in the gain in the transmission rate [59] where, however,
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the correct analytically-tractable channel model is yet to be built using the results of general
nonlinear perturbation theory [27].

Note added in proof. When this manuscript was under review, a paper of Civelli et al. [60] was
published, where the authors analyzed modulation and detection strategies for the NFDM systems,
including the b-modulation case with two scaling functions (linear and exponential) considered
in our work. The authors of Ref. [60] also proposed a bevy of advanced de/modulation strategies
accounting for the specific NFDM channel features, which can be employed to increase noise
tolerance and boost the transmission quality, and we expect that by using such strategies we can
improve the estimates obtained in the current paper even further.

Appendix: Long-distance approximation of the Jost functions

The approximations for A and B functions defined in Eqs. (16) follow from the large z approxima-
tions for the Jost solutions in the absence of the discrete spectrum. The latter can be obtained
using the Riemann–Hilbert formalism for the inverse problem in the NFT, and we give the
respective derivations below. The resulting approximations for the Jost solution are as follows
(we use a short-hand notation a(ξ, 0) = a(ξ), b(ξ, 0) = b(ξ)):

ϕ1(t, z, ξ)

ϕ2(t, z, ξ)
=

⎛⎜⎝
e−iξ t+i p+(κ,ξ)

0
⎞⎟⎠ H

[︂
−
κ
2
− ξ

]︂
+

⎛⎜⎝
a(ξ) e−iξ t−i p−(κ,ξ)

b(ξ) e2iξ2z+iξ t+i p−(κ,ξ)
⎞⎟⎠ H

[︂
ξ +

κ
2

]︂
,

ψ1(t, z, ξ)

ψ2(t, z, ξ)
=

b̄(ξ)e−2iξ2z−iξ t+i p+(κ,ξ)

a(ξ)eiξ t−i p+(κ,ξ)
H

[︂
−
κ
2
− ξ

]︂
+

0

eiξ t+i p−(κ,ξ)
H

[︂
ξ +

κ
2

]︂
,

(31)

where H(ξ) is the Heaviside step function, κ = t/z, and

p±(κ, ξ) = ±
1

2π

±∞∫
−κ/2

log(1 + |r(s)|2)
s − ξ

ds.

The expressions for ϕ1,2 from Eqs. (31) coincide with those derived in Ref. [21] using a
different procedure.

Indeed, substituting (31) into (16), using the fact that (ψ̃1, ψ̃2)
T = (ψ̄2,−ψ̄1)

T , and assuming
that ξ is close to ξ ′, we obtain:

A(z; ξ, ξ ′) =
−2ξ z∫
−∞

dt |a(ξ)|2 exp
{︂
−2i(ξ − ξ ′)t + 2i[p+(κ, ξ) − p+(κ, ξ ′)]

}︂
+

∞∫
−2ξ z

dt |a(ξ)|2 exp
{︂
−2i(ξ − ξ ′)t − 2i[p−(κ, ξ) − p−(κ, ξ ′)]

}︂
.

Here, we have put ξ = ξ ′ in all the prefactors keeping the dependence only in the exponential
terms. Note that the main contribution to the integral comes from the terms linearly oscillating
in t, whereas the corrections p±(κ, ξ) depending on t via the integration limit decay as t → +∞
and t → −∞, respectively, such that their contribution can be neglected when ξ ′ → ξ. Therefore,
the only time dependence of the integrand comes from the oscillating factors exp(± 2 i (ξ − ξ ′)t),
and, using the identity

∫ ∞

−∞
eiξ tdt = 2πδ(ξ), we arrive at

A(z; ξ, ξ ′) = π |a(ξ)|2δ(ξ − ξ ′).

On the other hand, substituting (31) into the expression for B in (16), we notice that each
summand contains a component ϕj or ψj that, according to (31), vanishes. This implies that
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B(z; ξ, ξ ′) = 0 in the same approximation. Both results upon substitution into (14)–(15), yield
Eqs. (17).

In turn, the approximations (31) follow from the representation of the Jost solutions in terms of
the solution of a Riemann–Hilbert factorization problem (RHP) [43] and the subsequent large-z
analysis of this problem [52,61]. Namely,(︃

ϕ(t, z, ξ)
a(ξ)

,ψ(t, z, ξ)
)︃
= M+(t, z, ξ)

⎛⎜⎝
e−iξ t 0

0 eiξ t

⎞⎟⎠ , (32)

where M+(t, z, ξ) is the limiting values of M(t, z, ζ) as ζ ∈ C approaches ξ ∈ R from above, and
M(t, z, ζ), ζ ∈ C \ R is the solution of the following RHP: given r(ξ), ξ ∈ R, find a 2 × 2-valued
function M(t, z, ζ) analytic in ζ ∈ C \ R, such that

(i) its limiting values M±(·, ·, ξ) as ζ → ξ from C± = {ζ | ± ℑζ>0} are related by

M+(t, z, ξ) = M−(t, z, ξ)J(t, z, ξ), ξ ∈ R,

where

J(t, z, ξ) = ⎛⎜⎝
1 + |r(ξ)|2 r̄(ξ)e−2iξ t−2iξ2z

r(ξ)e2iξ t+2iξ2z 1
⎞⎟⎠ ;

(ii) M(t, z, ζ) → I as ζ → ∞.
The large-z analysis of the solution of the RHP above follows the ideas of the nonlinear steepest

descent method for oscillatory RHP [52,61] and consists of a series of transformations reducing
the original RHP with oscillatory (with z) jump conditions to a RHP with the jump matrix
rapidly decaying to I as z → ∞. This series involves: (i) factorizing the jump matrix on R
into triangular factors in accordance with the “signature table”, i.e., the distribution of signs
of ℑθ(κ, ζ) with θ(κ, ζ) = κζ + ζ2 having ζ = −κ/2 as the intersection point; (ii) adopting
the triangular factors into the solution of the RHP problem, replacing the (original) jump on
R by the jumps across Σ = ∪4

j=1Σj with Σj = {ζ |ζ = −κ/2 + τei(− π
4 +

π j
2 ), τ ∈ (0,∞)}. The

resulting transformation producing a RHP for M(appr) with the jump conditions M(appr)
+ (κ, z, ζ) =

M(appr)
− (κ, z, ζ)J(appr)(κ, z, ζ), ζ ∈ Σ, has the form:

M(appr) = M∆P,

where

∆ =
⎛⎜⎝
δ−1(κ, ζ) 0

0 δ(κ, ζ)
⎞⎟⎠ ,

with

δ(κ, ζ) = exp
{︃

1
2πi

∫ −κ/2

−∞

log(1 + |r(s)|2)
s − ζ

ds
}︃

, ζ ∈ C \

(︂
−∞,−

κ
2

]︂
,
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and

P(κ, z, ζ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︄
1 0

−rδ−2e2izθ 1

)︄
, ζ ∈ G1,(︄

1 r̄δ2e−2izθ

0 1

)︄
, ζ ∈ G4,(︄

1 − r̄δ2

1+ |r |2 e−2izθ

0 1

)︄
, ζ ∈ G2,(︄

1 0
rδ−2

1+ |r |2 e2izθ 1

)︄
, ζ ∈ G3,

I, otherwise.

,

In the expression above, Gj, j = 1, . . . , 4, are the sectors between R and Σj. According to
the signature table, the jump matrices J(appr)(κ, z, ζ) decay exponentially to I as z → ∞ for any
ζ ∈ Σ \ {−κ/2}. Thus, the first approximation for M(appr) is: M(appr)(κ, z, ζ) ≈ I. This leads to
the approximation:

M ≈ P−1
∆
−1,

which, in view of (32), 1 + |r(ξ)|2 = |a(ξ)|−2 for ξ ∈ R, and

a(ξ) = exp
⎧⎪⎪⎨⎪⎪⎩

i
2π

∞∫
−∞

log(1 + |r(s)|2)
s − ξ − i0

ds
⎫⎪⎪⎬⎪⎪⎭ ,

gives (31).
We note that the nonlinear steepest descent method allows improving the approximation for

M(appr) to M(appr)(κ, z, ζ) = I + O(z−1/2), where the term of order z−1/2 can be written explicitly
[52,53].
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