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Abstract: Combined heat and power (CHP) in a single and integrated device is concurrent or
synchronized production of many sources of usable power, typically electric, as well as thermal.
Integrating combined heat and power systems in today’s energy market will address energy scarcity,
global warming, as well as energy-saving problems. This review highlights the system design for fuel
cell CHP technologies. Key among the components discussed was the type of fuel cell stack capable
of generating the maximum performance of the entire system. The type of fuel processor used was
also noted to influence the systemic performance coupled with its longevity. Other components
equally discussed was the power electronics. The thermal and water management was also noted to
have an effect on the overall efficiency of the system. Carbon dioxide emission reduction, reduction of
electricity cost and grid independence, were some notable advantages associated with fueling cell
combined heat and power systems. Despite these merits, the high initial capital cost is a key
factor impeding its commercialization. It is, therefore, imperative that future research activities are
geared towards the development of novel, and cheap, materials for the development of the fuel cell,
which will transcend into a total reduction of the entire system. Similarly, robust, systemic designs
should equally be an active research direction. Other types of fuel aside, hydrogen should equally be
explored. Proper risk assessment strategies and documentation will similarly expand and accelerate
the commercialization of this novel technology. Finally, public sensitization of the technology will
also make its acceptance and possible competition with existing forms of energy generation feasible.
The work, in summary, showed that proton exchange membrane fuel cell (PEM fuel cell) operated
at a lower temperature-oriented cogeneration has good efficiency, and is very reliable. The critical
issue pertaining to these systems has to do with the complication associated with water treatment.
This implies that the balance of the plant would be significantly affected; likewise, the purity of the
gas is crucial in the performance of the system. An alternative to these systems is the PEM fuel cell
systems operated at higher temperatures.

Keywords: combined heat and power system; PEM fuel cell; optimization; climate change; fossil fuel

1. Introduction

The quest for a paradigm shift from the high dependence of fossil fuel due to its harmful
effect on the environment has increased in the last couple of years [1–6]. Factors like unstable fossil
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commodities prices and the depletion of the ozone layer are key factors encouraging the research
community to consider and alternative energy generation medium. Increasing the efficiency of
the current technologies through waste heat recovery [7–9] and/or using renewable energy sources,
such as geothermal energy [10], solar thermal energy [11], solar PV [12,13], hydro energy [14,15],
biomass energy [16,17], and wind energy [18,19], are gaining much attention because of their friendly
nature to the environment. The main issue pertaining to the high reliance of energy from renewable
sources has to with the intermittency associated with the energy generation process [20,21]. One of
the ideal energy carriers particular for stationary purpose is hydrogen [22,23]. Hydrogen is also
useful for other applications associated with transportation [23]. Application of hydrogen for these
purposes is considered to be very cheap, especially for large scale purposes, as well as in applications
for storing energy over a longer period of time [24,25]. Energy density is another added advantage of
hydrogen. Promoting renewables in effect via a robust energy storage method foster their growth,
which will substantially reduce GHG emissions [26–29]. The advantage of greenhouse gas emission
reduction could be noticed in systems that function using hydrogen [29]. For example, hydrogen-based
cogeneration systems obtained through natural gas steam reform to supply fuel cells with energy
can still minimize carbon emissions, as well as nitrogen oxides (NOx) [30]. No-emission can be
accomplished by producing hydrogen via mediums that are renewable. In a fuel cell, fuel’s chemical
energy is transformed instantly, generating electrical power at such a reasonably good actual energy
efficiency of up to approximately 55%, dependent on hydrogen’s high heating value (HHV) [31,32].

Several types of fuel cell technology are primarily classified subject to the operating temperature,
type of the membrane, fuel, or application [33–41]. Proton exchange membrane fuel cells (PEMFCs)
have been widely recognized as promising technologies among the various fuel cell types [42–48].
PEMFCs are ideal for stationary, transportation, and auxiliary purposes [37,49–52].

PEMFCs have several merits over traditional energy systems like starting very fast (less than
30 s) [53–55], relatively lower operational temperature, high electrical energy efficiency, and rapid
response [56–59]. It is imperative to recognize that a high quantity of heat energy is also produced due
to the proton exchange membrane operation, equivalent to approximately 45–60% of the total energy
content of hydrogen [60–62].

Low-temperature fuel cells are designed to function between 60–80 ◦C to prevent any overheating
likely to cause dryness in the cell likely to reduce the overall performance of the cell [63–65]. In order
to extend the proton exchange membrane fuel cells lifetime, as well as efficiency, the heat generated
should be eliminated.

Considering the amount of heat produced during the operation of a PEMFC, heat recovery from
PEMFC systems becomes an interesting concept for increasing the efficiency of the cells, reducing
their cost of operation, and providing a novel technique to minimize greenhouse gas emissions.
Heat retrieved from PEMFCs could be utilized for low-temperature heating like heating a room and
providing hot water in the home, which requires low-grade heat [66–72]. Several researchers have
shown that the performance of PEMFC combined heat and power (CHP) configuration will surge up
to approximately 60–90% via absorption of the fuel cell heat [73].

The heat produced from the stack of fuel cells can also be retrieved to control the sorption cooling
processes [74–76]. In addition, heat obtained from PEMFC stacks was also utilized for improving the
metal hydride (MH) canister hydrogen discharge rate, as well as preheating the inlet air. It is similarly
ideal for preheating inlet air, as well as hydrogen, particularly during cold conditions [77]. Generally
speaking, the perception of waste heat recovery has been mainly utilized for several years [77–79].
Besides that, the ability of waste heat usage is being investigated in fuel cell systems and has received
considerable attention from scientists, particularly in recent years, to increase their overall energy
conversion efficiency [80–82]. This investigation presents the latest trends in fuel cell combined heat
and power, and critically reviews the key parameters impeding their commercialization. Components
of fuel cell combined heat and power systems are thoroughly discussed holistically with their merits
and demerits clearly ascertained. In this report, the next sections will further explore the classifications
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of fuel cell combined heat and power based on their operational characteristics, as well as material
compositions. This investigation will serve as the basis for future research activities in fuel cell
combined heat and power systems. Currently, hydrogen is the commonly used fuel, and it’s imperative
that other sources of fuel are considered in future investigations. Similarly, optimization of the fuel cell
in terms of material characterization will also go a long way to reduce the overall cost of the system;
hence, should be an active research direction in future investigations within this field. The systemic
design should also be a key research direction, which will impact on the cost of the system, as well as
modularity. A well-documented and robust risk assessment strategy should critically be looked into in
future works. Finally, public sensitization on the viability of this novel technology will also accelerate
its commercialization and possible competition with existing forms of energy generation.

2. Fuel Cell Combined Heat and Power Systems

Fuel cell operates via electrolytic medium purposely for transforming chemical energy of hydrogen,
as well as oxygen to power. The byproduct of the electrochemical reaction is water and heat [57,83].
Operating theory resembles that of batteries, but then provides constant energy, from the hydrogen
and oxygen supplied to the cell [84]. Fuel cells are able to generate power, releasing no toxic gases
into the atmosphere; production of power in fuel cell occurs silently and requires the fuel cell to be
frequently disposed of when the fuel is completely utilized [85,86].

Fuel cells could further possibly be utilized in many applications that demand power. Fuel cells
could be utilized by substituting the ICEs or batteries in transport applications and portable applications
for generating energy. Fuel cells can equally generate power for residential or industrial purposes.

Fuel processor changes the fuel to hydrogen-rich feed streams like natural gas or methanol.
The stack then produces electricity, as well as thermal energy, once the hydrogen gas is supplied to it.
The power required by the end-user is obtained using the power conditioning system in the form of
non-linear DC voltage. Combined heat and power systems are usually made up of a generator, as well
as a heat recovery module, as shown in Figure 1, adapted from Reference [29].
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A heat exchanger serving as a heat recovery subsystem absorbs the waste heat. The energy that is
retained can then be used for heating. Electricity is produced as a result of the generator transforming
the chemical energy in the fuel. It is possible to classify cogeneration systems for domestic and industrial
institutional applications per their prime mover. Combined heat and power technologies subject to
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the Stirling engines, as well as fuel cells, are considered to be ideal for cogeneration, especially for
household infrastructure. That of the fuel cells is perceived by the research community to have
higher efficiency coupled with lower emission levels. Still, presently the cost for internal combustion
engines are cheaper compared to the others. Similarly, internal combustion engines can be suitable for
combined heat and power systems because they are naturally robust, as well as considered advanced
technologies. The microturbine based technologies are ideal for domestic applications [30].

One of the main issues associated with the development of combined heat and power is the
challenge relating to the distribution of thermal energy for a longer distance. Due to this, the combined
heat and power system must be built near where it is required, and this becomes an extra cost to
the system. The fuel cells combined heat and power system have become active research directions
because they produce high efficiency for many types of load profiles, as well as low emissions in the
absence of any controls. Fuel cells combined heat and power systems achieve greater efficiencies
compared to other low-scale power range combined heat and power technologies, which are typical
for household uses.

Similarly, for household and industrial areas requiring lower energy (generally less than 10 kW),
fuel cell combined heat and power can be used as well. The types of fuel cell combined heat and power
based on their power range is captured in Table 1. The heat quality is subject to the fuel cell type used
in the system, which directly affects the operating temperatures.

Phosphoric acid fuel cells’ electrical output varies from 37% to 42%, and when working in
combined heat and power systems can hit approximately 85%. Systemic performance can surge
up to 90%, provided the system makes use of the thermal output. As stand-alone power plant,
molten carbonate fuel cell can achieve approximately 47% electrical output, and therefore, can achieve
an output of 85% in combined heat and power mode.

The 45% electrical output goal is likely to be attainable with high-temperature PEMFC and
solid oxide fuel cells (SOFCs), but low-temperature cells may not be able to attain these efficiencies.
Only SOFC systems at required electrical efficiency can achieve targeted combined heat and power
efficiency of 90%.

It can be deduced from Table 1 that PEMFCs, as well as SOFCs, are the ideal and often utilized
fuel cell systems for domestic purposes. Estimated 138,000 fuel cells combined heat and power systems
under 1 kW was developed in Japan by 2014 [87]. Many of the developed combined heat and power
systems are based on PEMFCs (85%), and remaining systems are based on SOFCs [88].

Elcore and PlugPower are focusing on designing, as well as demonstrating, high temperature
combined heat and power systems. Fuel cells have undergone massive development and demonstration
in the last five decades; however, fuel cell systems are still immature. The cost of implementing fuel cell
combined heat and power systems are also very high, hence impeding their commercialization [89].
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Table 1. Classification of fuel cell combined heat and power “FC—CHP” subject to the range of power [29].

Rating Megawatt Sub Megawatt-Class Micro Combined Heat and Power

Category of fuel cell MCFCs PFCs SOFCs PEMFCs SOFCs

Electrical capacity 300 KW–2.8 MW 400 kW Up to 200 kW Less than 10 kW 700–1000

Operational temperature 600–700 160–220 700–1000 60–80
100–200

Electrolyte Li2CO3/K2CO3 materials H3PO4 ZrO2 Nafion Polybenzimidazole electrolytes ZrO2

Use Domestic and industrial
purposes Industrial purposes Industrial purposes Domestic and industrial purposes

Source of hydrogen CH4 CH4 CH4 CH4

Types of fuel that can be
used Hydrogen gas, methane Hydrogen gas Hydrogen gas, methane Hydrogen gas, methanol Hydrogen gas,

methane

Source of oxygen Pure oxygen gas and air Pure oxygen gas and air Pure oxygen gas and air Pure oxygen gas and air

Merits
Higher performance can be
scaled down, and varying

fuel cells are applicable

cogeneration performance
is high Cell performance is high Higher performance

Power performance (%) 42–48 40–43 50–65 21–40 40–60

Combine heat and power
performance (%) 85 85–90 90 87–90 (low temperature fuel cells)

85–90 (high temperature fuel cell) 90

Combine heat and power
applications

Space heating and heating
water heating water Subject to the technology

adopted Suitable for space heating

Possible pollutant Sulfur Carbon monoxide is less
than 1% Sulfur

Carbon monoxide is less than 10 part per
million (low-temperature fuel cell).

Carbon monoxide is less than 5 ppm, and
only traces of sulfur and ammonia are
detected (High-temperature PEMFC).

Sulfur
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3. Technological Advancement for a Combined Heat and Power System

Fuel cells are starting to gain significant market share, and in the last decade, have switched from
the research laboratories to the industrial showroom. Table 2 displays commercially available fuel
cell micro (m) combined heat and power devices available on the market. The combined heat and
power systems market keeps increasing appreciable over the last couple of years, but there is a huge
difference between existing technologies, and these combined heat and power systems [90].

Table 2. Commercially available fuel cell combined heat and power [90].

Production Company Name of Product Category of Cell Used Power Generated (W)

Ceramic fuel cells BlueGen Solid oxide fuel cell 1500
Panasonic ENE-FARM PEMFCs operated at lower temperatures 250–750

Toshiba ENE-FARM PEMFCs operated at lower temperatures 250–700
EneosCellTech ENE-FARM PEMFCs operated at lower temperatures 250–700

Kyocera ENE-FARM SOFCs 200–700
Aisin Seiki ENE-FARM SOFCs 200–700

JxEneos ENE-FARM SOFCs 250–700

As depicted in Figure 2, the fuel cell combined heat and power systems keep increasing appreciably
worldwide, and these values have increased twice-yearly [91]. For instance, the fuel cell commercial
shipments increased to 45,700 units as of 2012 [92]. It has been deduced that since 2013, the global
market sales for fuel cell combined heat, as well as storage, always exceeded the internal combustion
engine system in terms of purchasing capacity. Japan continues to dominate the market share for
global fuel cell combined heat and power systems [93]. The Japanese government is nearly meeting
its targets in terms of installing 1.4 million fuel cell systems. The basic goal laid down by the South
Korean government is to establish a 1 million fuel cell systems, and that of the European Union is
50,000 fuel cells installed.
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3.1. Technical Evaluation of Microgeneration and Combined Heat and Power

The production of zero or low carbon heat by small businesses, individuals, and the community,
which will supply their own demand is microgeneration. The local generation, for example, can reduce
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the cost of operation, as well as carbon savings, through the application of renewable energy sources
or the retrieval of waste heat, as seen in combined heat and power systems. It curbs the losses relating
to producing power through the grid for longer distances. The heat, coupled with power produced,
are usually utilized on the spot. Fuel poverty can equally be restrained via lower operating cost,
and add to the supply of energy. There are different types of microgeneration that can use the energy
already in existence in the environment or produce power, as well as heat from the fuel. The importance
of micro combined heat and power in terms of energy-saving is summarized in Figure 3.
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A two Sankey diagrams capturing the benefits associated with micro-combined heat and power
systems are captured in Figure 3. The diagram compares the delivery and losses of energy for a
house with the aid of micro combined heat power systems instead of relying on thermal power
plants. Losses via waste heat liberated and losses relating to the transmission of electricity over a
longer distance supports the conventional generation scenario. The distance between the load and
the generator determines the transmission losses. There are other factors like the voltage used, as
well as the number of voltage transformation stages. The losses vary from 6.1% in Germany to 24.2%
in Croatia, and 3% to 13% in the United States [95]. The highest efficiency gas subject to heating is
provided by the condensing boiler. Some producers of these boilers suggest their efficiency to be nearly
98%. It has been reported that a seasonal efficiency of 91.5% higher heating value was recorded, while
5% efficiency was recorded from an independent study [96]. Figure 4 (adapted from Reference [94])
shows micro combine heat and power system for domestic application.

The gas distribution network from Figure 4 supports the transmission of natural gas. The fuel
cell, on the other hand, generates heat for space, as well as water heating coupled with electricity for
the light and other appliances. The electricity is sometimes exported to the grid when it is produced
in excess and imported as well when demand is high. A storage tank for hot water is also used for
storing excess heat. It is equally possible for them to be operated in places where there no electric
grid or even a network for distributing natural gas. In an instance like that battery storage is needed.
During situations like this, battery storage is required, and the fuel will be supplied in cylinders.
European Union cogeneration directive explains micro combine heat and power systems as being
made up of below 50 kW. Other authors similarly restricted these values to 15 kWe, and this is ideal for
single-family houses and small business.

The Carbon Trust initiated its micro-combined heat and power accelerator program by explaining
that micro combine heat and power systems are between 0–3 kWe. To be in conformity to the European
Union directive, domestic has been added as a prefix. Microgeneration technologies are caped to
16 A/phase when not connected to relays utilized for domestic purposes in the United Kingdom.
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Hence applications more than approximately 3.7 kWe need 3—phase G59 relay. This is likely to increase
the cost of installation, and line rental [97].
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These types of technologies are not suitable for district heating. This is because district heating
demands the presence of heat distribution networks that his not available in single-family homes.
There are some limitations created on the units running hours when the thermal output is more than
the typical requirement for a single house. Combined heat and power at a larger scale in terms of an
economic case is very common, especially for schools, hospitals, industry etc. This industrial sector is
considered to be advanced. The challenge occurs when considering the same system for residential
purposes. The installation of micro combined heat and power is likely to decrease overall emissions by
15–20%. According to Carbon trust, these values were marginal for some micro combine heat and
power systems [96].

Figure 5 above depicts a generic fuel cell system for domestic micro combined heat and power
systems. The next section will explore the composition of the various elements in the system.
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3.1.1. Fuel Cell Stack

Fuel cell stack is the costliest part of the system. It is made up of cells connected in series. The cell
stack is made up of an anodic and cathodic electrode with an electrolyte serving as a barrier between the
electrode. Bipolar plates support the dissemination of the reactants to the electrodes [98]. The proton
exchange membrane fuel cells normally have cooling plates for demineralized water, but the SOFCs
depends on air, reducing the cell operating temperature. Precious metal electrocatalysts are needed in
PEMFCs to speed up chemical reactions for higher cell efficiency. This often requires graphite powders
and resins being used. Other researchers have equally explored the application of membranes that
are fluorinated. To ensure the higher performance of the cell, the purity of the hydrogen fuel must
be very high because the electrocatalyst can become contaminated by carbon monoxide, as well as
other impurities [99]. Humidification of the polymer electrolyte demands complex and expensive
engineering solutions.

Recent investigations are aimed at increasing the operating temperature beyond 100 ◦C [100].
Solid oxide fuel cells utilize ceramics to support their higher cell operating conditions [101]. For micro
combined heat and power systems, there is currently an effort to go from the high-temperature region
(850–1000 ◦C) to intermediate temperatures range between 500–750 [102]. It accounts for a wider
variety of materials that can be utilized, allowing inexpensive processing and enhanced resilience
between ambient and operating temperatures for cycling ceramic components. Operating the cell at
lower conditions equally supports the cell to be able to start operation very fast. The rate of corrosion
of the metallic part in the cell is also reduced [102]. Pressuring the reactants is likely to enhance the
performance of the fuel.

3.1.2. Fuel Processor

In terms of electrochemical efficiency and longevity, hydrogen is a suitable fuel for all types of
fuel cells. Similarly, due to lack of supply infrastructure, as well as difficulty in its storage, natural
gas is considered as excellent fuel for combined heat and power systems. Methane gas is inexpensive
and readily available, hence its patronage. Fuel processors are designed to transform the methane gas,
for instance, to hydrogen with low contaminants.

The key distinction between PEMFC and SOFC systems is in the fuel processor design; while the
PEMFCs need higher purity fuel, the solid oxide is able to reform hydrocarbon fuels internally. Typically,
a solid oxide fuel processor consists of a desulfurizer, and a pre-reformer. SOFCs ability to operate on
hydrocarbon fuels at high efficiency is a massive benefit over low-temperature fuel cells [103].

Natural gas is capable of being transformed into hydrogen through a variety of methods.
Steam reforming is usually recommended as it generates better hydrogen concentrations [104].
The hydrogen-rich stream that leaves the reformer will be made up of carbon monoxide, as well as
sulfur compounds. Both molecules are toxic to PEMFCs, although SOFCs are capable of using carbon
monoxide as a fuel. Therefore, sulfur compounds should be eliminated, typically by reacting with zinc
oxide. The unit will have to be regularly checked. This, therefore, becomes an extra cost to the system
maintenance costs.

Other methods of desulfurization are available. The majority of these techniques are not
appropriate for usage in some applications on a small scale [105]. For proton exchange membrane
fuel cells, to avoid poisoning the platinum-based anode electrocatalyst, the level of carbon monoxide
accessing the fuel cell must be reduced to the order of less than 100 ppm. Carbon monoxide generated
during the process of steam reforming can subsequently be transformed into carbon dioxide in a
shift reactor.

Methods, such as selective carbon monoxide oxidation, could be utilized to decrease the
concentration of carbon monoxide to safe proton exchange membrane levels [106]. Consequently,
the fuel processor for a proton exchange membrane fuel cell is quite complex and needs good
temperature control. Above all, the turndown ratio is mostly affected since maintenance of thermal
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homogeneity remains a considerable problem. Solid oxide fuel cell systems have a strong benefit over
proton exchange membrane fuel cell systems, as they are able to change hydrocarbons entirely internally.

3.1.3. Inverter/Power Electronics

For a 1 kWe system, the voltage generated by the stack is low. There is also high direct current (DC)
output, usually more than 15 V to a maximum of 40 V. Therefore, it requires an inverter to transform
this into alternating current appropriate for other devices, as well as being sold to the grid. The inverter
performance is normally between 85–95% at the sub-10 kW level [107].

3.1.4. Water Management

Steam reforming, as well as ensuring proper water management in the cell, will require high
purity water to support the conduction of the protons. Heat exchanger removes water from stack
exit, harvest heat, and provide process water, which can be utilized for steam reforming or for proton
exchange membrane fuel cell water management.

3.1.5. Heat Management

Efficient heat retrieval is crucial for a micro-combined heat and power system’s environmental
and economic performance. There is significantly different heat separation from the PEMFCs, as well
as that from the solid oxide systems. Heat is normally derived from the circulating cooling liquid
for the PEMFCs, which moves via the cooling plates. This leaves the stack at 80 ◦C approximately,
an optimal temperature for heating up room and hot water.

Coolant for the stack is the cathode air flow for SOFCs and requires a heavily over-stochiometric
amount of air. The air and unconsumed fuel end up leaving the stack at its operating temperature,
as well as heated up in the afterburner. Given that exhaust stream temperature is more than that of
proton exchange membrane fuel cells cooling circuit (around 80 ◦C), transfer of heat to the dwelling’s
thermal circuit is much more efficient. It is worth noting that both an afterburner and an abstract
higher temperature heat from unused fuel exiting the fuel cell may also be used by the proton exchange
membrane fuel cell.

3.1.6. System for Delivering the Reactants

As all micro combined heat and power systems are not pressurized, blower instead of the
compressor is utilized to deliver air to the machine. The mains gas pressure entering a home, and of
course the tanked storage pressure, is necessary to supply a micro-CHP system. The high-temperature
operation of solid oxide fuel cells implies preheating of the fuel, as well as air approaching the stack to
a degree, which prevents thermal shock to the stack’s ceramic portion. Fuel cell producing no noise
during its operation is considered as an advantage.

3.1.7. Afterburner/Auxiliary Burner

Heat energy could be produced with the aid of an auxiliary burner via the burning of unreacted
fuel. It is a choice for adjusting the system’s heat-to-power ratio. At the maximum, the stack can
be fully bypassed. This would imply an over-sizing burner as opposed to regular combined heat
and power operation, increasing the cost. For PEMFC, adequate heat is needed for serving the fuel
processor’s endothermic reforming level. Likewise (or moreover) CH4 could be directly combusted to
serve the reformer [108]. In the worst-case scenario, the stack of fuel cells can be completely avoided.
For PEMFCs, sufficient heat is needed to serve the fuel processor’s endothermal reforming level, so the
stack must operate with a fuel usage of no more than approximately 70% to burn the unused hydrogen
and serve the reformer.
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3.2. Summary of Merits of Fuel Cell Combined Heat and Power Systems

3.2.1. Carbon Dioxide Emission Reduction

Global total carbon dioxide emissions in 2018 increased by 1.7%, which is 33.1 Gt carbon dioxide.
This was as a result of the increasing power demand largely generated from fossil commodities.
The emissions from this sector are anticipated to continue to rise to 37 Gt in 2035 [109]. A substantial
share of greenhouse gas toxic gaseous release increased as a result of higher demand for coal [110].
The growth and development of combined heat and power systems could decrease carbon dioxide
release into the atmosphere from the new generation by more than 4% (170 Mt/year), although the
saving may boost to more than 10% (950 Mt/year) in 2030 [111]. Therefore, combined heat and power
systems can make a significant contribution to achieving emission stabilization, which is needed to
avoid major climate disruption. Crucially, combined heat and power near-term emission cuts are
achievable, and hence, can provide major chances for low cost greenhouse gas emission decrement [112].
Yearly carbon dioxide emissions reductions are hard to determine.

It is anticipated that residential fuel cell combined heat and power systems of about 1 kW will
decrease domestic gaseous release into the atmosphere by 1.3–1.9 tons of carbon dioxide yearly in Japan
and Germany. Fuel cells combined heat and power producer CFCL reports to save around 3tonnes per
year because of its larger capacity on its BlueGen [112]. A fuel cell and micro combined heat and power
systems having an electrical output of 1 kW can produce daily savings estimated at 4.5+ kg carbon
dioxide in winter, and 3+ kg carbon dioxide in the summer. The total carbon emissions annually
subject to the performance of PEMFCs in UK home has been compared to traditional heating systems
as captured in Figure 6 [113]. It was, however, deduced that for a country that relies on coal-fired
power, the yearly carbon savings from the fuel cell is likely to be higher [114–116]. Residential proton
exchange membrane fuel cells produce 553 g of carbon dioxide to generate 1 kWh of power and
1.4 kWh of heat [116]. The fuel processor is the source for the emission of carbon dioxide. The fuel
processor splits the hydrocarbon fuel to hydrogen gas, carbon dioxide, as well as other impurities,
with few amounts of fuel being produced for the generation of heat required for reforming.
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3.2.2. Carbon Footprint for Construction

A fuel cell’s ‘carbon footprint’ or ‘embodied carbon’ is a measure of the greenhouse gas emissions
which its development causes. Various assessments approximated these toxic gaseous release by taking
into account the manufacturing of the fuel cell, the quantity of material used, as well as the production
process of the materials. The production of metals, such as nickel and platinum, requires lots of energy.
The generation of 1 kW of power for domestic purposes using fuel cell combined heat and power
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will also lead to the production of 0.5–1 tons of carbon dioxide emissions. On the other hand, 100 kW
commercial system leads to 25–100 tons being emitted [117–119]. The toxic gaseous release from
manufacturing the cell can be ‘levelized’ by averaging. The development of domestic proton exchange
membrane fuel cells, as well as solid oxide fuel cells, results in the gaseous release of 10–20 g of carbon
dioxide for every kW generated [118–121].

3.2.3. Decrease in Pollutant

Combustion of fossil fuel usually leads to the emission of many toxic substances into the
atmosphere, such as nitrogen oxides (NOx), as well as sulfur dioxide (SO2). Sulfur dioxide emissions
are from the production of energy, and this, according to literature, contributes to more than 40% of
the total emissions gathered annually [122]. Sulfur dioxide emissions are usually associated with the
combustion of coal and diesel fuel, but nitrous oxide pollutants are generated from the combustion of
different types of fuels.

These types of emissions tend to have a detrimental effect on the environment like causing
acid rain. In terms of power generating methods for the fuel cell, the amount of gaseous toxic
substances produced in the fuel cell are few. For combined heat and power systems, pollutions due to
the presence of nitrous oxide is few compared to that of coal-fired electricity production mediums.
Nitrous gas emissions from diesel engines are usually between 1.27–15 kg MWh−1. For natural gas,
nitrous gas emissions are between 1–12.7 kg MWh−1. Microturbine engines, on the other hand, also
generate 0.18–1 kg MWh−1, as well as for fuel cell combined heat and power; they are lower than
0.01 kg MWh−1 [122,123]. Emissions of nitrous oxide source from fuel cell combined heat and power
is simply a burner responsible for the supply of thermal energy mainly for endothermic reaction to
occur due to the burning of the gas. Various types of burner development have been explored to limit
the total gaseous toxic substances generated. There is also the possibility for methane emissions due to
incomplete burning or leakage, as well as losses due to gas transport. The emission of sulfur dioxide,
as well as mercury compounds from the combustion of natural gas, can be neglected. Sulfur dioxide
emissions are removed during the operation of fuel cell combined heat and power [124–126].

The average industrial level for airborne pollutants like nitrous oxide, carbon mono oxide, as well
as particulates from the fuel cells, boilers, and combined heat power engines, are summarized in
Table 3. Measuring the emissions from fuel cells are always lower compared to other combustion
technologies, hence their huge recommendation by the research community.

Table 3. Emissions from fuel cells in comparison to condensing boilers and combined heat and power
engines [124,125].

Fuel Cells Condensing Boiler Combine Heat and Power Engines

Nitrous oxide 1–4 58 30–270
Carbon monoxide 1–8 43 10–50

Methane 1–3 13
Sulphur dioxide 0–2 2

3.2.4. Reduction of Electricity Cost

The owner of the household having the micro combined heat and power system, enjoys lots
of benefits compared to large energy suppliers. The cost in generating the electricity cost related to
subsidies for energy technologies, electrical transmission, as well as the distribution cost through the
grid network coupled with the final retail customer all determines the cost of the electricity being
generated for the end-user. The cost of electricity in Europe varies between £0.087–0. 298 per kWh
for households having their consumption between 2500–5000 kWh [127]. The economic value for the
energy generated from fuel cell combined heat and power systems tend to have higher economic value.
This is 3–3.5 times more compared to power plants powered using natural gas. Fuel cell combined
heat and power transforms lower cost of fuel. This helps in reducing the bills in most households.
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The efficiency of the power produced in the power plant is between 35–37%. Combine the efficiency of
nearly 45% is recorded for centralized power generation. Cogeneration systems can attain performance
levels of 80%. Distribution, coupled with the transmission of electricity from the central power stations,
add an extra loss of 9%. It implies that the end-user gets one—third of the power supplied. Distribution,
as well as transmission losses, therefore, varies subject to distances. From the world data, transmitting
electricity and losses associated with distributing the power varies between 1.82–54.60%, with an
average of 8.10% [128].

3.2.5. Grid Independence

There has been an appreciable increase in the market potential for fuel cell systems, hence
recommended widely by scientists as suitable for solving grid outages. From the United states statistics,
80–90% of energy fiasco comes during the process of distributing the power [129]. The cost associated
with these electricity failures is projected to $119 billion annually. More than 45, 000 end-users are
affected during these power outages [130]. Failure is associated with some computers, as well as
electronic devices, in power fluctuations contributes to power outages. The prices of the yearly cost of
power failure linked small industrial structure is summed up in Table 4 [130]. Price for these power
cuts varies between $4000–6800 USD.

Table 4. Cost of 100 kWh small industrial structure [130].

Power Failure Time
Time

Facility
Stopped

Failure
Numbers in

the Year

Interruptions
Created
Yearly

Price
Estimate

US$

Annual
Estimate

US$

Brief interruptions 5.3 s 15 min 5 1 h 4000 4000
Extensive time interruption 1 h 2 h 1 2 h 4000 8000

Total 5 3 h 12,000

4. Challenges Associated to Fuel Cell Combined Heat and Power Systems

The main challenge associated with fuel cell combined heat and power system is the high
initial capital required for the development of the project, compared with competing with other
existing combined heat and power generation technologies. The selection of combined heat and
power technology is associated with the cost of generation and system availability. The number of
combined heat power units sold is low, but most fuel cell systems for portable applications enjoy
huge government subsidies, hence their patronage compared to other combined heat and power
systems [131]. The original price for fuel cell combined micro heat and power system is nearly
30–50 times more than the targets laid down by the United States Department of Energy. The cost of
1 kW PEMFCs or SOFCs in Japan was between $21,000–27000 USD.

The cost of the residential system has declined massively in the last decade. In Japan, government
subsidy forms nearly 50% of the price for installing the unit. The cost of the system can decrease
significantly with respect to time, but this is subject to the economies of scale provided due to producing
them in larger quantities. Figure 7 summarizes the cost in terms of reduction for proton exchange
membrane fuel cells in Japan and South Korea.
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5. Conclusions

Micro-CHP systems are appealing, high-efficiency technologies for decentralized electric power
generation. This investigation explores and focuses on micro fuel cell combined heat and power
systems. Fuel cell combined heat and power has become the most beneficial and effective cogeneration
technology. The system has many strengths that can overcome current power generation problems,
but it comes with some challenges.

The main drawback at the moment is the initial capital cost, which is expensive. In several
demonstration projects, the Japanese scenario demonstrates that it is imperative to reduce the price
of fuel cell combined heat and power systems by approximately 25% by doubling the output, and a
further 13% reduction after commercialization can be obtained. Several countries are formulating
policies, for example, through the implementation of subsidies, which encourage and enhance the
applications of fuel cells combined heat and power systems.

Most research activities are geared towards the goals of manufacturing thousands (1000′s)
of fuel cell combined heat and power systems worldwide for development and deployment.
From techno-economic evaluation and energy needs, the appropriate and directed market for fuel cell
combined heat and power systems is for domestic purposes, where units up to 1 kWel of power may
be utilized for electric power and heat production.

These two fuel cell systems (PEMFCs and SOFCs) are at the moment being used for residential
applications in fuel cell combined heat and power systems. SOFCs offer high-quality, high-temperature
heat operation. The main issues associated with SOFCs have to do with the time it takes for it to start.
Low-temperature PEMFC-oriented cogeneration systems exhibit quite high efficiencies and reliability.
The low-temperature PEMFC high power density is undoubtedly the biggest benefit; however, one of
the key challenges is the complicated water management. It is imperative that future research work
keenly considered novel systemic designs that will make the entire unit very robust in terms of size
and weight to reduce the cost of the system. Material characterization and optimization of the fuel cell
will significantly reduce the initial capital cost required for establishing such projects. Furthermore,
to foster healthy competition with existing technologies, a well-documented risk assessment strategy
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for the individual components and the entire system, coupled with effective public sensitization about
the validity of the technology should be an active research direction.
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6. Seruga, P.; Krzywonos, M.; Seruga, A.; Niedźwiecki, Ł.; Pawlak-Kruczek, H.; Urbanowska, A. Anaerobic
digestion performance: Separate collected vs. mechanical segregated organic fractions of municipal solid
waste as feedstock. Energies 2020, 13, 3768. [CrossRef]

7. Elsaid, K.; Taha Sayed, E.; Yousef, B.A.A.; Kamal Hussien Rabaia, M.; Ali Abdelkareem, M.; Olabi, A.G.
Recent progress on the utilization of waste heat for desalination: A review. Energy Convers. Manag. 2020,
221, 113105. [CrossRef]

8. Olabi, A.G.; Elsaid, K.; Rabaia, M.K.H.; Askalany, A.A.; Abdelkareem, M.A. Waste heat-driven desalination
systems: Perspective. Energy 2020, 118373, in press. [CrossRef]

9. Jouhara, H.; Olabi, A.G. Editorial: Industrial waste heat recovery. Energy 2018, 160, 1–2. [CrossRef]
10. Yousef, B.A.A.; Rezk, H.; Abdelkareem, M.A.; Olabi, A.G.; Nassef, A.M. Fuzzy modeling and particle swarm

optimization for determining the optimal operating parameters to enhance the bio-methanol production
from sugar cane bagasse. Int. J. Energy Res. 2020. [CrossRef]

11. Rezk, H.; Alsaman, A.S.; Al-Dhaifallah, M.; Askalany, A.A.; Abdelkareem, M.A.; Nassef, A.M. Identifying
optimal operating conditions of solar-driven silica gel based adsorption desalination cooling system via
modern optimization. Sol. Energy 2019, 181, 475–489. [CrossRef]

12. Rezk, H.; Sayed, E.T.; Al-Dhaifallah, M.; Obaid, M.; El-Sayed, A.H.M.; Abdelkareem, M.A.; Olabi, A.G. Fuel
cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system.
Energy 2019, 175, 423–433. [CrossRef]

13. Fathy, A.; Elaziz, M.A.; Sayed, E.T.; Olabi, A.G.; Rezk, H. Optimal parameter identification of triple-junction
photovoltaic panel based on enhanced moth search algorithm. Energy 2019, 188, 116025. [CrossRef]

14. Soudan, B. Community-scale baseload generation from marine energy. Energy 2019, 189, 116134. [CrossRef]
15. Wilberforce, T.; El Hassan, Z.; Durrant, A.; Thompson, J.; Soudan, B.; Olabi, A.G. Overview of ocean power

technology. Energy 2019, 175, 165–181. [CrossRef]
16. Sayed, E.T.; Shehata, N.; Abdelkareem, M.A.; Atieh, M.A. Recent progress in environmentally friendly

bio-electrochemical devices for simultaneous water desalination and wastewater treatment. Sci. Total Environ.
2020, 141046, in press. [CrossRef]

17. Inayat, A.; Nassef, A.M.; Rezk, H.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A.G. Fuzzy modeling
and parameters optimization for the enhancement of biodiesel production from waste frying oil over
montmorillonite clay K-30. Sci. Total Environ. 2019, 666, 821–827. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.scitotenv.2020.140125
http://dx.doi.org/10.1016/j.jece.2020.104099
http://dx.doi.org/10.1016/j.scitotenv.2018.11.424
http://www.ncbi.nlm.nih.gov/pubmed/30530219
http://dx.doi.org/10.1016/j.fuel.2019.116553
http://dx.doi.org/10.1016/j.rser.2019.109547
http://dx.doi.org/10.3390/en13153768
http://dx.doi.org/10.1016/j.enconman.2020.113105
http://dx.doi.org/10.1016/j.energy.2020.118373
http://dx.doi.org/10.1016/j.energy.2018.07.013
http://dx.doi.org/10.1002/er.5605
http://dx.doi.org/10.1016/j.solener.2019.02.024
http://dx.doi.org/10.1016/j.energy.2019.02.167
http://dx.doi.org/10.1016/j.energy.2019.116025
http://dx.doi.org/10.1016/j.energy.2019.116134
http://dx.doi.org/10.1016/j.energy.2019.03.068
http://dx.doi.org/10.1016/j.scitotenv.2020.141046
http://dx.doi.org/10.1016/j.scitotenv.2019.02.321
http://www.ncbi.nlm.nih.gov/pubmed/30818206


Energies 2020, 13, 4104 16 of 20

18. Mahmoud, M.; Ramadan, M.; Olabi, A.-G.; Pullen, K.; Naher, S. A review of mechanical energy storage
systems combined with wind and solar applications. Energy Convers. Manag. 2020, 210, 112670. [CrossRef]

19. Mohamed, M.A.; Diab, A.A.Z.; Rezk, H.; Jin, T. A novel adaptive model predictive controller for load
frequency control of power systems integrated with DFIG wind turbines. Neural Comput. Appl. 2020, 32,
7171–7181. [CrossRef]

20. Abdelkareem, M.A.; El Haj Assad, M.; Sayed, E.T.; Soudan, B. Recent progress in the use of renewable energy
sources to power water desalination plants. Desalination 2018, 435, 97–113. [CrossRef]

21. Wilberforce, T.; Baroutaji, A.; El Hassan, Z.; Thompson, J.; Soudan, B.; Olabi, A.G. Prospects and challenges
of concentrated solar photovoltaics and enhanced geothermal energy technologies. Sci. Total Environ. 2019,
659, 851–861. [CrossRef] [PubMed]

22. Shabani, B.; Andrews, J. Standalone solar-hydrogen systems powering fire contingency networks. Int. J.
Hydrog. Energy 2015, 40, 5509–5517. [CrossRef]

23. Yilanci, A.; Dincer, I.; Ozturk, H.K. A review on solar-hydrogen/fuel cell hybrid energy systems for stationary
applications. Prog. Energy Combust. Sci. 2009, 35, 231–244. [CrossRef]

24. Maniatopoulos, P.; Andrews, J.; Shabani, B. Towards a sustainable strategy for road transportation in
Australia: The potential contribution of hydrogen. Renew. Sustain. Energy Rev. 2015, 52, 24–34. [CrossRef]

25. Kharel, S.; Shabani, B. Hydrogen as a long-term large-scale energy storage solution to support renewables.
Energies 2018, 11, 2825. [CrossRef]

26. Brandon, N.; Kurban, Z. Clean energy and the hydrogen economy. Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci. 2017, 375, 20160400. [CrossRef] [PubMed]

27. Andrews, J.; Shabani, B. The role of hydrogen in a global sustainable energy strategy. Wiley Interdiscip. Rev.
Energy Environ. 2014, 3, 474–489. [CrossRef]

28. Elmer, T.; Worall, M.; Wu, S.; Riffat, S.B. Fuel cell technology for domestic built environment applications:
State of-the-art review. Renew. Sustain. Energy Rev. 2015, 42, 913–931. [CrossRef]

29. Ellamla, H.R.; Staffell, I.; Bujlo, P.; Pollet, B.G.; Pasupathi, S. Current status of fuel cell based combined heat
and power systems for residential sector. J. Power Sources 2015, 293, 312–328. [CrossRef]

30. Onovwiona, H.; Ugursal, V.I. Residential cogeneration systems: Review of the current technology.
Renew. Sustain. Energy Rev. 2006, 10, 389–431. [CrossRef]

31. Wilberforce, T.; El-Hassan, Z.; Khatib, F.; Al Makky, A.; Mooney, J.; Barouaji, A.; Carton, J.G.; Olabi, A.-G.
Development of Bi-polar plate design of PEM fuel cell using CFD techniques. Int. J. Hydrog. Energy 2017, 42,
25663–25685. [CrossRef]

32. Wilberforce, T.; Ijaodola, O.; Ogungbemi, E.; Khatib, F.; Leslie, T.; El-Hassan, Z.; Thomposon, J.; Olabi, A.
Technical evaluation of proton exchange membrane (PEM) fuel cell performance–A review of the effects of
bipolar plates coating. Renew. Sustain. Energy Rev. 2019, 113, 109286. [CrossRef]

33. Wilberforce, T.; El Hassan, Z.; Ogungbemi, E.; Ijaodola, O.; Khatib, F.; Durrant, A.; Thompson, J.; Baroutaji, A.;
Olabi, A. A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of
proton exchange membrane (PEM) fuel cells. Renew. Sustain. Energy Rev. 2019, 111, 236–260. [CrossRef]

34. Abdelkareem, M.A.; Sayed, E.T.; Mohamed, H.O.; Obaid, M.; Rezk, H.; Chae, K.-J. Nonprecious anodic
catalysts for low-molecular-hydrocarbon fuel cells: Theoretical consideration and current progress. Prog.
Energy Combust. Sci. 2020, 77, 100805. [CrossRef]

35. Sayed, E.T.; Eisa, T.; Mohamed, H.O.; Abdelkareem, M.A.; Allagui, A.; Alawadhi, H.; Chae, K.-J. Direct urea
fuel cells: Challenges and opportunities. J. Power Sources 2019, 417, 159–175. [CrossRef]

36. Abdelkareem, M.A.; Sayed, E.T.; Alawadhi, H.; Alami, A.H. Synthesis and testing of cobalt leaf-like
nanomaterials as an active catalyst for ethanol oxidation. Int. J. Hydrog. Energy 2020, 45, 17311–17319.
[CrossRef]

37. Ijaodola, O.; El-Hassan, Z.; Ogungbemi, E.; Khatib, F.; Wilberforce, T.; Thompson, J.; Olabi, A. Energy
efficiency improvements by investigating the water flooding management on proton exchange membrane
fuel cell (PEMFC). Energy 2019, 179, 246–267. [CrossRef]

38. Abdelkareem, M.A.; Allagui, A.; Sayed, E.T.; El Haj Assad, M.; Said, Z.; Elsaid, K. Comparative analysis of
liquid versus vapor-feed passive direct methanol fuel cells. Renew. Energy 2019, 131, 563–584. [CrossRef]

39. Olabi, A.G.; Wilberforce, T.; Sayed, E.T.; Elsaid, K.; Rezk, H.; Abdelkareem, M.A. Recent progress of graphene
based nanomaterials in bioelectrochemical systems. Sci. Total Environ. 2020, 141225. [CrossRef]

http://dx.doi.org/10.1016/j.enconman.2020.112670
http://dx.doi.org/10.1007/s00521-019-04205-w
http://dx.doi.org/10.1016/j.desal.2017.11.018
http://dx.doi.org/10.1016/j.scitotenv.2018.12.257
http://www.ncbi.nlm.nih.gov/pubmed/31096415
http://dx.doi.org/10.1016/j.ijhydene.2015.01.183
http://dx.doi.org/10.1016/j.pecs.2008.07.004
http://dx.doi.org/10.1016/j.rser.2015.07.088
http://dx.doi.org/10.3390/en11102825
http://dx.doi.org/10.1098/rsta.2016.0400
http://www.ncbi.nlm.nih.gov/pubmed/28607181
http://dx.doi.org/10.1002/wene.103
http://dx.doi.org/10.1016/j.rser.2014.10.080
http://dx.doi.org/10.1016/j.jpowsour.2015.05.050
http://dx.doi.org/10.1016/j.rser.2004.07.005
http://dx.doi.org/10.1016/j.ijhydene.2017.08.093
http://dx.doi.org/10.1016/j.rser.2019.109286
http://dx.doi.org/10.1016/j.rser.2019.04.081
http://dx.doi.org/10.1016/j.pecs.2019.100805
http://dx.doi.org/10.1016/j.jpowsour.2018.12.024
http://dx.doi.org/10.1016/j.ijhydene.2020.04.156
http://dx.doi.org/10.1016/j.energy.2019.04.074
http://dx.doi.org/10.1016/j.renene.2018.07.055
http://dx.doi.org/10.1016/j.scitotenv.2020.141225


Energies 2020, 13, 4104 17 of 20

40. Sayed, E.T.; Abdelkareem, M.A. Yeast as a biocatalyst in microbial fuel cell. Old Yeasts New Quest. Intech 2017,
41–65.

41. Alami, A.H.; Abdelkareem, M.A.; Faraj, M.; Aokal, K.; Al Safarini, N. Titanium dioxide-coated nickel foam
photoelectrodes for direct urea fuel cell applications. Energy 2020, 208, 118253. [CrossRef]

42. Fathy, A.; Abdelkareem, M.A.; Olabi, A.G.; Rezk, H. A novel strategy based on salp swarm algorithm for
extracting the maximum power of proton exchange membrane fuel cell. Int. J. Hydrog. Energy 2020, in press.
[CrossRef]

43. Larminie, J.; Dicks, A.; McDonald, M.S. Fuel Cell Systems Explained; J. Wiley: Chichester, UK, 2003; Volume 2.
44. Wilberforce, T.; Khatib, F.; Ijaodola, O.; Ogungbemi, E.; El-Hassan, Z.; Durrant, A.; Thompson, J.; Olabi, A.

Numerical modelling and CFD simulation of a polymer electrolyte membrane (PEM) fuel cell flow channel
using an open pore cellular foam material. Sci. Total Environ. 2019, 678, 728–740. [CrossRef] [PubMed]

45. Baroutaji, A.; Wilberforce, T.; Ramadan, M.; Olabi, A.G. Comprehensive investigation on hydrogen and
fuel cell technology in the aviation and aerospace sectors. Renew. Sustain. Energy Rev. 2019, 106, 31–40.
[CrossRef]

46. Abdelkareem, M.A.; Sayed, E.T.; Nakagawa, N. Significance of diffusion layers on the performance of liquid
and vapor feed passive direct methanol fuel cells. Energy 2020, 209, 118492. [CrossRef]

47. Jiao, F.; Xu, B. Electrochemical Ammonia Synthesis and Ammonia Fuel Cells. Adv. Mater. 2019, 31, 1805173.
[CrossRef]

48. Boldrin, P.; Brandon, N.P. Progress and outlook for solid oxide fuel cells for transportation applications.
Nat. Catal. 2019, 2, 571–577. [CrossRef]

49. Rezk, H.; Nassef, A.M.; Abdelkareem, M.A.; Alami, A.H.; Fathy, A. Comparison among various energy
management strategies for reducing hydrogen consumption in a hybrid fuel cell/supercapacitor/battery
system. Int. J. Hydrog. Energy 2019, in press. [CrossRef]

50. Ogungbemi, E.; Wilberforce, T.; Ijaodola, O.; Thompson, J.; Olabi, A. Selection of proton exchange membrane
fuel cell for transportation. Int. J. Hydrog. Energy 2020, in press. [CrossRef]

51. Mohideen, M.M.; Liu, Y.; Ramakrishna, S. Recent progress of carbon dots and carbon nanotubes applied in
oxygen reduction reaction of fuel cell for transportation. Appl. Energy 2020, 257, 114027. [CrossRef]

52. Rath, R.; Kumar, P.; Mohanty, S.; Nayak, S.K. Recent advances, unsolved deficiencies, and future perspectives
of hydrogen fuel cells in transportation and portable sectors. Int. J. Energy Res. 2019, 43, 8931–8955.
[CrossRef]

53. Zhang, G.; Kandlikar, S.G. A critical review of cooling techniques in proton exchange membrane fuel cell
stacks. Int. J. Hydrog. Energy 2012, 37, 2412–2429. [CrossRef]

54. Zaman, S.F.; Jolaoso, L.A.; Podila, S.; Al-Zahrani, A.A.; Alhamed, Y.A.; Driss, H.; Daous, M.M.; Petrov, L.
Ammonia decomposition over citric acid chelated g-Mo2N and Ni2Mo3N catalysts. Int. J. Hydrog. Energy
2018, 43, e17258. [CrossRef]

55. Rosli, R.; Sulong, A.; Daud, W.; Zulkifley, M.; Husaini, T.; Rosli, M.; Majlan, E.; Haque, M. A review of
high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrog. Energy 2017, 42,
9293–9314. [CrossRef]

56. Wilberforce, T.; Ijaodola, O.; Khatib, F.; Ogungbemi, E.; El Hassan, Z.; Thompson, J.; Olabi, A. Effect of
humidification of reactive gases on the performance of a proton exchange membrane fuel cell. Sci. Total
Environ. 2019, 688, 1016–1035. [CrossRef] [PubMed]

57. Ijaodola, O.; Ogungbemi, E.; Khatib, F.N.; Wilberforce, T.; Ramadan, M.; El Hassan, Z.; Thompson, J.;
Olabi, A.G. Evaluating the effect of metal bipolar plate coating on the performance of proton exchange
membrane fuel cells. Energies 2018, 11, 3203. [CrossRef]

58. Wilberforce, T.; Alaswad, A.; Palumbo, A.; Dassisti, M.; Olabi, A.-G. Advances in stationary and portable
fuel cell applications. Int. J. Hydrog. Energy 2016, 41, 16509–16522. [CrossRef]

59. Wilberforce, T.; Ijaodola, O.; Ogungbemi, E.; El Hassan, Z.; Thompson, J.; Olabi, A.G. Effect of bipolar plate
materials on performance of fuel cells. In Reference Module in Materials Science and Materials Engineering;
Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 1–15.

60. Islam, M.R.; Shabani, B.; Rosengarten, G. Nanofluids to improve the performance of PEM fuel cell cooling
systems: A theoretical approach. Appl. Energy 2016, 178, 660–671. [CrossRef]

61. Islam, M.; Shabani, B.; Rosengarten, G.; Andrews, J. The potential of using nanofluids in PEM fuel cell
cooling systems: A review. Renew. Sustain. Energy Rev. 2015, 48, 523–539. [CrossRef]

http://dx.doi.org/10.1016/j.energy.2020.118253
http://dx.doi.org/10.1016/j.ijhydene.2020.02.165
http://dx.doi.org/10.1016/j.scitotenv.2019.03.430
http://www.ncbi.nlm.nih.gov/pubmed/31082779
http://dx.doi.org/10.1016/j.rser.2019.02.022
http://dx.doi.org/10.1016/j.energy.2020.118492
http://dx.doi.org/10.1002/adma.201805173
http://dx.doi.org/10.1038/s41929-019-0310-y
http://dx.doi.org/10.1016/j.ijhydene.2019.11.195
http://dx.doi.org/10.1016/j.ijhydene.2020.06.147
http://dx.doi.org/10.1016/j.apenergy.2019.114027
http://dx.doi.org/10.1002/er.4795
http://dx.doi.org/10.1016/j.ijhydene.2011.11.010
http://dx.doi.org/10.1016/j.ijhydene.2018.07.085
http://dx.doi.org/10.1016/j.ijhydene.2016.06.211
http://dx.doi.org/10.1016/j.scitotenv.2019.06.397
http://www.ncbi.nlm.nih.gov/pubmed/31726535
http://dx.doi.org/10.3390/en11113203
http://dx.doi.org/10.1016/j.ijhydene.2016.02.057
http://dx.doi.org/10.1016/j.apenergy.2016.06.090
http://dx.doi.org/10.1016/j.rser.2015.04.018


Energies 2020, 13, 4104 18 of 20

62. Wilberforce, T.; El-Hassan, Z.; Khatib, F.; Al Makky, A.; Baroutaji, A.; Carton, J.G.; Olabi, A.G. Developments
of electric cars and fuel cell hydrogen electric cars. Int. J. Hydrog. Energy 2017, 42, 25695–25734. [CrossRef]

63. Wilberforce, T.; El-Hassan, Z.; Khatib, F.; Al Makky, A.; Baroutaji, A.; Carton, J.G.; Thompson, J.; Olabi, A.G.
Modelling and simulation of Proton Exchange Membrane fuel cell with serpentine bipolar plate using
MATLAB. Int. J. Hydrog. Energy 2017, 42, 25639–25662. [CrossRef]

64. Omrani, R.; Shabani, B. Gas diffusion layer modifications and treatments for improving the performance of
proton exchange membrane fuel cells and electrolysers: A review. Int. J. Hydrog. Energy 2017, 42, 28515–28536.
[CrossRef]

65. Li, H.; Tang, Y.; Wang, Z.; Shi, Z.; Wu, S.; Song, D.; Zhang, J.; Fatih, K.; Zhang, J.; Wang, H. A review of water
flooding issues in the proton exchange membrane fuel cell. J. Power Sources 2008, 178, 103–117. [CrossRef]

66. Hwang, J.J.; Zou, M.L.; Chang, W.R.; Su, A.; Weng, F.B.; Wu, W. Implementation of a heat recovery unit in a
proton exchange membrane fuel cell system. Int. J. Hydrog. Energy 2010, 35, 8644–8653. [CrossRef]

67. Briguglio, N.; Ferraro, M.; Brunaccini, G.; Antonucci, V. Evaluation of a low temperature fuel cell system for
residential CHP. Int. J. Hydrog. Energy 2011, 36, 8023–8029. [CrossRef]

68. Gigliucci, G.; Petruzzi, L.; Cerelli, E.; Garzisi, A.; La Mendola, A. Demonstration of a residential CHP system
based on PEM fuel cells. J. Power Sources 2004, 131, 62–68. [CrossRef]

69. Shabani, B.; Andrews, J. An experimental investigation of a PEM fuel cell to supply both heat and power in a
solar-hydrogen RAPS system. Int. J. Hydrog. Energy 2011, 36, 5442–5452. [CrossRef]

70. Oh, S.-D.; Kim, K.-Y.; Oh, S.-B.; Kwak, H.-Y. Optimal operation of a 1-kW PEMFC-based CHP system for
residential applications. Appl. Energy 2012, 95, 93–101. [CrossRef]

71. Gandiglio, M.; Lanzini, A.; Santarelli, M.; Leone, P. Design and optimization of a proton exchange membrane
fuel cell CHP system for residential use. Energy Build. 2014, 69, 381–393. [CrossRef]

72. Barelli, L.; Bidini, G.; Gallorini, F.; Ottaviano, A. An energetic–exergetic comparison between PEMFC and
SOFC-based micro-CHP systems. Int. J. Hydrog. Energy 2011, 36, 3206–3214. [CrossRef]

73. Aleknaviciute, I.; Karayiannis, T.; Collins, M.; Xanthos, C. Towards clean and sustainable distributed energy
system: The potential of integrated PEMFC-CHP. Int. J. Low Carbon Technol. 2016, 11, 296–304. [CrossRef]

74. OH, S.T.; Saha, B.B.; Kariya, K.; Hamamoto, Y.; Mori, H. Fuel cell waste heat powered adsorption cooling
systems. Int. J. Air Cond. Refrig. 2013, 21, 1350010. [CrossRef]

75. He, T.; Shi, R.; Peng, J.; Zhuge, W.; Zhang, Y. Waste heat recovery of a PEMFC system by using organic
rankine cycle. Energies 2016, 9, 267. [CrossRef]

76. Lee, W.-Y.; Kim, M.; Sohn, Y.-J.; Kim, S.-G. Power optimization of a combined power system consisting of
a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system. Energy 2016, 113,
1062–1070. [CrossRef]

77. Hasani, M.; Rahbar, N. Application of thermoelectric cooler as a power generator in waste heat recovery
from a PEM fuel cell–an experimental study. Int. J. Hydrog. Energy 2015, 40, 15040–15051. [CrossRef]

78. Tetuko, A.P.; Shabani, B.; Andrews, J. Thermal coupling of PEM fuel cell and metal hydride hydrogen storage
using heat pipes. Int. J. Hydrog. Energy 2016, 41, 4264–4277. [CrossRef]

79. Tetuko, A.; Shabani, B.; Andrews, J. Passive fuel cell heat recovery using heat pipes to enhance metal hydride
canisters hydrogen discharge rate: An experimental simulation. Energies 2018, 11, 915. [CrossRef]

80. Reddy, E.H.; Jayanti, S. Thermal coupling studies of a high temperature proton exchange membrane fuel cell
stack and a metal hydride hydrogen storage system. Energy Procedia 2012, 29, 254–264. [CrossRef]

81. Mohamed, W.; Kamil, M.H.M. Hydrogen preheating through waste heat recovery of an open-cathode PEM
fuel cell leading to power output improvement. Energy Convers. Manag. 2016, 124, 543–555. [CrossRef]

82. Ganapathy, V. Industrial Boilers and Heat Recovery Steam Generators: Design, Applications, and Calculations;
CRC Press: Boca Raton, FL, USA, 2002.

83. Ogungbemi, E.; Ijaodola, O.; Khatib, F.; Wilberforce, T.; El Hassan, Z.; Thompson, J.; Ramadan, M.; Olabi, A.
Fuel cell membranes–Pros and cons. Energy 2019, 172, 155–172. [CrossRef]

84. Wilberforce, T.; Olabi, A.G. Performance Prediction of Proton Exchange Membrane Fuel Cells (PEMFC)
Using Adaptive Neuro Inference System (ANFIS). Sustainability 2020, 12, 4952. [CrossRef]

85. Wilberforce, T.; Olabi, A.G. Design of Experiment (DOE) Analysis of 5-Cell Stack Fuel Cell Using Three
Bipolar Plate Geometry Designs. Sustainability 2020, 12, 4488. [CrossRef]

http://dx.doi.org/10.1016/j.ijhydene.2017.07.054
http://dx.doi.org/10.1016/j.ijhydene.2017.06.091
http://dx.doi.org/10.1016/j.ijhydene.2017.09.132
http://dx.doi.org/10.1016/j.jpowsour.2007.12.068
http://dx.doi.org/10.1016/j.ijhydene.2010.05.007
http://dx.doi.org/10.1016/j.ijhydene.2011.01.050
http://dx.doi.org/10.1016/j.jpowsour.2004.01.010
http://dx.doi.org/10.1016/j.ijhydene.2011.02.003
http://dx.doi.org/10.1016/j.apenergy.2012.02.019
http://dx.doi.org/10.1016/j.enbuild.2013.11.022
http://dx.doi.org/10.1016/j.ijhydene.2010.11.079
http://dx.doi.org/10.1093/ijlct/ctv004
http://dx.doi.org/10.1142/S2010132513500107
http://dx.doi.org/10.3390/en9040267
http://dx.doi.org/10.1016/j.energy.2016.07.093
http://dx.doi.org/10.1016/j.ijhydene.2015.09.023
http://dx.doi.org/10.1016/j.ijhydene.2015.12.194
http://dx.doi.org/10.3390/en11040915
http://dx.doi.org/10.1016/j.egypro.2012.09.031
http://dx.doi.org/10.1016/j.enconman.2016.07.046
http://dx.doi.org/10.1016/j.energy.2019.01.034
http://dx.doi.org/10.3390/su12124952
http://dx.doi.org/10.3390/su12114488


Energies 2020, 13, 4104 19 of 20

86. Abdelkareem, M.A.; Tanveer, W.H.; Sayed, E.T.; Assad, M.E.H.; Allagui, A.; Cha, S.W. On the technical
challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells. Renew. Sustain.
Energy Rev. 2019, 101, 361–375. [CrossRef]

87. Dodds, P.E.; Hawkes, A.D.; McDowall, W.; Li, F.; Staffell, I.; Grünewald, P. The Role of Hydrogen and Fuel
Cells in Providing Affordable, Secure Lowcarbon Heat, H2FC SUPERGEN, London. 2014. Available online:
http://goo.gl/hLJ0Rp (accessed on 17 July 2020).

88. Maru, H.; Singhal, S.C.; Stone, C.; Wheeler, D. 1e10 KW Stationary Combined Heat and Power Systems
Status and Technical Potential, National Renewable Energy Laboratory, USA. 2010. Available online:
http://goo.gl/T6c3C0 (accessed on 17 July 2020).

89. 4th Energy Wave, Fuel Cell Annual Review. 2014. Available online: http://tinyurl.com/pm5qfhw (accessed
on 17 July 2020).

90. Staffell, I.; Green, R. The cost of domestic fuel cell micro-CHP systems. Int. J. Hydrog. Energy 2013, 38,
1088–1102. [CrossRef]

91. Dodds, P.E.; Staffell, I.; Hawkes, A.D.; Li, F.; Grünewald, P.; McDowall, W.; Ekins, P. Hydrogen and fuel cell
technologies for heating: A review. Int. J. Hydrog. Energy 2015, 40, 2065–2083. [CrossRef]

92. The Fuel Cell Industry Review, Fuel Cell Today. 2013. Available online: http://goo.gl/tUjvG9 (accessed on 23
March 2020).

93. Country Update of Japan, Current Statusof H2 and Fuel Cell Programs of Japan, in: 20th International
Partnership for Hydrogen and Fuel Cells (IPHE) Steering Committee Meeting. 2013. Available online:
http://goo.gl/AaD2lb (accessed on 23 March 2020).

94. Hawkes, A.; Staffell, I.; Brett, D.; Brandon, N. Fuel cells for micro-combined heat and power generation.
Energy Environ. Sci. 2009, 2, 729–744. [CrossRef]

95. Sauter, R.M.; Pehnt, M.; Cames, C.; Fischer, B.; Praetorius, L.; Schneider, K. Schumacher and JP Vo [ss],
Editors, Micro Cogeneration. Towards Decentralized Energy Systems, Springer, Heidelberg (2006) ISBN
3-540-25582-6 (346pp., 59 illus., Hardcover, [euro] 106.95). Energy Policy 2007, 35, 2018–2020. [CrossRef]

96. Carbon Trust, N. Micro-CHP Accelerator: Interim Report; Carbon Trust London: London, UK, 2007.
97. Devices, R. Swift rooftop wind energy system: Technical and planning information—Rev F1.

Available online: http://www.olino.org/blog/nl/wp-content/uploads/2008/articles/energyhouse-swift-
technical-information-pack.pdf (accessed on 5 August 2020).

98. Brett, D.J.; Brandon, N.P. Review of materials and characterization methods for polymer electrolyte fuel cell
flow-field plates. J. Electrochem. En. Conv. Stor. 2007, 4, 29–44. [CrossRef]

99. Baschuk, J.; Li, X. Carbon monoxide poisoning of proton exchange membrane fuel cells. Int. J. Energy Res.
2001, 25, 695–713. [CrossRef]

100. Zhang, J.; Xie, Z.; Zhang, J.; Tang, Y.; Song, C.; Navessin, T.; Shi, Z.; Song, D.; Wang, H.; Wilkinson, D.P. High
temperature PEM fuel cells. J. Power Sources 2006, 160, 872–891. [CrossRef]

101. Tanveer, W.H.; Rezk, H.; Nassef, A.; Abdelkareem, M.A.; Kolosz, B.; Karuppasamy, K.; Aslam, J.; Gilani, S.O.
Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling
and optimization. Energy 2020, 204, 117976. [CrossRef]

102. Brett, D.J.; Atkinson, A.; Brandon, N.P.; Skinner, S.J. Intermediate temperature solid oxide fuel cells. Chem. Soc.
Rev. 2008, 37, 1568–1578. [CrossRef] [PubMed]

103. Kolb, G. Fuel Processing: For Fuel Cells; John Wiley & Sons: Hoboken, NJ, USA, 2008.
104. Hubert, C.-E.; Achard, P.; Metkemeijer, R. Study of a small heat and power PEM fuel cell system generator.

J. Power Sources 2006, 156, 64–70. [CrossRef]
105. Lohsoontorn, P.; Brett, D.; Brandon, N. The effect of fuel composition and temperature on the interaction of

H2S with nickel–ceria anodes for Solid Oxide Fuel Cells. J. Power Sources 2008, 183, 232–239. [CrossRef]
106. Brett, D.; Aguiar, P.; Brandon, N.; Kucernak, A. Measurement and modelling of carbon monoxide poisoning

distribution within a polymer electrolyte fuel cell. Int. J. Hydrog. Energy 2007, 32, 863–871. [CrossRef]
107. Schmidt, D.S. In Status of the Acumentrics SOFC Program; Fuel Cell Seminar & Exposition: Long Beach, CA,

USA, 2006.
108. Colella, W. Design options for achieving a rapidly variable heat-to-power ratio in a combined heat and

power (CHP) fuel cell system (FCS). J. Power Sources 2002, 106, 388–396. [CrossRef]
109. IEA. Global Energy and Carbon Dioxdie Staus Report 2019. The Latest Trends in Energy and Emissions; IEA: Paris,

France, 2019.

http://dx.doi.org/10.1016/j.rser.2018.10.025
http://goo.gl/hLJ0Rp
http://goo.gl/T6c3C0
http://tinyurl.com/pm5qfhw
http://dx.doi.org/10.1016/j.ijhydene.2012.10.090
http://dx.doi.org/10.1016/j.ijhydene.2014.11.059
http://goo.gl/tUjvG9
http://goo.gl/AaD2lb
http://dx.doi.org/10.1039/b902222h
http://dx.doi.org/10.1016/j.enpol.2006.06.015
http://www.olino.org/blog/nl/wp-content/uploads/2008/articles/energyhouse-swift-technical-information-pack.pdf
http://www.olino.org/blog/nl/wp-content/uploads/2008/articles/energyhouse-swift-technical-information-pack.pdf
http://dx.doi.org/10.1115/1.2393303
http://dx.doi.org/10.1002/er.713
http://dx.doi.org/10.1016/j.jpowsour.2006.05.034
http://dx.doi.org/10.1016/j.energy.2020.117976
http://dx.doi.org/10.1039/b612060c
http://www.ncbi.nlm.nih.gov/pubmed/18648682
http://dx.doi.org/10.1016/j.jpowsour.2005.08.022
http://dx.doi.org/10.1016/j.jpowsour.2008.04.021
http://dx.doi.org/10.1016/j.ijhydene.2007.01.019
http://dx.doi.org/10.1016/S0378-7753(01)01061-8


Energies 2020, 13, 4104 20 of 20

110. Callux, Practical Tests for Fuel Cells in a Domestic Setting. Available online: http://www.callux.net/home.
English.html (accessed on 13 July 2020).

111. World Energy Outlook. Available online: http://www.callux.net/home.English.html (accessed on 13 July 2020).
112. Foger, K. CFCL: Challenges in Commercialising An Ultra-Efficient SOFC Residential Generator,

In: International Partnership for Hydrogen and Fuel Cells (IPHE) Workshop on Stationary Fuel Cells,
Tokyo. 2011. Available online: http://tinyurl.com/82eqw7h (accessed on 25 March 2020).

113. Statistical Data Set: Annual Domestic Energy Bills. UK. 2014. Available online: http://tinyurl.com/o8zybas
(accessed on 14 February 2020).

114. Brooks, K.; Pilli, S.; Makhmalbaf, A.; Srivastava, V.; Anderson, D.; Upton, J. Business Case for a
Micro-Combined Heat and POWER FUEL-CELL SYSTEM In Commercial Applications, Pacific Northwest
National Laboratory, USA. 2013. Available online: http://goo.gl/b2xX1T. (accessed on 18 July 2020).

115. Staffell, I. The Energy and Fuel Data Sheet. 2011. Available online: http://goo.gl/hvByt9 (accessed on 19
July 2020).

116. Hawkes, A.D. Estimating marginal CO2 emissions rates for national electricity systems. Energy Policy 2010,
38, 5977–5987. [CrossRef]

117. Staffell, I. Zero carbon infinite COP heat from fuel cell CHP. Appl. Energy 2015, 147, 373–385. [CrossRef]
118. Staffell, I.; Ingram, A.; Kendall, K. Energy and carbon payback times for solid oxide fuel cell based domestic

CHP. Int. J. Hydrog. Energy 2012, 37, 2509–2523. [CrossRef]
119. Staffell, I.; Ingram, A. Life cycle assessment of an alkaline fuel cell CHP system. Int. J. Hydrog. Energy 2010,

35, 2491–2505. [CrossRef]
120. Moomaw, W.; Burgherr, P.; Heath, G.; Lenzen, M.; Nyboer, J.; Verbruggen, A. Annex II: Methodology;

Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Eds.; IPCC Special
Report on Renewable Energy Sources and Climate Change Mitigation; Cambridge University Press:
Cambridge, UK, 2011.

121. Carbon Footprint of Electricity Generation. London. 2011. Available online: https://www.parliament.uk/

documents/post/postpn_383-carbon-footprint-electricity-generation.pdf (accessed on 18 July 2020).
122. Pollutant Information: Sulphur dioxide. Available online: http://www.epa.gov/air/sulfurdioxide (accessed on

23 May 2020).
123. Review of Combined Heat and Power Technologies, Department of Energy (DOE), USA. 1999.

Available online: http://goo.gl/hnCNXl (accessed on 23 May 2020).
124. Staffell, I.; Baker, P.; Barton, J.P.; Bergman, N.; Blanchard, R.; Brandon, N.P.; Brett, D.J.; Hawkes, A.; Infield, D.;

Jardine, C.N. UK microgeneration. Part II: Technology overviews. Proc. Inst. Civ. Eng. Energy 2010, 163,
143–165. [CrossRef]

125. Staffell, I. Fuel Cells for Domestic Heat and Power: Are they Worth it? University of Birmingham. 2009.
Available online: http://goo.gl/JB4Yjp (accessed on 11 April 2020).

126. European Energy Price Statistics. Available online: http://ec.europa.eu/eurostat (accessed on 25 May 2020).
127. Greene, D.L.; Duleep, K.G.; Upreti, G. Status and Outlook for the U.S. Nonautomotive Fuel Cell Industry:

Impacts of Government Policies and Assessment of Future Opportunities. 2011. Available online: http:
//goo.gl/bIA7GV (accessed on 30 March 2020).

128. Electric Power Transmission and Distribution Losses. 2011. Available online: http://data.worldbank.org/

indicator/EG.ELC.LOSS.KH (accessed on 21 May 2020).
129. Chen, A. Berkeley Lab Study Estimates $80 Billion Annual Cost of Power Interruption, Berkeley lab, USA.

2005. Available online: http://goo.gl/tRVT9F (accessed on 18 June 2020).
130. Patterson, T.U.S. Electricity Blackouts Skyrocketing. 2010. Available online: http://goo.gl/M7vcc2 (accessed

on 21 May 2020).
131. Wing, J. Handling the Cost of Residential Fuel Cells, Fuel Cell Today 2013. Available online: http:

//goo.gl/Py0JN4 (accessed on 20 February 2020).
132. Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The

role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.callux.net/home.English.html
http://www.callux.net/home.English.html
http://www.callux.net/home.English.html
http://tinyurl.com/82eqw7h
http://tinyurl.com/o8zybas
http://goo.gl/b2xX1T.
http://goo.gl/hvByt9
http://dx.doi.org/10.1016/j.enpol.2010.05.053
http://dx.doi.org/10.1016/j.apenergy.2015.02.089
http://dx.doi.org/10.1016/j.ijhydene.2011.10.060
http://dx.doi.org/10.1016/j.ijhydene.2009.12.135
https://www.parliament.uk/documents/post/postpn_383-carbon-footprint-electricity-generation.pdf
https://www.parliament.uk/documents/post/postpn_383-carbon-footprint-electricity-generation.pdf
http://www.epa.gov/air/sulfurdioxide
http://goo.gl/hnCNXl
http://dx.doi.org/10.1680/ener.2010.163.4.143
http://goo.gl/JB4Yjp
http://ec.europa.eu/eurostat
http://goo.gl/bIA7GV
http://goo.gl/bIA7GV
http://data.worldbank.org/indicator/EG.ELC.LOSS.KH
http://data.worldbank.org/indicator/EG.ELC.LOSS.KH
http://goo.gl/tRVT9F
http://goo.gl/M7vcc2
http://goo.gl/Py0JN4
http://goo.gl/Py0JN4
http://dx.doi.org/10.1039/C8EE01157E
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Fuel Cell Combined Heat and Power Systems 
	Technological Advancement for a Combined Heat and Power System 
	Technical Evaluation of Microgeneration and Combined Heat and Power 
	Fuel Cell Stack 
	Fuel Processor 
	Inverter/Power Electronics 
	Water Management 
	Heat Management 
	System for Delivering the Reactants 
	Afterburner/Auxiliary Burner 

	Summary of Merits of Fuel Cell Combined Heat and Power Systems 
	Carbon Dioxide Emission Reduction 
	Carbon Footprint for Construction 
	Decrease in Pollutant 
	Reduction of Electricity Cost 
	Grid Independence 


	Challenges Associated to Fuel Cell Combined Heat and Power Systems 
	Conclusions 
	References

