
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Pothole 3D Reconstruction With a Novel Imaging
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Abstract— Machine vision based evaluation systems are receiv-
ing increased attention, day by day, for automated quality
inspection of roads. Industrial pavement scanners consist of laser
scanners and are very expensive, hence inaccessible for everyone.
The proposed work presents a simple and novel approach for
3D reconstruction of potholes for an automated inspection and
road surface evaluation. The technique utilizes a Structure from
Motion based 3D reconstruction algorithm, along with laser
triangulation, to generate 3D point clouds of potholes. Alongside,
a novel low-cost system, consisting of a single camera and a
laser pointer, is also proposed. Keypoint matching techniques
are employed, with the 5-point algorithm, on successive image
frames to generate a point cloud. However, this point cloud is
not metric yet, without scale information. The scale ambiguity is
solved by making use of the laser pointer, and using the principle
of triangulation. The laser spot is also detected in the same
image sequence that is used for point-cloud building, cutting
down the image capturing and processing overhead. The system
has been benchmarked on artificial indentations with known
dimensions, proving the robustness of the measurement scheme
and hardware. Static and dynamic tests have been performed.
The mean depth errors for measurement made by the imager
statically and at dynamic speeds of 10 km/hr, 15 km/hr, and
20 km/hr are 5.3%, 7.9%, 14.4%, and 26.6%, whereas for
perimeter the errors are 5.2%, 6.83 %, 11.8%, and 27.8%.
The proposed, low-cost technique shows promising results in
generating 3D point clouds for potholes.

Index Terms— Pavement, imaging, potholes, structure from
motion, keypoint, metrology.

I. INTRODUCTION

ROADS and highways play a vital role in the eco-
nomic development of a country, providing access to

health, education, farming, food, and markets. An efficient
road infrastructure provides a competitive edge to a country.
Road surfaces are continuously subjected to distresses like
potholes, cracks, and rutting due to severe weather conditions,
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varying loads and aging. According to a survey, repair cost
of distressed pavement can increase by seven times over a
period of five years [1]. Therefore, constant monitoring and
maintenance of road pavement surface is crucial to maintain
good service and provide safe travelling conditions in an
economical way. This can be achieved only through a sys-
tem of timely inspection and action. Such systems recognize
surface condition assessment of pavement as a factor that
relies upon reliable, good-quality measurements for different
types of distresses. These defects include potholes, cracks,
rutting, and raveling, among others. Potholes are mostly bowl-
shaped depressions, formed on the road surface, and can be up
to 200 mm in depth. Potholes are the single most reason for
causing damage to vehicle suspension systems, they are also
the biggest contributor to bad ride quality and accidents [2].

Manual pavement inspection and distress evaluation is labo-
rious and time consuming, leading to the conclusion that an
automated distress evaluation system is most desirable. With
varying degrees of accuracy and acceptance, a number of tech-
niques for the assessment of road surface have been proposed
over the years that include vibration based evaluation, image-
based recognition, and 3D reconstruction. Vibration based
methods use accelerometer data and GPS installed on vehicles
to record impact of road distresses on vehicle dynamics.
Although having low-cost and very fast processing capabilities
as its advantages, vibration based methods are susceptible to
noise. In addition, they can only assess the areas of wheel
tracks of a road, which are right next to lane boundaries. Image
recognition systems, which essentially gather 2D information,
provide measurements of spatial properties and quantity of dis-
tresses for severity level assessment, but lack 3D information
about distresses. To improve the quality of distress evaluation,
depth of distresses is retrieved in 3D reconstruction methods.
Laser based methods also produce 3D profiles of road surface
using scanners. Whilst producing highly accurate results, laser
equipment has the disadvantage of very high cost.

With the arrival of inexpensive, high-resolution cameras, a
number of methods, using a single camera for 3D reconstruc-
tion have become realistic. To reconstruct potholes in 3D using
a single camera, a new Structure from Motion (SfM) based
vision technique is proposed in this article. Scale of recon-
struction is determined using laser triangulation, by employing
a novel hardware setup. A laser distance meter and LIDAR
[3] have been used earlier for physical distance measurement
and 3D surface scanning to aid reconstruction process in their
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techniques. This research, for the first time, proposes the use
of laser pointer to estimate scale of reconstruction through
laser triangulation, hence providing a simple and low cost
solution to address inherent scale ambiguity of single camera
reconstruction.

II. LITERATURE REVIEW

The status quo on pavement distress evaluation can be
categorized into vibration-based sensing, 2D image-based dis-
tress detection and 3D pavement surface reconstruction [4].
Yu and Yu [5] proposed the vibration based sensing system
which provides an evaluation of pavement distress by measur-
ing the impact of road defects on the reactive dynamics of a
moving vehicle [4]–[8]. Although they are low cost and can
attain real time performance, vibration-based methods provide
qualitative results only. The accuracy is hindered by the fact
that joints and bumps of roads can be detected as potholes.

Image (i.e. 2D) vision-based methods employ image
processing and machine learning algorithms on pavement
images and video frames to automatically calculate 2D char-
acteristics of potholes and other road defects. In earliest
approach, Koch and Brilakis [9] proposed automatic detection
of potholes from pavement images involving segmentation of
an image into defect and non-defect regions. Comparison of
defect regions with a predetermined model of pothole identi-
fies potential potholes in image frames. In further improvement
of their work [10], an enhanced pothole-recognition method,
capable of video based pavement assessment, is presented.
Similar video based approaches [10]-[12] target continuous
tracking of potholes in subsequent frames to estimate total
number of potholes. However, 2D vision-based methods do
not provide depth information for severity assessment.

To include depth information in distress severity mea-
surement, researchers proposed 3D pavement imaging based
on Kinect sensor [13], [14], laser scanning [3], [20] and
stereovision [22]–[24]. Hou et al. [15] explained the develop-
ment of Digital Highway Data Vehicle (DHDV) at University
of Arkansas. Equipped with several line scan and area-
scan cameras installed at a fixed distance, DHDV captures
images of pavement and its software reconstructs the pavement
surface using the stereovision principle. Salari et al. [16]
and Jog et al. [11] performed the integration of information
from 2D images and 3D reconstruction to further improve
the accuracy of pavement surface analysis. By taking an
unconventional approach, Zhang and Elaksher [17] proposed
a UAV-based imaging system for pavement condition moni-
toring which uses SfM based 3D reconstruction algorithm to
determine image orientation parameters and 3D point cloud.
The authors reported an accuracy of 0.5 cm for on surface and
depth measurements of road distresses.

Laser scanners are also popular among researchers for 3D
pavement imaging for distress measurement. Chang et al. [18]
developed a 3D laser scanning system for pavement surface
and extraction of an elevation model by means of a grid-
based processing approach. Similar approaches [19], [20]
perform the conversion of laser stripe deformation due to road
distresses into 3D depth profiles by signal processing. Results
achieved through laser scanning systems suggest that laser

generated 3D models can provide highly accurate measure-
ments of distress features as well as estimation of area and
volume of road distresses.

A. Multi View Stereo

Vision based techniques that use two or more images and
use point correspondences as their main cue are termed as
Multi-view stereo (MVS) techniques. Stereovision, Structure-
from-Motion (SfM), and Simultaneous Localization and Map-
ping (SLAM) are examples of MVS algorithms that share a
basic processing pipeline, which is explained below.

1) Stereovision: In 3D vision-based approaches, stereovi-
sion is a most widely used technique. Basic operation of
stereovision includes the computation of the 3D structure
of the scene using images taken from at least two different
viewpoints. One of the challenging research problems in stereo
vision is detecting corresponding pairs of key points in stereo
images [21]. Candidate points for matching must be different
enough from its neighbors to rule out any ambiguity while
matching. Researchers have proposed several algorithms and
techniques to address this research problem [22]–[24]. Every
algorithm makes use of a matching cost function or energy
function to develop correspondence between two pixels.

2) Visual Simultaneous Localization and Mapping
(VSLAM): VSLAM is another widely used computer
vision technique. Earlier work on SLAM was predominantly
based on single Extended Kalman Filter (EKF) approach
[25] for reconstruction of medium sized maps in robotic
environment and demonstrated the necessity of maintaining
estimate correlations. Owing to increased image resolution
and image quality of digital cameras and increased computing
power, Davison [26] introduced the first real-time monocular
SLAM (MonoSLAM) algorithm.

3) Structure From Motion (SfM): SfM is another vision-
based technique that employs stereo correspondences to com-
pute 3D geometry of the scene using more than two images.
While taking a set of images and intrinsic camera parame-
ters as inputs, SfM algorithms output two important things:
(1) camera matrix for each image view (2) 3D points represent-
ing objects visible in the images. Apart from some additional
steps, a number of state-of-the-art SfM algorithms have a set
of common processing steps. Initial research on SfM was
focused on the geometry of multiple views while assuming
a rigid scene [21]. A technical overview of early work on
visual reconstruction algorithms is presented by Tomasi [27].
Later on, the development and use of RANSAC [28] proved to
be a key step forward, which enabled researchers to robustly
estimate the epipolar geometry between two views.

4) Parallel Tracking and Mapping (PTAM): Klein and
Murray [29] proposed the PTAM algorithm to separate the two
basic processes of reconstruction. It was proposed that camera
pose tracking and environment map building be performed
in two simultaneous pipelines. A separate mapping process
enables the system to extract and match thousands of features
in real time. The PTAM algorithm utilizes measurements of
hundreds of features per frame to perform pose estimation.
The methodology of PTAM can be summarized as follows:
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(1) tracking and mapping are performed separately in parallel
threads, (2) key-frame based mapping is performed using
bundle adjustment, (3) map is initialized using the 5-point
algorithm on a stereo pair, (4) new points are initialized
using epipolar geometry, and (5) incremental map building
to produce a dense point cloud. PTAM has been adopted
by many researchers for highly robust tracking to provide
sparsely mapped 3D points in real time [30], [31]. Dense
3D mapping requires intensive computations and therefore
higher processing power. State-of-the-art SfM algorithms are
currently achieving high quality dense stereo reconstruction
in real time while making use of GPU implementation.
In this regard, Newcombe et al. [32] presented DTAM (Dense
Tracking and Mapping), which overcame the limitations in
previous real-time monocular SLAM systems. DTAM gener-
ates a dense 3D surface model and immediately uses it for
dense camera tracking via whole image registration. Similar
approaches achieved dense mapping using GPU-accelerated
techniques [31], [32].

5) Scale Ambiguity: Structure from Motion using a single
camera tends to simultaneously obtain camera motion and 3D
representation of the scene. Without any external knowledge
about the environment, the resulting reconstruction can only be
defined for a scale [32]. Scale information is essential to deter-
mine the real-world dimensions of reconstructed structure.
Existing reconstruction algorithms employ inertial sensors and
laser distance meters for scale estimation. In inertial measure-
ment unit (IMU) supported reconstruction methods [33]–[37],
feature based tracking and 3D map building is assisted by
inertial sensing in relative position and orientation estimation.
Consequently, the 3D model obtained after reconstruction
represents the real-world dimensions of the objects being
reconstructed. The algorithms are optimized to deal with noisy
measurements, e.g. due to motion blur, rolling shutter artifacts,
or low-quality IMU.

Wu et al. [38] proposed integration of a laser dis-
tance meter (LDM) with a camera for enhanced monocular
visual odometry to be used for astronaut navigation. Using
direct distance measurements from LDM, system recovers a
global trajectory from monocular images. In another exam-
ple, Fanfani and Colombo [3] evaluated the performance of a
hybrid camera-LiDAR framework to estimate absolute camera
displacements using a SLAM based method. LDM and LIDAR
are expensive hardware, and their use pushes up the overall
cost of the system. Moreover, bringing together different tech-
nologies into a single sensor package has also its drawbacks.

In this research, laser triangulation is achieved by using
a low-cost laser pointer to recover scale information, thereby,
metric 3D models. In this regard, it is proposed that the image
from the camera is used for SfM based reconstruction as well
as to recover the scale of the scene, by robustly detecting
the laser spot in the scene. Even though stereo reconstruction
is not possible in the road where the laser spot falls, the
spot is significantly small to have any real effect on the 3D
reconstruction. There can be instances where the laser falls
into deep recesses, like thin cracks, thereby not being able to
calculate the scale of the current image frame. To eliminate
this absence of scale, the proposed algorithm makes use of the

Fig. 1. Two view geometry.

scales of the scene measured from the previous and successive
frames to reconstruct the current scene without issues; the
retrospective correction from future frames is not an issue as
the road profile need not be constructed in real-time. As the
thin cracks, and similar features, are also not densely packed
even in worst road surfaces, the proposed method works.
The idea is novel and never applied before for SfM based
monocular reconstruction, let alone its application to pavement
imaging.

III. THEORY

A. Stereo Reconstruction

A two-camera stereo geometry is shown in Figure 1. The
real-world coordinates of a point that is seen by both the cam-
eras is given by P . Let us assume that the image coordinates
of point P in the first camera is given by x , in homogeneous
coordinates. The same point is imaged as x � in the second
camera. In stereo theory, the two points are related by the
so-called fundamental matrix.

When the cameras are calibrated, the relationship between
the two image coordinates is defined by the essential matrix.
For a detailed treatment of the concepts and equations, the
reader is directed to any standard textbook on computer vision
or 3D imaging [39].

The five point algorithm is proposed by Nister [40] to
compute the essential matrix from any 5 distinct point cor-
respondences between the cameras and to solve the relative
pose problem. The 5-point algorithm allows perfect stereo
reconstruction, but does not estimate the scale of the 3D
reconstruction. This article proposes a solution to the problem
of scale estimation, by using laser triangulation, as explained
below. Using a similar approach to un-calibrated 7 and 8-point
methods, the 5-point algorithm can be modified for more than
5-points [40].

B. Laser Triangulation

Laser triangulation is a well-known technique used for
3-dimensional measurements in machine vision [39]. It is a
simple and robust technique, where a laser beam is projected
on object surface. Laser spot on the object surface is imaged by
a lens with a numerical aperture. The lens focuses the image
of laser spot on a CCD array sensor. The angle of triangulation
is formed by the axes of illumination and observation. Planar
geometry for the triangulation scheme is shown in Figure 2.
The derivation of the depth of the point on the road where the
laser points is as follows.
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Fig. 2. Laser triangulation schematic.

The collection angle β is computed as:

β = tan−1
� p

d

�
(1)

From trigonometry it can be verified that:

L = H

tan α + tan β
(2)

and,

G = L tan α (3)

From Equations (1) and (3), it can be shown that

L = H d

p + d tan α
(4)

where, also referring to Figure 2, L is the shortest distance of
laser point from imaging plane, H is the baseline distance
between camera lens and laser pointer, G is the shortest
distance from the laser pointer location to the normal of the
laser pointer plane, d is distance between lens and CCD array
sensor, and p is the pixel distance of the located point from the
image center. α and β are projection and observation angles,
respectively.

The position of the laser dot varies on CMOS array as
distance between ground and setup increases or decreases.
The image of laser dot is captured at different known distances
from ground. The camera and the laser source are fixed rigidly
with respect to each other at the fixed distance between them.
Corresponding pixel position of laser dot is plotted against
known distances from ground to obtain a relation between
pixel position and ground distance.

C. Imaging From a Moving Vehicle

Images are also obtained by mounting the imaging system
on a vehicle. Pothole images acquired from video frames
contain motion blur which reduces the quality of image,
hence degrading keypoint matching. A low number of keypoint
matches does not produce a dense 3D point-cloud upon stereo
reconstruction, which in turn reduces the accuracy of system.
However, to solve the blur issue in dynamic images, a tech-
nique devised by [22] is used in this work, where the dynamic
images are passed through a series of operations involving
high-pass filtering, histogram equalization, and Gaussian fil-
tering respectively.

Fig. 3. Flow chart of proposed technique.

IV. METHODOLOGY

To obtain the metric 3D models of potholes, the proposed
system uses a SfM based reconstruction algorithm integrated
with laser triangulation. The flow chart of proposed method is
shown in Figure 3.

A. SfM Based Reconstruction

The algorithm takes as input a set of pothole images and
outputs the translation and rotation matrices between the
cameras for each image, and 3D points visible in each image.
The algorithm relies on the SIFT feature transform for 2D
feature extraction and matching, which is performed using
VL_Feat library [41] in MATLAB. SIFT provides dimensional
feature descriptors. Values of different parameters in SIFT
algorithm are as stated in Lowe [42].

Matched 2D image points (x, x �) are provided as input to
the 5-point algorithm. As the intrinsic camera matrix is known
the essential matrix can be calculated. Now, the projection
matrices for both cameras can be recovered from the essential
matrix. Projection matrices associated with each image frame
pair map matched 2D points (x, x �) to get 3D point cloud of
scene using triangulation.

In order to determine the absolute scale of reconstruction,
S, the laser triangulation provides distance L between camera
center and ground. Pixel location of laser point in image frame
is automatically detected in the following manner. A small
window of size relative to the size of the laser point was
passed over the image to detect the red point based on the
image intensity values. The window in the image with highest
red intensity was regarded as the pointer location. This location
was then fed into the scale estimation process in (4). A square
region 40 × 40 around this pixel is searched for 2D SIFT
feature point that has minimum Euclidean distance from the
pixel location of laser point. This feature point serves as an
estimate for the laser point and provides a measure of distance
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L � defined up to a scale between camera center and laser
point projection on ground. The distance L � is then divided
by absolute distance L provided by laser triangulation to get
scale factor S in (5).

s = L �

L
(5)

The initial reconstruction is then multiplied by the scale factor
to obtain the real-world reconstruction.

During the reconstruction process, laser pointer may not
be visible in some image frames. The algorithm successfully
tackles the invisibility of laser point in one image frame by
assuming the scale factor calculated in the previous image
frame.

B. Post Processing of Point Cloud

The processes listed below are applied to the point cloud
obtained for better visualization and to obtain metrological
parameters of pothole.

1) Tilt Removal: Due to varying camera angle and distance,
the point cloud obtained after the 3D reconstruction contains
a tilt, with respect to the global coordinate system as shown in
Figure 7. This tilt needs to be removed, especially if the point
cloud is to be processed further for obtaining the metrological
features of the pothole. The tilt is removed in two steps.
First, the surface equation of the road is calculated by using
a RANSAC algorithm which uses the following plane fitting
equation.

b1x + b2y+b3z + b4 = 0 (6)

where x , y and z are the coordinates of the point cloud of the
road surface, b1, b2, b3 and b4 are the coefficients the plane
equation.

Second, with reference to [43] and without any loss of
generality, the global coordinate system is chosen, with respect
to the point-cloud coordinate system, such that the translation
vectors along x- and y-axis are zero. It is assumed that u =
(ux , uy , uz) is the unit vector around which the rotation of
point-cloud takes place. Now, the transformation matrix T
[43] between the global coordinate system and the point-cloud
becomes as (7), shown at the bottom of the page, where,

ux = b2

��
b2

1 + b2
2 + b2

3

uy = −b1

��
b2

1 + b2
2 + b2

3

cosθ = b3

��
b2

1 + b2
2 + b2

3

sinθ =
�

b2
1 + b2

2

��
b2

1 + b2
2 + b2

3

This transformation matrix is used to orient the point cloud
into a tilt-less orientation using the following transformation
equation:

P0 = P1 × T −1 (8)

where P1 represent the original orientation of the point cloud,
and P0 represent the transformed, tilt-less orientation of the
point cloud. P0 and P1 are both homogenous coordinates.

2) Differentiation of Pothole From Road Surface: Aligned
3D-pointcloud obtained after tilt removal process is used to
separate the pothole points from the road surface. The 3D
points which satisfy the plane equation described in the above
section are regarded as road surface whereas all the other 3D
points are taken as part of a pothole.

3) Perimeter of Pothole: To obtain the perimeter of pothole,
the boundary function provided in MATLAB is used. The
boundary function is based on the alpha-shape algorithm [44].
3D points representing pothole points are projected on plane
that represents the road surface. These 2D projections provide
view of surface area covered by pothole. Joining the outermost
points, boundary function draws a boundary of the pothole and
the total length of the boundary is considered as the perimeter
of pothole.

4) Maximum and Average Depth of a Pothole: Distances of
each pothole inlier point along z-axis represent the depth of
pothole at that location. The maximum z-value corresponds
to the maximum depth of pothole whereas the mean value of
these distances gives an estimate for the average depth of the
pothole.

V. EXPERIMENTATION

Images of potholes on different roads in Islamabad, Pakistan
are captured using proposed imaging system shown in
Figure 4. The proposed imaging system has the field of view
that spans about 1 m, whereas lane width of a typical road
is ∼4m. Therefore, four such cameras, fitted in the lateral
direction of the road, along with laser pointers, are required to
cover a single lane. The calibrated camera has a resolution of
1280×720 pixels. For algorithm development and processing,
MATLAB is used. The computations are performed on Intel
Ci5 6th Gen Processor with 8 GB RAM. The computation
time of algorithm is found by iterating the algorithm on the
test set of 30 potholes, and the average computation time is
found to be 5.2 seconds. An alternate equivalent approach
for 3D-reconstruction such as semi-global matching is used
by [45]. They have reported the computation time of 19 ms
where computations are performed on GTX 280 GPU. The
computation time for proposed algorithm can be reduced by
parallelizing the computations on GPU.

For an absolute scale of reconstruction, a novel hardware
setup comprising a webcam and a laser pointer rigidly attached

T =

⎡
⎢⎢⎣

cosθ + u2
x (1 − cosθ) ux uy(1 − cosθ) uysinθ 0

ux uy(1 − cosθ) cosθ + u2
y(1 − cosθ) −ux sinθ 0

−uysinθ uxsinθ cosθ −b4/b3
0 0 0 1

⎤
⎥⎥⎦ (7)
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Fig. 4. (a) Dynamic imaging schematic, (b) Imaging system mounted to the
rear of a car, (c) Proposed imaging system.

on a solid bar is used as shown in Figure 4 (c). Such
arrangement allows camera to capture laser dot on pavement
surface and determine distance of camera setup from ground
using laser triangulation principle. Images of real potholes
are captured using the proposed camera setup at a standoff
distance of 40-60 cm above the road surface from different
viewpoints.

For each natural pothole, average depth, and perimeter
are manually measured; for these potholes, the ground truth
of their metrology is established based on the procedure of
Rajab et al. [46]. Depth values at different locations in a
pothole are recorded and used to find the average depth of
a pothole. To measure the perimeter of a pothole, a chord of
wire is placed alongside the edges of the pothole whose length
is then measured to get pothole perimeter.

VI. RESULTS AND DISCUSSION

A. Calibrations

1) Camera Calibration: The camera calibration is per-
formed within MATLAB. The camera matrix determined in
camera calibration [47] is given as,

K =
⎡
⎣ 1414.33 0 630.89

0 1414.70 343.03
0 0 1

⎤
⎦

2) Laser Calibration: To calibrate the laser pointer, images
of a straight plane were captured from the setup at known
heights from the flat surface. Heights of 10 to 110 cm
were marked with successive intervals of 10 cm on a ruler.
At each mark the ground was imaged with camera axis of the
acquisition setup maintained perpendicular to the ground. The
pixel location of the laser points in each image was located.
A relation between laser pointer location in the image and
the corresponding height was obtained. Figure 5 shows the
relation between the height of experimental setup and the pixel
locations of the laser pointer. Using the pixel location of the
laser dot, the depth of the point can hence be estimated through
a look-up table.

Fig. 5. (a) Position of laser pointer on x-axis of image plane, (b) Position
of laser pointer on y-axis of image plane.

Fig. 6. (a) Real pothole N1 (static image) with detected laser pointer, (b) Real
pothole N1 (dynamic image), (c) Artificial pothole-like indentations A1.

B. Pothole Reconstruction

Figure 6 shows the results of raw pothole images as obtained
from image sensors. For reconstruction, one image pair is
found enough to capture the horizontal extents of all potholes.
However, for very large potholes, the algorithm can also be
implemented with multiple image frames as well. For a given
input image, a SIFT based keypoint extraction is performed.
In the subsequent image, the same procedure is carried out.
Then the keypoints from both the images are matched using
SIFT features. In this regard, a window size of 40×4040 × 40
pixels is used to search for the best matching candidates from
the second image. The 40 pixel window side itself has been
chosen based on the typical depth range of pothole depth and
the standoff between the imaging setup and the road. In a
parallel manner, to the SIFT keypoint detection, the laser point
is also detected in the images in order to do triangulation.
These two processes start the chain of processing activities
given in Figure 3, resulting in an intermediate point cloud as
shown in Figure 7.

C. Tilt Removal

A subsequent part of the algorithm removes the alignment
issues between the imaging system and the road, called tilt
removal in this article (section IV-B-1), and the horizontally
aligned point cloud of the pothole is shown in Figure 8. For
fitting a plane through the surface points, a distance threshold
is used to remove any outlier data point from the plane.
Any point lying at a distance beyond this threshold value is
regarded as an outlier. As this threshold value is manually
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TABLE I

MEASURED PARAMETERS FOR ARTIFICIAL POTHOLE-LIKE INDENTATIONS

Fig. 7. 3D-reconstruction of Pothole N1, (a) Static image, (b) Dynamic
image.

Fig. 8. Aligned Pothole N1 (a) Static, (b) Dynamic.

chosen, its sensitivity regarding the final results obtained by
the algorithm is studied in the following manner.

For varying values of the threshold, the error of the systems
performance is calculated by plotting the error values obtained
for average and maximum depths and, perimeter by using the
corresponding ground truth values available. These error plots
can be seen in Figure 9. Based on these plots, the value of
the threshold corresponding to the minimum errors is chosen

Fig. 9. Error plots for different threshold values used in RANSAC for
(a) average depth, (b) maximum depth, (c) perimeter.

as the best value of the threshold. This best value is found to
be 0.7 mm.

D. Metrological Features/Evaluation of Potholes

The last portion of the algorithm proposed in this article
deals with extracting the metrological properties of potholes,
namely the maximum depth, average depth and the perimeter.

The maximum depth is measured straight from the point
cloud data in Figure 8. The results obtained on multi-
ple potholes found in the roads of Islamabad. The mea-
sured values against the ground truth values are shown in
Table II and Table III.

E. Benchmarking With Artificial Indentations in Concrete

To benchmark the algorithm, it is first used to recover
3D models of artificial potholes with known dimensions. For
benchmarking purposes, artificial potholes are covered with
a textured paper therefore enabling the algorithm to detect
maximum number of distinct feature points for better matching
and accurate reconstruction. Figure 12 shows a tilt removed
point-cloud of the hemispherical artificial indentation (numeri-
cal results are in Table I). Comparison between measurements
obtained for artificial and real potholes, and their respective
ground truths, show that reconstruction of natural pothole is
reasonably accurate. The mean percent error for the average
depth of artificial potholes dataset is found to be 3.0%, whereas
the mean percentage error for the perimeter of is found to
be 7.7%. The proposed hardware and algorithm can become
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TABLE II

MEASURED AVERAGE DEPTH FOR REAL POTHOLES

TABLE III

MEASURED PERIMETER FOR REAL POTHOLES

Fig. 10. Perimeter of Pothole N1.

a simple and inexpensive alternative to the industrial laser
scanners used exclusively to scan roads presently. A laser
scanner system uses laser line to scan a surface. Variations
in surface depth cause deflections in the laser line which are
captured by the camera and used for surface reconstruction.
Therefore, its surface reconstruction is very dense and can be
accurate up to sub-millimeter level. However, laser equipment
is very expensive, costing in the excess of US$1 million.
Likewise, Kamal et al. [14] proposed the Kinect sensor tech-
nology for pavement depth evaluation and have reported the
error percentage of 5.47% for volume calculation of artificial
pothole like indentations. In case of stereovision technology,
the accuracy of 3 mm is achieved with the error percentage of
6.72% for pothole evaluation [22]. In the present proposal, the
laser pointer and the camera are aligned so that laser point falls

Fig. 11. 3D-reconstruction of Pothole A1.

on middle rows of pixels in camera frame. The algorithm is
designed to search for laser point in these specific rows, which
is very efficient processing.

F. Imaging of Real Potholes

To establish the accuracy of proposed hardware, 30 real-
world potholes are imaged. These potholes on roads are
imaged both statically and also from a moving vehicle at
speeds of 10 km/hr, 15 km/hr, and 20 km/hr. For static imaging
the mean percent error for perimeter and average depth of
pothole is found to be 5.3% and 5.2%. The mean percent
error for average depth of pothole under dynamic conditions
is found to be 7.9%, 14.4% and 26.6% for vehicle speeds
of 10 km/hr, 15 km/hr, and 20 km/hr respectively. For perime-
ter measurements of potholes, the mean error percentage is
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Fig. 12. Aligned Pothole A1.

around 6.83%, 11.8% and 27.8% at the vehicle speeds of
10 km/hr, 15 km/hr, and 20 km/hr respectively.

VII. CONCLUSION AND FUTURE WORK

The proposed work presents a novel approach for metric
reconstruction of potholes using single camera. The proposed
method used two main techniques namely Structure from
Motion (SfM) and Laser triangulation. The SfM algorithm
involves feature extraction, feature matching, pose estimation
and triangulation. SIFT feature transform is used for feature
extraction and matching while 5-point algorithm is employed
in pose estimation to determine fundamental matrix. Laser
point triangulation is used to determine unknown scale of
monocular reconstruction. Images of natural potholes from
different roads in Islamabad are captured using a calibrated
camera and laser apparatus. Reconstruction results for 30 nat-
ural pothole images are obtained. An artificial pothole rig
with two potholes of different size and shapes is prepared to
benchmark the algorithm. The proposed technique using laser
triangulation shows promising results for metric reconstruction
of natural potholes.
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