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ABSTRACT
antibiotic resistance in bacteria is a current threat causing an increasing number of infections 
of difficult clinical management. While the overuse and misuse of antibiotics are investigated 
to reduce them, the need for alternatives to approaches is rising. carbon-based materials shown 
recent moderate to high antibacterial properties and diamond, thanks to its superior mechanical, 
tribological, electrical, chemical and biological quality is a choice material to investigate for safe 
antibacterial films, coatings and particles. here, the antibacterial properties of diamond films, 
nanodiamonds, Dlc films and a comprehensive list of the composites developed from them 
are discussed along with a summary of the bacterial strains used and the most efficient 
composition and/or concentration discovered. in a later stage, the mechanisms of action and 
the parameters that are believed to influence them are discussed and finally, an overview of 
the biomedical and food industry applications is given.

1. Introduction

Antibiotic bacterial resistance is a challenge of this cen-
tury posing health problems [1] that are spreading fast 
at different scales: Humans bearing antibiotic-resistant 
bacteria [2], dissemination of antibiotics and antibiotic 
resistance genes in the environment [3–5]. The decreas-
ing antibiotic efficiency gives the space for the develop-
ment of bacterial infections and contamination that are 
a lot less treatable as they used to be. It emerged because 
of the over- and misuse of antibiotics in human health-
care [6–9] and the lack of proper removal from hospital 
wastewaters [10], as well as livestock since their antibac-
terial properties are combined with a growth factor pro-
motion effect [11]. It was a strategy to use them as 
preventive in the food industry to increase the quantity 
of meat and dairy products to feed the always growing 
and demanding population while keeping safe-to-con-
sumption products [12–17]. However, research is already 
focusing on how to reduce the over- and misuse of anti-
biotics in these contexts [18–22] which aim to prevent 
the emergence of new resistances effectively in the 
future. Nonetheless, the resistances that already appeared 
and spread need to be assessed and treated with alterna-
tive medicine and to be kept under control by efficient 
antibacterial surfaces and coatings.

Metal-based antibacterial materials were among the 
first investigated and showed high antibacterial properties, 

often able to kill resistant bacteria [23–30]. However,  
rising concerns about their cytotoxicity against mamma-
lian cells oriented the research to more biocompatible 
materials such as carbon-based materials. With several 
of them showing interesting antibacterial properties 
such as graphite [31–34], graphene [35–38], and carbon 
nanotubes [39–43] to cite only a few of the latest refer-
ences, carbon-based materials are definitely an interesting 
strategy to explore to keep surfaces bacteria-free or to 
reduce infection based on Antibiotic-Resistant Bacteria 
(Table 1).

Thanks to its superior hardness, resistance [179] and 
tribological properties [180–187], fluorescence outside 
of the biological range [188, 189], electric and electronic 
properties [190–202] (noticeably as a substrate for 
Metal Oxide Semiconductor Field-Effect Transistor 
[203]), easy surface functionalisation [198, 204] and 
chemical inertness [205], the diamond appeared, 
despite its price, as a choice base material for the devel-
opment of antibacterial coatings, films and particles. In 
this review, the antibacterial properties of diamond 
films, diamond nanoparticles, and the main composites 
developed from them are investigated as exhaustively 
as possible. On a later stage, the antibacterial mecha-
nisms of action of diamond-based antibacterial mate-
rials are discussed, as well as the important parameters 
reported by the literature explored. Finally, an overview 
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of the targeted applications for such antibacterial coat-
ings and particles is built, focusing mainly on the bio-
medical applications and the food industry, two of the 
most important fields where antibacterial materials are 
needed nowadays.

1.1. Diamond materials with antibacterial 
properties

1.1.1. Antibacterial diamond films
Diamond films are of interest as a surface coating or for 
the strengthening of existing materials. In the applications 
where antibacterial properties are an additional need to 
strength, electric conductivity, biocompatibility, or chem-
ical inertness, they were investigated for their perfor-
mances. Different parameters were studied: different 
bacterial cultivation media [206], different surface struc-
tures [158, 206, 207], different textures [208], different 
bacterial strains such as Pseudomonas aeruginosa [207, 
208], Escherichia coli [158, 206, 209], and Bacillus subtilis 
[210], different surface and in-depth functionalisation 

[158, 206, 209, 210] and the mechanisms of action were 
explored.

Through their investigations on the culture media used 
for the bacterial growth, Budil et al. show that the organic 
content of the culture medium was of importance in  
the adhesive properties and biofilm formation of E. coli 
on variously surface functionalised Nanocrystalline 
Diamond (NCD) films. The bacterial adhesion was 
reduced by about 50% when they used a mineral medium 
(M9) for NCD films functionalised with –H or –F. A com-
plex organic medium, like the Luria-Bertani cultivation 
media, contains many organic compounds that are prob-
ably responsible of the passivation of the –H and –F ter-
mination, explaining why they were not efficient to reduce 
the bacterial adhesion. In other terms, such termination 
would be efficient to avoid bacterial biofilm formation and 
bacterial adhesion in a mineral environment or an envi-
ronment containing a low amount of organic compounds 
able to interact with –H or –F terminations (Figure 1). 
Furthermore, Budil et al. also demonstrated that the sub-
strate on which the NCD films are deposited does not 

Table 1. comparison of the mechanism of action, the cytotoxicity and existing bacterial resistance of common antibacterial 
materials.

material categorie material mechanism of action cytotoxicity
Bacterial 

resistance? References

metal-based 
nanoparticles

Gold Diffusion of cations, bacterial 
membrane disturbance, 
penetration into bacterial cells and 
metabolism disturbances

medium no [44–54]
Silver High Yes [45, 46, 55–103]
copper High Yes [59, 77, 81, 99, 

104–121]
carbon-based 

nanoparticles
multi-walled and 

single-walled 
carbon 
nanotubes

membrane puncture, cellular uptake 
and metabolism disturbance via 
RoS

medium to low no [77, 102, 122–137]

Graphite mechanism not elucidated yet low no [31, 33, 34, 138–140]
Graphene Bacterial cell wrapping, membrane 

cutting
High no [49, 70, 75, 80, 102, 

122, 141–153]
Diamond membrane disturbance, cellular 

uptake, oxidative stress
Very low no [154–178]

Figure 1. influence of the culture media and surface termination on the bacterial adhesion onto uncD films. Reproduced from [206] 
with permission.
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influence the NCD films’ performance. The study stresses 
the importance of the environment where the antibacte-
rial/antibiofilm films based on diamonds are to be used 
as well as the atomic diamond termination [206].

As it was demonstrated with other materials investi-
gated for their antibacterial properties, the surface struc-
ture of diamond films is a strategy to implement a 
mechanical antibacterial mechanism of action against 
certain strains of bacteria [211–215]. The motile bacte-
ria, able to move by themselves in their environment 
such as E. coli are especially sensitive to sharp points able 
to puncture their membranes. The movements they will 
subsequently have to explore their environments for 
nutriments exploration can increase the puncture and 
lead to the internal cell content leakage, leading eventu-
ally to their deaths. An interesting structure proven effi-
cient by different studies focusing on other materials was 
reproduced using a black diamond (bD) coating on sil-
icon nanoneedles of about 5 µm length [158, 207]. The 
bD coating deposited and functionalised with different 
terminations (–H, –O, –NH2 or –F) were able to com-
bine the physical antibacterial mechanism of action of 
the nanoneedles to the chemical antibacterial mecha-
nism of action. Surprisingly, despite changing the hydro-
philicity of the nanoneedles film strongly, the different 
surface functionalisation didn’t show significant differ-
ences in between them. They all show an increased 
chemical antibacterial rate of about 20–30% compared 
to the unfunctionalized bD nanoneedles [158]. This can 
be explained using the results of Burdil et al. described 
in the previous paragraph. E. coli was cultivated in 
Tryptic Soy Broth which is a culture media containing 
a high proportion of organic molecules able to passivate 
the surface termination of the nanoneedles. The 
increased chemical killing rate observed for all surface 
terminated nanoneedles could be attributed to the inter-
action between the organic molecules contained in the 
culture media and the nanoneedles, decreasing the num-
ber of organic molecules available for the bacterial 
growth [206]. In other words, it could be attributed to a 
reduction of the availability of the food for the bacteria 
in their environment because the food is trapped on the 
surface of the nanoneedles and they cannot use it for 
themselves.

Different bacterial strains were used in these studies. 
Two of them are Gram-negative: P. aeruginosa, and 
E. coli. All cited studies focusing on diamond films in 
these paragraphs are focusing on these two motile 
strains, and only one study cited here is focusing on 
Gram-positive bacteria, B. subtilis and compares results 
with a Gram-negative strain [210]. Merker et al. inves-
tigated the antibacterial properties of a composite film 
composed of silver nanodroplets capped with Ultranano-
crystalline diamond (UNCD). Their results show that 
the actual antibacterial property of this composite is 
mainly dependent on the ability of silver to be released 
in the environment. The UNCD capping, here, acted 

more like a brake on the antibacterial properties than 
like a supportive layer. It is interesting to consider this 
capping technic to increase the time of silver diffusion 
in the environment and obtain a sustainable antibacte-
rial diamond film [210]. However, their UNCD film, 
unlike the NCD film developed by Medina et al. [208], 
was not able to show intrinsic antibacterial properties. 
It confirms the high importance of the grain size control 
for the development of an antibacterial diamond film. 
Moreover, considering the large difference of bacterial 
membrane structure between Gram-positive and Gram-
negative bacteria, more investigations on the Gram-
positive strains are needed, especially on diamond films 
already demonstrating antibacterial properties against 
Gram-negative bacteria.

1.1.2. Antibacterial diamond particles
The antibacterial properties of diamond based materials 
are not only investigated as coatings or films but also as 
particles, often nanosized. They can be dispersed in bio-
logical media [175, 216] with specific surface function-
alisation [173, 175] or to transport specific molecules 
[216] or added at the surface of a film or a coating to 
increase its antibacterial property [31, 217].

As a film or coating addition, nanodiamonds are inter-
esting for different properties. Firstly, they can increase 
the hardness of the material, increasing its range of appli-
cation to environments with harder stresses. We effec-
tively demonstrated in 2020 that the appearance of 
diamond microspheres with a diameter comprised 
between 10 and 30 µm on top of a graphitic coating could 
increase by a factor of 7 the Vicker’s hardness of this coat-
ing without compromising their antibacterial properties 
against both Gram-positive and Gram-negative bacteria 
if in a moderate number [31] (Figure 2). But they are also 
useful to increase the antibacterial properties themselves 
because of their ability to interact with the bacterial cell 
walls. Guttiérrez et al. compared the antibacterial prop-
erties of a DLC film and a DLC film doped with 
Detonation Nanodiamonds (DND) against E. coli. After 
6 h of interaction, the DLC DND film was able to reduce 
the bacterial growth of 95% which is very near the effi-
ciency of their positive control, the streptomycin antibi-
otic. During the same contact time, the DLC film without 
DND doping was only able to reach 30% of bacterial 
growth inhibition, proving that the important bacterial 
killing effect of DLC DND film is mainly obtained thanks 
to the nanodiamonds (ND) present in the film. These 
antibacterial properties are attributed to the ability of the 
ND to interact with the bacterial cell wall, penetrate the 
cell, damage its genetic content and cause important oxi-
dative stress, leading to the bacterial death. However, this 
very good antibacterial effect is time-limited. After 18 h 
of contact, the bacterial growth inhibition with the DLC 
DND film dropped to 20% while it maintained for the 
DLC film. The authors observed that the NDs at the 
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surface of the film tend to form nanoparticles agglomer-
ates with time, increasing the size of diamond particles 
able to interact with the bacteria and preventing them to 
penetrate the cells [217]. Moreover, Beranová et  al. 
demonstrated that diamond nanoparticles spread on agar 
plates significantly reduced the growth of E. coli with a 
concentration dependence and a dependence of the ratio 
between the number of diamond nanoparticles and the 
number of E. coli bacterial cells in the media. Proper and 
satisfactory growth inhibition was observed for agar plate 
spread with diamond nanoparticles concentration above 
30 µg/L and total bacterial growth inhibition was observed 
for agar plates spread with 60 µg/L of nanodiamonds. 
Concerning the ratio of the number of nanodiamond 
particles per E. coli bacterial cell, the growth inhibition 
was higher than 80% above 7 NDs per 1 E. coli cell and 
higher than 95% above 15 NDs per 1 E. coli cell. It suggests 
that knowing the concentration of pathogen in a media 
would allow tailoring very precisely the concentration of 
antibacterial particles needed to inhibit its growth [157]. 
Based on a similar investigation, Chwalibog et al. also 
determined that ND had a Gram-dependent growth inhi-
bition effect and, despite the cidal effect recorded against 
the Gram-negative E. coli bacteria, the Gram-positive 
Staphylococcus aureus appeared undamaged after contact 
with NDs. The authors explained this difference of effect 
by the positive zeta potential of their ND [218].

1.1.3. A low number of diamond-based antibacterial 
composites investigated
As diamond films and diamond particles themselves 
have great antibacterial properties in general compared 

to antibiotic controls, only a low number of dia-
mond-based composites were investigated as it increases 
the costs and times of production that would not be 
needed. It was mainly investigated in the cases where 
as-grown diamond films or particles didn’t have high 
antibacterial properties but the as-grown films or parti-
cles shown superior mechanical, electrical or chemical 
properties that would make the additional cost of a dop-
ing process acceptable.

For instance, in the case of diamond films with nano-
crystalline diamonds, their intrinsic properties are 
interesting enough to create a composite with Silver nan-
odroplets embedded in the UNCD film [210] (Figure 3). 
In that case, the antibacterial properties are not expected 
from the UNCD film, and Merker et al. demonstrated 
that the crystalline size was too small to have any cidal 
properties. They are expected from the silver nanodrop-
lets that are successfully able to release antibacterial silver 
cations in the media against both Gram-positive and 
Gram-negative bacterial strains. The cation release pro-
cess is highly dependent on the UNCD capping layer and 
the thinner the capping layer, the larger the concentra-
tion and the faster the silver cations are released. It fol-
lows that the antibacterial properties of this 
diamond-based composite are tailorable depending on 
the number of silver cations and the duration of silver 
cations released needed. With the addition of the strength 
and the duration of the antibacterial property, this com-
posite compensates the extra-costs and steps needed in 
the fabrication process [210].

Following the same idea, diamonds nanoparticles were 
functionalised using silver nanoparticles. Xu et al. directly 
synthesised silver nanoparticles with a narrow size on 

Figure 2. influence of the presence of diamond microspheres on top of mushroom microstructures coated with Graphite on the 
antibacterial properties against E. coli and S. aureus and the Vicker’s Hardness of the coating. Reproduced from [31] with 
permission.
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the ND particles using the reduction of AgNO3 by 
Polyvinylpyrrolidone. The formed nanocomposite displayed 
high bactericidal activity toward the Gram-negative E. coli 
bacterial strain at very low concentration in the cultivation 
media [219] (Figure 4). As concerns are developing concern-
ing the rise of bacterial resistance against Silver [30, 220–231] 
and Copper [229, 232–244] as well as concerns about the 
impact of heavy metal on the spread and development of 
antibiotic resistance genes [120, 245] recently, the creation 
of diamond composites with Cu and/or Ag NPs immobilised 
of their surface could be a valid strategy to avoid this resis-
tances to develop and to reduce the needed amount of Cu 
and Ag to display satisfactory antibacterial properties.

As DLC film does not show incredible antibacterial 
properties by themselves, despite the diamond films being 
exceptionally efficient in certain conditions, a strategy to 
reduce the cost of diamond film production could be the 
introduction of diamond particles into DLC films. 
Gutierrez et al. investigated this idea and loaded a DLC 
film using DND nanoparticles. They demonstrated that a 

diamond-DLC composite was able to reach 95% of bac-
terial growth reduction with direct contact during 6 h and 
SEM images show a proper cidal activity with E. coli mem-
brane disruption and cell content leakage. However, after 
18 h of contact, this antibacterial activity dropped to about 
20% of bacterial growth reduction and was attributed to 
the formation of ND clusters, diminishing their ability to 
penetrate the bacterial cell [217]. It suggests that this com-
posite might be interesting to join the best of both DLC 
and diamond antibacterial properties, but it will need 
additional investigation to offer sustainable antibacterial 
properties. For instance, a strategy to immobilise the ND 
particles in the DLC film could avoid the formation of the 
ND aggregates and protect their antibacterial properties 
among time.

1.1.4. Antibacterial diamond-like carbon films  
and diamond-like carbon-based composites
Diamond-Like Carbon (DLC) films were also investi-
gated because of their structures near the diamond films’ 
and their lower costs and time of production thanks to 
the higher deposition rate obtainable [246]. As a more 
economically-sustainable suggestion for the future of 
efficient antibacterial, chemically inert, resistant and 
biocompatible films, they are an interesting alternative 
to proper diamond films especially for biomedical 
devices [247]. Anti-adhesive properties were investi-
gated as well as bactericidal and antibiofilm properties.

Similar to diamond films, the structures, the internal 
bonds as well as the hydrogen content of DLC films are 
influencing the bacterial adhesion to their surfaces [248, 
249]. These parameters influence the chemical inertness 
and the wettability of the film that are believed to be 
involved in the bacterial adhesion process [250]. The 
bacterial adhesion is dependent on different forces 
including Van der Waals interactions, and the hydro-
philic interactions. For instance, the decrease in the sp3/
sp2 ratio in the DLC film is followed by a slight decrease 
in the bacterial adhesion. Moreover, the presence of –H 
polar bonds at the surface of the DLC film can increase 
the surface hydrophilicity and can promote the bacterial 
adhesion. They calculated that the lower the C–H bond-
ing at the film surface, the lower the surface free energy 
and finally, the lower the bacterial adhesion on the DLC 
films. The surface roughness wasn’t reported as a signif-
icant parameter in the bacterial adhesion process [248, 
249]. Other parameters are important to avoid bacterial 
adhesion and only moderate bactericidal activities: The 
deposition parameters [249], direct contact with the 
DLC film surface [217, 246, 248] (Figure 5). 

However, surface functionalisation and the develop-
ment of composites based on DLC were able to improve 
dramatically their antibacterial properties. DLC films 
were successfully doped with silver [249, 251–259], 
Copper [256, 260–263], Silicon [264], Fluorine [264–268], 
and Metal oxides (ZnO and TiO2) [34, 269–279] (Table 2).

Figure 3. Process of uncD-ag-uncD composites and the dif-
ferent investigations made at each step. Bacterial assays were 
performed on the uncD surface, after silver deposition and 
dewetting, and once again after the uncD top layer. Reproduced 
with permission from [210].

Figure 4. Growth curves of E. coli bacterium in broth containing 
(a) 6.6 × 10−4 wt% ag/nD, (b) 6.6 × 10−4 wt% nD and (c) H2o 
demonstrating the efficiency of ag-nD at very low concentration 
against E. coli growth. Reproduced from [219] with permissions.
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2. Antibacterial mechanisms of action

2.1. Importance of the surface functionalisation 
for antibacterial applications

2.1.1. Influence of simple surface groups
Nanodiamonds are also investigated in suspensions with 
various surface functionalisation for their antibacterial 
properties. Among them, partially oxidised nanodia-
monds were investigated by Wehling et al. The authors 
obtained different surface functionalisation and zeta 
potentials using various standard pretreatments on det-
onation nanodiamonds. Afterwards, they processed on 
antibacterial assays and determined that nanodiamonds 
with a grade 01 purity, a negative zeta potential and hav-
ing oxygen-containing groups at their surfaces were 
especially efficient against both Gram-negative and 
Gram-positive bacteria in aqueous conditions, inde-
pendently of their pretreatments (Figure 6A). Interes-
tingly, a high purification of the ND obtained using the 
detonation technique were not able to develop antibac-
terial properties anymore. Thus, they tested the impuri-
ties obtained with the detonation technique which did 
not lead to any answer until they explored the difference 
of the surface oxidation between the two purification 
grades. The extra purified nanodiamonds have less oxi-
dised surface functions than the G01 nanodiamonds, 
and a strong correlation between the amount of oxidised 
surface function on the nanodiamond surface and the 
bacterial killing rate was demonstrated. It proves that 
the importance of the surface functionalisation for effi-
cient bacterial killing is as important for ND suspended 
in aqueous media than immobilised in antibacterial 
films. From their data, the anhydride acid groups, neg-
atively charged, are the most important in the bacterial 
killing process thanks to their higher reactivity. As a 
confirmation, the lower reactivity of carboxylic groups 
made ND less able to kill bacteria. Wehling et  al. 
attributed the difference of efficiency to the difference 
in the surface isotropy and the homogeneity of the sur-
face charge distribution, the more interesting being an 
anisotropic surface with an inhomogeneous surface 

charge distribution [175]. Other studies were carried 
about the nanodiamonds surface functionalisation and 
reviewed by Szunerits et al. and confirmed the results of 
Wehling et al. [175] concerning the importance of the 
oxidation state and the charge of the surface groups of 
nanodiamonds [173]. Although less able to kill bacteria 
than other oxidised surface groups, Chatterjee et  al. 
show that the cidal properties of carboxylated NDs are 
due to their ability to bind with the bacterial cell wall, 
change its protein structure (proven with Raman spec-
troscopy) and leads to internal cell content leakage. The 
mechanism is also demonstrated different from lyso-
zyme treatment and lysis confirming the role of the 
carboxylated NDs in the cell wall destruction [281].

Additionally to oxidised surface groups, Budil et al. 
investigated simpler surface functionalisation such as –H, 
–F, and –O on NCD films. NCD films with –O surface 
termination did not show any anti-adhesive effect against 
E. coli however, in mineral medium only, NCD films ter-
minated with –H and –F were able to reduce the bacterial 
adhesion by about 50%. However, in LB broth containing 
organic molecules, these surface groups seem to favour 
the bacterial adhesion. It suggests that the passivation 
occurring in organic media implies organic molecules 
that the bacterial cell can use as an adherence substrate 
and that in mineral media that these surface groups are 
repulsive to the bacterial membranes [206]. Dunseath 
et al. also demonstrated that among the different tested 
surface functions (–H, –F, –NH2, and –O), the amount 
of dead adhered bacteria was a function of the hydro-
philicity of the diamond film surface (Figure 6B). In other 
terms, the more the surface is hydrophobic, the higher 
number of dead adhered bacteria [158].

Robertson et al. studied a more exotic surface function 
using Germanium. The higher polarity of the Carbon-
Germanium bond increased the surface free energy of the 
DLC film surface, decreasing the surface biofouling with 
P. aeruginosa bacteria. Additionally, they demonstrated a 
Gram-dependent cidal activity, with 90% of Gram – bac-
teria growth reduction and no significant effect against 
Gram-positive bacteria (Figure 6C). Moreover, Ge-DLC 

Figure 5. (a) antibacterial properties of Dlc film coated on Stainless Steel substrate after 3 h and 24 h incubation versus uncoated 
Stainless Steel, Gentamicin, an antibiotic and sterile distilled water. (B) SEm observations of E. coli in contact with Dlc coating after 
3 h contact. Reproduced with permission from [246].
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coating was able to reduce P. aeruginosa biofilms of more 
than 60% compared to Stainless Steel. Despite the differ-
ence with undoped DLC coating wasn’t significant in 
terms of quantitative analysis, the SEM investigation of 
the P. aeruginosa biofilms developed on both DLC and 
Ge-DLC coatings show a significant difference between 
them: a proper cidal activity was observable only on 
Ge-DLC coating, suggesting this surface functionalisation 
was adding cidal properties to DLC film [250].

2.2. Surface functionalisation with molecules

2.2.1. Glycan-surface functionalised nanodiamonds
Additionally to “simple” chemical functions, nanodia-
monds can also be functionalised with larger molecules. 
In their review, Szunerits et al. analysed the interest of 
glyco-conjugate nanodiamonds against E. coli. E. coli is a 
Gram-negative bacteria possessing pilii terminated with 
an adhesive FimH protein having a specific affinity for 
Glycosaccharides and Mannose (Figure 7A). Using 
click-chemistry, it is relatively easy and fast to obtain 
mannose-functionalised nanodiamonds (Mannose-ND) 
with different amount of mannose molecules per nano-
diamonds and Diels-Alder chemistry allows the forma-
tion of Saccharide functionalised nanodiamonds. First, 
it is interesting to note that E. coli was able to bind with 
the Mannose and saccharide molecules on the surface of 
the nanodiamond. Second, their binding to this 
Mannose-ND reduced the ability of E. coli to adhere to 

mammal bladder cells (Figure 7B), avoiding the forma-
tion of biofilms responsible for mammals’ urinary tract 
infections (Figure 7C)[156]. Thirdly, the interaction of 
the type 1 FimH on E. coli pilii with the saccharides on 
the ND produces a precipitate that can be easily filtered 
from the growth media using a 10 µm filter and the ND 
could finally be recovered after filtration in an easy-step 
(Figure 7D) [163]. Finally, it was observed that the num-
ber of mannose molecules on the ND surface were of 
interest. NDs bearing 3 mannose molecules at their sur-
faces were able to develop an antibiofilm ability higher 
than three times the ability of NDs functionalised with 
single Mannose molecules, suggesting a synergetic action 
of the mannose molecules at the nanodiamonds surface 
[167]. These results are interesting for the development 
of antibacterial drugs alternative to antibiotics [173].

2.2.2. Essential oil surface functionalised 
nanodiamonds
Other molecules were also investigated, such as essential 
oils. One of the most braking points of essential oils is 
their volatility leading to a loss of most of the active com-
pounds before arriving at the targeted place. The fixa-
tions of the active compound on the NDs’ surfaces 
reduced dramatically the volatility. For instance, the 
menthol molecule, cyclic terpene alcohol being the main 
compound of Mentha canadensis L. essential oils, was 
attached on NDs (Menthol-ND) (Figure 8A, B). 

Figure 6. (a) negatively charged nD- and nDraw/nDraw n.u. were shown to exhibit strong antibacterial properties under aqueous 
conditions, while nD + caused bacterial death only at high nD concentrations. Reproduced with permissions from [175] (B) Bacterial 
viability on surfaces with the different terminations, compared to that of the H-terminated flat diamond control. numbers of live 
(green) and dead (red) cells are indicated, together with the corresponding percentage of dead cells. the uncertainties in the measure-
ments are shown as error bars representing one standard deviation of the number of dead cells based upon 4 repeats of the experi-
ment. Reproduced with permissions from [158]. (c) Effect of Dlc and Ge-Dlc on 24 h biofilm formation of P. aeruginosa and S. aureus. 
comparison of biofilm formation on uncoated SS316, Dlc coated SS316 and germanium doped Dlc coated SS316 with P. aeruginosa 
and S. aureus. Data are mean ± Standard deviation. n = 3, ***p < 0.001, **p < 0.01. Reproduced with permissions from [250].
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Turcheniuk et al. demonstrated a moderate but concen-
tration-dependent direct killing effect toward both bac-
teria tested (Figure 8C, D), however, Menthol-ND had a 
better antibiofilm effect against both bacteria than 
ND alone or the dedicated antibiotic used as a control 
(Figure 8E, F) [216]. Despite the moderate proper anti-
bacterial effect, the reduction of the biofilm formation is 
of great interest since these macrostructures formed of a 
great number of bacteria reunited with Extra-Polymeric 
Substances in a superstructure is harder to kill than single 
bacteria. It could be seen as a first step to simplify the 
treatments and shorten the treatment length of certain 
infections, using fewer antibiotics, for shorter periods.

2.2.3. Importance of the surface structure: physical 
antibacterial mechanism of action
The antibacterial properties appear via different mech-
anisms via the surface groups and chemical functions, 
the chemical mechanism of action is mainly investigated. 
Concerning the physical antibacterial of action, the sur-
face structuration of the diamond films is an important 
component of the bacterial membrane stretching and 
the cell content leakage, leading to bacterial death. From 
the literature, two antibacterial nano structuration using 
diamonds were investigated. Firstly, the chemical vapour 
deposition process is used to produce micro and nano-
structured hierarchical diamond films that reproduce 
the shape of lotus leaves’ surface able to avoid biofouling 
and water damages. Biofouling is a process in which 

bacterial cells and organic compounds cover a surface 
and leads finally to bacterial attachment and biofilm 
formation covering all the surface. It also leads to cor-
rosion and deterioration of equipment used in biological 
media and marine environment. The hierarchical film 
developed by Wang et  al. looks like numerous little 
domes made of fluorinated-diamond covering a flat sur-
face, the substrate, which can be of different chemical 
nature (Titanium, silicon, or glass). This micro and 
nanostructuration made with diamond confers to the 
surface superhydrophobicity (surface contact angle com-
prised between 161° and 171°, depending on the sub-
strate, the better being the silicon) and decreased the 
green algae biofouling by 95%. Moreover, the association 
between the Fluorination and the super hydrophobia 
conferred by the structuration reduces the marine P. 
aeruginosa and E. coli adhesion of 90–99% on the struc-
tured surface. The few bacteria that were attached to the 
film were dead accordingly to the live/dead fluorescence 
assay (Figure 9). The authors explained it by the presence 
of air trapped at the surface of the structured diamond 
film which prevents the biofilm formation [280].

The most investigated surface nanostructuration 
based on diamond films is nanospike. It was investi-
gated after May et al. realised that black silicon nano-
spikes offered an incredible bactericidal effect, 
especially against large motile bacteria such as E. coli 
but had the disadvantage of being easily breakable. The 
addition of black diamond coating on the surface of 
the black silicon nanospikes allowed higher resistance 

Figure 7. Schematic representation of nD-mannose ability to counteract FimH-mediated adhesion. (a) capacity of nD-mannose to 
interfere with type 1 fimbriae-mediated adhesion to eukaryotic cells was demonstrated using yeast agglutination inhibition assay as 
well as (B) inhibition of E. coli adhesion to bladder epithelial cells. (c) in addition, nD-mannose was demonstrated to be inhibitors of 
E. coli biofilm formation. (D) the agglutination‐filtration experiments with E. coli show that the addition of just 80 μg ml−1 of the 
mannosylated nD 1 is sufficient to efficiently remove 1000 μg ml−1 of fimbriated bacteria PKl1162 from the solution by filtration 
through a conventional filter with 10 μm pore size. Reproduced with permissions from [156].
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to abrasion and higher hardness (Figure 10A), with a 
superior bactericidal property combining the physical 
membrane disruption of the nanospikes with the chem-
ical effect of diamond surface functionalisation against 
E. coli and P. aeruginosa (Figure 10) [158, 207]. The 
authors also demonstrated that the space between the 
nanospikes (also called areal density) was of great 

importance to interact and disrupt the bacterial mem-
branes and found the optimum value for E. coli and 
suggestions for smaller bacteria such as S. gordonii 
despite their smaller size, thicker membrane and lack 
of motility [164].

Both nanostructured surfaces based on diamond 
proved they can improve the bactericidal and anti- 

Figure 8. (a) Schematic illustration of the stepwise chemical functionalization of nanodiamond particles (nD) to give the target 
nD-menthol cluster; (B) synthetic route to menthol derivative (2): (i) succinic anhydride, 4-DmaP, cHcl3, reflux, overnight, 84%; (ii) 
nHS, Dcc, cH2cl2, r.t, overnight, 95%. Growth curves of (c) S. aureus and (D) E. coli in the presence of nD-oH (10 μg ml−1), ampicillin 
(1 μg ml− 1) and nD-menthol at 1, 10 and 100 μg ml−1. Biofilm formation of (E) S. aureus and (F) E. coli in the absence and presence 
of nD-menthol (1, 10, 100 μg ml−1), nD-oH (1, 10, 100 μg ml−1), ampicillin (1 μg ml−1) and menthol (100 μg ml−1). Reproduced with 
permissions from [216].
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adhesive properties of flat diamond films, despite the addi-
tional costs and steps required for their productions.

2.3. Influence of the roughness

Oppositely to the effect of the nanostructuration of 
diamond-based films, it seems that the roughness has 

low to no effect on the antibacterial properties. The 
chemical vapour deposition technique used in the 
most investigations to deposit the diamond based film 
produces films which roughness is very low (around 
0.2 nm, even for high deposition rate of DLC films 
[246]), probably below the size of nanoprotrusion that 
could have a significant effect on the bacterial 

Figure 9. Schematic representation of the micro and nano hierarchical structure of the diamond film and its effect against algae and 
bacteria. antibiofouling is very efficient on 14 days and the self-cleaning and antibacterial properties are related to the highest 
hydrophobicity and the surface fluorination. Reproduced with permissions from [280].

Figure 10. (a) long needles of Black Silicon (bSi) conformally coated with boron-doped mcD. and total numbers of (B) bound bac-
teria and (c) percentage dead cells after 1 h incubation of P. aeruginosa on a control ‘flat’ BDD surface and a BDD-coated bSi short-nee-
dle surface, and subsequent viability determination by live/Dead Baclight stain. Reproduced with permissions from [207].
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adhesion or the bacterial membrane integrity. 
Marciano et  al. investigated this parameter on their 
film deposited with PECVD on stainless steel. They 
observed a very low roughness on all their DLC films, 
comprised between 0.10 and 0.13 nm and verified that 
this parameter did not influence the bacterial growth 
of E. coli, P. aeruginosa, S. typhimurium, and S. 
aureus [248].

2.4. Role of the grain size on the antibacterial 
properties

2.4.1. Nano vs microcrystalline diamond films
The diamond film grain size, which can be tailored 
through different parameters [190, 283, 284], is also of 
interest in terms of antibacterial properties, as shown by 
Medina et al. They compared the antibacterial properties 
of two kinds of diamond films with different grain sizes 
against other interesting antibacterial materials such as 
silver, copper, stainless steel, and polyethylene. The two 
chosen diamond films textures are based on the grain 
size. The first film is composed of microcrystalline dia-
monds (MCD) with a grain diameter above 500 nm 
while the second is made of nanocrystalline diamonds 
(NCD) with a grain diameter below 20 nm. The size of 
the crystal composing the diamond film is an important 
parameter to be taken into account since the MCD films 
did not show particularly good antibacterial properties 
while the NCD film showed better antibacterial proper-
ties than nearly all other materials tested. NCD film was 
able to kill the Pseudomonas aeruginosa in 12 h com-
pared to 14 h for Silver, and 48 h for the Polyethylene. 
Only a copper film demonstrated a better killing speed 
than NCD films (2 h) (Figure 11). Thanks to its higher 
biocompatibility than Cu, the NCD film is proven a good 
candidate for applications in biological media. The 

difference of results obtained with two different grain 
size can be attributed to the difference of wettability of 
the films (NCD films being more hydrophobic than 
MCD films) and the film roughness (lower NCD rough-
ness, so less ability for the bacteria to stay attached on 
the film) [208]. However, it is not related to the surface 
termination of the film since both were terminated with 
–H. Additionally, the tested bacterial strain was culti-
vated in an organic nutrient broth which would have 
“mask” the film surface terminations [206].

2.4.2. Ultrananocrystalline diamond films 
performance compared to nanocrystalline  
diamond films
Merker et al. developed Ultrananocrystalline Diamond 
films, with diamond crystallite size up to 10 nm, so about 
twice lower than the NCD film described in the previous 
paragraph [210]. As it is expected with the results 
obtained by Medina et al. the crystalline size is important 
in the film and as observed in their study, nanocrystal-
line and ultrananocrystalline diamonds are too small to 
develop antibacterial properties [208, 210]. From these 
two studies, it looks like only MCD diamond films can 
develop antibacterial properties and that NCD and 
UNCD films have too small crystals to interact properly 
with the bacterial membrane.

2,5. Applications of antibacterial diamond and 
DLC materials

Different applications of antibacterial films and particles 
based on diamond materials are targeted by several stud-
ies. Most of them are regarding biomedical applications 
such as wound dressing, drug transportation or implant 
coatings, but additional applications in food preparation 
surfaces and packagings are also under the scope of 
research to help to feed an ever-growing number of 
humans on the Earth.

2.5.1. Wound dressing
Juknius et al. explored the application of Ag-DLC thin 
nanocomposites for their applications as smart wound 
dressings. Basically, the wound bandage consists of a 
synthetic silk fabric coated with a very thin film of 
Ag-DLC deposited by magnetron sputtering and stabi-
lised with a medical-grade layer of gelatin and cellulose. 
The antibacterial properties are mainly expected from 
the silver cations released from the bandage, and they 
tested the silver release in aqueous media with bandages 
as-coated and after etching with Radio-frequency oxy-
gen plasma during various durations. The antibacterial 
properties of the bandage were tested using 4 strains of 
S. aureus isolated from infected wounds in humans and 
animals and the bandages showing the best antibacterial 
properties was with an Ag-DLC coating containing 3.12 
atomic percentage of silver and silver nanoparticles of 

Figure 11. P. aeruginosa on nanocrystalline diamond (ncD), 
microcrystalline diamond (mcD), stainless steel (SS), silver (ag), 
polyethylene (Poly) and copper (cu) surfaces. Reproduced with 
permissions from [208].
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23.7 nm (Figure 12). Above stabilisation of the coating 
layer on top of the silk fabric, the gelatin and cellulose 
top layer also demonstrated positive support for the sil-
ver cation release and, thus, increased the antibacterial 
properties of the bandages of about 50%. Thanks to their 
investigation, Juknius et al. demonstrated the possibility 
to develop antibacterial wound dressing with a tailorable 
antibacterial performance depending on the bandage 
production and the stabilisation of the Ag-DLC coating 
on top of the fabric. Their results on Gram-positive bac-
terial strains are very promising for healing wounds 
without over infection and deserved more investigations 
on a larger number of bacterial strains isolated from 
wounds [252].

2.5.2. Drug transportation
The solubility in biological media, biocompatibility, and 
the easy-functionalisation of NDs make them a promis-
ing drug-carriers with easy transportation. Turcheniuk 
et al. demonstrated that they could transport ultra-vola-
tile compounds such as essential oils while preserving 
their antibacterial properties against both Gram-positive 
and Gram-negative bacteria tested. Moreover, they also 
demonstrated that menthol-NDs were more efficient to 
avoid the biofilm formation than the antibiotic used as a 
positive control especially against E. coli even at the lowest 
tested concentration. Against S. aureus, a concentration 

of at least 10 µg/mL was necessary to reach the efficiency 
of 1 µg/mL of ampicillin. This is still a great step on the 
path of finding an alternative to antibiotics that are get-
ting less efficient because of the emerging bacterial resis-
tance. Additionally, they developed Menthol-NDs with 
a particle size of 15 ± 5 nm, so small enough to be used 
easily in biological media and excreted outside of a body 
and the loading of menthol onto NDs also increased by 
about 50 °C their thermal stability, which is far above 
usual biological media temperature. However, it is inter-
esting to note that the growth of planktonic Gram-
positive and Gram-negative bacteria (in other words, 
suspended in solution) was reduced and slowed down at 
all Menthol-NDs concentration in the media but not as 
much as the efficiency of ampicillin in solution at a con-
centration of 1 µg/mL for duration above 2 h. Finally, the 
live/dead fluorescent assay performed on both bacteria 
did not show dead bacteria. Consequently, Menthol-ND 
is not toxic to bacteria but can slow down their growth 
and avoid the formation of biofilms [216].

2.5.3. Biocompatible implant and surgical tools 
coatings
The medical implants are a widely investigated applica-
tion for diamond-based antibacterial coatings because 
of the improvements needed in this field. A biomedical 

Figure 12. time dependencies of bacteria colony forming units (cFu) versus time using the spread-plate technique for the bandage 
prototype (Pl) and the reference sample (no Pl) measured with four types of S. aureus bacteria strains: (a) ltSaDa01; (b) ltSam01; 
(c) ltSa635 and (d) ltSa603. Reproduced with permissions from [252].



18 a. cUMONt et al. 

implant needs several qualities such as hardness, low 
internal stress, biocompatibility for mammalian cells (or 
specifically human cells for human medicine) and anti-
bacterial efficiency against nosocomial bacteria that can 
enter the wound and colonise the implant during the 
surgery or the aftercare. With a rate of implant-related 
infections increasing and based on Staphylococci and 
Streptococci biofilms colonising the surfaces of the 
implant, the need for efficient and biocompatible coat-
ings for implants is increasing [285, 286].

Merker et al. investigated a coating made of a layer of 
silver sandwiched between two layers of UNCD, with the 
UNCD top layer having a variable thickness to tailor the 
silver release. The antibacterial properties measured are 
satisfactory to extend the investigations in biocompati-
bility and hardness and stress of the coating for implants 
and surgical tools. The surface being UNCD there are 
good chances that this coating would have good biocom-
patibility, but its ability to release silver cations is a con-
cern. Moreover, their study does not contain survival 
assays on mammalian cells, and it would be the next step 
to evaluate if this coating is as promising as it looks like 
[210]. Another Ag-based diamond composite was inves-
tigated by Harrasser et al. They coated Polyethylene (PE) 
substrate with Ag-DLC coating and observed its antibac-
terial properties, as well as the mechanical behaviour of 
the Ag-DLC-PE, would be following the requirements of 
antibacterial implants coating (Figure 13). However, the 
authors underline several limits in their study. First, the 
potential toxicity of silver, still under discussion and 
investigation, is reducing dramatically the potential clin-
ical applications of such coatings. Furthermore, only two 
bacterial strains were investigated in this study, which 
gives the first trend but is not a large enough antibacterial 
spectra to speculate further on bacterial strains isolated 
from effective implants and peri-implants infections. 
Finally, they didn’t investigate the adhesion of human 

bone cells on top of the Ag-DLC-PE which is one of the 
main needed characteristics for implantable medical 
devices such as implants [256]. However, Schwarz et al. 
demonstrated on another Ag-DLC composite intended 
for implantable medical devices that the silver cations 
were not released in reconstituted saliva and blood fluid 
thanks to the surface coating with the saliva fluid proteins. 
This suggests that similar implantable devices with similar 
Ag-DLC coating wouldn’t be able to release silver cations 
at a toxic concentration in the body and that it would still 
be able to kill the bacteria adhering to the proteins adhered 
to the antibacterial coating surface, giving a good hope 
for that kind of coatings at least in orthodontic implants 
area [258].

The development of stimuli-responsive coatings that 
would release antibacterial properties in a timely and 
punctual manner is also under the scope of research since 
it would increase the life of the antibacterial coating as well 
as reduce the amount of antibacterial compounds release 
in the body. It could be a good strategy to avoid the emer-
gence of new resistance against antibacterial compounds 
in the future. With this in mind, Buchegger et al. developed 
a ZnO-DLC antibacterial composite coating that can react 
in the function of acidosis caused by inflammation, releas-
ing Zn2+ having an antibacterial effect against the tested 
bacteria that are responsible for the inflammation. They 
demonstrated that there coating induced a Zone of 
Inhibition (ZOI) in agar plates which diameter is depen-
dent on the pH: The largest one being obtained for pH = 
6.4 (Figure 14). Moreover, this pH dependence is not linear 
since the ZOI was smaller for pH= 5.6, despite Zn2+ 
released was higher at this pH than at 6.4, suggesting other 
pH-related mechanisms are in place at lower pH [269].

Geyao et al. reviewed the different implants and sur-
gical tools coatings available through the physical vapour 
deposition process. Among the reviewed coatings, they 
stated that DLC coatings are especially interesting to coat 

Figure 13. Bacterial growth of S. epidermidis in the ag-Dlc-PE testing group 2 with a comparison of different deposition methods 
(t = 0: before incubation; t = 24 h: after incubation; Piii: plasma immersion ion implantation; ii: direct ion implantation); * = p < .05 
(compared to untreated PE). Reproduced with permissions from [256].
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surgical tools thanks to its ability to resist autoclaving and 
sterilising methods. Concerning implantable medical 
devices, the DLC coating is a strong ally as a transition 
layer between the substrate (a Titanium alloy) and the top 
coating (Hydroxyapatite in that case) to avoid the pene-
tration of biological liquids/media as far as the substrate 
and, thus, avoid the corrosion of the substrate of the 
device, increasing the duration of implantable devices. 
Moreover, this investigated coating favours the develop-
ment of human bones’ cell growth in vitro which is a very 
good sign of biocompatibility. However, in vivo investi-
gation are still needed to promote this coating more 
strongly. DLC coatings are also able to increase the 
mechanical and corrosion properties for Nickel and 
Titanium alloys, even with thin coatings (700 nm to 
1000 nm). These qualities make them a good candidate 

for orthodontic wires and would decrease the health prob-
lem associated with the corrosion of these alloys by saliva. 
As a versatile biomedical coating for implantable medical 
devices, a DLC coating also shows an increase of biocom-
patibility for hips implants in vitro and in vivo, and 
decreases the level for the femoral head, reducing poten-
tial pain and reject for the patients. Moreover, DLC coat-
ing’s low coefficient of friction makes them interesting for 
higher lubrication for devices such as catheters, facilitat-
ing their insertions and their removals. Geyao et  al. 
showed in this review that DLC coatings were especially 
versatile for biomedical applications, and especially for 
implantable devices and devices in direct contact with 
biological media thanks to their corrosion resistance, their 
biocompatibility, and their low friction resistance. 
However, only a few of these targeted applications were 
already tested in vivo and it will require more investigation 
to ensure their safety and qualities in vivo [247].

2.5.4. Food preparation surfaces
Zakariene et  al. investigated Ag-DLC composites on 
foodborne pathogens to evaluate their interest in food 
preparation surface coatings. The foodborne pathogens 
investigated were C. jejuni and Listeria monocytogenes and 
they used two kinds of Ag-DLC coatings: A thin coating 
of about 5 nm thick, and a thick coating of about 40 nm 
thick. Both coatings contain 22 atomic per cent of silver 
available for silver cations release. After 15 min contact 
of Ag-DLC with C. jejuni in the culture-based method, 
they realised that this coating was far more antibacterial 
than silver itself, which is in good adequation in terms of 
contact-time to avoid cross-contamination during food 
preparation on the surface. Additionally, they demon-
strated a total cidal effect of DLC-Ag coating against L. 
monocytogenes after 24 h of contact. It confirms the addi-
tion of both DLC and silver antibacterial properties even 
against foodborne pathogens. However, the delay needed 
to kill all L. monocytogenes is not adequate to prevent 
cross-contamination for food preparation surface. 
Different mechanisms of action are suggested to explain 
the antibacterial properties of Ag-DLC against foodborne 
pathogens but none of them is proven yet and it is still an 
area to investigate deeper. Moreover, they noticed that the 
silver released overtime was decreasing, which would 
suggest an antibacterial activity limited in time. This 
would be a proper disadvantage for the targeted applica-
tion as a surface coating for food preparation [254].

3. Conclusion

Diamond-based materials are intensively and recently 
investigated for antibacterial applications. As a first 
approach, diamond films are, by themselves, highly anti-
bacterial, however, they are expensive to produce. DLC 
films only show moderate antibacterial abilities as pro-
duced and require additional functionalisation or 

Figure 14. antimicrobial inhibition zones of 9 × 9 mm2 Dlc-
Zno-samples against methicillin-Resistant S. aureus on mueller 
Hinton agar plate as a function of pH. Zoi is 9.5 mm for pH = 7.4, 
13.0 mm for pH = 6.4 and 10.5 mm for pH = 5.4. Reproduced 
with permissions from [269].
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implantation with Silver, Copper, Fluorine, Anatase and 
Zinc oxides to display satisfactory antibacterial proper-
ties, despite their lower costs of production. In addition 
to satisfactory antibacterial properties, they also offer 
the creation of smart antibacterial materials such as 
pH-responsive antibacterial films. Several parameters 
are to take into account to understand diamond and 
diamond-related antibacterial mechanism of action and 
antibacterial efficiency. First, the grain size is of impor-
tance since only diamond films made of Microcrystalline 
Diamond displayed antibacterial properties. Second, the 
surface functionalisation of the films and nanodiamond 
is important and tailor the antibacterial properties of 
these materials. Finally, different applications for these 
materials are targeted, especially in the biomedical field, 
such as antibacterial wound dressings, antibacterial, bio-
compatible, and resistant to corrosion implant coatings, 
and the transportation of fragile drugs to the place of 
the infection. An interesting and additional field of 
application gaining importance with the always increas-
ing Earth population to feed is the use of diamond-based 
antibacterial films for food preparation surface. However, 
this application especially needs improvement. As an 
additional benefit from the use of diamond-based anti-
bacterial materials, several studies cited here also 
reported the superior antibacterial properties of these 
materials against antibiotic-resistant bacteria species 
such as Methicillin-Resistant S. aureus offering some 
hope for a future without antibiotics.

Last, but not least, carbon-based materials were also 
reported as efficient biosensors against the current pan-
demic caused by the SARS-CoV-2 virus, causing the now 
too well-known and deadly Covid-19 disease. Namely, 
Graphite-based biosensors were already able to detect 
the SARS-CoV-2 virus, and Graphene-based protective 
pieces of equipment were already developed and esti-
mated as very efficient against the spread of this virus 
[287]. Because of the ability of Multi-Walled-Carbon-
Nanotubes [288] and Boron-doped-diamond-based 
[289, 290] biosensors to detect other aerial transmitted 
viruses such as the Influenza virus, it is interesting to 
wonder their ability to detect, or even fight the Covid-
19 virus.
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