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Abstract: Protein lipoxidation is a non-enzymatic post-translational modification that consists of the 

covalent addition of reactive lipid species to proteins. This occurs under basal conditions but in-

creases in situations associated with oxidative stress. Protein targets for lipoxidation include meta-

bolic and signalling enzymes, cytoskeletal proteins, and transcription factors, among others. There 

is strong evidence for the involvement of protein lipoxidation in disease, including atherosclerosis, 

neurodegeneration, and cancer. Nevertheless, the involvement of lipoxidation in cellular regulatory 

mechanisms is less understood. Here we review basic aspects of protein lipoxidation and discuss 

several features that could support its role in cell signalling, including its selectivity, reversibility, 

and possibilities for regulation at the levels of the generation and/or detoxification of reactive lipids. 

Moreover, given the great structural variety of electrophilic lipid species, protein lipoxidation can 

contribute to the generation of multiple structurally and functionally diverse protein species. Fi-

nally, the nature of the lipoxidised proteins and residues provides a frameshift for a complex inter-

play with other post-translational modifications, including redox and redox-regulated modifica-

tions, such as oxidative modifications and phosphorylation, thus strengthening the importance of 

detailed knowledge of this process. 

Keywords: lipoxidation; electrophilic lipids; oxidative stress; cell signalling; regulation; selectivity; 

post-translational modifications 

 

1. Introduction 

Lipids constitute a structurally and functionally heterogeneous group of hydropho-

bic biomolecules that, among other species, include fatty acids, triacylglycerols, phospho-

lipids, and sterols. Lipids are essential components of cellular membranes, serve as key 

molecules for the storage of energy, and play important metabolic and signalling func-

tions [1,2]. Lipids can undergo various metabolic transformations, which contribute to 

their great structural and functional variety. Among these reactions, lipid oxidation is a 

common transformation that occurs in physiological conditions as a consequence of cel-

lular metabolism but is usually increased under conditions of oxidative stress, i.e., in sit-

uations where there is a redox imbalance potentially leading to cellular damage. Both en-

zymatic and non-enzymatic mechanisms can be involved in lipid oxidation, and may oc-

cur by radical or non-radical attack [3]. Oxidized lipids play important roles in inflamma-

tion, atherosclerosis, cancer and ageing [4–6]. Importantly, some oxidized lipids are or 

lead to the formation of reactive or electrophilic molecules that can form covalent adducts 

with other macromolecules, including proteins. Electrophilic lipids can also arise from 

dehydration or nitration [7,8]. Thus, the term protein lipoxidation refers to the non-enzy-

matic post-translational modification (PTM) of proteins by reactive or electrophilic lipid 
species, which frequently arise from lipid oxidation. There continues to be some confu-
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sion in the literature between the terms lipid oxidation and lipoxidation, with some re-

searchers erroneously assuming they are synonymous. In addition, it is important to dis-

tinguish both terms from protein lipidation. This process refers to the PTM of proteins by 

lipid moieties, which usually occurs through enzymatic mechanisms, can involve struc-

turally varied lipids, such as glycosylphosphatidylinositol, fatty acids, isoprenoids, and 

cholesterol, and generally affects protein hydrophobicity and localization and/or protein-

membrane or protein-protein interactions [9]. Lipidation can take place at the N- or C-

terminus as well as at cysteine, serine, and lysine residues [9,10]. Moreover, lipids can be 
non-covalently associated with proteins forming complex particles known as lipopro-

teins, which are constituted by a cholesterol-triglyceride core surrounded by phospholip-

ids, other lipids, and embedded proteins [11]. Lipoproteins are essential elements in lipid 

transport and metabolism, as well as in cardiovascular pathophysiology, and both their 

lipid and protein components can undergo various oxidations [12]. In this article, we will 
clarify the terminology (Box 1) and explain the process of protein lipoxidation, before 

addressing advanced aspects of the effects of this PTM and pointing out as yet unan-

swered questions in the field. 

Box 1. Terminology and Definitions. 

 Lipid Oxidation: an overall term encompassing both radical and non-radical (elec-

trophilic) reactions and leading to an increase in the number of oxygens and other 

heteroatoms (such as nitrogen or chlorine) or a decrease in the hydrogen content of 

the lipid. 

 Lipid Peroxidation: a specific form of radical attack, usually at bis-allylic sites in an 

unsaturated hydrocarbon chain, that leads first to a carbon-centred radical and then 

the addition of molecular oxygen to form a peroxyl radical (-O-O•) on that carbon. 

The peroxyl radical remains reactive and can abstract hydrogens from adjacent mol-

ecules, resulting in a chain reaction and propagation of damage. 

 Lipoxidation: covalent reaction of reactive and electrophilic lipid products, mostly 

arising from lipid oxidation, for example, aldehydes or α,β-unsaturated breakdown 

products such as acrolein and 4-hydrononenal, or cyclopentenone-containing lipids 

(e.g., 15-deoxy-Δ12,14-prostaglandin J2) with macromolecules. The targets of lipoxida-

tion include proteins, DNA or head groups of phospholipids. 
 Advanced Lipoxidation End-products (ALEs): the covalent adducts formed by the 

process of lipoxidation. 
 Protein lipoxidation: the modification of proteins by electrophilic lipids. Although 

is not an oxidative modification per se, it frequently contributes to the damage to 

proteins under oxidative stress conditions. 
 Protein lipidation: enzymatically-catalysed covalent modification of proteins by li-

pids, which usually enable the proteins to associate with membranes. Typical exam-

ples include N-myristoylation, S-palmitoylation, or S-prenylation, as well as the ad-

dition of a glycosylphosphatidylinositol anchor. 

 Lipoproteins: particles formed by amphipathic proteins embedded in a phospho-

lipid monolayer and surrounding an inner core of cholesterol, cholesterol esters and 

triacylglycerols. They function as lipid transporters and are commonly found in 

plasma. 

2. Lipid Oxidation and Protein Lipoxidation 

Lipid oxidation can occur enzymatically, catalysed by cyclooxygenases (COX-1/2/3), 

lipoxygenases (LOX), and cytochrome P450-dependent enzymes (CYP450), or non-enzy-

matically, when it is mediated by carbon and oxygen-centred radicals [13,14]. Enzymatic 

pathways give rise to bioactive mediators, such as prostaglandins (PG), thromboxanes 

and leukotrienes, among others, which have been broadly studied and can act as physio-
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logical signalling molecules, with an important role as immunomodulators [15]. Non-en-

zymatic mechanisms are adventitious oxidations that commonly occur on phospholipids 

present in cellular membranes and on lipoproteins [12]. Lipids containing unsaturated 

fatty acyl chains, and particularly those that are polyunsaturated fatty acids (PUFAs), such 

as linoleic and arachidonic acids, are more vulnerable to attack by different reactive spe-

cies of oxygen, nitrogen and halogens [16]. In lipid peroxidation, peroxyl radicals are 

formed as intermediary products [3]. Hence, in a phospholipid bilayer environment, a 

single radical attack can entail a chain reaction based on a cascade of radical hydrogen 

abstractions and oxidations. Peroxyl radicals, and to a lesser extent hydroperoxides, are 

unstable and undergo subsequent reactions including further oxidation, cleavage and cy-

clization reactions to form a variety of secondary oxidation products (reviewed by 

[17,18]). 

Many of these secondary products, including full-chain length oxidized phospholip-

ids, phospholipids with a truncated fatty acyl chain, and non-esterified breakdown prod-

ucts, are reactive electrophilic products that undergo further rearrangements. Both full-

length and shortened fatty acyl chains can contain epoxides, hydroxides, and carboxylic 

acids as well as reactive carbonyl moieties and α,β-unsaturated alkenal moieties, which 

are highly reactive [3,19–21]. In general, alkenals, and hydroxy- or oxo-alkenals are the 

most reactive and versatile in terms of their reactivity [17,22–24]. Certain reactive lipid 

products can be formed by enzymatic and/or non-enzymatic reactions. Dehydration of PG 

synthetised via COX enzymes or non-enzymatically through the isoprostane pathway 

leads to the generation of cyclopentenone prostaglandins (cyPG) or of keto-PG, which 

contain unsaturated carbonyl moieties in the cyclopentenone ring and/or in the lateral 

chains [25–28]. Lipids can also be attacked by reactive nitrogen species (RNS) to give rise 

to nitro-alkenals that also can covalently modify proteins [29]. 

Protein lipoxidation involves the formation of Schiff’s bases or Michael adducts. 

Schiff's bases are formed by the reaction between carbonyls (aldehydes or ketones) and 

primary amines, and consequently can only form on lysine or amino-terminal residues in 

proteins. In contrast, Michael adducts are formed by reaction of a nucleophile with the β-

carbon of an α,β-alkenal, and reactivity is enhanced by the presence of an electron-with-

drawing group on the γ carbon, such as in 4-hydroxynonenal (HNE) or 4-oxononenal 

(ONE). In proteins, the nucleophilic group is most commonly cysteine (in the thiolate 

form), lysine (primary amine in deprotonated form) or histidine (secondary amine in 

deprotonated form). Adducts with asparagine and glutamine side chains have been re-

ported for certain lipid species despite the lower nucleophilicity of the amino group in an 

amide [30]. Arginine can form Michael adducts only when deprotonated, which is rare in 

physiological conditions as the guanidino group is highly basic. This different reactivity 

of protein residues and lipid species influences the selectivity of protein lipoxidation as 

will be discussed below. A summary of the mechanisms is given in Figure 1, while de-

tailed reaction mechanisms for the formation of these adducts and their subsequent rear-

rangements can be found in other reviews [19,31]. Some of the most studied and interest-

ing electrophilic lipids involved in protein lipoxidation are considered briefly below and 

in Table 1. 
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Figure 1. Formation of Schiff’s base and Michael adducts with protein residues. The structures of 

the lysine, cysteine and histidine residues are shown at the top, with the moieties involved in nu-

cleophilic attack indicated. The histidine imidazole ring exists in 2 resonance forms where the hy-

drogen can reside on either nitrogen, so either nitrogen can undertake nucleophilic attack. Schiff’s 

base formation with an amino group is shown in the centre. The Schiff’s base reactions are reversi-

ble, involving a hydrolysis reaction. The bottom panel shows Michael adduct formation by nucleo-

philic group X, where X represents a primary or secondary amine or a thiol. Michael adducts can 

also decompose by reversal of these reactions, although they are more stable than Schiff’s bases. 

Reactive lipid products can be grouped into chemical families according to their re-

active chemical groups, which determine their reactivity in lipoxidation reactions. Owing 

in part to their availability, as well as their biological actions, some reactive lipid products 

have been much more extensively studied than others. The small, non-esterified alde-

hydes malondialdehyde (MDA), acrolein, and HNE fall into this category [23,32]. Of these, 

HNE is the most toxic, acrolein is the most reactive, and MDA is the most mutagenic [33–

35], reviewed in [10,22,36]; these effects ultimately relate to their potential to cause lipox-

idation. In contrast, there are many fewer publications on other aldehydes such as cro-

tonaldehyde, pentanal, hexenal, 4-hydroxy-hexenal (HHE) and 4-hydroxy-dodecadienal, 

although some of them may be formed physiologically in sufficient amounts to have bio-

logical effects and evidence is emerging that they also modify proteins and affect their 

functions. Substantial research has also been devoted to long-chain species, especially iso-

prostanes, isolevuglandins, PG species such as cyPG, and nitrated fatty acids (NO2-FAs), 

in part due to their signalling properties [37–40]. Whereas isoprostanes are important as 
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biomarkers of oxidative stress [41], the behaviour of certain eicosanoids including cyPG, 

and of NO2-FAs as transcription factor agonists and mediators of inflammatory resolution 

has raised high interest in their potential therapeutic applications. Moreover, cyPG have 

been used as model compounds for the identification of lipoxidation targets in proteomic 

studies [27]. Interest in oxidized and nitrated phospholipids as potential agents of lipoxi-

dation is more recent but nevertheless of emerging physiological importance. In sum-

mary, the propensity of a lipoxidation adduct to be formed depends on the reactivity of 

the lipid oxidation product, the nucleophilicity of the target amino acid in the protein, and 

the stability of the product generated [42]. Furthermore, the initial adducts can undergo 

additional rearrangements, including reactions with other nucleophilic groups to cause 

inter- or intra-molecular cross-links, resulting in linear or cyclic stable products [19,43]. 

Thus, protein lipoxidation contributes to the generation of protein diversity through 

PTMs, with a variety of structural and functional consequences. 

Oxidation of lipid components of membranes occurs in all living organisms. There-

fore, the process of protein lipoxidation would be expected to be universal. Indeed, alt-

hough much work has focused on mammalian and clinical samples, protein lipoxidation 

has also been studied in plants and microorganisms. For example, immunoblot analysis 

using monoclonal antibodies against reactive aldehyde-derived protein modifications 

showed that in spinach leaves grown in normal conditions the oxygen-evolving complex 

protein 33 was modified by MDA, acrolein and crotonaldehyde [44], while salt stress in 

Arabidopsis thaliana resulted in modification of soluble proteins by HNE, HHE, crotonalde-

hyde, acrolein and MDA [45]. Excellent reviews that highlight the importance of this PTM 

in plants are available [46,47]. In contrast, little information on natural lipoxidation and 

its effects are available for fungi and bacteria, although it has been reported that bacteri-

cidal antibiotic treatments lead to the formation of MDA adducts [48]. The chemistry and 

generic consequences of lipoxidation on protein function are expected to be similar in all 

of these organisms and will depend on the context and the protein target. However, most 

of the examples provided in this review will be related to animal models in general and 

human health in particular, in relation to the pathophysiological consequences of this 

modification. 

 

Table 1. Examples of electrophilic lipid products that can cause lipoxidation. 

Reactive Lipid Product Type Source 
Reactions Reported 

With 

Cross-

Linking 

Malondialdehyde 

bis-aldehyde, isomer-

izes to β-hydroxy-acro-

lein 

Polyunsaturated chains with 

≥3 double bonds 

Lys (Michael and 

Schiff’s) His, Arg, Cys 

(Michael) 

√ 

Acrolein 

Alkenal (3 carbons) (α-

β-unsaturated alde-

hyde) 

Polyunsaturated lipids but 

also other environmental 

sources 

Lys (Michael and 

Schiff’s) His, Cys (Mi-

chael) 

√ 

Crotonaldehyde 

Alkenal (4 carbons) (α-

β-unsaturated alde-

hyde) 

ω-3 unsaturated lipids (α-lino-

lenic, eicosapentaenoic or do-

cosahexaenoic acid) 

Lys (Michael and 

Schiff’s) His, Cys (Mi-

chael) 

√ 

4-hydroxy-2- hexenal 

(HHE) 

4-hydroxy-alkenal (α-β-

unsaturated aldehyde) 

ω-3 polyunsaturated lipids (α-

linolenic, eicosapentaenoic or  

docosahexaenoic acid) 

Lys (Michael and 

Schiff’s) 

His, Cys (Michael) 

√ 

4-hydroxy-2-nonenal 

(HNE) 

4-hydroxy-alkenal 

(α-β-unsaturated alde-

hyde) 

ω-6 polyunsaturated lipids (γ-

linolenic or 

arachidonic acid) 

Lys (Michael and 

Schiff’s) 

His, Cys (Michael) 

 

√ 
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4-oxo-2-nonenal (ONE) 

4-oxo-alkenal 

(α-β-unsaturated alde-

hyde) 

ω-6 polyunsaturated lipids (γ-

linolenic or  

arachidonic acid) 

Lys (Michael and 

Schiff’s) 

His, Cys (Michael) 

√ 

15-deoxy-Δ12,14-prosta-

glandin J2 (15d-PGJ2) 

Cyclopentenone prosta-

glandin (cyPG) 
Arachidonic acid His, Cys (Michael) √ 

15-keto-prostaglandin E2 Prostaglandin Arachidonic acid Cys (Michael) X 

Palmitoyl-oxovaleroyl 

phosphatidylcholine 

(POVPC) 

Esterified alkenal 
ω-6 polyunsaturated lipids (γ-

linolenic or arachidonic acid) 

Lys (Michael and 

Schiff’s) His, Cys (Mi-

chael) 

X 

Palmitoyl-oxononanoyl 

phosphatidylcholine 

(PONPC) 

Esterified alkenal 
ω-6 polyunsaturated lipids (γ-

linolenic or arachidonic acid) 
Lys (Schiff’s base only) X 

Isolevuglandins (isoLGs) 

and Isoketals 
γ-keto-aldehydes 

Arachidonic acid and do-

cosahexenoic acid 

Lys (Schiff’s base only) 

 
√ 

Nitro-oleate and nitro-lino-

leate 

Nitro-fatty acids (NO2-

FAs) (can be esterified 

in PLs) 

Unsaturated fatty acyl chains 

(e.g., oleoyl or linoleoyl) 

Lys, His, Cys (Michael) 

(nitro-alkylation) 
X 

Chloro-hexadecanal or 

chloro-octadecanal 
Chloro-fatty aldehydes 

Plasmenyl phospholipids (pal-

mitate or stearate attached by 

vinyl ether bond) 

Lys (Schiff’s base only) X 

Diverse electrophilic lipid species from different origins can covalently bind to proteins (protein lipoxidation) through the 

formation of Michael and/or Schiff’s adducts with nucleophilic residues. Some of the reported species can induce protein 

crosslinking. For detailed information, please see [23,24,49–51]. 

3. Functional Consequences of Lipoxidation 

Proteins serve a wide array of functions in the cellular and extracellular contexts, 

which are subjected to complex control, often involving enzymatically generated PTMs, 

such as phosphorylation, glycosylation, ubiquitination, methylation and lipidation, to 

mention just a few. Non-enzymatic modifications of proteins also involve a plethora of 

chemical transformations of protein residues that, especially at high levels, can have del-

eterious effects on protein structure and function. Nevertheless, oxidative and electro-

philic PTMs, including lipoxidation, may also contribute to the regulation of protein func-

tion and play an important role in redox signalling [19,52,53]. Below, the different effects 

of lipoxidation of proteins are considered, together with their potential as physiological 

regulatory processes. Table 2 provides examples of protein targets of lipoxidation and of 

its functional consequences, which are schematically illustrated in Figure 2. 

Lipoxidation of residues located at or near the active site of enzymes can bring about 

changes in enzymatic activity, for example through alterations of their active confor-

mation or by blocking the binding of substrates [54]. Lipoxidation-induced enzyme inac-

tivation has been reported for aldehyde dehydrogenase (ALDH2) [55] and pyruvate ki-

nase [33], and may simply represent damage. In contrast, both activation or inactivation 

have been documented for aldo-ketoreductase B1 (AKR1B1), depending on the size of the 

electrophilic moiety causing the adduct [56,57]. As well as reacting with metabolic en-

zymes, electrophilic lipids can target proteins and enzymes involved in signal transduc-

tion, such as the phosphatases phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase 

(also known as phosphatase and tensin homolog PTEN) and protein phosphatase 2 

(PP2A). PTEN can be modified by acrolein, HNE, prostaglandin A2 (PGA2) or 15-deoxy-

Δ12,14-prostaglandin J2 (15d-PGJ2) [58,59], whereas PP2A has been recently reported to be 

modified by HNE [60], resulting in both cases in inhibition, which indirectly affects the 

phosphorylation status of their targets and therefore, their downstream signalling path-

ways. Certain histone deacetylases (HDACs) can also be inhibited by HNE and 15d-PGJ2, 

which affects gene expression [61]. In contrast, activation of metalloprotease-9 by acrolein 
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has been reported [62], with potential implications for tissue damage in a variety of in-

flammatory conditions. 

Electrophilic lipids can also induce protein conformational changes, which may af-

fect activity indirectly, lead to partial unfolding or alter protein-protein interactions. Con-

formational changes often cause changes in secondary structure, such as an unfolding or 

increase in β-sheet content, which tend to favour the formation of amyloid-like structures 

and aggregation of proteins [63]. Examples of specific proteins undergoing these changes 

upon lipoxidation are the ubiquitin hydrolase ubiquitin carboxy-terminal hydrolase L1 

(UCH-L1), which is present in neurofibrillary tangles or Lewy bodies in Parkinson disease 

[64], and glutathione-S-transferase (GST), which is cross-linked in the presence of 15d-

PGJ2 [65]. Moreover, an increased immunoreactivity with anti-ALE antibodies has been 

observed in a number of protein aggregates associated with pathophysiological condi-

tions, including β2-microglobulin amyloid deposits associated with uremic complications 

[66]. This suggests a role for lipoxidation in the pathophysiology of these conditions. Alt-

hough lipoxidation is more likely to affect nucleophilic residues located at the protein 

surface, small aldehydes can gain access into protein folds or binding pockets, leading to 

protein instability and unfolding. This can increase the exposure of hidden residues, ren-

dering the protein more vulnerable to further modification [31]. As a result, the unfolded 

protein response (UPR) may be activated [67–70]. In addition, cross-linking or aggregation 

of proteins prevents their degradation via the 20S proteasome; inhibition of proteasome 

function may then occur, which directly affects cell viability and commonly results in cell 

death [71,72]. 

Table 2. Examples of lipoxidation targets. 

Category Protein Lipid Residue Implication Reference 

Cytoskeletal protein 

Vimentin 
15d-PGJ2, PGA1 

HNE 
Cys328 

Filament 

reorganisation 

[73,74] 

[75,76] 

GFAP 15d-PGJ2, PGA1 Cys294 
Filament 

reorganisation 
[77] 

Actin 

HNE 

PGA1 

15d-PGJ2 

Acrolein 

Cys374 

 

Cys374 

Cys374, His87, His173 

Electrophilic 

scavenger, filament 

disruption 

[78] 

[79] 

[80] 

[81] 

Tubulin HNE Cys295 
Filament 

reorganisation 
[75] 

Metabolic 

enzymes 

AKR1B1 

AKR1B 

AKR1B10 

Acrolein 

HNE 

PGA1 

Cys298 

Cys298 

Cys299 

Activation 

Inhibition 

Inhibition 

[56] 

[57] 

[82] 

α-Enolase 
HNE 

15d-PGJ2 
? * Inhibition 

[83] 

[80] 

Soluble epoxide 

hydrolase 
15d-PGJ2 Cys521 Inhibition [84] 

Pyruvate kinase 

15d-PGJ2 

Acrolein, HHE, 

MDA 

HNE, ONE 

? 

 Cys152, Cys358, 

Cys423, Cys474 

Cys424, His439 

? 

Inhibition 

 

Inhibition 

[74] 

[33] 

 

[85] 

Pin1 HNE Cys113 Inhibition [86] 

Chaperones 
Hsp 90 

 

15d-PGJ2 

PGA1 

HNE, ONE 

 

 

? 

 

Cys572 

 

 

Inhibition 

 

[74] 

 [73,87] 

[88] 
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Hsp 70 
cyPG 

HNE 

? 

Cys267 
Inhibition 

[84,87] 

[89] 

Transcription factor 

PPARγ 
NO2-FAs 15d-

PGJ2 

Cys285 

Cys285 
Activation 

[90] 

[91,92] 

P53 15d-PGJ2 Cys277 Inhibition [93] 

NF-κB 15d-PGJ2, PGA1 
Cys38 (p65) and Cys62 

(p50) 
Inhibition [94,95] 

STAT3 15-keto-PGE2 Cys259 Inhibition [96] 

AP-1 15d-PGJ2 Cys269 (c-Jun) Inhibition [97] 

Membrane receptor 

Estrogen receptor 

α 
15d-PGJ2 Cys227, Cys240 Inhibition [98] 

EGFR HNE ? 

Activation (low lev-

els); inhibition (high 

levels) 

[99] 

TRPA 15d-PGJ2 Cys421, Cys621 Activation [100] 

Regulatory proteins 

Keap1 

NO2-FAs 

HNE 

15d-PGJ2 

 

Cys151, 273, 288 

Cys 273, Cys288 

Inhibition 

[101,102] 

[103] 

[101–104] 

IKK 
HNE 

cyPG 

? 

Cys179 
Inhibition 

[105] 

[106] 

H-Ras 15d-PGJ2, PGA1 
Cys118, Cys181, 

Cys184 
Activation [107,108] 

Signalling protein 

PTEN 
Acrolein, HNE, 

PGA2, 15d-PGJ2 
Cys71, Lys327 Inhibition [58,109] 

Akt HNE His196, His267, Cys311 Inhibition [110] 

PP2A HNE ? Inhibition [60] 

Epigenetic regulation 

Sirt2 Acrolein, HNE Cys482 Inhibition [111] 

HDACs 
Acrolein 

HNE, 15d-PGJ2 

Cys274 

Cys 274 

Inhibition 

Inhibition 

[112] 

[61] 

Mitochondrial proteins 

DRP1 15d-PGJ2 At least Cys644 Fission inhibition [113] 

Cytochrome c HNE His196, His267, Lys87 In vitro modification [114] 

Aconitase HNE 
Cys99, Cys358, Cys421, 

Cys424, Cys565 
Inhibition [115] 

Others Albumin 
Δ12-PGJ2 

HNE, acrolein 

His146 

Cys34 
? 

[116] 

[117] 

* ? indicates that either the site of adduction or the biological effect were not determined in this study. 

In some cases, conformational changes induced by binding of electrophilic lipids 

cause protein activation, either through direct or indirect mechanisms. The transcription 

factor peroxisome proliferator-activated receptor γ (PPARγ), which is redox-sensitive 

[90], illustrates this point nicely. Conformational changes in PPARγ during its activation 

trigger heterodimerization with retinoid X receptor, thus promoting the induction of anti-

inflammatory genes and repression of pro-inflammatory genes such as nitric oxide syn-

thase (iNOS) [118,119]. Several electrophilic lipids, including NO2-FAs, oxo-octadecadi-

enoic acid (oxo-ODE) and cyPG cause covalent modification of PPARγ by Michael addi-

tion at the Cys285 residue and promote conformational changes necessary for its full acti-

vation [90–92,120]. Another example is the nuclear factor erythroid 2–related factor 2 

(Nrf2), a transcription factor that is central in the antioxidant response and is indirectly 

activated by lipoxidation. Normally, Nrf2 is bound to its regulator Keap-1, an adaptor for 

ubiquitination that enables Nrf2 proteasomal degradation under non-stressed conditions. 

Modification of critical cysteines in Keap-1 causes a conformational change disrupting the 
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degradation machinery and allowing nuclear translocation of newly synthetized Nrf2 and 

activation of its target genes [121,122]. Therefore, lipoxidation-induced conformational 

changes can also affect protein–protein interactions. The assembly of cytoskeletal proteins 

provides clear examples. Lipoxidation of a single cysteine residue (Cys328) in the inter-

mediate filament protein vimentin can alter filament morphology or cause a complete dis-

ruption of assembly with the formation of aggregates [123]. Similarly, lipoxidation of actin 

at Cys374 can disrupt microfilaments if it occurs in a substantial proportion of molecules 

[80]. Lipoxidation of tubulin alters the morphology of microtubules, inducing a thinner 

appearance [74]. Some of these alterations could be due to steric hindrance caused by the 

addition of bulky moieties. In addition, changes in protein charge due to lipoxidation can 

also affect protein-protein interactions as reported for the binding of lipoxidised albumin 

to the receptor of advanced glycation end products (RAGE) [124]. Finally, lipoxidation 

can alter protein–DNA interactions, as is the case for transcription factor NF-κB, which is 

responsible for the signalling cascade that controls the expression of many proinflamma-

tory genes. Direct lipoxidation of subunit p65 (Cys38) or p50 (Cys62) by 15d-PGJ2 or PGA1 

has been reported to inhibit NF-κB binding to the DNA [94,95], thus reducing expression 

of proinflammatory genes. 

As mentioned above, lipoxidation can influence protein subcellular localization indi-

rectly through changes in protein interactions or degradation. However, the addition of 

electrophilic lipid moieties can also alter membrane targeting, either directly by the action 

of the bound lipid or indirectly if lipoxidation occurs on residues or domains involved in 

subcellular targeting or alters the transport mechanisms. Lipoxidation could increase the 

hydrophobicity of the molecule by altering its charge or introducing acyl groups, which 

could mimic the effects of lipidation and thus influence membrane interaction. The pro-

tein H-Ras poses an interesting example because it can be modified by cyPG at Cys181 

and Cys184 residues [107,108], which are sites of palmitoylation and therefore important 

for subcellular targeting. Indeed, modification of these residues in H-Ras by different moi-

eties has been shown to correlate with its localization to the plasma membrane or endo-

membranes [125]. In turn, lipoxidation of glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), although it inactivates the enzyme, induces its translocation to the nucleus 

where it is involved in the induction of apoptosis [62]. Interestingly, lipoxidation of Chro-

mosomal Maintenance 1 (CRM1) inhibits nuclear protein export [126], therefore inducing 

nuclear accumulation of its substrates. 

Although this review is more focused on lipoxidation in the cellular context, protein 

lipoxidation in the extracellular milieu and the bloodstream has important consequences, 

including increased immunogenicity, transfer of proinflammatory and damage signals 

and contribution to a variety of pathophysiological processes [12,127]. In summary, lipox-

idation can impact essential processes including cell signalling and metabolism, cytoskel-

etal function, protein degradation and gene expression. Moreover, regulation of these pro-

cesses by lipoxidation is often double-sided, with either protective or deleterious effects 

depending on the protein target, the nature and the levels of the electrophilic lipid species 

and cellular context factors, which will be discussed below. 
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Figure 2. Overview of the biochemical effects of protein lipoxidation, which are highly interrelated. 

 

4. Selectivity and Protein Targets of Lipoxidation 

Investigations of reactive oxidized lipid-protein adducts on entire proteomes have 

shown that not all proteins of a proteome are subject to lipoxidation [75,87,128], thus sug-

gesting that this process is both site-specific and protein selective. Protein lipoxidation 

appears to occur on specific sets of proteins within the cellular proteome, which act as 

“hot spots”. In the circulation, albumin seems to be very susceptible to lipoxidation be-

cause of its abundance and of the high reactivity and accessibility of some nucleophilic 

residues (Cys34 and Lys199) [129]. In the cellular environment, the chaperones Hsp70 and 

Hsp90, Keap1, and the cytoskeletal proteins tubulin, actin and vimentin are frequent tar-

gets of lipoxidation [74,130]. Also, adducts seem to be more common in the cytosol and 

nucleoplasm than in the membrane, although this may depend on the type of lipid and 

on the difficulties to analyse membrane proteins [73,131–133]. In addition, certain cellular 

pathways, such as defence responses, or subcellular localizations appear particularly sus-

ceptible. Studies on the mitochondrial proteome showed that respiratory chain and tricar-

boxylic acid cycle (TCA) proteins, as well as transporters, are the most represented pro-

teins undergoing lipoxidation [134,135]. Codreanu et al. identified HNE and ONE protein 

adducts in THP-1 and RKO cell lines and performed a Gene Ontology (GO) analysis, 

which showed that their function was predominantly involved in folding, RNA metabolic 

and glucose catabolic processes, cytoskeletal regulation and protein synthesis and turno-

ver [136]. This is in agreement with previous studies that identified proteins related to the 

cytoskeleton, stress and immune responses, metabolic processes and glycolysis, regula-

tion of translation and RNA binding as targets for HNE or cyPG in various cellular models 

[74,75,87]. Table 2 gives also examples of the site-specificity of lipoxidation on some target 

proteins, as determined in studies performed mostly in vivo or in cellulo, using physio-

logical or pathophysiological treatment levels of electrophilic lipids and employing mu-

tagenesis approaches to investigate the biological effect. Interestingly, information on sites 

of modification has also been obtained from in vitro studies, which have provided funda-

mental information on relative residue susceptibility and functional consequences, alt-

hough in some cases yielded a higher number of modified residues. Some examples are 

shown in Table 3. 
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Table 3. Multiple modification mapping studies in vitro. 

Protein Targeted Residue (Position) Electrophile Type of Adduction Reference 

Pyruvate kinase 

Cys 49, 152, 326, 358, 423, 474 

Acrolein, HHE 

and MDA 

Michael, Schiff’s or FDP 

adduction 
[33] 

Lys 66, 115, 135, 166, 188, 207, 224, 

247, 270, 305, 367, 393, 475 

His 379, 391, 464 

Cyclin-dependent Ki-

nase 2 

Cys 177 

HNE Michael [85] Lys 129 

His 60, 71, 161, 268, 283, 295 

Serum Albumin 

Cys 53, 62, 75, 101, 124, 245, 246, 

253, 269, 270, 277, 514 

HNE and MDA 

Michael and Schiff’s (N-

propenal-lysine adduct 

with MDA) 

[137,138] Lys 73, 106, 136, 174, 233, 240, 281, 

378, 525, 541, 545 

His 67, 105, 128, 242, 247, 510 

Apolipoprotein E Lys 64, 67, 68, 135, 138, 149, 155, 254 Acrolein Michael and Schiff’s [139] 

Creatine kinase 

Cys 141, 145, 254, 283 

HNE Michael and Schiff’s [140] 
Lys 86, 101 

His 7, 26, 29, 66, 97, 191, 219, 234, 

276, 296, 305 

Why are some proteins more susceptible to lipoxidation than others? Some of the 

proteins mentioned above (albumin, chaperones, cytoskeletal and glycolytic proteins) are 

highly abundant in cells; as chemical reactions are concentration-dependent, there is a 

higher probability that abundant proteins will be both modified and detected during the 

analysis. However, this is not always the explanation, as illustrated by the lipoxidation of 

transcription factors and signalling proteins, which are minor cellular components. In-

stead, the biochemical characteristics of the protein or enzyme come into play. An im-

portant factor is the reactivity of amino acid sidechains by Schiff’s base formation or Mi-

chael addition, which is determined by their nucleophilicity [24,141]. Generally, the high 

nucleophilicity of the cysteine thiol makes it more reactive than the imidazole in histidine 

or amino group in lysine [134]. This agrees with the observation that out of 398 residue 

sites targeted by HNE in HEK293T cells, most (85.9%) were cysteines (342 residues), and 

only 27 were histidines (6.8%) and 29 lysines (7.3%) [142]. Moreover, in proteins with mul-

tiple cysteine residues frequently only one or two of them are targets for lipoxidation. For 

instance, Cys34 of albumin and Cys374 of actin are the most reactive and commonly mod-

ified residues of these two proteins [129], while the cysteine residues located in the C-

terminal segments of several proteins of the Ras superfamily, including H- and N-Ras and 

Rac1, are lipoxidised [107,143]. This selectivity can arise because of a low pKa of the cys-

teine, which is influenced by its chemical microenvironment; the proximity of basic amino 

acids, such as positively-charged lysines, a metal centre, a catalytic triad or aromatic 

amino acids, lower the pKa and favour the formation of the more nucleophilic thiolate 

form, which is more prone to oxidation and lipoxidation [144–148]. Consequently, those 

thiols can act as redox sensors because they are highly responsive to various oxidative 

modifications. Examples of proteins with unusually low cysteine pKas include protein ty-

rosine phosphatases, thioredoxin (Trx) and peroxiredoxins (Prx). Lysine and histidine 

sidechains are commonly positively charged at physiological pH, but their pKas can also 

be modulated by their local environment through hydrogen bonding and charge stabili-

zation, though as yet this has been less studied. 

Another factor important in determining target residues in a protein is their solvent 

accessibility. A meta-analysis of human proteins identified as targets of HNE and acrolein 

modification showed that adducted residues were, on average, more accessible than the 
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unreactive ones [141]. Similar findings were reported for the modification of pyruvate ki-

nase by 3 small aldehydes [33]. The influence of nucleophilic residue accessibility was 

studied in the context of the modification of mitochondrial proteins by endogenous 2-

alkenals [134], and it was found that local flexibility (B-factor values) and solvent accessi-

bility areas were generally higher on 4 out of 5 cysteine residues that were found adducted 

on mitochondrial malate dehydrogenase. Interestingly, it has been reported that adducted 

residues are surrounded by a greater number of aromatic residues and fewer aliphatic 

residues than unreactive nucleophile residues [141]. 

Clearly, the nature and concentration of the electrophilic lipid species also determine 

the nucleophilic side chains targets in proteins, as explained above [33,42,115] and illus-

trated by the information in Table 2. There is good evidence that size and structure play 

an important role in the selectivity of protein modification. A study on cultured fibroblasts 

found that the closely related cyPG PGA1 and 15d-PGJ2 modified distinct and not totally 

overlapping subsets of proteins, with some targets clearly being preferentially modified 

by one of the cyPG [82,149]. Molecular simulations and docking studies have provided 

insight into the structural basis of the interaction between electrophilic lipids and proteins, 

documenting the basis for selectivity. PGA1 undergoes interactions with residues at the 

active site of AKR1B1 or B10, which favour the formation of a Michael adduct [82]. Simi-

larly, favourable interactions have been proposed for the addition of 15-keto-PGE2 to sig-

nal transducer and activator of transcription 3 (STAT3) [96]. 

Overall, it can be seen that lipoxidation “hot spots” occurring at the level of the pro-

teome and the protein are highly interdependent, and influenced both by the nature of the 

protein, the electrophilic lipid and their concentrations. The situation is further compli-

cated by the fact that other aspects of the cellular environment can influence properties of 

the electrophilic lipids or the adducts, including their availability and stability, thus im-

pacting on the selectivity of the modification. This is considered further in the next sec-

tions and illustrated in Figure 3. 

 

Figure 3. Scheme showing the main factors affecting lipoxidation, from the generation of reactive species and PTM cross-

talk on the left to mechanisms of detoxification and reversibility on the right. Please, see text for details and abbreviations. 
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5. The Emerging Role of Lipoxidation in Cellular Regulation 

PTMs involved in signalling are generally considered to be fast, reversible and spe-

cific, for these properties provide a high degree of control over the downstream processes. 

As a non-enzymatic modification, the role of protein lipoxidation as a signalling mecha-

nism has been controversial, due in part to an incomplete understanding of the possibili-

ties of regulation of this process. Nevertheless, protein lipoxidation can be modulated at 

several levels, including at the level of generation of the reactive species or their precur-

sors, through their metabolism/detoxification, which influences their availability, or at the 

level of the stability of adducts, which can be regulated by adduct reversal. Some electro-

philic lipids, including cyPG, derive from the dehydration of PG, which in turn are syn-

thesized by regulated enzymatic processes that can be induced under situations of inflam-

mation. Knockout of key enzymes involved in cyPG generation, such as PGD synthase, 

results in a decreased production and action of these electrophilic lipids [150]. Conse-

quently, inhibitors of the phospholipases, COX and/or PG synthases involved in the en-

zymatic steps of PG synthesis may result in a reduction of the generation of the electro-

philic lipids derived from them [151,152]. 

The metabolism or detoxification of reactive lipids or their precursors can be cata-

lysed by diverse enzymes, thus influencing their availability and therefore the extent of 

lipoxidation. GSTs constitute a well-characterized family of enzymes that catalyse the con-

jugation of reduced glutathione (GSH) to electrophilic lipids to generate more soluble spe-

cies that can be exported by multidrug resistance transporters, thus reducing their cellular 

availability [153–156]. Several electrophilic lipids, including cyPG and HNE are substrates 

of GST [153,154,156,157], for which enzymatic and non-enzymatic conjugation GSH has 

been shown to decrease their levels and activity [153,156]. 

Other enzymes that have been proposed as mediators of lipid detoxification include 

soluble epoxide hydrolase (sEH), which can metabolise epoxy fatty acids (PUFAs) [158], 

phospholipid hydroperoxide glutathione peroxidase and the Prxs [29]. A wide and di-

verse group of enzymes can detoxify aldehyde-containing electrophilic lipids. For in-

stance, several isoforms of the aldo-keto reductase (AKR) family use NAD(P)H to reduce 

aldehyde groups of some electrophilic lipids such as acrolein, HNE or cyPG precursors 

[159,160], thus decreasing their availability and biological effects. Other enzymes that can 

reduce the aldehyde group of HNE, including aldose/aldehyde reductase (ALR), alcohol 

dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), alkenal reductase (AER), 

alkenal hydrogenase (ALH), and alkenal/one reductase (ACR) have been reported to re-

duce its bioavailability and reactivity in both plants and humans [32,46]. Thus HNE de-

toxification can occur both by conjugation with GSH or direct detoxification by ADH or 

ALDH [32,161]. Importantly, several enzymes involved in detoxification of electrophilic 

lipids, including GST, AKR and soluble epoxide hydrolase are targets for reactive lipids 

themselves, which increases the complexity of these interactions [65,82,84]. 

A key feature of mechanisms considered to participate in cell signalling is that they 

need to be reversible, either directly or indirectly; lipoxidation shows potential reversibil-

ity through several mechanisms. Although both Schiff’s and Michael adducts are chemi-

cally reversible, Schiff’s adducts are more labile and reversal can occur spontaneously in 

aqueous solution [31], whereas Michael adducts are in general more stable. However, 

retro-Michael reactions are also possible under some circumstances. An adduct formed 

between AKR1B1 enzyme and a biotinylated analogue of PGA1 is partially reversed by 

incubation in the presence of an excess GSH in vitro [162]. Furthermore, Michael adducts 

generated by HNE and ONE can be reverted in vitro and in cells as demonstrated by 

quantitative chemoproteomic analysis [163] and kinetic studies [164]. In cells, the involve-

ment of enzymatic mechanisms in the reversal of lipoxidation has been proposed. Acro-

lein protein adducts are reversed in bronchiolar epithelial cells by mechanisms dependent 

on GSH and Trx 1 [165]. In addition, the deacetylase Sirt2 has been reported to catalyse 



Antioxidants 2021, 10, 295 32 of 28 
 

the enzymatic reversion of acrolein lipid adducts [166,167], as revealed by quantitative 

analysis [163]. NO2-FAs are a special case, since their adducts with cysteine residues are 

reversible, and there is consensus that they can behave as signalling mediators [168,169], 

although there is still much to be learned about the potential regulation of their generation 

and site of action. 

The functional reversal of lipoxidation can also be achieved indirectly by degradation 

of the lipoxidised proteins and substitution by newly synthesized proteins with the con-

sequence of the recovery of the biological effect [50,170]. As stated above, lipoxidation is 

frequently associated with inhibition of proteasomal degradation. Therefore, removal of 

protein-lipid adducts has been proposed to occur through lysosomal degradation and au-

tophagy [171], especially of those containing α,β-unsaturated carbonyl groups or alde-

hydes. 

Specificity is an important aspect of regulatory processes. Besides the selective as-

pects of lipoxidation discussed above, several lines of evidence indicate that in some cases 

protein lipoxidation can display distinct structure-function relationships. Lipoxidation of 

members of the AKR family by different species can lead to distinct functional conse-

quences. Whereas modification by small moieties such as acrolein at Cys298 of AKR1B1 

increases its catalytic activity [56], the addition of bigger reactive lipids such as HNE or 

certain cyPG promotes the inactivation of these enzymes [57,162]. The assembly of cyto-

skeletal protein vimentin is also sensitive to modulation by lipoxidation of its single cys-

teine residue and displays differential features depending on the structure of the adducted 

lipid [123]. However, whether this is a physiological mechanism of signalling is not 

known at present. 

6. The Dependence of Lipoxidation on the Cellular Environment 

Reactive lipids can exert both beneficial and detrimental effects on the cell [38]. 

Which of these predominates depends on many factors that influence the generation and 

final fate of the lipids and their adducts, including the cell type, the status of the antioxi-

dant defences, and the concurrence of other reactive species or stimuli. The complexity of 

this balance is illustrated by the fact that electrophilic lipids can induce the expression of 

antioxidant defence enzymes, but at the same time influence their activity either directly, 

through lipoxidation, or indirectly, by triggering the production of reactive oxygen spe-

cies (ROS) (see [172] for review). 

The antioxidant system of the cell includes both enzymatic and non-enzymatic ele-

ments. Enzymes contributing to the antioxidant defence include the superoxide dismutase 

(SOD), heme oxygenase-1 (HO-1), catalases, glutathione peroxidase, Prxs, glutathione re-

ductases and Trx. Small-molecule antioxidants include GSH, vitamins, lipoic acid and sev-

eral cations such as Mn, Fe, Cu or Zn [63,173]. An example of the interplay between these 

factors and lipoxidation is provided by the cell- and species-dependent subcellular com-

partmentalization of cyPG accumulation and effects. For instance, differences in the main 

site of inhibition of the NF-κB activation pathway (through either cytoplasmic or nuclear 

events) have been attributed to the distinct subcellular distribution and abundance of an-

tioxidant defences, i.e., GST activity and GSH content, in different cell types (see [172] for 

review). Therefore, increased levels of GSH, or enzymes involved in cyPG metabolism 

such as GST, are associated with lower levels of cyPG modification, and vice versa. More-

over, the stability of the adducts between electrophilic lipids and GSH depends on the 

lipid species [174], for which GSH levels will not affect the availability of electrophilic 

lipids uniformly. In addition, the observation that non-hydrolysable GSH analogues pro-

tect certain proteins, e.g., GSTp, from lipoxidation suggests the involvement of steric ef-

fects or induction of conformational changes in the protective effects of GSH [65]. Finally, 

these elements are dynamic, which increases the complexity of these interactions. For in-

stance, cytosolic GSTs can translocate to the nucleus, altering the location of protection 

[175,176]. 
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The complexity of these interactions is even higher since electrophilic lipids also in-

fluence the activity of the detoxifying enzymes. Certain electrophilic lipids can bind and 

inactivate GST and/or induce its crosslinking [65,177]. In addition, the reduced form of 

Prx is a direct target of HNE [178] whereas Trx can be modified by acrolein and HNE at 

the non-catalytic Cys73 [179] and by cyPG at Cys35 and Cys69 [180]. Moreover, TrxR is 

also a target for lipoxidation [181]. In most cases, lipoxidation is associated with inhibition 

of these targets, thus inducing the accumulation of cellular ROS. Nevertheless, as stated 

above, interaction with GSH can protect these enzymes from lipoxidation. 

Vitamins may act as both pro- and anti-oxidants and their interactions with electro-

philic lipids and lipoxidation appear to be complex and dependent on the experimental 

system. Examples of these interactions include reports on vitamin E decreasing lipid pe-

roxidation in clinical trials or studies [182] and the ability of vitamin B6 to sequester inter-

mediates of lipid peroxidation and reduce the formation of lipoxidation adducts [183,184]. 

Nevertheless, some actions of vitamins are controversial and the reader is referred to spe-

cialized reviews on this topic [170,173,185]. 

Divalent cations such as iron, copper, zinc or manganese also influence the redox 

state of the cell through various mechanisms including radical generation through the 

Fenton reaction (iron and copper), radical scavenging (manganese) or acting as cofactors 

for antioxidant enzymes (reviewed in [173]). In the context of lipoxidation, zinc presents 

special interest. Zinc competes with iron and copper in their coordination environments 

and suppresses their redox activity in Fenton chemistry. Interestingly, Zn2+ can interact 

with the thiolate group of cysteine, with important implications in Redox Biol, and the 

imidazole group of histidine [186], both of which are strong nucleophiles and frequent 

targets of lipoxidation. Zinc binding can affect the reactivity of cysteine residues and/or 

protect them from chemical modification, including lipoxidation [187,188]. The cytoskel-

etal protein vimentin provides an example of this protection both in vitro and in cells, 

since zinc availability in the physiological range protects the single cysteine residue of 

vimentin from alkylation, oxidation or lipoxidation in vitro, and preserves the integrity of 

the network in cells [188]. In turn, oxidation or lipoxidation of cysteine residues involved 

in the interaction with zinc releases this metal and contributes to zinc toxicity in cells [189]. 

On the other hand, metal-ion chelators inhibit lipoxidation reactions through the elimina-

tion of metal ions [170]. Some examples of compounds which can act as metal-ion chela-

tors include citric acid (relatively non-specific chelator) [170], polyphenols and flavonoids 

[173]. 

Among other factors related to the cellular or extracellular context that can modulate 

lipoxidation is the presence of scavengers or quenchers. While the two terms are often 

used interchangeably, scavengers could be considered non-covalent binders of electro-

philic lipids, whereas quenchers would be strong nucleophilic compounds reacting with 

the electrophilic derivatives leading to unreactive products. Thus, scavenging or quench-

ing of electrophilic lipids could prevent protein lipoxidation. Therefore, in addition to en-

dogenous compounds entailing this activity, exogenous natural and synthetic quenchers 

are being studied as potential therapeutic tools [170,190]. One of the best-studied exam-

ples is the dipeptide carnosine composed of β-alanine and histidine, which has served as 

the basis for the synthesis of more stable analogues, one which, known as carnosinol, has 

been found to decrease lipoxidation and showed beneficial effects in animal models of 

disease [191]. 

Finally, the presence of other reactive species, either endogenous or exogenous, such 

as drugs and their metabolites can influence lipoxidation by causing alterations in the cel-

lular antioxidant systems or the protein targets, and even compete for target residues con-

tributing to PTMs crosstalk. Therefore, factors from the cellular context may influence the 

extent and the site of protein lipoxidation, contributing to its selectivity and accounting 

for potential differences in the results from in vitro and in in vivo studies. 
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7. Interplay among Post-Translational Modifications 

Lipoxidation can induce oxidative stress, thus eliciting the formation of further reac-

tive species, responsible for additional PTMs leading to chain reactions with implications 

in different cellular processes [192]. Moreover, lipoxidation of enzymes involved in PTMs, 

such as phosphatases, kinases or deacetylases (see above), can affect PTMs. Therefore, a 

complex interplay between PTMs can take place involving lipoxidation, modifications by 

other reactive species, and activation or inhibition of proteins catalysing other PTMs. 

Moreover, direct cooperation or competition among PTMs can occur on the same proteins 

or residues, which could result in an increase of protection from lipoxidation, thus con-

tributing to the generation of highly diverse proteoforms and the complexity of events 

determining the overall outcome. 

Among reactive species potentially competing with electrophilic lipids for modifica-

tion of proteins are species derived from the oxidation of sugars, ROS and RNS and other 

small molecules, like metabolites of certain amino acids, or even drugs. The modification 

of cysteine residues can provide numerous examples of this potential competition, given 

their capacity to accommodate multiple modifications [193,194]. In general, it could be 

considered that cysteine oxidation in its various forms, including formation of disulphide 

bonds, sulfenic and sulfonic acids, nitrosation, etc., would make the residue less available 

for lipoxidation. Nevertheless, sulfenic acids have been reported to be more reactive to-

wards certain electrophilic compounds [195], while some disulfides are highly reactive 

with oxidants [196]. Therefore, in certain cases, cysteine reversible modifications, includ-

ing disulphide formation, glutathionylation, nitrosation, or addition of NO2-FAs, could 

confer protection against more deleterious ones involving the formation of stable adducts, 

protein crosslinks, unfolding or aggregation [197,198]. 

Several previously discussed lipoxidation targets provide examples of these protec-

tive mechanisms. The enzyme AKR1B1 possesses seven cysteine residues, two of which, 

Cys298 and 303, are close to the active site. Formation of a disulphide bond between these 

cysteine residues reversibly inactivates the enzyme. Nevertheless, this modification could 

prevent a more stable modification causing either activation or inactivation of the enzyme. 

For instance, the cyPG PGA1 forms an adduct with Cys298 resulting in inhibition. The 

single cysteine residue of vimentin, Cys328 can also be the target for a wide variety of 

modifications. Reversible modifications of this residue include disulphide formation, ni-

trosation or glutathionylation, which can have different functional consequences [199]. 

Nitrosation, in particular, appears to elicit only minor alterations of vimentin assembly in 

vitro [200]. Therefore, it would be interesting to explore whether this reversible modifica-

tion can play a protective role against more disruptive modifications such as CyPG addi-

tion. Interestingly, in vitro incubation of vimentin or a PPARγ construct with the nitrated 

phospholipid 1-palmitoyl-2-oleyl-phosphatidylcholine (NO2-POPC) shields their cysteine 

residues from alkylation [201]. Whether this is due to the occurrence of competing modi-

fications requires further study. 

Lipoxidation maintains an important interplay with phosphorylation through vari-

ous mechanisms. As briefly discussed above, several kinases and phosphatases contain 

reactive thiols that are subjected to redox control and can be targets for several electro-

philic species. Examples of kinases with reactive thiols include protein kinase A (PKA), 

PKG, PKC and Ca2+/calmodulin-dependent protein kinase II (CaMKII) [202,203]. Moreo-

ver, both 5′ AMP-activated kinase and AKT have been shown to be direct targets for lipox-

idation by HNE [110,204]. Moreover, kinase cascades can be indirectly activated by lipox-

idation. Monomeric GST binds and sequesters several stress kinases such as c-Jun N-ter-

minal kinase (JNK) or Traf-2 or binds to their substrates [205,206] in such a way that oxi-

dation or lipoxidation-induced GST crosslinking results in the activation of the corre-
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sponding stress signalling pathways [65,205,207]. In turn, lipoxidation of Ras proteins elic-

its their activation and that of downstream kinase cascades, including MAPKs, phospho-

inositide 3-kinase (PI3K) and AKT [107,208]. 

In addition, several serine and tyrosine phosphatases can be regulated by redox 

mechanisms and are targets for lipoxidation, which can result in activation or inactivation 

of phosphatase activity, generally leading to reciprocal changes in the phosphorylation 

level of its substrates and modulation of the corresponding pathways [209]. Examples of 

phosphatases subjected to this control are PP2B, PP1, PP2A and PTEN. Lipoxidation of 

PP2A by PGA1 through the formation with a Michael adduct at Cys377 reduces the phos-

phorylation state of Tau [210]. In contrast, several electrophilic lipids, including acrolein, 

HNE and cyPG covalent modify and inactivate PTEN, resulting in activation of the AKT 

pathway and increased proliferation in several cancer cell lines [58,59]. Recently, the for-

mation of an adduct of 15d-PGJ2 with Cys136 of PTEN has been reported [211]. Im-

portantly, the possibility that electrophilic lipids can alter the expression levels of kinases 

or phosphatases provides an additional layer for interplay [212]. Therefore, alterations in 

protein phosphorylation status could be commonly associated with lipoxidation, and the 

occurrence of both modifications on the same target would influence the final outcome. 

For instance, in the case of vimentin, lipoxidation and phosphorylation appear to cooper-

ate to induce filament disassembly [123]. However, in the case AKT, HNE indirectly pro-

motes its phosphorylation, which would normally lead to activation but at the same time, 

directly modifies the enzyme, resulting in inhibition [110]. 

Importantly, direct competition between lipoxidation and phosphorylation could oc-

cur at histidine residues, which can be targets for both kinds of modification [213], alt-

hough this potential interplay, to the best of our knowledge, has not been explored in 

detail. Other unusually phosphorylated amino acids include lysine and arginine. 

Lipoxidation can also affect protein acetylation. Several HDACs are targets for lipox-

idation. Indeed, a feedback mechanism controlling the expression of stress genes has been 

proposed that depends on the modification of certain HDACs by cyPG and HNE [61]. 

Moreover, lipoxidation of Sirt3 by HNE associates with mitochondrial protein hyper-

acetylation [214]. Notably, as lysine residues are targets for both lipoxidation and acetyla-

tion, the interplay between both modifications could occur also at this level. Similar inter-

actions that could affect other modifications such as lysine ubiquitination or formylation 

deserve investigation. 

8. Conclusions 

In summary, modification of proteins by lipoxidation can elicit varied functional con-

sequences and affect a myriad of intracellular processes. Being a non-enzymatic modifi-

cation, envisaging potential regulatory roles of lipoxidation is controversial. The chain 

reaction provoked by lipid oxidation could expand in a flood-like manner affecting mul-

tiple proteins and pathways. Nevertheless, accumulating evidence indicates that protein 

lipoxidation is not a random process, which could be subjected to regulation at several 

levels. Indeed, low or moderate level protein lipoxidation appears to be involved in cellu-

lar defence responses and adaptation to stress. Currently, it is not clear how cells could 

harness this process in physiological situations. However, the interplay with generation 

of antioxidant defences, such as GSH, with detoxifying and repairing enzymes, and with 

other PTMs are unveiling further possibilities for modulation of the effects of lipoxidation. 

Detailed knowledge of these processes will be necessary to understand its involvement in 

pathophysiology as well as the possibilities for therapeutic intervention. 

Author Contributions: Design and coordination, D.P.-S.; conceptualization, C.M.S. and D.P.-S., 

writing, Á .V.-P., P.G.-J., O.L., I.C.-M., C.M.S. and D.P.-S.; writing-review and editing, C.M.S. and 

D.P.-S.; funding acquisition, C.M.S. and D.P.-S. All authors have read and agreed to the published 

version of the manuscript. 



Antioxidants 2021, 10, 295 36 of 28 
 

Funding: Work at DPS laboratory is supported by RTI2018-097624-B-I00 from Agencia Estatal de 

Investigación, MICINN/ERDF, and RETIC ARADYAL RD16/0006/0021 from ISCIII/ERDF, Spain 

Work at CMS laboratory (including I.C.M. and O.L.) is supported by funding from the European 

Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant 

agreement No 847419 (MemTrain). A.V.P. and P.G.J. are the recipients of predoctoral contracts BES-

2016-076965 and PRE2019-088194, respectively, from MICINN, Spain. 

Acknowledgements: We thank A.R. Pitt for helpful comments and discussion. Feedback from EU 

COST Actions CA19105 EpiLipidNet and CA15214 EuroCellNet is gratefully acknowledged. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 

design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-

script, or in the decision to publish the results. 

Abbreviations 

ACR Alkenal/one reductase 

ADH Alcohol dehydrogenase 

AER Alkenal reductase 

AKR Aldo-keto reductase 

AKR1B1 Aldo-ketoreductase B1 

ALDH Aldehyde dehydrogenase 

ALDH2 Aldehyde dehydrogenase 2 

ALEs Advanced lipoxidation end products 

ALH Alkenal hydrogenase 

ALR Aldose/aldehyde reductase 
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GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

GFAP Glial fibrillary acidic protein 

GO Gene ontology 

GSH Reduced glutathione 

GST Glutathione S-transferase 

HDACs Histone deacetylases 

HNE 4-hydroxynonenal 

Hsp70 Heat shock protein 70 

Hsp90 Heat shock protein 90 

iNOS Nitric oxide synthase 

LOX Lipoxygenases 

MDA Malondialdehyde 

NF-κB Nuclear factor-κB 

NO2-FA Nitrate fatty acid 

NO2-POPC 
Nitrated phospholipid 1-palmitoyl-2-oleyl-phos-

phatidylcholine 

Nrf2 Nuclear factor erythroid 2–related factor 2 

ONE 4-oxononenal 

oxo-ODE Oxooctadecadienoic acid 

PG Prostaglandin(s) 

PGA1 Prostaglandin A1 

PGA2 Prostaglandin A2 

PGD Prostaglandin D 

PGE2 Prostaglandin E2 

PI3K Phosphoinositide 3-kinase 

PKA Protein kinase A 

PKC Protein kinase C 
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PKG Protein kinase G 

PP1 Protein phosphatase 1 

PP2A Protein phosphatase 2 

PP2B Protein phosphatase 2B 

PPARγ Peroxisome proliferator-activated receptor γ 

Prx Peroxiredoxin 

PTEN 
Phosphatidylinositol 3,4,5-trisphosphate 3-phos-

phatase 

PTM Post-translational modification 

PUFAs Polyunsaturated fatty acids 

RAGE Receptor of advanced glycation end products 

RNS Reactive nitrogen species 

ROS Reactive oxygen species 

sEH soluble epoxide hydrolase 

SOD Superoxide dismutase 

STAT3 Signal transducer and activator of transcription 3 

TCA Tricarboxylic acid cycle 

Trx Thioredoxins 

UPR Unfolded protein response 

15d-PGJ2 15-deoxy-Δ12,14-prostaglandin J2 
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