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We present the theory of modulation instability induced by spectrally dependent losses (optical
filters) in passive driven nonlinear fiber ring resonators. Starting from an Ikeda map description of
the propagation equation and boundary conditions, we derive a mean field model - a generalised
Lugiato-Lefever equation - which reproduces with great accuracy the predictions of the map. The
effects on instability gain and comb generation of the different control parameters such as dispersion,
cavity detuning, filter spectral position and bandwidth are discussed.

I. INTRODUCTION

Modulation instability (MI) is an ubiquitous phe-
nomenon occurring in various fields of nonlinear physics
consisting in the exponential amplification of spectral
sidebands which results in a modulation of a powerful
and originally constant amplitude wave [1]. Besides lead-
ing to the destabilization of nonlinear waves in a vast
range of contexts including fluids dynamics [2], optics
[3], plasmas [4] and Bose-Einstein condensates [5], MI is
deeply connected to solitons dynamics and is the initi-
ating mechanism for pattern formation process too [6].
It is customary to understand MI as a synchronization
process between a powerful wave corresponding to the
unstable homogeneous state of the system and detuned
spectral sidebands whose amplitude is very small in the
initial stage. The waves synchronization process is deter-
mined by a phase mismatch parameter, which accounts
for physical effects describing dephasing between differ-
ent waves. Waves for which mismatch is close to zero
synchronize with the powerful homogeneous mode and
energy transfer from the powerful wave to the sidebands
occurs, causing to the exponential growth of the latter.
A vast range of modulation instabilities have been stud-
ied in the literature. The most paradigmatic MI exam-
ple is definitely the Benjamin-Feir instability, originally
studied in fluid dynamics [1, 3, 7] and later in nonlinear
fibre optics [8]. It can be understood as a nonlinear four
waves interaction enabled by the interplay of the cubic
nonlinearity and anomalous group velocity dispersion. It
can be mathematically described in the framework of the
nonlinear Schrödinger equation (NLSE). Another cele-
brated MI is the Turing instability [9], which can arise in
passive driven optical Kerr resonators described by the
Lugiato-Lefever equation (LLE) [10–12] where, in addi-
tion to dispersion and nonlinearity, the detuning between
pump and cavity resonance may enable MI in otherwise
stable regime (in the Benjamin-Feir framework).

The longitudinal modulation of parameters such as
group velocity dispersion [13–18] and nonlinearity coeffi-
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cients [19–21] in NLSE and LLE may support instabilities
as well, which are analogous to the parametric (Faraday)
instability [22]. In this case quasi-phase matching con-
ditions describing synchronization between spectral side-
bands and homogeneous mode can be obtained allowing
precise estimation of the amplified frequencies, which de-
termines the parametric resonances.

A further different class of MI relies on homogeneous
or periodic action of spectrally dependent losses. The
periodic case results in a dissipative parametric (Fara-
day) instability, which proves relevant for achieving high
repetition rate mode-locking in lasers [23, 24]. Homoge-
neously distributed frequency dependent losses, can re-
sult in counterintuitive amplification of damped modes
themselves. This happens if losses act in unbalanced
fashion on two sidebands waves whose frequencies are
symmetrically located with respect to a powerful input
one, which in absence of losses would be stable [25] (a
fortiori for symmetric losses [26]). This case has been
first analysed by Tanemura and co-authors in an optical
fibre [27], and also subsequently described by other au-
thors using coupled mode theory (non-Hermitian phase-
matching) [28, 29].

Presence of spectrally dependent losses can also indi-
rectly induce phase-matching by modifying the mismatch
parameter of the system via the phase profile naturally
associated to dissipation by Kramers-Kronig relations.
Examples of the latter are provided in studies of the reso-
nant dispersion MI [30–33] where the phase in the vicinity
of an atomic resonance can contribute to phase-matching.
Recently an example of dissipation induced modulation
instability has been reported in a driven passive ring fiber
resonator with intracavity spectral filter [34]. In that
work, gain-through-filtering enabled by filter phase mod-
ification of the cavity mismatch was suggested as a novel
method for optical frequency comb with tuneable repeti-
tion rate generation in normal dispersion regime.

The aim of this article is to report a comprehensive
theoretical description of filter-induced modulation in-
stabilities in passive cavities. We first review and expand
the theory of filter induced instability based on the Ikeda
map approach originally described in [34]. We derive a
mean-field generalised Lugiato-Lefever equation and de-
velop a linear stability analysis of this model. The mean-
field approximation is showed to permit a simpler, yet
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accurate, description with respect to the Ikeda map. Fi-
nally, we discuss the dependence of the instability gain on
various system parameters, and the generation of pulse
trains and frequency combs.

II. THE IKEDA MAP

The evolution of a light pulse in a fiber ring resonator
can be modelled by the following coupled equations, re-
ferred to as Ikeda map [35–37] (see also [15, 38, 39]) :

i
∂An
∂z
− β2

2

∂2An
∂t2

+ γ|An|2An = 0, 0 < z < L, (1)

An+1(z = 0, t) = θEIN + ρeiφ0An(z = L, t). (2)

Here A(z, t) represents the slowly varying envelope of the
electric field, normalised in such a way that |A|2 has the
dimensions of a power. The coordinate t is the retarded
time and the spatial coordinate z measures the position
inside a fiber ring cavity of length L. γ is the Kerr non-
linearity coefficient, β2 = ∂2ωβ|ω=ωp

is the group veloc-
ity dispersion coefficient at the pump wavelength, with
β the propagation constant of the fiber mode and n an
integer counting the number of cavity round trips. All
the losses (except the filter induced ones) are lumped
in ρ, so that 1 − ρ2 measures the total power loss per
roundtrip. φ0 = [β(ωp)L mod 2π] is the linear phase
shift per roundtrip modulo 2π (the cavity detuning is
δ = −φ0) and θ is the transmission coefficient of the
coupler for the pump amplitude EIN . For simplicity, we
neglect higher order dispersion terms, as it allows to ac-
curately model most of realistic configurations, but they
can be introduced in a straightforward fashion if needed.
Note that only even order of dispersion contribute to the
modulation instability gain. The filter located at the po-
sition z = zF acts in the following way:

An(z+F , t) = h(t) ? An(z−F , t), (3)

Ân(z+F , ω) = H(ω) Ân(z−F , ω), (4)

where h(t) is the filter impulse response (causality im-
poses h(t) = 0 if t < 0), ? denotes convolution and

H(ω) = ĥ(ω) =
∫ +∞
−∞ h(t) exp[iωt]dt is the filter trans-

fer function. The filter is assumed to be placed just
before the coupler (zF = L), hence the boundary con-
ditions and filter can be conveniently combined in the
single equation:

An+1(z = 0, t) = θEIN + ρeiφ0h(t) ? An(z = L, t), (5)

which has the following equivalent in the frequency do-
main:

Ân+1(z = 0, ω) = θEINδ(ω) + ρeiφ0H(ω)Ân(z = L, ω),
(6)

where δ(ω) is the Dirac delta function.

A. The filter

As a consequence of physical causality, the real and
imaginary parts of the filter transfer function H(ω) are
related by the Kramers-Kronig (KK) relations [40]. This
implies that the presence of losses entails a corresponding
phase shift. KK relations lead to a similar connection
between the magnitude and the phase, which is known
as Bode or Bayard-Bode (BB) gain-phase (or magnitude-
phase) relation [41]:

ψ(ω) = H{F (ω)} = H{log |H(ω)|}, (7)

where we have defined

H(ω) = eF (ω)+iψ(ω), (8)

H{f(x)} =
1

π
p.v.

∫ +∞

−∞

f(y)dy

x− y
is the Hilbert transform

[42–44], p.v. denoting the principal value of the integral.
The advantage of Bode relation is that it is straightfor-
ward to experimentally measure the amplitude of the re-
sponse, while it is tricky to access real or imaginary parts.
While KK is an equality, Bode’s relation is an inequality,
which can under-estimate the phase response. BB coin-
cides with KK only if log |H(ω)| is analytic and H(ω) 6= 0
in the upper-half complex-ω plane. Response functions
having these additional properties are called minimum-
phase, and in this study we will consider only this kind
of filter for which Eq. (7) holds [45].

In the following we will consider a higher order
Lorentzian filter for which the Hilbert transform can be
calculated analytically [43]

F (ω) = b
a4

(ω − ωf )4 + a4
, (9)

ψ(ω) = ba4
(ω − ωf )

[
(ω − ωf )2 + a2

]
√

2[(ω − ωf )4 + a4]
(10)

where a is related to filter bandwidth (in rad/s) and
b < 0 is a non-dimensional number which controls the fil-
ter strength, i.e. the maximum attenuation of the filter.
The half-width of the filter at half-attenuation can be eas-
ily computed as ∆ωHWHM = a 4

√
b/ ln[(1 + eb)/2]− 1 ≈

a(1 − b/8) for small b. In addition to provide a simple
and elegant analytical description of a causal filter, Eqs.
(9,10) also provide a good approximation of the transfer
function of apodised fiber Bragg gratings (FBG), as the
one used in [34]. It is worth noting that FBGs used in
transmission are always minimum phase [46, 47], which
makes our analysis rather general. For other kinds of fil-
ters with arbitrary dissipation profile, for which no ana-
lytical expression is known, the corresponding phase can
be calculated numerically [40, 43]. An example of the
transfer function of the filter described by Eqs. (9,10) is
shown in Fig. 1(a).
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FIG. 1. (a) Amplitude and phase of the filter described by
Eqs. (9,10). (b) Instability gain gMAP (ω) calculated from Eq.
(21) revealing the effect of magnitude and phase of the filter
transfer function. The following parameters have been used:
β2 = 0.5 ps2/km , γ = 2.5 W−1km−1, L = 100 m, ρ =

√
0.9,

θ =
√

0.1, φ0 = −ψ(0) (zero global cavity detuning), ωf =
200 · 2π rad/ns, b = −1, a = 400 rad/ns, intracavity power
P = 1.18 W, input power PIN = 1 W. The vertical dashed
line indicates the phase-matching frequency calculated from
Eq. (32).

B. Steady states

We search for the stationary, continuous wave (CW)
field inside the fibre as

An(z, t) = AeiγPz, P = |A|2.

The relation between the field circulating into the cavity
and the pump is (for complex field and power)

A =
θ

1− ρeiφH(0)
EIN, (11)

P =
θ2

1 + ρ2|H(0)|2 − 2ρ|H(0)| cos(φ+ ψ(0))
PIN, (12)

where the total phase shift imposed by the cavity is
φ = φ0 + γPL while EIN and PIN denote the amplitude
and the power of the pump field respectively. From Eq.
(12) it appears that the magnitude of the filter at the
pump frequency |H(0)| acts as an additional loss which
multiplies the coupler induced losses, whereas the phase
ψ(0) gives an additional phase shift.

C. Linear stability analysis

In order to study the stability of the steady state de-
fined by Eq. (11) we consider the following perturbation

An(z, t) = [
√
P + ηn(z, t)]eiγPz, |ηn| �

√
P .

For simplicity we have assumed the intracavity field to
be real (the steady state phase does not affect the results
of the stability analysis). By linearisation we obtain the
equation governing the evolution of the perturbations:

i
∂ηn
∂z
− β2

2

∂2ηn
∂t2

+ γP (ηn + η∗n) = 0.

We split perturbations in real and imaginary parts ηn =
an + ibn (an, bn ∈ R), to get the following system de-
scribing the evolution of the perturbations’ spectra â =

â(z, ω), b̂ = b̂(z, ω) :

∂ân
∂z

= −β2ω
2

2
b̂n, (13)

∂b̂n
∂z

=

(
β2ω

2

2
+ 2γP

)
ân. (14)

The solution of the system Eqs. (13-14) from z = 0 to
z = L gives the perturbations’ spectra after one pass in
the fibre as (dependence on frequency ω is omitted):[

ân(L)

b̂n(L)

]
=

[
cos(kL) −βω

2

2k sin(kL)
2k
βω2 sin(kL) cos(kL)

] [
ân(0)

b̂n(0)

]
,

(15)

where k(ω) =

√
β2ω2

2

(
β2ω2

2 + 2γP
)

is the wave-number

of the small harmonic perturbations which propagate on
top of the stationary field.

From Eqs. (5-6) it follows that the combined action
of the filter and the coupler on the perturbations can be
written as follows:[

ân+1(0)

b̂n+1(0)

]
=

ρ

[
cosφ − sinφ
sinφ cosφ

] [
He(ω) −Ho(ω)
Ho(ω) He(ω)

] [
ân(L)

b̂n(L)

]
, (16)

where we have defined the even and odd part of the trans-
fer function as

He(ω) = F{Re[h(t)]} =
H(ω) +H∗(−ω)

2
,

Ho(ω) = F{Im[h(t)]} =
H(ω)−H∗(−ω)

2i
.

Note that the coupler and filter matrices commute, as
expected intuitively: for the stability analysis it doesn’t
matter if the filter is placed just before or just after the
coupler.

By combining Eqs. (15-16) we get the total effects
accumulated by the perturbations over one roundtrip as[

ân+1(0)

b̂n+1(0)

]
= M

[
ân(0)

b̂n(0)

]
. (17)

The eigenvalues of the matrix M reads as

λ1,2 =
∆

2
±
√

∆2

4
−W (18)

where

W = ρ2
(
He(ω)2 +Ho(ω)2

)
, (19)

∆ = ρ

[
2 cos(kL) (He(ω) cosφ−Ho(ω) sinφ)

− β2ω
2 + 2γP

k
sin(kL) (Ho(ω) cosφ+He(ω) sinφ)

]
.

(20)
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Whenever |λ1,2| > 1 the CW solution Eq. (11) is unsta-
ble and the perturbation power grows as exp[gMAP (ω)z],
where we have defined the MI gain as:

gMAP (ω) =
2

L
ln max{|λ1|, |λ2|}. (21)

D. Approximations and phase matching condition

Equations (18-21) give the exact parametric gain, how-
ever they do not allow for a straightforward physical in-
terpretation. We hence proceed to obtain an approxi-
mated formula, which holds valid when the MI process
derives mainly from the filter phase. Indeed, by exploring
the parameters’ space, we have noted that the position
of the unstable bands is mainly fixed by the filter phase.
Figure 1 shows the relative impact of the filter ampli-
tude, phase and both combined on the instability gain
spectrum. The red curve, accounting for only |H(ω)|,
shows that the threshold of instability is not reached.
The most unstable band mimics the shape of the filter
response, as expected for gain-through-loss mechanism
[25]. The black curve accounts only for the filter phase:
even if it overestimates the gain, it gives a reasonable
prediction of the frequency of the unstable bands. In or-
der to predict position of the unstable bands, we then
assume the following form for the filter transfer function
(unitary modulus)

H(ω) = exp[iψ(ω)]. (22)

The even and odd part of the filter transfer function
read as

He(ω) = eiψo(ω) cos[ψe(ω)], (23)

Ho(ω) = eiψo(ω) sin[ψe(ω)], (24)

where the even and odd part of the filter phase are defined
as

ψe(ω) =
ψ(ω) + ψ(−ω)

2
, (25)

ψo(ω) =
ψ(ω)− ψ(−ω)

2
. (26)

The assumption of unitary modulus, permits to greatly
simplify Eqs. (19) as follows

W = ρ2ei2ψo , (27)

∆ = ρeiψo

[
2 cos(kL) cos(φ+ ψe)

− β2ω
2 + 2γP

k
sin(kL) sin(φ+ ψe)

]
, eiψo∆̃, (28)

which gives the following expression for the eigenvalues:

λ1,2 = eiψo

[
∆̃

2
±

√
∆̃2

4
− ρ2

]
. (29)

A part from the exponential factor, Eq. (29) has been
obtained before for the description of a standard cavity
(i.e. without filter) [15, 38]. The exponential factor does
not change the modulus of the eigenvalues, hence it does
not affect the gain. We have instability if |∆̃| > 1 + ρ2.

In order to find a phase matching relation, we ex-
pand the dispersion relation for the perturbations k(ω)

for |ω| � 2
√
γP/β2

k =

√
β2ω2

2

(
β2ω2

2
+ 2γP

)
≈ β2ω

2

2
+ γP. (30)

In this way we have

∆̃ ≈ 2ρ cos[kL+ ψe(ω) + φ].

The potentially unstable frequencies maximise |∆̃|, and
thus satisfy the following equation:

k(ω)L+ φ+ ψe(ω) = mπ, m = 0,±1, . . . (31)

The solutions of Eq. (31) for m 6= 0 correspond to
parametric resonances (PRs) induced by the periodic
forcing represented by the injection of the pump at each
roundtrip [15]. We concentrate on the m = 0 band and
use the expansion (30), to get the following simple phase-
matching relation:

β2ω
2

2
L+ 2γPL+ φ0 + ψe(ω) = 0 (32)

Equation (32) has a straightforward physical meaning:
the phase acquired by the perturbations propagating on
top of the cw (β2ω

2L/2 + γP ) plus the total phase shift
of the cavity (linear+nonlinear: φ = φ0 + γP ) plus the
even part of the phase of the filter (ψe(ω)) must be zero
to have parametric amplification. Equation (32) is a gen-
eralisation Eq.(8) of Ref. [38], including the dispersion
induced by the filter.

III. THE MEAN FIELD MODEL

A. Averaging the Ikeda map

In this section, we derive a mean field model, i.e. a
generalized Lugiato-Lefever equation, by performing a
suitable averaging of the Ikeda map Eqs. (1,5). Using
Eq. (1), we can formally approximate at first order the
field envelope An at spatial position L after propagation
from z = 0 to z = L as follows:

An(L, t) ≈ An(0, t) + L
∂An(z, t)

∂z

∣∣∣∣
z=0

= (33)

An(0, t) +

[
−iLβ2

2

∂2

∂t2
+ iLγ|An(0, t)|2

]
An(0, t).

Assuming that filter and coupler are located at the same
position z = L, the Fourier transform of the field, Â(ω, 0),
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obeys the boundary conditions described by Eq. (6) :

Ân+1(0, ω) = θEINδ(ω) + ρeiφ0eF (ω)+iψ(ω)Ân(L, ω),

(34)

where we have explicitly written H(ω) = eF (ω)+iψ(ω).
We assume ρ ≈ 1, θ � 1, |φ0| � 1 , F, |ψ| � 1, and

we expand in Taylor series at the first order all the terms
in the boundary conditions Eq. (34). We neglect all the
products corresponding to different physical effects, and
after taking the inverse Fourier transform we obtain:

An+1 −An = [−α+ iφ0 + Φ ?+iΨ?]An + (35)

+

[
−iLβ2

2

∂2

∂t2
+ iLγ|An|2

]
An + θ

√
PIN .

where we used the notation An = An(t, 0). Note that Φ
and Ψ are the inverse Fourier transforms of F and of ψ re-
spectively. By approximating the spatial derivative with
the difference quotient (An+1 − An)/L ≈ ∂A/∂z|z=nL,
we can pass the map to the continuous limit obtaining
the following equation for the field A(z, t):

L
∂A

∂z
= [−α+ iφ0 + Φ ?+iΨ?]A+ (36)

+

[
−iLβ2

2

∂2

∂t2
+ iLγ|A|2

]
A+ θ

√
PIN .

Equation (36) represents a mean-field generalised
Lugiato-Lefever equation, which differs from the stan-
dard LLE [11, 48, 49] by the presence of filter terms.

B. Linear stability analysis

Equation (36) admits a continuous wave homogeneous
solution with power P̄ which is determined by the char-
acteristic bistable response of the resonator according to
the following relation:

P̄ =
θ2

(−α+ F (0))
2

+
(
φ0 + ψ(0) + γLP̄

)2PIN . (37)

We perform a linear stability analysis of the CW solution
by inserting the following ansatz

A(z, t) = A0 +A+(z)e−iωt +A−(z)eiωt, (38)

into Eq. (36) where A0 =
√
P̄ eiξ, being ξ a phase factor,

and A+, A− the amplitudes of perturbations oscillating
at frequency detuned by ∓ω with respect to the CW solu-
tion. Linearising with respect to the small perturbations
(|A0| >> |A−|, |A+|) we obtain the following system of
coupled equations:

L
∂A+

∂z
= iLω2 β2

2
A+ + iφ0A+ + iψ(ω)A+ + F (ω)A+ +

+ iγL2P̄A+ + iγLP̄ e2iξA∗− − αA+ (39)

L
∂A∗−
∂z

= −iLω2 β2
2
A∗− − iφ0A∗− − iψ(−ω)A∗− + F (−ω)A∗−

− iγL2P̄A∗− − iγLP̄ e−2iξA+ − αA∗−. (40)

A phase rotation and amplitude rescaling allows us to get
a better insight on how the filter acts on the perturba-
tions and hence to better appreciate the contributions to
MI. We hence perform the following change of variables:

A+ = a+e
[iψo(ω)+Fe(ω)]z−αz (41)

A∗− = a∗−e
[iψo(ω)+Fe(ω)]z−αz (42)

which leads to

L
∂a+
∂z

= iLω2 β2
2
a+ + iφ0a+ + iψe(ω)a+ + Fo(ω)a+ +

+iγL2P̄ a+ + iγLP̄ e2iξa∗− (43)

L
∂a∗−
∂z

= −iLω2 β2
2
a∗− − iφ0a∗− − iψe(ω)a∗− − Fo(ω)a∗− −

iγL2P̄ a∗− − iγLP̄ e−2iξa+ (44)

where the even and odd parts of F (ω) have been defined
as:

Fe(ω) =
F (ω) + F (−ω)

2
, (45)

Fo(ω) =
F (ω)− F (−ω)

2
. (46)

We can now easily recast the system evolution in a matrix
form:

L
∂

∂z

(
a+
a∗−

)
= M

(
a+
a∗−

)
(47)

where the evolution matrix reads

M =

(
iµ+ Fo(ω) iγLP̄ e2iξ

−iγLP̄ e−2iξ −iµ− Fo(ω)

)
with

µ = Lω2 β2
2

+ 2γP̄L+ φ0 + ψe(ω) (48)

a phase-mismatch parameter. It is worth noting that
Eq. (48) is equivalent to the phase-matching condition
Eq. (32) obtained from the linear stability analysis of
the Ikeda map developed in the previous sections. The
eigenvalues of the matrix M read:

λ± = ±
√
− [µ(ω)− iFo(ω)]

2
+ (γLP̄ )2, (49)

thus we define the MI gain as:

gLLE(ω) = 2
−α+ Fe(ω) +Re(λ+)

L
. (50)

It follows that the power of the perturbations |A±|2 grows
exponentially as exp[gLLE(ω)z] when gLLE(ω) > 0.

Starting from Eqs. (43) and (44) we can obtain a phys-
ical insight into the meaning of the mismatch parameter
µ defined in Eq. (48). By neglecting the dissipative part
of the filter, Eqs. (43) and (44) can be recast in the
following form:

L
∂a+
∂z

= iγLP̄ e2iξa∗−e
−2iµz (51)

L
∂a∗−
∂z

= −iγLP̄ e2iξa+e2iµz. (52)
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From Eqs. (51) and (52) we can see that at phase-
matching, when µ = 0, a+ and a∗− grow exponentially
in z. It is apparent that the standard cavity mismatch
can be compensated by the presence of the filter even in
normal dispersion and for zero or positive detuning for
the pump.

IV. CONTROL OF THE INSTABILITY GAIN

In this section we analyse the effect of several control
parameters on the instability gain. We present a sys-
tematic comparison of the results of the stability analy-
sis from the Ikeda map and the generalised LLE, which
permits to appreciate the accuracy and the limits of the
mean-field model. Even if our results are general, in this
section we restrict to the normal dispersion β2 > 0 and
monostable regime δ/α <

√
3. In this case the standard

Turing instability can not develop [11] and the instabil-
ity is induced only by presence of the filter. In Fig.2a)
we show the MI gain as a function of the pump power
calculated for the Ikeda map [see Eq. (21)]. We can note
the presence of an unstable band at a frequency slightly
higher than the central position of the filter (dashed black
line), and of its symmetric at negative frequency shift.
The gain increases monotonically with input power, while
a decreasing trend of the maximally unstable frequency
is observed. Fig.2b) reports the gain obtained from the
analysis of LLE [see Eq. (50)]. The mean-field repro-
duces qualitatively the same picture. In particular, we
note a quantitative agreement regarding the peak spec-
tral position and amplitude of the unstable bands. For
high input powers (greater than ≈ 2 W), the map pre-
dicts a small additional lobe peaked at the specral posi-
tion of the filter, which is not captured by LLE.

The dependency of the MI gain on the three filter pa-
rameters, namely frequency shift (with respect to the
pump) ωf , spectral width a and strength b is shown
in Fig.3. Figure 3a) reports the gain as a function of
ωf calculated from the map. The band is located at a
slightly higher frequency than the filter, except when the

FIG. 2. The positive part of the MI gain is depicted a function
of PIN , calculated from a) the map and b) the LLE. The
dashed lines denote filter position ωf/(2π). Parameters used
are: β2 = 0.5 ps2km−1, γ = 2.5 W−1km−1, L = 0.1 km,
ρ =

√
0.9, φ0 = −ψ(0), θ =

√
0.1, a = 500 rad/ns, b=-3.2,

ωf = 2π · 400 rad/ns.

filter is very close to the pump, where we observe a shift
of the gain band towards higher frequencies. This hap-
pens because for this analysis we decided to compensate
the filter induced phase shift with the cavity phase shift
φ0 = −ψ(0) in order to stay in the monostable regime,
and the filter phase profile has a slowly decreasing tail
(see Fig. 1a)). We also note that for positive frequency
shift ωf the gain is substantially higher. The reason for
this asymmetry is that, unlike the amplitude F , the filter
phase ψ is an odd function (with respect to the central
frequency ωf ), so it acts in a substantially different way
depending if it is placed at positive or negative frequency
shift with respect to the pump. The results obtained from
the mean-field model shown in Figure 3 b) are practi-
cally identical. Figure 3c) reports the gain as a function
of the filter parameter a, which mainly controls the fil-
ter with, for a fixed filter frequency shift ωf/(2π) = 400
GHz calculated from the map. The unstable band is
located at the high-frequency edge of the filter, which

FIG. 3. The positive part of the MI gain is depicted for map
and LLE as a function of the filter frequency shift with respect
to the pump ωf/(2π) (panels a) and b)), of the filter width a
(panels c) and d)); and of the filter strength b (panels e) and
f)). The dashed black lines denote filter position, whereas
the dashed red lines denote the filter width at half maximum.
Parameters used are: β2 = 0.5 ps2km−1, PIN = 0.5 W, γ =
2.5 W−1km−1, L = 0.1 km, ρ =

√
0.95, φ0 = −ψ(0), θ =√

0.05, a = 400 rad/ns in a), b), e) and f); b=-1 in a), b), c)
and d); ωf = 2π · 400 rad/ns in c), d), e) and f).
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can be calculated as ωf + ∆ωHWHM (see definition after
Eq. (10)). The peak gain increases with a and reaches
a maximum for a ≈ 1.2 THz. Above this value the peak
gain decreases, to eventually vanish for values greater
than ≈ 2 THz. This drop in gain takes place because
the filter start to cut the pump, reducing the intracav-
ity power (input power is fixed here), which eventually
controls the parametric gain. Also in this case, the re-
sults obtained from the mean-field model shown Figure 3
d) are in perfect agreement. In Fig. 3e) we show the
gain from the map as a function of the parameter b,
which determines the maximum attenuation of the fil-
ter, but also the amplitude of the phase response. For
shallow filters −0.2 . b < 0 the system is modulationally
stable. By increasing the strength of the filter, a band
appears at a frequency greater than the filter central fre-
quency ωf/(2π) and whose peak amplitude and spectral
position grows monotonically with |b|. This evolution is
ruled by the phase profile of the filter which increases
with |b| and shifts the phase-matching frequency towards
higher values, as shown by Eq. (32). Quite surprisingly,
the mean field approach still works perfectly (see 3f)),
even when the perturbation induced by the filter at each
roundtrip are not at all small. This is a further con-
firmation that LLE hold valid beyond the assumptions
traditionally used for its derivation [14, 17, 39, 50].

The study of the dependence of the MI gain on the
cavity phase shift is presented in Fig.4. Figures 4 a) and
b) show the MI gain for the map and the LLE, calcu-
lated in absence of the filter. For the map, two branches
are present: the lower branch corresponds to the Tur-
ing instability, which is maximal near the cavity reso-
nance (φ0 = 0) and is also captured by the LLE. The
upper one corresponds to the parametric resonance in-
duced by the periodic boundary conditions, is peculiar
to the map, and develops patterns which are in anti-
phase roundtrip after roundtrip (also called period 2
or P2 MI) [11, 15, 38]. Figures 4 c)-f) demonstrate a
strong modification of the instability spectrum described
above induced by the filter presence. Each branch is
split around the spectral position of the filter. The low-
frequency part is moved towards lower (higher) phase-
shifts and the edges of the high-frequency parts are bent
upwards (downwards) when the filter central position is
ωf/(2π) = 400 GHz (-400 GHz). Hence the gain spec-
trum reveals a strong asymmetry depending on whether
the filter frequency is positively or negatively detuned
with respect to the pump. This suggests a further degree
of freedom for parametric gain engineering and control
in driven optical cavities.

V. FREQUENCY COMBS AND TEMPORAL
PATTERNS

The presence of modulationally unstable frequencies in
dissipative systems can lead to the generation of periodic
trains of pulses, which correspond to frequency combs in

FIG. 4. The positive part of the MI gain is depicted as
a function of the phase shift φ0 for the map without filter
a), with filter positively detuned with respect to the pump
(ωf/(2π) = 400 GHz) c), and with filter negatively detuned
with respect to the pump (ωf/(2π) = −400 GHz) e); the
corresponding LLE cases are plotted in b), d) and e). The
dashed lines denote filter position. Parameters used are:
β2 = 0.5 ps2km−1, γ = 2.5 W−1km−1, L = 0.1 km, ρ =

√
0.9,

θ =
√

0.1, a = 800 rad/ns, b=-3.2 and intracavity power 1 W.

the spectral domain [34]. The generated pulse train may
be interpreted as a stable attractor of the infinite dimen-
sional dissipative system described Eq. (36) [11]. This
behaviour contrasts the recurrence phenomenon observed
in the NLSE [51, 52], which is a conservative Hamiltonian
system. In Fig. 5 we report an example of the genera-
tion of a stable temporal pattern using a shallow filter
blue-detuned with respect to the pump wavelength. Fig-
ure 5a) reports the power evolution simulated with the
Ikeda map of an initial condition consisting in the cw
solution with a small sinusoidal perturbation (see figure
caption for more details). After the initial stage of per-
turbation growth, a stable pattern is generated around
the 300th roundtrip. The temporal drift towards negative
delay is caused by the odd part of the filter phase, which
act as an additional dispersion. The evolution simulated
from LLE is reported in Fig. 5b) is practically identi-
cal, showing once again the accuracy of the mean-field
model. The output pattern at roundtrip 400 is plotted
in temporal and spectral domain in Figs. 5c,d), where
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FIG. 5. The evolution of the field power profile over
roundtrips from a) the Ikeda map and b) the LLE. The output
power pattern and the corresponding power spectrum (nor-
malised to its maximum) are shown in panels c), d). Solid
red curves denotes results from the Ikeda map and blue cir-
cles from the LLE. The solid black curve in c) represents
the initial condition, whereas in d) it represent the filter
amplitude |H(ω)|. The parameters are β2 = 0.5 ps2km−1,
γ = 2.5 W−1km−1, L = 0.1 km, ρ =

√
0.95, φ0 = −ψ(0),

θ =
√

0.05, a = 400 rad/ns, b = −1, ωf/(2π) = 200
GHz, PIN = 0.0149 W for the Ikeda map and PIN = 0.015
W for the LLE (intracavity power of stationary solution is
0.2 W in both cases). Simulations initial conditions were
A(0, t) =

√
0.2[1 + 0.001 cos(2πνmaxt)] (νmax = 455GHz).

red curves, respectively blue dots stands for Ikeda map
and LLE, respectively. The comparison of the time do-
main pattern and power spectra demonstrate excellent
quantitative agreement between map and LLE nonlinear
solutions for parameters consistent with the assumptions
made in the mean field model derivation. We have also
verified that at much higher pump power the Ikeda map
exhibits a richer dynamics as it can be naturally expected

due to its broader validity range in parameters space.

VI. CONCLUSIONS

In this article we have presented the theory of filter in-
duced modulation instability in passive driven Kerr cav-
ities. Starting from an Ikeda map model we have derived
a generalized mean field equation of the Lugiato-Lefever
type. We have performed a linear stability analysis of
the homogeneous solutions of both models and our re-
sults show the existence of a peculiar kind of modulation
instability developing also in normal group velocity dis-
persion and in Turing-stable regimes. Besides agreeing
well in their theoretical predictions both the mean field
model and the map describe equally well the nonlinear
stage of the filter induced MI, consisting in the generation
of stable frequency combs. We have specialised our anal-
ysis on a particular shape of minumum-phase filter, which
is quite general for the modelling of fiber Bragg gratings.
The theory can be straightforwardly generalised to other
filter responses more suited to other kinds of resonators
such as Fabry-Perot cavities or microresonators. The re-
sults presented in this article will be relevant for the the
development and design of novel sources of coherent light
with tuneable features. Indeed controlling the frequency
shift between the pump the filter would allow tuneabil-
ity of the frequency position of the generated spectral
sidebands and ultimately the possibility of tuneable fre-
quency comb generation in the nonlinear stage of the
filter induced MI as pioneered in [34].
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