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Abstract—Huffman-coded sphere shaping (HCSS) is an algo-
rithm for finite-length probabilistic constellation shaping, which
provides nearly optimal energy efficiency at low implementation
complexity. In this paper, we experimentally study the nonlin-
ear performance of HCSS employing dual-polarization 64-ary
quadrature amplitude modulation (DP-64QAM) in an extended-
reach single-span link comprising 200 km of standard single-
mode fiber (SSMF). We investigate the effects of shaping sequence
length, dimensionality of symbol mapping, and shaping rate.
We determine that the naı̈ve approach of Maxwell–Boltzmann
distribution matching — which is optimal in the additive white
Gaussian noise channel — provides a maximum achievable
information rate (AIR) gain of 0.18 bits/4D-symbol with respect to
uniform signaling at optimum launch power in the infinite length
regime. Conversely, HCSS can achieve a gain of 0.37 bits/4D-
symbol over uniform signaling using amplitude sequence length
of 32, which may be implemented without multiplications, using
integer comparison and addition operations only. Coded system
performance, with a net data rate of approximately 425 Gb/s for
both shaped and uniform inputs, is also analyzed.

Index Terms—Optical fiber communication, probabilistic shap-
ing, sphere shaping, nonlinear fiber channel, single-span links.

I. INTRODUCTION

IN the last decade, coherent detection has been a key en-
abling technology for high-throughput optical fiber commu-

nication systems. Initially, the adoption of coherent detection
with high-speed digital signal processing (DSP) provided im-
mediate four-fold improvement in spectral efficiency compared
to direct detection systems, as all four dimensions of the
optical field could be detected. The first coherent 40 Gb/s
transmission systems using dual polarization (DP) quadrature
phase-shift keying (QPSK) [1] were therefore able to oper-
ate without significant increase in bandwidth compared with
10 Gb/s on-off keying systems. DP-QPSK 100 Gb/s systems
were subsequently introduced [2], and are widely deployed in
commercial long-haul networks. In the presence of increas-
ingly stringent bandwidth constraints, Nyquist pulse shaping
and M -ary quadrature amplitude modulation (MQAM) have
been employed in the next generations of coherent systems to
increase spectral efficiency, and therefore achieve the required
growth in per-wavelength bit rates [3].
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Due to the reduction in noise tolerance of high spectral effi-
ciency transmission systems, coded modulation (CM) schemes
have been proposed to maximize the transmission system
performance given the constraints of the physical channel.

By considering the optical field as a 4D signal space, power
efficiency may be improved in a number of ways (e.g., by
considering constellation points on an optimal lattice bound
by a maximum power) [4], [5]. High-dimensional modulation
(HDM) based on utilization of multiple time-slots (consequent
transmitted symbols) or multiple carriers to utilize more ef-
ficient lattices in larger numbers of dimensions can provide
further improvement in power efficiency [6], [7]. However,
coded performance using binary forward error correction
(FEC) codes and bit-interleaved coded modulation (BICM)
implementation for such systems may be challenging due
to their lack of Gray-coded bit labeling. Additionally, while
much research in this area has focused on power efficiency,
several proposed HDM techniques specifically target improved
nonlinear tolerance in the optical fiber channel [8]–[10].

Constellation shaping may be considered as the optimization
of transmitted symbols distribution in terms of either location
or probability in the signal space, such that the transmitted
signal has improved power efficiency or nonlinear tolerance
for an optical channel. In the additive white Gaussian noise
(AWGN) channel, constellation shaping provides a gain of up
to 1.53 dB in power efficiency over uniform signaling [11].

Finite-length probabilistic shaping may be considered as
HDM — i.e., the mapping of a block of k input bits to a point
on an L-dimensional constellation (e.g., on a square lattice),
where an L-dimensional constellation point is then mapped to
a sequence of 4D symbols in time (e.g., DP-MQAM) [12].

The key enabler for probabilistic shaping in practical sys-
tems was the introduction of a probabilistic amplitude shaping
(PAS) framework for QAM [13]. The primary advantage of
PAS over other proposed probabilistic shaping architectures
is the use of reverse concatenation of the shaping and FEC
coding stages (coding is performed on the bit labels of
probabilistically shaped amplitudes), which allows for low-
complexity integration with BICM systems and enables trans-
mission rate adaptivity with fixed FEC code rate.

Since the proposal of PAS, many implementations utilizing
this structure have been investigated. Initially, an analysis
based on an asymptotic infinite-length shaping approach with
an ideal Maxwell–Boltzmann (MB) distribution of amplitudes
was commonly performed for transmission over a nonlinear
optical channel. MB shaping achieves the maximum power ef-
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ficiency for a given entropy, which is therefore the optimal dis-
tribution in the AWGN channel [14]. However, for an optical
channel, MB shaping can enhance fiber Kerr nonlinearities,
leading to a decrease in shaping gain, which was shown for
long-haul transmission [15] and unrepeated transmission [16].
Importantly, while considerable performance improvement can
be achieved using infinite-length MB shaping, this approach
is fundamentally impossible to implement.

More recently, research has focused on finite-length shap-
ing architectures which can be realizable in the hardware.
One class, referred to as distribution matching (DM), is
based on obtaining a fixed target distribution. First, constant-
composition DM (CCDM) was introduced [17], whereby all
transmitted amplitude sequences are permutations of a single
composition, defined by the target distribution. While CCDM
can provide asymptotically low rate-loss, and therefore high
power efficiency, it requires long sequences (typically on the
order of several hundred amplitudes) to achieve it. Multiset-
partition DM (MPDM) was proposed in [18], [19] and pro-
vides lower rate loss at a fixed shaping sequence length.
MPDM is based on multiple complimentary compositions,
which on average result in the desired distribution. Other DM
implementations were also proposed, such as product DM
[20], hierarchical DM [21], prefix-free code DM [17], and
parallel-amplitude DM [22].

Another class of shaping architectures is based on sphere
shaping. Sphere shaping introduces an optimal sphere bound
in multi-dimensional signal space — for a target transmission
rate and finite sequence length, the optimal set of constellation
points from a fixed lattice is chosen such that the geometry
is bounded by a hyper-sphere [12], [14]. This scheme has
intuitively optimal power efficiency — for any rate, lattice
and sequence length, we can define a smallest possible sphere
which contains the correct number of points: any alternative set
of constellation points will contain points outside the sphere,
leading to degraded power efficiency. Sphere shaping-based
algorithms include shell mapping (SM) [23], [24], enumerative
sphere shaping (ESS) [25]–[27], and Huffman-coded sphere
shaping (HCSS) [28], [29].

The dependence of nonlinear tolerance on shaping length
was investigated using constant composition distribution
matching (CCDM) [30], [31] and ESS [27], [32] for multi-span
long-haul links. Also, the advantage of 2D symbol mapping
for nonlinearity tolerance has been mentioned previously in
[31], while the advantage of the short-length shaping regime
for a nonlinear optical channel was theoretically investigated
in [33], [34]. Significant shaping gain exceeding the theoretical
gain for the AWGN channel was demonstrated in numerical
simulations for single-span links by optimally combining
linear and nonlinear shaping gains using SM with very short
shaping lengths [34]. In [35], [36] the authors investigated
shaping of a single 4D quadrant using SM and demonstrated
increased nonlinear tolerance in single-span links. In our pre-
vious work, we demonstrated a significant nonlinear shaping
gain with short-length HCSS and 4D symbol mapping for
extended-reach single-span links [37].

Nonlinearity tolerant shaping can be of particular interest
for short-distance transmission with low accumulated chro-

matic dispersion (CD). Low CD leads to highly correlated
short-memory nonlinear interactions. Hence, for short-distance
systems improved nonlinear tolerance can be achieved with
short-length shaping [34], which is attractive in terms of imple-
mentation complexity [37]. In contrast, for long-haul systems
nonlinearities become significantly decorrelated (turning into
Gaussian-like noise) and longer length shaping is required, as
for AWGN channels [27].

At present, demand for high capacity single-span transmis-
sion systems is driven by cloud and inter-data-center traffic.
After successful introduction of the 400G ZR standard [38],
which specifies transmission of up to 120 km, there is great
interest in increasing system reach and bit rate. Increasing
the transmission distance of single-span systems leads to the
signal being significantly impaired by fiber nonlinearities due
to increased optimal launch power. We previously demon-
strated that for these systems short-length shaping can offer
significant performance gain at reasonably low implementation
complexity [37].

We extend our previous study on nonlinear performance of
HCSS in extended-reach single-span links presented in [37],
where we studied the short-length shaping regime of HCSS
with fixed shaping rate and symbol mapping dimensionality.
In this work we present a comprehensive analysis of HCSS
performance in extended-reach single-span links comprising
investigations of the impact of shaping length, dimensionality
of symbol mapping, and shaping rate on nonlinear tolerance in
comparison with uniform signaling and infinite-length shaping
with an ideal MB distribution. Also, coded performance is
analyzed using low-density parity-check (LDPC) codes, which
provide matching data rates for shaped and uniform signals.

The remainder of this paper is structured as follows. In
Section II we give an overview of the PAS framework, HCSS
architecture, multi-dimensional symbol mapping strategies, as-
sociated energy efficiency and rate loss of the shaping/mapping
scheme. Section III provides the description of the transmis-
sion experiment, DSP and performance metrics used for eval-
uating system performance and comparing shaping methods.
In Section IV we present the experimental results for back-
to-back and single-span transmission, analyze coded perfor-
mance and discuss the nonlinear system performance, while
in Section V we draw our conclusions. Appendices A and B
give detailed explanations of probability mass function (PMF)
calculation for high-dimensional symbol mapping strategies,
and experimental data fitting used for the analysis of the
results, respectively.

II. PROBABILISTIC SHAPING: HUFFMAN-CODED SPHERE
SHAPING (HCSS)

A. Probabilistic amplitude shaping (PAS)

The diagram of PAS architecture at the transmitter and
receiver is shown in Fig. 1. The PAS architecture calls for
blocks of uncoded information bits to be mapped onto prob-
abilistically shaped amplitude sequences [13]. The bit labels
corresponding to the shaped amplitudes are then encoded with
a systematic FEC code, and the parity bits assigned to the sign
bits of the pulse amplitude modulation (PAM) constellation.
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Fig. 1. PAS architecture: (a) transmitter, (b) receiver.

Some uncoded information bits (referred to as unshaped bits)
may also be carried on the sign of the constellation if required.
We note that parity and information bits are considered to be
uniformly distributed, and therefore the resulting encoded dis-
tribution is symmetrical about zero. Finally, signed amplitudes
are mapped onto the 4D optical carrier for transmission.

The primary advantage of the PAS architecture is that at
the receiver the FEC decoder operates on the bit labels of
the shaped amplitude sequences, enabling FEC decoding to
be performed before shaping demapping. The demapping of
amplitude sequences onto blocks of information bits is then
performed without noise or bit errors, greatly reducing the
complexity of both the demapping procedure and the shaping
system design. Also, we note that the overall transmission rate
of the system may be tuned by adjusting the rate of the shaping
algorithms, while the FEC code rate remains the same.

We define the shaping rate in bits per amplitude (b/Amp)
as

RS =
k

L
, (1)

where k is the number of uniform input bits, and L is the
length of the shaped amplitude sequence.

The set of unique amplitude sequences, which are available
for mapping/demapping blocks of information bits and forms
a high-dimensional constellation, is defined by the chosen
shaping architecture. We note that the shaping architecture
determines the energy efficiency and rate loss of the system,
while the mapping and demapping algorithms determine the
implementation complexity.

B. Huffman-coded sphere shaping (HCSS)

Sphere shaping architecture introduces a sphere bound on
power efficiency for finite-length shaping — i.e., it defines
all constellation points for signaling on a specified multi-
dimensional lattice having a certain energy constraint. By
definition, this architecture achieves the best possible energy
efficiency for a given rate (i.e., number of constellation points),
lattice (e.g., the square lattice modulation based on uniform
QAM), and dimension (i.e., amplitude sequence length) [14].
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Fig. 2. Block diagram of HCSS algorithm using multiset ranking and LUT
[37].

Examples of algorithms which closely approximate the sphere
bound are ESS and SM.

HCSS introduces some additional structure into the spher-
ical shaping architecture in exchange for a small reduction
in power efficiency and increase in rate loss. In particular,
HCSS restricts the number of constellation points utilized
for each unique composition within spherical architecture to
be a power of two, and then introduces a minimal number
of additional compositions with higher power to ensure a
dyadic distribution of compositions [28]. This enables the
use of a variable length binary prefix (Huffman code) to
uniquely address compositions in the shaping architecture. The
remaining payload bits in a binary input word are then used
to address a unique permutation (i.e., amplitude sequence) of
the specified composition. Therefore, the mapping/demapping
task is divided into two parts — addressing composition using
a Huffman code and a CCDM mapping/demapping problem.

If the multiset ranking (MR) algorithm is used for CCDM
mapping/demapping as described in [28], [29], the lexico-
graphical rank of the selected sequence corresponds to the
payload bits. Additionally, we note that sequence ranks may be
computed without multiplication operations by pre-computing
multinomial coefficients and storing them in a look-up table
(LUT). For short sequence lengths, the coefficients required
for MR mapping and demapping can be stored in moderately
sized LUTs — for example, sequence length of 32 requires
only 100 kbits of memory [29]. Therefore, both mapping in
Fig. 2(a) and demapping in Fig. 2(b) are performed iteratively
on a per-symbol basis, using LUTs, requiring integer compar-
ison and addition operations only. We note that while LUT
size and algebraic complexity estimation may provide a basic
idea of the feasibility of hardware implementation, quantitative
comparison of the hardware complexity of different algorithms
must be done in dimensions such as power consumption and
circuit footprint, and requires a process–specific netlist–level
hardware design [39].

The number of available sequences for the ith composition
in the Huffman-coded structure is

N i
seq = 2blog2 Ni

permc , (2)
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Fig. 3. Strategies for mapping amplitude sequences into modulated 4D
symbols (corresponding signs are not reflected): (a) 1D symbol mapping, (b)
2D symbol mapping, (c) 4D symbol mapping.

where N i
perm is the number of possible permutations of the

ith composition, which is given by multinomial coefficient:

N i
perm =

L!∏
a c

i(a)!
, (3)

where ci(a) is the number of occurrences in the ith composi-
tion of the amplitude a for L =

∑
a c

i(a). The probability of
the ith composition is therefore given by:

pi =
N i

seq

2k
. (4)

C. Symbol mapping strategies

We studied three strategies for mapping shaped sequences of
amplitudes into the modulated 4D symbols of the DP-64QAM
format. These mapping strategies are illustrated in Fig. 3.
We note that a sign is assigned to each amplitude according
to the sign bit during the mapping process (see Fig. 1 (a)),
however, added signs are not reflected in Fig. 3 for simplicity
of consideration.

We refer to 1D symbol mapping when four independent
shaped amplitude sequences of length L are sequentially (on
an amplitude-by-amplitude basis) mapped into four simultane-
ous quadratures (in-phase and quadrature signal components in
both polarizations) constructing a single 4D-symbol sequence
of length L, as shown in Fig. 3 (a).
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1D, 2D and 4D symbol mapping strategies.

In the case of 2D symbol mapping, as shown in Fig. 3 (b),
two independent shaped amplitude sequences of length L are
mapped into a single 4D-symbol sequence of length L/2 —
two consecutive amplitudes from each amplitude sequence are
mapped into four simultaneous quadratures.

In the case of 4D symbol mapping, as shown in Fig. 3 (c), a
single shaped amplitude sequence of length L is mapped in a
single 4D-symbol sequence of length L/4 — four consecutive
amplitudes are mapped into four simultaneous quadratures.

By increasing symbol mapping dimensionality we can ef-
fectively reduce the time-domain length of the output 4D-
symbol sequence and the number of simultaneously interact-
ing sequences, while maintaining the same power efficiency.
The derivation of the resulting multi-dimensional PMF for
different symbol mapping strategies is described in detail in
Appendix A. We note that 1D, 2D and 4D mapping strategies
result in 1D, 2D and 4D distributions, respectively.

D. Rate loss and power efficiency

Rate loss due to the use of a finite-length shaping scheme
is calculated in bits per 4D-symbol (b/4D) as

Rloss = H(X)−D · (RS + 1) , (5)

where H(X) denotes the entropy of the 4D output signal X
(calculated according to PMF in Appendix A), D accounts for
symbol mapping dimensionality (in the case of 4D symbol
mapping D = 4) and “1” accounts for the sign bit per
dimension.

Fig. 4 demonstrates the rate loss and corresponding entropy
for HCSS in comparison with the sphere bound on fixed
length shaping, in the case of 1D, 2D and 4D mapping based
on DP-64QAM at RS = 1.75. HCSS has slightly higher
rate loss compared to the sphere bound due to additional
constraints introduced in its structure. This difference becomes
negligible at long shaping lengths. Also, we note that higher
dimensional mapping demonstrates slightly reduced rate loss
at short shaping lengths.

Fig. 5 shows the power penalty for HCSS, the sphere bound
and infinite-length MB shaping (also, based on DP-64QAM)
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at RS = 1.75. The power penalty is calculated with respect
to the MB distribution with unconstrained cardinality, which
provides the maximum power efficiency for a given entropy
[14]. HCSS and sphere shaping demonstrate the same trend as
for the rate loss — the difference in power penalty becomes
negligible at long shaping lengths. We note that power effi-
ciency does not depend on symbol mapping dimensionality.

E. AWGN performance

The performance of HCSS in terms of AIR in comparison
with the sphere bound and uniform signaling in simulated
AWGN channel is shown in Fig. 6 as a function of signal-
to-noise ratio (SNR). Similarly to the rate loss and power
efficiency analysis, both for HCSS and sphere shaping the
shaping was based on DP-64QAM at RS = 1.75 (the dimen-
sionality of symbol mapping does not have any impact as for
power efficiency) with shaping lengths of L = 32, 160, and the
uniform case is also represented by DP-64QAM. The chosen
shaping rate can be considered near-optimal for the operational
SNR range of approximately 11–13 dB, since the shaping gain
is maximized. In this SNR range (see inset in Fig. 6), for
L = 32 HCSS provides the sensitivity improvement in terms
of SNR of 0.4 dB, while sphere shaping achieves an additional
0.1 dB — equivalently, AIR gains are 0.25 b/4D for HCSS
and an additional 0.05 b/4D for sphere shaping. For L = 160,
the difference between HCSS and sphere shaping becomes
negligible and the sensitivity is improved by 1 dB, or AIR
gain is 0.45 b/4D. We note that other previously mentioned
sphere shaping-based algorithms, i.e., ESS and SM, closely
approach the sphere bound on performance, since they differ
from the sphere bound in only a small number of constellation
points.

III. TRANSMISSION EXPERIMENT

We investigated the system performance using HCSS in
comparison with uniform signaling and infinite-length MB
shaping. For HCSS we varied the shaping sequence length (L
in the range of 8–160), dimensionality of amplitude-to-symbol

8 9 10 11 12 13 14 15 16 17 18 19 20 21
SNR, dB

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

10.5
11

11.5
12

A
IR

, b
/4

D

HCSS L=32
HCSS L=160
Sphere Bound L=32
Sphere Bound L=160
Uniform
Shannon Bound

11 11.5 12 12.5 13
7.1

7.4

7.7

8

8.3

8.6

8.9

Fig. 6. Performance in AWGN channel: AIR vs. SNR. For shaping schemes
RS = 1.75.

mapping (1D, 2D and 4D) and shaping rate (RS in the range
of 1.625–1.875 b/Amp).

For the MB shaping case, signals were drawn from an MB
distribution with the entropy matching the shaping rate of
HCSS [15]. We note that symbols in the transmitted signal
were drawn independently and identically on the underlying
PMF. This method may be considered to give a finite-length
sample of an infinite-length shaped sequence, which incurs no
rate loss.

A. Experimental setup

The experimental setup is shown in Fig. 7. Wavelength-
division multiplexed (WDM) transmission of 9 DP-64QAM
channels operating at 56 GBd (with root-raised cosine pulse
shaping with 10% roll-off factor) on a 62.5 GHz grid was
carried out over a 200 km single-span link of SSMF. All
channels used the same shaping scheme under investigation.

The central channel-under-test (CUT) was generated using
a 92 GSa/s digital-to-analog converter (DAC) with nominal
effective number of bits (ENOB) of 6 and bandwidth of more
than 25 GHz [40], followed by a pluggable CFP2 analog
coherent optics (ACO) transceiver [41], [42] (integrated laser
with nominal 100 kHz linewidth and bandwidth exceeding
25 GHz). The 8 interfering channels were divided into two
groups of 4 channels, and generated by two pairs of DP in-
phase/quadrature-phase (IQ) Mach–Zehnder modulators and
DACs (for one group of channels a 120 GSa/s DAC with
nominal ENOB of 5.5 and bandwidth exceeding 30 GHz, and
modulator with bandwidth exceeding 35 GHz were used; for
the other group of channels a 64 GSa/s DAC with nominal
ENOB of 5.5 and bandwidth exceeding 20 GHz, and modu-
lator with bandwidth exceeding 25 GHz were used), where
4 external cavity lasers with 100 kHz linewidth combined
with a polarization maintaining coupler were used for each
modulator/DAC pair. The two groups of interfering channels
were then pre-amplified by erbium-doped fiber amplifiers
(EDFAs), and spectrally interleaved and combined with the
CUT via a programmable wavelength selective switch (WSS).
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The resulting spectrum of the generated WDM signal is shown
in Fig. 8.

At the link input the WDM signal was amplified by a
booster EDFA, then a variable optical attenuator (VOA) was
used to control the total launched power. After transmission
over 200 km of SSMF, the WDM signal was pre-amplified
by an EDFA with a noise figure of 5.5 dB and the CUT was
filtered by a WSS. Finally, the CUT was received by a CFP2-
ACO transceiver (an external laser with 100 kHz linewidth was
used as a local oscillator) and its analog output was sampled
and digitized by a 92 GSa/s analog-to-digital converter (ADC)
with nominal ENOB of 6 and bandwidth of more than 25 GHz.

In back-to-back configuration, the output of the transmitter-
side WSS was connected to the receiver-side WSS via a pair
of couplers used for noise loading. An amplified spontaneous
emission (ASE) noise source and VOA were used for varying
optical signal-to-noise ratio (OSNR), while an optical spec-
trum analyzer (OSA) was used for OSNR measurement.

B. Digital signal processing (DSP)

DSP was performed offline according to the generic flow in
Fig. 7. At the transmitter-side, firstly, signals were randomly
generated according to the shaping and mapping scheme under
consideration. Then, root-raised cosine pulse shaping was
applied followed by transmitter pre-emphasis (to compensate
for frequency response and skews). Finally, the signals were
uploaded to the DACs.

At the receiver-side the signal recovery was implemented
as follows. Firstly, the received data was extracted from the

ADC and receiver pre-compensation was applied (compensa-
tion of frequency response, skews and I/Q imbalance). Then,
CD was compensated, clock recovery was performed by a
frequency-domain Gardner algorithm, conventional complex-
valued decision-directed least-mean squares (DD-LMS) 2× 2
multiple-input multiple-output (MIMO) equalization (35 taps)
was performed in conjunction with carrier phase recovery
(CPR) in fully data-aided mode, and post-equalization was
done using real-valued DD-LMS 2 × 2 MIMO equalizers (5
taps) to enable compensation of residual transmitter IQ impair-
ments [43]. Soft-demapping assumed a circularly symmetric
Gaussian channel, and transmission performance metrics were
averaged over approximately 5× 106 symbols.

C. Performance metrics

We denote the transmitted signal by X and received sig-
nal after DSP algorithms by Y . The transmitted signal X
takes values from the 4D-constellation X = {x1, . . . , xM}.
We define the adjusted transmitted signal X ′ to take values
from X ′ = {x′1, . . . , x′M}, such that the new constellation
points x′i represent the centroids of the received symbols y
corresponding to the original constellation points xi, which
can be expressed as

x′i = E[y|xi] , (6)

where E[·] denotes the expectation.
The adjusted constellation X ′ is subsequently used for

estimation of effective SNR and soft-demapping. This reduces
the impact of impairments, which represent geometrical dis-
tortions of the constellation (e.g., transceiver nonlinearity and
uncompensated modulation impairments).

The effective SNR [15] of the received signal is calculated
as

SNReff =
Var[X ′]

Var[Y −X ′]
, (7)

where Var[·] denotes the variance. Effective SNR accounts
for both linear and nonlinear noise contributions accumulated
during signal propagation over an optical fiber, as well as
transceiver noise floor (i.e., implementation penalty and DSP
imperfections).
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The soft-demapper calculates log-likelihood ratios (LLRs)
for binary labels Bi (i = 1, . . . ,m) as

LLRi = log

∑
x∈X ′

1,i
fY |X′(y|x′)PX′(x′)∑

x∈X ′
0,i
fY |X′(y|x′)PX′(x′)

, (8)

where X ′1,i and X ′0,i are the subsets of constellation X ′, which
represent Bi being equal to 1 or 0, respectively; fY |X′(y|x′)
is the transition probability density function of the auxiliary
channel used for mismatched decoding; PX′(x′) is the 4D
PMF (calculated according to Appendix A).

We consider a memoryless 4D circularly symmetric Gaus-
sian auxiliary channel and assume that the noise in each
dimension is independent and identically distributed [44]. In
this case, the channel can be described as

fY |X′(y|x′) = 1

(πσ2)2
exp

(
−‖y − x

′‖2

σ2

)
, (9)

where σ2 is the noise variance. We note that lower-dimensional
soft-demapping can be done analogously for the case of 1D
and 2D mapping.

The achievable information rate (AIR) for bit-metric decod-
ing (BMD) impacted by the rate loss associated with finite-
length shaping [18] is calculated in b/4D as

AIR =

[
H(X)−

m∑
i=1

H(Bi|Y )

]
︸ ︷︷ ︸

RBMD

−Rloss , (10)

where RBMD is the BMD rate, which is given by the general-
ized mutual information (GMI). We note that for both uniform
signaling and infinite-length MB shaping, we have Rloss = 0.

Coded performance was analyzed based on normalized GMI
(nGMI), which can be calculated for a uniform signal as

nGMI =
GMI

m
=

AIR

m
, (11)

while for shaped signals it is calculated as

nGMI = 1−H(X)−GMI

m
= 1−4 · (RS + 1)−AIR

m
. (12)

IV. EXPERIMENTAL RESULTS

A. Back-to-back

Fig. 9 shows a back-to-back characterization of the system
under consideration. We note that these results are partly repro-
duced from [37]. We compared uniform signaling, MB shaping
at RS = 1.75 b/Amp, and HCSS with L = 16, 32, 48 using 4D
symbol mapping at the same shaping rate. Fig. 9(a) illustrates
the variation of AIR with OSNR. We observe that infinite-
length MB shaping achieves superior performance with a
0.48 b/4D AIR gain compared with uniform signaling over
an operating OSNR range of 18–21 dB. HCSS achieves gains
of 0.08, 0.23 and 0.32 b/4D for L = 16, 32, 48, respectively.
This shows the trend that longer length shaping achieves better
performance (eventually, approaching that of MB shaping), as
is expected for AWGN channels. For higher OSNR values,
shaping gain reduces both for HCSS and MB shaping. We
note that HCSS performance in back-to-back configuration is
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Fig. 9. Performance vs. OSNR in back-to-back configuration (RS = 1.75;
L = 16, 32, 48; 4D symbol mapping): (a) AIR, (b) Effective SNR.
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Fig. 10. Experimental constellations in back-to-back under high OSNR: (c)
Uniform, (b) Maxwell–Boltzmann shaping, (c) Huffman-coded sphere shaping
(L = 32).

well matched with AWGN performance shown in Fig. 6 (e.g.,
for L = 32, where OSNR range of 18–21 dB corresponds to
SNR range of 10.5–13 dB).

Fig. 9 (b) illustrates the variation of effective SNR with
OSNR. We observe that there is no noticeable difference
in terms of effective SNR over an operating OSNR range
of 18–21 dB (SNR range of 10.5–13 dB) for the shaping
schemes under consideration. Therefore, we conclude that
shaping algorithms do not introduce additional implementation
penalty over uniform signaling over the range of SNRs under
consideration, hence, the relative performance of different
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Fig. 11. Performance vs. optical launch power for single-span transmission
(RS = 1.75; L = 16, 32, 48, 160; 4D symbol mapping): (a) AIR, (b)
Effective SNR.

shaping schemes in the nonlinear regime is not impacted by
their respective implementation penalties. We also note that
shaping sequence length and symbol mapping strategy do not
impact the SNR in back-to-back.

Fig. 10 (a)–(c) shows constellation diagrams for uniform
signaling, MB shaping and HCSS (L = 32, 4D amplitude-to-
symbol mapping) at RS = 1.75 b/Amp under high OSNR
(about 35 dB). We observe no notable visual difference
between HCSS and MB shaped constellations.

B. Single-span transmission

For analysis of the experimental data for single-span trans-
mission, data fitting based on a Gaussian noise (GN)-model
[45] was performed. A detailed explanation of the data fitting
approach can be found in Appendix B.

1) Optical launch power sweep: Figs. 11 and 12 demon-
strate system performance characterization in terms of AIR
and effective SNR as a function of optical launch power
for uniform signaling, MB shaping and HCSS at RS =
1.75 b/Amp. Individual data points represent measured ex-
perimental data, while corresponding smooth lines represent
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Fig. 12. Performance vs. optical launch power for single-span transmission
(RS = 1.75; L = 48; 1D, 2D and 4D symbol mapping): (a) AIR, (b)
Effective SNR.

the data fit. We note that the model described in Appendix B
provides a very good fit to the measured experimental data.

Fig. 11 (a) and (b) show AIR and effective SNR for uniform
signaling, MB shaping and HCSS using L = 16, 32, 48, 160
with 4D symbol mapping. We note that these results are in
good agreement with [37], while also demonstrating asymp-
tomatic performance in the long length shaping regime. In
the linear regime, performance is consistent with that of
the back-to-back measurements. HCSS with longer sequence
length achieves higher AIR (approaching the performance
of MB shaping with L = 160), while variation in effec-
tive SNR is relatively small. At the optimal launch power,
we observe that MB shaping achieves a gain over uni-
form signaling of 0.18 b/4D, while HCSS exhibits gains of
0.24, 0.37, 0.38, 0.30 b/4D for L = 16, 32, 48, 160, respec-
tively. MB shaping suffers from severe nonlinear impairment,
which can be seen as effective SNR degradation of 0.52 dB
compared to uniform signaling at optimum power, while HCSS
demonstrated improved nonlinearity tolerance. HCSS with
L = 16, 32, 48 elicits SNR gains of 0.3, 0.17, 0.06 dB
compared to uniform signaling at optimal power, while for
L = 160 the effective SNR is reduced by 0.2 dB. In the
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Fig. 13. Performance vs. shaping sequence length (RS = 1.75; 1D, 2D and 4D symbol mapping): (a) and (d) AIR and effective SNR for launch power of
6.5 dBm, (b) and (e) AIR and effective SNR for optimal launch power, (c) and (f) AIR and effective SNR for launch power of 11.5 dBm.

highly nonlinear regime (launch power above ∼ 11 dBm),
the performance degradation for MB shaping and HCSS with
L = 160 is more significant, whereas the gain for HCSS with
shorter shaping length is increased.

Fig. 12 (a) and (b) show AIR and effective SNR for
uniform signaling, MB shaping and HCSS using L = 48
with 1D, 2D and 4D symbol mapping strategies. We observe
that HCSS with higher-dimensional symbol mapping achieves
better performance in the nonlinear regime. At the optimal
launch power, HCSS with 4D symbol mapping achieves AIR
gains of 0.04, 0.15 b/4D with corresponding SNR gain of
0.05, and 0.25 dB compared to 2D and 1D symbol mapping,
respectively. In the linear regime, the performance difference
is negligible among all symbol mapping strategies.

2) Optimal shaping length: In Fig. 13 we examine the
performance in terms of AIR and effective SNR when varying
the shaping sequence length of HCSS (L = 64, 96, 128
are added into consideration) with 1D, 2D and 4D symbol
mapping strategies in linear, optimal launch power and highly
nonlinear regimes. We note that the results shown in Fig. 13
are based on fitting of launch power sweep measurements.

As discussed previously, in the linear regime, which is
shown in Fig. 13 (a) and (d), HCSS with longer shaping
sequence length provides higher AIR and closely approaches
MB shaping performance with L = 160. No significant

difference is observed among all symbol mapping strategies.
Effective SNR also varies insignificantly — there is minor
SNR gain at shorter sequence lengths due to weak presence
of nonlinearities.

In the optimal launch power regime, which is shown in
Fig. 13 (b) and (e), HCSS using 2D and 4D symbol mapping
demonstrates significant performance gain in terms of AIR
with the shaping sequence length L in the range of 32–96,
while HCSS using 1D symbol mapping provides performance
close to MB shaping (with L ≥ 16). The sequence length
L = 32 can be considered optimal (achieving the highest AIR)
for all symbol strategies — AIR gain over uniform signaling
is 0.37, 0.34, 0.22 b/4D (and 0.19, 0.16, 0.06 b/4D over MB
shaping) for 4D, 2D and 1D symbol mapping, respectively.
AIR gain is supported by the improvement in effective SNR
— 4D mapping provides the highest SNR gain compared to
1D and 2D mapping with L ≥ 32, while 2D mapping slightly
outperforms with L ≤ 16. For optimal sequence length of
L = 32, SNR gain over uniform signaling is 0.2, 0.16, 0 dB
(and 0.72, 0.68, 0.52 dB over MB shaping) for 4D, 2D and
1D symbol mapping, respectively.

In the highly nonlinear regime, which is shown in Fig. 13
(c) and (f), a similar performance trend can be observed as
for optimal launch power regime, however, the gain (both
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Fig. 14. Performance vs. shaping rate (L = 32; 2D and 4D symbol mapping):
(a) AIR, (b) Effective SNR.

in AIR and SNR) with short shaping length is exaggerated.
For instance, 0.58 b/4D AIR gain and 0.6 dB SNR gain over
uniform signaling (0.83 b/4D and 1.75 dB over MB shaping)
can be observed with L = 32 and 4D symbol mapping.

In general, we note that HCSS with longer shaping sequence
length can achieve better power efficiency for a fixed rate,
and therefore provide higher shaping gain in a linear channel.
This is clearly seen in the back-to-back case and linear regime
of single-span transmission. In the presence of significant
fiber nonlinearities, shorter shaping sequences provide higher
nonlinear tolerance by improving the effective SNR in the
received signal. By choosing appropriate shaping length for
the operating regime, an optimal trade-off of shaping gain
and effective SNR gain can be achieved. Also, increasing the
dimensionality of the symbol mapping can improve nonlinear
performance by shortening the shaped symbol sequence length
in the time-domain and reducing probabilities of high peak
power values, while maintaining the same power efficiency.

3) Optimal shaping rate: Next, we studied the impact of
the shaping rate on the transmission performance. Fig. 14
shows a characterization of the AIR and effective SNR as a
function of the shaping rate. For HCSS we considered shaping
sequence length L = 32 with 2D and 4D symbol mapping.
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Fig. 15. Characterization of LDPC codes: BER vs. normalized GMI.

Each data point is based on the data fit of launch power sweep
measurements and represents the performance at the optimal
launch power.

From Fig. 14 (a) we observe that RS = 1.75 b/Amp is the
optimal shaping rate for HCSS — AIR varies over 0.07 b/4D
in RS range of 1.625–1.875 b/Amp achieving the highest value
at RS = 1.75 b/Amp, the corresponding variation in effective
SNR is 0.1 dB. For MB shaping, the AIR increases with the
shaping rate by 0.06 b/4D (within RS of consideration), which
is supported by the corresponding increase in effective SNR
of 0.25 dB.

In the case of HCSS with fixed shaping sequence length,
the optimal effective SNR does not depend significantly on
the shaping rate. Therefore, we may infer that the optimal
shaping rate is mostly affected by the linear shaping gain
contribution. Conversely, MB shaping demonstrates stronger
dependence of both effective SNR and AIR on the shaping
rate, indicating that the increase in AIR with shaping rate is
associated with nonlinear transmission gain. We note that with
increasing shaping rate, MB shaping will converge to uniform
signaling, while HCSS will exhibit some rate loss due to the
dyadic distribution of compositions constraint.

C. Coded performance

Coded performance analysis is based on mapping nGMI
into bit error ratio (BER) after pre-characterized inner LDPC
codes. For the shaped signals, an inner LDPC code with rate
0.72 and length 52,800 was used, and decoding was performed
over 32 iterations of the sum-product algorithm. For uniform
signals an LDPC code with rate 0.64 and length 52,800 was
used, and decoding was performed in the same manner. In
both cases, we assume the use of an outer Bose–Chaudhuri–
Hocquenghem (BCH) code with rate 0.9922, which achieves
an output BER below 10−15 given an input BER of 5× 10−5

[46]. We considered MB shaping and HCSS with 4D symbol
mapping at RS = 1.75 b/Amp. In that case the net bit rate after
shaping and coding is 424.1 Gb/s for both MB shaping and
HCSS, while for uniform signaling the net rate is 426.7 Gb/s.

The characterization of LDPC codes in terms of BER as
a function of nGMI is shown in Fig. 15. The LDPC nGMI

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on February 04,2021 at 09:06:33 UTC from IEEE Xplore.  Restrictions apply. 



1077-260X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTQE.2021.3055476, IEEE Journal
of Selected Topics in Quantum Electronics

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 11

18 19 20 21 22 23 24 25 26

OSNR

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
N

o
rm

al
iz

ed
 G

M
I

LDPC Threshold (Rate = 0.72)

LDPC Threshold (Rate = 0.64)

Uniform

MB Shaping

HCSS L = 16

HCSS L = 32

HCSS L = 48

(a)

18 19 20 21 22 23 24 25 26

OSNR, dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

B
E

R

Outer BCH Threshold

Uniform

MB Shaping

HCSS L = 16

HCSS L = 32

HCSS L = 48

(b)

Fig. 16. Coded performance analysis in back-to-back configuration (RS =
1.75; L = 16, 32, 48; 4D symbol mapping): (a) normalized GMI vs. OSNR,
(b) predicted BER after LDPC vs. OSNR.

thresholds for the outer BCH code (such that the BER at the
output of LDPC code is below the BCH code threshold of
5 × 10−5) are 0.757 and 0.686 for code rates of 0.72 and
0.64, respectively.

BER after LDPC decoding shown in Fig. 16 (b) and Fig. 17
(b) is predicted based on nGMI shown in Fig. 16 (a) and
Fig. 17 (a). The individual points represent predicted BER
based on measured nGMI values, while corresponding smooth
lines represent predicted BER based on fitted nGMI values,
which are calculated from AIR fit according to (11) and (12).

Fig. 16 demonstrates coded performance for the back-to-
back configuration. MB shaping achieves the best sensitivity,
while HCSS with longer shaping length achieves better sen-
sitivity than with shorter length — for MB shaping OSNR
margin is improved by 1.3 dB, for HCSS the OSNR margin is
improved by 0.5, 0.7, 0.7 dB for L = 16, 32, 48, respectively.

Coded performance for single-span transmission is shown in
Fig. 17. In the linear regime the sensitivity shows the similar
trend as for back-to-back configuration, while in nonlinear
regime L = 32 demonstrated the best sensitivity. With L = 32
the launch power margin is improved by 1.3 dB compared to
the MB shaping. We note that in case of uniform signaling,
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Fig. 17. Coded performance analysis for single span transmission (RS =
1.75; L = 16, 32, 48; 4D symbol mapping): (a) normalized GMI vs. optical
launch power, (b) predicted BER after LDPC vs. optical launch power.

desired performance is not achievable.

V. DISCUSSION AND CONCLUSIONS

We have investigated HCSS as a method for probabilistic
constellation shaping for application in optical fibre com-
munication systems comprising extended-reach single-span
links, subject to strong nonlinearities. We have demonstrated
that the naı̈ve approach of optimizing the signal PMF and
attempting to achieve this with a distribution matcher, while
being optimal in the AWGN channel, is highly suboptimal
in this case, significantly reducing the ultimate shaping gain.
Such a system can achieve only a maximum 0.18 b/4D gain in
200 km single-span SSMF links. Conversely, HCSS achieves
a gain of 0.37 b/4D with a shaping sequence length of only
L = 32 and 4D symbol mapping. Such an HCSS system can
be implemented without multiplications, and LUT size of no
more than 100 kbit.

In extended-reach single-span transmissions, signals may
suffer from strong highly correlated short-memory nonlineari-
ties. Hence, the temporal structure of the signal (e.g., ordering
of transmitted symbols) may have a significant impact on
nonlinear performance. By shortening the shaping sequence
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length, it it possible to introduce some advantageous changes
in the temporal structure — e.g., reduced concentration and
probability of high-power symbols [31]. Also, by increasing
the dimensionality of symbol mapping, the effective shaped
symbol sequence length can be reduced as well as the number
of simultaneously interacting independent shaped sequences,
which leads to reduced probability of high peak power values.

APPENDIX A
PROBABILITY MASS FUNCTION (PMF) CALCULATION

To construct a 4D DP-64QAM format, we consider the
alphabet of amplitudes A = {a1, a2, a3, a4} = {1, 3, 5, 7}
and the alphabet of signs S = {s1, s2} = {−1, 1}. The
alphabet of a 4D-signal (4D-constellation) can be expressed
as the Cartesian product X = S4×A4, where S4 and A4 are
4-fold Cartesian products with themselves.

A composition is defined as Ci = {ci1, ci2, ci3, ci4}, where i is
the index of the composition in the Huffman-coded structure,
and cik is the number of instances of amplitude ak in the
shaped amplitude sequence of length L =

∑4
k=1 c

i
k.

We postulate that the probability distribution of signs PS(s)
is uniform. Hence, PS(s) = 1/2 for ∀s ∈ S and PS4(s4) =
1/16 for ∀s4 ∈ S4. The PMF of a 4D-signal can be therefore
expressed as

PX(x) = PS4(s4) · PA4(a4) = 1/16 · PA4(a4) , (13)

where PA4(a4) can be considered as the PMF of a 4D-
quadrant and a4 = [ak1

, ak2
, ak3

, ak4
] is a 4D-amplitude

vector.

A. 1D symbol mapping

Since all components of a 4D-amplitude vector are mapped
from independent shaped amplitude sequences, the PMF for a
4D-quadrant is a product of 1D-PMFs:

PA4(a4) = PA(ak1
) · PA(ak2

) · PA(ak3
) · PA(ak4

) . (14)

The 1D-PMF which results from the ith composition can be
calculated as P i

A(ak) = cik/L, while the total 1D-PMF is

PA(ak) =
N∑
i=1

piP
i
A(ak) =

N∑
i=1

pi
cik
L
, (15)

where pi is the probability of occurrence of the ith composi-
tion, and N is the total number of compositions.

B. 2D symbol mapping

In the case of 2D symbol mapping, two consecutive ampli-
tudes from two independent shaped amplitude sequences are
used to construct a 4D-amplitude vector. Therefore, the 4D-
quadrant PMF can be expressed as the product of 2D-PMFs:

PA4(a4) = PA2(a2) · PA2(a2∗) , (16)

where a2 = [ak1
, ak2

] and a2∗ = [ak3
, ak4

] are 2D-amplitude
vectors, a4 = [a2, a2∗].

Since components of 2D-amplitude vectors are mapped
from a single sequence and not independent, the 2D-PMF
resulting from the ith composition can be calculated as

P i
A2(a2) =

[
cik1

L
·
cik2
− δ

L− 1

]+

, (17)

where [·]+ denotes max{·, 0} operator, δ is

δ =

{
0, k1 6= k2,

1, k1 = k2 .
(18)

The total 2D-PMF is

PA2(a2) =
N∑
i=1

piP
i
A2(a2) , (19)

C. 4D symbol mapping

Since four consecutive amplitudes from a single shaped
amplitude sequence are used to produce a 4D-amplitude vector
(all components of 4D-amplitude vector are not independent),
the 4D-quadrant PMF resulting from the ith composition is
given by

P i
A4(a4) =

[
cik1

L
·
cik2
− δ1

L− 1
·
cik3
− δ2

L− 2
·
cik4
− δ3

L− 3

]+

, (20)

where δl is

δl =
l∑

m=1

Ikl+1=km , (21)

where Ikl+1=km
is the indicator function which equals 1 when

the condition kl+1 = km is true and equals 0 otherwise.
The total 4D-PMF is

PA4(a4) =
N∑
i=1

piP
i
A4(a4) . (22)

We note that the 4D-PMF can not be decomposed into the
product of lower-dimensional PMFs.

D. Example

Consider a shaper with a single composition C =
{6, 5, 3, 2} of length L = 16. The probability of 4D-symbol
x1 = [+7,+7,+7,+7] resulting from composition C using
1D, 2D and 4D symbol mapping will be

P 1D
X (x1) =

1

16
· 2
16
· 2
16
· 2
16
· 2
16

= 0.000015 ,

P 2D
X (x1) =

1

16
· 2
16
· 1
15
· 2
16
· 1
15

= 0.000004 ,

P 4D
X (x1) =

1

16
· 2
16
· 1
15
· 0
14
· 0
13

= 0 .

For x2 = [+1,+3,+5,+7] the probabilities will be

P 1D
X (x2) =

1

16
· 6
16
· 5
16
· 3
16
· 2
16

= 0.000172 ,

P 2D
X (x2) =

1

16
· 6
16
· 5
15
· 3
16
· 2
15

= 0.000195 ,

P 4D
X (x2) =

1

16
· 6
16
· 5
15
· 3
14
· 2
13

= 0.000258 .
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We further note that higher-dimensional mapping reduces
the probability of having equal amplitudes and increases the
probability of having unequal amplitudes in simultaneous
quadratures of a 4D-symbol. This leads to less probable high
peak power values in the case of higher-dimensional mapping
while maintaining the same power efficiency.

APPENDIX B
EXPERIMENTAL DATA FITTING

Data fitting based on the GN-model [45] was performed for
each set of experimental points, which measure effective SNR
and AIR at a specified optical launch power.

A. Effective SNR Fitting

Effective SNR is the combination of ASE, nonlinear and
transceiver SNR terms. It can be expressed as

1

SNReff
=

1

SNRASE
+

1

SNRNLin
+

1

SNRTr

=
a

P
+
b · P 3

P
+ c ,

(23)

where SNRASE is a linear SNR term due to ASE in EDFAs,
SNRNLin is a nonlinear SNR term due to nonlinear fiber Kerr
nonlinearity (nonlinear noise power is assumed to have cubic
dependence on power [45]) and SNRTr, which is the constant
SNR term due to transceiver electrical noise and component
imperfections; P is the launch power; a, b, c are the fitting
parameters. Effective SNR can be rewritten as follows:

SNReff =
P

a+ c · P + b · P 3
. (24)

Initial estimation of fitting parameters is performed as
follows: c is estimated according to (25) using BtB measure-
ments, a is estimated using launch power sweep measurements
neglecting the nonlinear term at low launch power values
(26), and finally b is estimated using launch power sweep
measurements at high launch power values (27).

c =
1

SNRBtB
eff

− 1

SNRBtB
ASE

=
1

SNRBtB
eff

− BW

OSNR · 12.5 GHz
,

(25)

a =
P

SNRLin
eff

− c · P , (26)

b =
1

SNRNLin
eff · P 2

− a

P 3
− c

P 2
, (27)

where BW is the signal bandwidth.
Refinement of the estimates of fitting parameters may be

carried out, for example, using the least squares method [47].

B. AIR Fitting

For AIR fitting we use a linear mapping with regard to SNR
in a logarithmic scale

AIR = k · log10(SNReff) , (28)

where k is the fitting parameter. For the range of SNR values
considered in this work, linear mapping between AIR and SNR
(in logarithmic scale) shows very good agreement. However,
we note that for very low or very high SNR values (when AIR
saturates) this approach is unsuitable.
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