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Abstract: In this paper, we design algorithms for indoor activity recognition and 3D thermal model
generation using thermal images, RGB images, captured from external sensors, and the internet
of things setup. Indoor activity recognition deals with two sub-problems: Human activity and
household activity recognition. Household activity recognition includes the recognition of electrical
appliances and their heat radiation with the help of thermal images. A FLIR ONE PRO camera is used
to capture RGB-thermal image pairs for a scene. Duration and pattern of activities are also determined
using an iterative algorithm, to explore kitchen safety situations. For more accurate monitoring of
hazardous events such as stove gas leakage, a 3D reconstruction approach is proposed to determine
the temperature of all points in the 3D space of a scene. The 3D thermal model is obtained using
the stereo RGB and thermal images for a particular scene. Accurate results are observed for activity
detection, and a significant improvement in the temperature estimation is recorded in the 3D thermal
model compared to the 2D thermal image. Results from this research can find applications in home
automation, heat automation in smart homes, and energy management in residential spaces.

Keywords: thermal images; activity recognition; 3D scene reconstruction; 3D thermal model; Internet
of Things (IoT)

1. Introduction

Activity recognition and 3D thermal model generation are two important applications
for which thermal images can be used. Activity recognition aims to detect the movement
of an object or human in a sequence of images or video. It can be applied to various
fields such as security, surveillance, sports, healthcare and household monitoring, etc. [1].
Activity recognition in the indoor environment such as home, office involves the detection
of human activity and heat activity around household appliances. Human activity can be
recognized using various technologies namely sensors, video cameras, etc. [2], and using
traditional or machine learning approaches [3,4]. Human activity recognition (HAR) is an
important module for home monitoring systems for smart homes. These types of systems
can be used to provide safety to children and elderly people living in the home [5]. The
combination of two emerging fields, Internet of Things (IoT) and Machine learning has
achieved promising results for HAR [4,6]. The main data source for the task of activity
recognition is sensors. There are two types of sensors used for this purpose: one is
external and the second is wearable [7]. Wearable sensors are used in various healthcare
applications such as patient monitoring, fitness monitoring, oxygen level monitoring,
heartbeat monitoring, etc. External sensors are fitted in a static place from where the region
of interest can be monitored. These types of sensors include cameras, thermal infrared
sensors, etc. This paper uses thermal and RGB camera as sensing devices to capture thermal
and visual information of a scene and fitted to a vantage point.
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In addition to HAR, for indoor environment, household activity detection plays an
important role. Household appliances such as the oven, television (TV), and stove gen-
erates heat which warms the surrounding environment. By capturing the temperature
fluctuations around these objects any thermal activity can be detected. Thermal infrared
images capture temperatures using infrared sensors. These images can be used to ex-
tract temperature fluctuations information which can be used for activity detection and
recognition. Heat activity recognition in the kitchen increases safety as there are many
electrical appliances placed in the kitchen [5]. In addition to hazard detection, it can be
used for energy conservation and for modeling energy performance as well [8]. Moreover,
the duration of each activity can be calculated and can be used to detect any high-risk
situation. For example, if a burner is on a high-temperature state for more than a certain
duration it can cause a fire-related hazardous situation. Although thermal images are used
to detect heat leakage, IoT devices are used to alert the user [9]. These applications of
activity recognition using thermal images and the IoT devices, contribute to building smart
and safe homes.

One limitation of detecting activity using 2D Thermal images is that it provides in-
formation for X-Y image coordinates only. For example, to detect heat or energy leakage
around an electrical appliance, one more dimension of depth is needed. Modeling the 3D
thermal model enables us to measure energy performance [8] and to perform volumetric
heat measurement [10]. A 3D thermal model consists of 3D points, reconstructed from
images of a scene, with the corresponding temperature value. It describes the heat distribu-
tion of a scene in 3D. The 3D thermal model provides temperature information about the
depth of each object in a scene. To reconstruct a 3D scene, various techniques such as 3D
laser scanning using omnidirectional vision [11], structured light technology [12], etc. are
used. 3D laser scanning requires a laser scanner that would scan the whole scene and
create its 3D model. Stereo images can be used to reconstruct a 3D scene using principles
of photogrammetry.

The overall objective of the paper is to determine the activity in a scene and to find
the heat distribution in 3D. The thermal images are used to identify the activities such as
heat or energy leakage for the appliance in operation which cannot be detected by only
inspecting the visuals. In the first phase, we find out all the objects which act as either heat
sink or heat source that are present in a scene and generate a corresponding file containing
the information about the objects such as their name, temperature, and location in the
image. Then, activity state and its duration are detected by applying various algorithms
on generated information. In the second phase, the paper proposes to create a 3D thermal
model using 3D scene reconstruction and temperature extrapolation to extract depth
temperature information of a scene. The 3D thermal model is generated from the RGB
stereo and thermal images captured using FLIR ONE PRO camera. The 3D thermal model
construction involves many steps and one of the crucial steps is to find intrinsic and
extrinsic camera parameters for both thermal and RGB cameras. RGB camera parameters
can be calculated using the checkerboard method proposed by [13]. However, the thermal
camera requires a different setup for this purpose. Thus, we have used Python APIs of
the Metashape tool [14] to construct 3D mesh and Meshlab [15] to generate 3D thermal
model without manually calibrating the camera to find its parameters. The temperature
around the heated object can be known to identify any hazardous condition by using
this thermal cloud. Thus, by using the thermal and RGB images, and processing them
in an IoT-based setup we can achieve our objective of activity recognition. Such data of
detected activities can be used for home automation (HA) purposes such as to control stove
temperature to reduce the risk of hazardous situation, to automate heating, ventilating
and air conditioning (HVAC) for human well-being [16]. Human activity states and its
duration can be used for energy saving tasks such as controlling lighting, televisions, and
other electrical appliances [17].

This paper makes the following contributions:
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1. A new approach for human and heat activity recognition by using sequential thermal-
RGB image pairs of a scene.

2. Algorithms to recognize activity states with its duration to determine hazardous
conditions due to heat leakage around electrical appliances in indoor environments.

3. A 3D thermal scene reconstruction approach to project temperature of a scene in 3D
space from 2D thermal and RGB images to gain more insights about the heat leakage.

The main purpose of this study is to automate heat management in the smart home
and office. The proposed algorithms’ output can be provided to other software or hardware
for various applications in smart homes and offices. For an instance, the results of human
activity recognition can be linked with the HVAC system to control the temperature of the
room based on the person’s activity. If the person is sleeping or lying down, the temperature
should be adjusted to increase comfort. Another instance is that the results of heat activity
recognition can be provided to the alert systems to detect and prevent any hazardous
situation. If a person is sleeping and a heat leakage is detected in any of the electrical
appliances then the system can automatically alert the concerned authorities and can turn
off the damaged electrical appliance to prevent major accidents.

The paper is further divided into four sections. The literature review section discusses
all the existing methods for activity recognition and 3D thermal model generation. In the
Materials and Methods section, the overall flow of the experiment and algorithms used in
this paper is provided and discussed. The Results and Discussion section contains descrip-
tion of experiments and discussion on results. Lastly, the challenges section describes all
the challenges faced and their possible solutions.

2. Literature Review

In recent years, systems have been developed to recognize human and stove activity
in smart homes. This type of system increases the safety of the home [5,18,19]. Some of
these proposed systems have used RGB images [20] and some have used thermal infrared
images [21–24]. In particular, thermal images were found to be useful to detect activity
around appliances as they generate heat that can be easily detected in thermal images [5,19].

In [19], thermal images were used to detect activities of appliances such as a stove,
refrigerator, oven, etc. Each appliance in a room was assigned a region of pixels in a
thermal image. The temperature change in a region signifies the activity on the appliance.
The system performed well but it was not designed to detect any human activity. In [25], a
simple array of infrared sensors was used to detect moving, sitting, and standing activity of
a person. The use of these sensors to generate thermal images solves privacy concerns and
provide accurate results. Reference [5] proposed the design of an alert system to reduce
fire hazards in homes especially for elderly people. This system has a FLIR camera fitted
such that it can capture thermal images of the stove-top. The whole system is divided into
sub-systems each performing operation on input thermal images to recognize different
activities around the stove. For example, if the stove was left active for a specific amount
of time then the system will detect it and send an alert message to the user. The results
suggest that thermal images give better performance than RGB images to detect stove
activity as the thermal image is capable of capturing temperature changes whereas RGB
images failed for this objective. However, the overall alert system depends on the output of
multiple sub-systems. Thus, the system is not robust. To detect the presence of an animal,
thermal images were used in [26]. Similarly, it can be used to detect pet animals in a house.
Apart from this, thermal images have applications in the field of activity recognition such
as heat transfer through building walls [27], detection of gas leakage in industries [28],
and in surveillance and security [29].

Many studies have used different approaches for feature extraction from a video to
recognize the activity. References [22,23] proposed to use Gain Energy Image (GEI) which
was created from a sequence of images. Furthermore, reference [22] has used Principal
Component Analysis (PCA) and Multiple Discriminant Analysis (MDA) to extract and
reduce dimensions of a GEI, resulted in improved performance. Statistical methods were
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used to extract features in [24] to detect human activities such as Stand, Sit, Walk, Bend,
Run, Raise hands, and Kick. However, very few studies have used a Convolutional Neural
Network (CNN)-based approach to extract features in thermal infrared images. CNNs can
extract complex features from the visible image. However, in thermal images, it is difficult
to train CNN to extract complex features as a thermal image does not contain features such
as edges or corners. However, statistical approaches mentioned in [24] does not suffer from
this problem. However, many papers designed new methods to solve these problems of
thermal images and used combination of CNN and Recurrent Neural Network (RNN) for
HAR [30,31].

After extracting the features from the thermal image or video some researchers have
used model-based and others have used non-model-based approaches. Reference [20]
compared different machine learning (ML) algorithms for Human Activity Recognition
(HAR). Multilayer Perceptron or Artificial Neural Network performed best among all other
algorithms. This paper proposed to use changes in human postures during an activity as
features for ML algorithms. RGB images were used instead of the thermal images which
resulted in reduced performance as the color of the background and foreground can affect
human-body detection. Reference [21] proposed to use thermal images for HAR in darkness.
OpenPose library was used to detect 18 different joints of the human body. Features such
as angles between two joints, change in those angles during different time frames was
calculated and fed into a deep neural network as features. The method performed well
with dark background, but the camera needs to be calibrated before recording a video as
an image covering a full human body is required to correctly recognize the human activity.
Results suggested that RNN performed best among all other deep learning algorithms.
There are many ways to complete the task of HAR. Reference [18] gives a review and
comparison of different approaches.

Table 1 shows that to achieve the goal of human and household activity recognition
different papers have considered different techniques. In the table, the first three rows
classify papers by the input data used. References shown in the first row used thermal
images, in the second row used RGB images and in the third row used infrared sensor
data. The next three rows categorize papers by the method used for activity recognition.
Fourth, fifth and sixth rows describe references that have used deep learning, machine
learning, and custom algorithms for activity recognition, respectively. The last row of the
table represents the papers in which the authors have determined the activity duration for
human and household activity to achieve their objectives. The two columns indicate the
type of activity recognition considered in the papers. One is human activity and the other
is household activity recognition. It can be depicted from Table 1 that most of the papers
proposed to use thermal imaging [21–24], and machine learning [18,20,22–25,32] for human
activity recognition whereas for household activity recognition custom algorithms [5,26]
were used. Custom algorithms use classical image processing methods to detect and
recognize activities. References [5,19,32] have measured activity duration for each activity
and used it in the algorithm to solve the problem.

Table 1. Different techniques used in different papers for human and household activity recognition.

Techniques Human Activity Recognition Household Activity Recognition

Using Thermal Images Standing [21], Sitting [24], Walking [22,23] Stove Activity [5], Pet Detection [26]
Using RGB Images Lying Down [20] -
Using Sensor Data Sitting [32], Standing [18,25] Stove Activity [19]
Using Deep Learning Standing [21] -

Using Machine Learning Lying Down [20], Standing [18,25], Stove Activity [19]Sitting [24,32], Walking [22,23]
Using Custom Algorithms - Stove Activity [5], Pet Detection [26]
Determining Activity Duration Sitting [32] Stove Activity [5,19]
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Furthermore, reference [33] used Support Vector Machine (SVM) with Radial Basis
Function (RBF) kernel to recognize human actions such as bend, jack, jump, run, side, skip,
walk and wave. The paper used the Weizmann, Soccer, and Tower datasets, and gained
100% accuracy on the Weizmann dataset. The main objective of the paper is to recognize
human actions from a far-field of view. Reference [34] proposed a new approach for human
action recognition using histogram of oriented optical flow from the input video. The paper
also used the Weizmann dataset for experimentation and to evaluate their approach.
This paper recognized the same activities as reference [33] and achieved 94.4% accuracy
on the Weizmann dataset. Reference [35] proposed an optical flow-based human activity
recognition approach and achieved 95.69% and 94.62% accuracy on the Weizmann and KTH
dataset, respectively. Reference [36] proposed to use histograms of the optical flow extracted
from the input video. The paper used the K-nearest neighbor algorithm to classify human
activity recognition using the features extracted from the motion vectors and achieved
79.17% accuracy on the Weizmann dataset. Reference [37] proposed to use backpropagation
neural network using the features extracted by histograms of oriented gradients and
achieved 99.17% accuracy on the Weizmann dataset. Reference [38] presented a novel
approach for human action recognition using spatial-temporal features and experimented
on the Weizmann dataset achieving 72.8% accuracy. Reference [39] proposed to use optical
flow-based segmentation and achieved 90.32% accuracy on the Weizmann dataset. Human
motion trajectories are used in the reference [40] to recognize human action. The authors
experimented on four datasets namely Hollywood2, HMDB51, Olympic Sports, and UCF50,
and achieved an accuracy of 64.3%, 57.2%, 91.1%, and 91.2% respectively. However, our
approach focuses on indoor human activities, heat activities, and 3D model reconstruction.
To validate our approach, we created an experimental setup and created our own dataset
to validate the human activity recognition algorithm.

For the application of HAR, many researchers have used data generated from wear-
able sensors [41]. Sensors generate a large amount of data in each time step t, creating a
requirement to study efficient algorithms for data analysis [41]. To detect physical activ-
ity for healthcare purposes, reference [42] proposed to use gyroscope and accelerometer
sensors. These sensors help to examine and understand daily routine life and different
postures. However, data generated through these sensors need to be cleaned and trans-
formed. For the task of activity recognition, feature extraction from these sensor data is
done using traditional statistical methods in [42]. Reference [43] used accelerometer-based
sensors attached to the human body to detect various activities for patient monitoring in
hospital environments. The sensor was attached to the human trunk and used to measure
different body movements of the patient. Reference [43] proposed to recognize activities
such as body posture, whether the patient is on movement or not, the patient is using a
wheelchair or not, etc. The main objective of the paper was to apply different machine
learning algorithms and compare their results to find the best performing algorithm on
sensor-generated data. With the increasing popularity of smartphones, the research in the
field of smartphone sensor data analysis has found many applications. Reference [44] used
smartphone sensor data placed in the pocket and hand to recognize locomotion-based
human activities. The study used various sensors such as accelerometer and gyroscope
to gather and analyze human motion and posture data. One advantage of using these
sensors is that it can work in any indoor and outdoor environment. However, these
studies are mainly focused on human activity recognition and are not aimed to recognize
household activities.

Reference [45] used RGB-D sensor to get depth information and to detect human
activity from the gathered data. The paper proposed to recognize multiple activities using
only one sensor device called Microsoft Kinect for Windows V2. However, the paper
does not aim to track the activity of each person and to detect heat activity in the indoor
environment. Also, the application of RGB-D sensors in a darker environment significantly
affects accuracy. Reference [46] proposed to use a 32 × 32 thermopile array to detect
human activity in indoor environments. The sensor array is fitted to a wall such that
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the scene can be observed, and the sensor can detect only activities happening in the
33◦ × 33◦ field of view [46]. The sensor can perform well in darkness as it detects infrared
waves. However, this array of sensors monitors a very small region of a room and does not
provide any visual information about household appliances. To reduce the size of the input
data and to improve computational efficiency, reference [47] used pyroelectric infrared
sensor array and converted the sensed data into binary. This binary data is then given to
the convolutional neural network to extract important features and to recognize human
activity. The paper achieved very good accuracy, but it does not contain information about
objects of a scene and is not aimed to recognize the number of persons present in the room.
Due to increased availability and high-speed internet, various research has studied the
method of remote monitoring of the daily activity of a person. Reference [48] used thermal
sensors fitted in the kitchen and living room to monitor human activities throughout
the day. The produced sensor data were sent to a remote location for further processing
and analysis. Sensors can be used in various fields to gather and analyze every human
activity. Reference [49] proposed and validated an IoT-based approach to detect water
consumption in a house for water conservation purposes. To achieve the task, the study
used a water-flow sensor that gathers data and with the help of a microcontroller, the data
is then sent to the internet so that the consumer can see their usage and can keep track
of each activity with water consumption.In this study, we proposed to use both RGB and
thermal cameras with infrared sensors to get both visual and temperature information of a
scene and processed this information to recognize activity and heat leakage.

Some studies have shown that heat energy measurement can be done more accurately
using 3D thermal models. Many papers have shown that RGB and thermal images can
be used to create a 3D temperature distribution model that will provide more accurate
results for heat measurements. In [8,50], the 3D thermal model of interior and exteriors of
a building was constructed and used for energy measurement using optical and thermal
images. However, some approaches take more computational time to reconstruct a 3D
temporal model compared to others. Many papers proposed new approaches to improve
the performance for 3D thermal model reconstruction in terms of computational time as
well as precision of the model. References [10,51] described two new approaches that
improved the computational time for the generation of the 3D model but failed to improve
the accuracy of the 3D model. All these approaches require manual calibration of the
camera using the checkerboard method proposed by [13] to calculate parameters of the
camera. To calibrate a thermal camera a special type of checkerboard needs to be designed
as thermal images cannot capture edges and corners of the checkerboard. Some researchers
proposed to create a checkerboard with lights at each corner and edges so that thermal
cameras can easily be calibrated. However, reference [52] proposed a new method that
would calculate camera parameters automatically. This method is robust.

The accuracy of the 3D model depends on extracting key-point features and then
finding a pair of images that are then used to create a 3D model. Many papers have used
the Scale-Invariant Feature Transform (SIFT) to detect features that are important and in-
variant to scale and rotation. A pair of images can be found by matching these key-features.
However, this process creates many outlier points and false positives. Outlier points reduce
the accuracy of the 3D model. To remove the outliers, reference [8] used Random Sample
Consensus (RANSAC), reference [52] used M-estimator Sample Consensus (MSAC) which
is a variation of RANSAC, reference [10] used epipolar geometry and epipolar constraints,
reference [51] improved Belief propagation algorithm to optimize the outlier detection
technique and reference [50] did not use any outlier detection technique which resulted in
increased computational time as there are more points for 3D reconstruction. After getting
a pair of images, a point in 3D is constructed using different methods. References [8,50,52]
proposed to use structure from motion (SFM) to create a point in 3D space, whereas ref-
erences [10,51] used concepts of epipolar geometry to calculate the coordinates in 3D
space. Both approaches create a sparse or dense 3D model depending upon the number of
images provided.
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This paper deals with the problem of activity recognition by using object detection
model; pre-trained on the COCO dataset, and our proposed custom algorithms. The pre-
trained model is used on the captured images to extract information about the objects in
a scene. Then, this information is used by our proposed algorithms to recognize activity
states and their duration. For the task of 3D thermal model generation, the paper uses
stereo RGB images and a thermal image. To capture thermal images the paper proposes to
use the FLIR ONE PRO camera that has a thermal camera with thermal infrared sensors to
capture thermal activities. The 3D model is generated by using tools such as Metashape
and Meshlab. To extract temperature in 3D space, a custom algorithm is proposed.

3. Materials and Methods

This section describes framework deployment, interactions between different com-
ponents and computations. The experimental setup for the paper is shown in Figure 1.
We have divided experiments into two modules, first is for activity recognition and the
second is for 3D thermal model generation. This paper proposed to use the FLIR ONE
PRO camera as an external sensor to capture RGB and thermal images. The camera is
mounted at an elevated location from which the scene can be captured. The camera is
directly connected to the smartphone via USB. Here, the smartphone acts as a remote and
monitor for the camera. Smartphone sends a capture signal to the camera to capture the
image at timestamp t and then receives the image to be monitored on screen.

Figure 1. Experiment Setup.

Figure 2 shows the use of devices in an IoT-based setup for first module. After cap-
turing the scene the camera stores the raw images on the smartphone. Now, the images
are transferred to the laptop via USB connection for processing. Processing is also di-
vided into two parts. In the first part, the RGB images are sent to the cloud where object
detection is performed. The tensorflow’s object detection API calls from the cloud re-
turn the bounding box and object name for the detected objects. This information along
with both RGB and thermal image are given to the algorithms running locally on the
laptop. Algorithms 1 and 2 produces the scene information file containing detected objects,
their temperature, and location in an image.
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Figure 2. Interactions among the entities.

Algorithm 1 Generate Image Annotation
Input: Thermal Image (tI) and
RGB Image (rI)
Output: Image Annotations

/* ObjDet returns the coordinates of all the objects detected in the image (rI) */
1 objs← ObjDet (rI);
2 n← len(objs) ; // assign the number of detected objects to n.
/* loop through n detected objects */

3 for i← 0 to n do
/* GetTemp will extract maximum, minimum and average temperature of the object */

4 temp [i]← GetTemp (tI, objs[i]);
5 end
6 tS← GetTS (rI); // GetTS extracts timestamp from image file.
7 ToCSV (objs, temp, tS); // save the information in the CSV file.

Algorithm 2 Generate Video Annotation
Input: Thermal Video (tV) and
RGB Video (rV)
Output: Video Annotations

/* GetFrames returns frames from a given video */
/* tF and rF contains thermal and RGB image frame respectively */

1 tF, rF← GetFrames (tV, rV);
2 nF← len(r f); // nF contains total number of frames
3 vA← createList(); // creates an empty list vA to store video annotations
/* loops through n frames */

4 for i← 0 to nF do
/* GenIA method returns annotation for each frame */
/* vA[i] contains video annotation for ith frame */

5 vA [i]← GenIA (tF, rF);
6 end
7 ToCSV (vA); // save the video annotations in the CSV file.

Computations and workflow of the experiment method for the first module are
illustrated in Figure 3. Thermal and RGB images are passed on as input for the process-
ing. Now, in the first part, object detection is performed on the RGB images. We have
used tensorflow’s Object Detection API which is trained on COCO dataset. The COCO
dataset contains 1000 different objects such as persons, bag-packs, smartphones, and tables.
Given an RGB image as an input, the API gives the names and bounding box of the detected
objects. We also extract the timestamp of the image as it will be important for activity
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recognition. At this point, we have the bounding box and object information for the scene.
The only missing data is the temperature of that object which is obtained in the second part.

RGB 
Image

Thermal
Image

1) Detect Object
2) Extract Timestamp

Obtain Object 
Temperature

Image 
Annotations

Input OutputProcessing

Figure 3. Workflow diagram for Image Annotations.

In the second part, the thermal image is used together with the output of the first
part: the object detection information. Here, we iterate over all the detected objects and,
using their bounding box (location in the RGB image), we obtain the object’s temperature
by finding the max temperature value that the thermal image has in the bounding box.
In this step, we assume that the RGB and thermal images are aligned. If the two are not
aligned, then we must do image alignment before doing this process to make sure that
the object location in RGB and the thermal image is the same. In the end, the temperature
value of the object is added to the information file and image annotations are produced.
Basically, Image annotations are the metadata about the image. Here, we are concerned
with the details of the objects located in the image. For the task of activity recognition,
we have extracted details such as the location (X-Y coordinates), height and width, mini-
mum, maximum and average temperature of the object, and the timestamp of the frame.
Thus, the objective to generate a file that contains all information (such as objects, locations,
temperatures, and timestamps) from thermal and RGB image is achieved.

Algorithm 1 describes the procedure for generating the image annotations that contain
information about the detected objects and their attributes. Figure 4 depicts the flow of
Algorithm 1. In Algorithm 1 the thermal image and the RGB image are given as input and
it generates a CSV (Comma Separated Values) file containing image annotations. First, the
RGB image is passed to the object detection function, which identifies the objects present
in the image and their bounding boxes i.e., location in the image (line 1 in Algorithm 1).
Now, for all the detected objects, their temperature values are obtained from the correspond-
ing thermal image (block 3). A timestamp for the given image is obtained by inspecting
the properties of the RGB image file (line 6). Then, all the information such as objects,
bounding boxes, temperature values, and timestamps are saved as a CSV file (line 7). The
saved CSV file contains tuples of the format (Object Name, X-coordinate, Y-coordinate,
Width of the bounding box, Height of the bounding box, Timestamp, Maximum tempera-
ture, Minimum temperature, Mean temperature, Frame no).

Figure 4. Flow diagram for Algorithm 1 (Generating Image Annotation).

We proposed to use video to detect an activity as it has temporal information that
is useful for the task. However, Algorithm 1 requires input as an image to detect objects
and generate annotations. Thus, we require the processing of the input video to extract
frames. For the video processing, the thermal video and RGB video is given as an input
to Algorithm 2 and it generates a CSV file containing video annotations. Figure 5 depicts
the flow of Algorithm 2. First, RGB video and thermal video is processed to extract the
respective frames (line 1 in Algorithm 2). Now, for all pairs of thermal and RGB frames,
Algorithm 1 is used to annotate the frame (block 4). The generated video annotations
are stored in a CSV file (line 7). The format of the tuples for this CSV file is the same as
mentioned above for Algorithm 1.
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Figure 5. Flow diagram for Algorithm 2 (Generating Video Annotation).

An activity can be defined as the change of state of an object with the change of
time. It can be detected by recognizing state or temperature fluctuations in each frame.
Algorithm 3 outlines the steps required to obtain the level of stove activity in each frame.
Figure 6 depicts the flow of Algorithm 3. A stove can be in pre-heating state initially,
steady state when temperature is steady, heating state when temperature rising, maximum
temperature state, and cooling state while the temperature is decreasing. The workflow of
the algorithm is simple: Initial frame’s temperature value is described as a pre-heating state
(block 7 in Algorithm 3) and if it stays the same in the next few frames then it is described
as a steady state (block 9). Then, when the temperature value rises from it but remains less
than the max temperature then it is described as a heating state (block 12). Afterward, when
the temperature values reach maximum it is labeled as a max temperature state (block
14). Lastly, when the temperature value starts to drop every frame, then it is described
as a cooling state (block 16). The information regarding frame number and each state is
stored in a CSV file (line 20) that has tuples in the form of (Object name, X-coordinate, Y-
coordinate, Width of the bounding box, Height of the bounding box, Timestamp, Maximum
temperature, Minimum temperature, Mean temperature, Frame number, Activity state). In
the result section, we have shown only two columns: frame number and activity state for
this CSV file.

Algorithm 3 Heat Activity Recognition
Input: Video Annotations
Output: Activity State / Level of Activity for each frame

1 actSt← createList(); // create an empty list actSt to store the activity state
2 initTemp← vA [0][”temp”]; // initialize initTemp with the initial temperature
3 prevTemp← vA [0][”temp”]; // initialize prevTemp with the initial temperature
4 maxTemp← Max(vA [][”temp”]); // initialize maxTemp with the maximum temperature

/* loop through all the annotations */
5 for i← 0 to len (vA) do
6 curTemp = vA [i][”temp”]; // set curTemp to the ith annotation’s temperature

/* if the current and initial temperature is equal then the state would be pre-heating */
7 if curTemp == initTemp :
8 actSt [i]← "Pre heating";

/* if the current and previous temperature is equal and is not maximum temperature then the state would be
steady state */

9 elif curTemp == prevTemp and curTemp!=maxTemp :
10 actSt [i]← "Steady";

/* if the current temperature is greater than previous and is not maxTemp then heating otherwise maximum
temperature state */

11 elif curTemp > prevTemp :
12 if curTemp < maxTemp :
13 actSt [i]← "Heating";
14 else:
15 actSt [i]← "Max Temp";

/* if the current temperature is less than previous then cooling state */
16 elif curTemp < prevTemp :
17 actSt [i]← "Cooling";
18 prevTemp← curTemp ; // assign curTemp to prevTemp for next iteration

19 end
20 ToCSV (actSt) ; // save the activity states in a CSV file.
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Figure 6. Flow diagram for Algorithm 3 (Heat Activity Recognition).

We have implemented Algorithm 4 to recognize human activity given video an-
notations. Figure 7 depicts the flow of Algorithm 4. The algorithm detects how many
persons are present in a room and recognize how many of them are sleeping, standing,
sitting/resting. The flow of Algorithm 4 is simple. First, we group all the frames with a
person in them by frame number (line 5 in Algorithm 4). Now, it is possible that the person
in television and a photo frame is detected by the object detection module. We call this
a noise and removed it (Line 7). After that, the total number of persons present in the
frame were determined (line 8). Then, line 9 first checks whether a person is present in
the current frame or not. If the person is present in the previous frame then block 9 will
be executed otherwise block 27 will be executed. Block 11 checks whether a new person
entered the current frame or not and counts the number of people. Block 12 checks if a
person went away or not and counts the number of people who went out of the frame.
Then, the algorithm will check for the states such as sleeping, standing, and resting. If the
width of the bounding box is greater than the height of the bounding box after multiplying
it by 1.7, then it can be said that the person is sleeping (Line 16). Here, our objective is to
control the heat in the environment, so our algorithm is designed such that if the person is
lying down or sleeping, we consider it as one category. If the height of the bounding box
is greater than the doubled width then the person is standing. Otherwise, the person is
resting or sitting. Line 29 detects and counts the number of people who left and line 31
detects that there is no person in the frame. Line 35 saves the activity state and frame
number in a CSV file with annotation data. The format of the CSV file is the same as heat
activity recognition.

Figure 7. Flow diagram for Algorithm 4 (Human Activity Recognition).

As mentioned in the introduction, activity duration can be used in applications such
as kitchen and home safety [5,19]. We have implemented an Algorithm 5 to measure the
duration of each activity. Figure 8 depicts the flow of Algorithm 5. This algorithm uses
the CSV file created by Algorithm 2, Algorithm 3 or Algorithm 4, which contains each
activity state and its timestamp. It first checks if the state is changed (line 8 in Algorithm 5)
and if the state is changed then it will measure the duration for that activity by taking the
difference between the first timestamp of the current activity and the first timestamp of
the next activity (line 9). The algorithm is described in Algorithm 5. The output CSV file
consists of tuples with two elements activity state and duration (line 14). The sample rows
of the output CSV file generated by the algorithm are shown in the result section.

Figure 8. Flow diagram for Algorithm 5 (Activity Duration).
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Algorithm 4 Human Activity Recognition
Input: Video Annotations
Output: Activity State / Level of Activity for each frame

1 actSt← createList() ; // create an empty list actSt to store the activity state
2 currentPersons, prevPersons← 0 ; // initialize currentPerson and prevNumberPerson with 0
3 prevFrame← False ; // flag to check the person’s presence in frame

/* loop through all the annotations */
4 for i← 0 to len (vA) do
5 records← vA [”FNo” == i][”Person”]; // assign annotations for ith frame to records
6 currentPersons← len(records); // assign the total detected persons in ith frame
7 noisePerson← findNoise(vA ["FNo" == i]) ; // recalculate number of persons
8 currentPersons← currentPersons- noisePerson ; // remove the number of noise detected

/* If there is a person in the frame */
9 if currentPersons!= 0 :

/* if a person is present in previous frame */
10 if prevFrame == True :

/* if more persons in the current frame */
11 if prevPersons < currentPersons :
12 actSt [i]← (currentPersons − prevPersons) "more person entered."

"Total person:" currentPersons
/* if less persons in the current frame than in previous frame */

13 elif prevPersons > currentPersons :
14 actSt [i]← (prevPersons − currentPersons) " person went away."

"Total person:" currentPersons
/* if number of person in the current frame is same as in previous frame then detect person’s activity

*/
15 else:
16 actSt [i]← "currentPersons entered" ; // currentPersons entered
17 personSleeping, personStanding, personResting← 0 ; // initialize variables

/* loop through each annotation for current frame number */
18 for j← 0 to len (currentPersons) do

/* if width of the bounding box is more than the height then sleeping person */
19 if records [i][”Width”] > 1.7 ∗ records [i][”Height”] :
20 personSleeping← personSleeping +1

/* if width of the bounding box is less than the height than standing person */
21 elif records [i][”Width”] ∗ 2 < records [i][”Height”] :
22 personStanding← personStanding +1

/* Otherwise the resting/sitting person */
23 else:
24 personResting← personResting + 1
25 end
26 actSt [i]← "Total personSleeping person sleeping.

Total personStanding person standing.
Total personResting person resting. Total person: currentPersons " prevFrame← True ; // set the flag as
True as person has entered

27 else:
/* If there is no person in current frame then reset the flag and set the activity */

28 if prevFrame == True :
29 actSt [i]← "prevPersons person went away. Total person: 0"
30 else:
31 actSt [i]← "No person in the frame"
32 prevFrame← False ; // set the flag as False as person is absent in current frame

33 prevPersons← currentPersons ; // Assign current number of persons for next iteration

34 end
35 ToCSV (actSt) ; // save the activity states in the CSV file.
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Algorithm 5 Activity Duration
Input: Activity state with timestamps (tA)
Output: Duration of each activity in seconds

1 actState← createList(); // initialize actState as an empty list to store states
2 actDur← createList(); // initialize actDur as an empty list to store duration
3 initTime← tA [0][”Timestamp”]; // initialize initTime with the first timestamp

/* loop through all detected activity states */
4 for i← 1 to len (tA) −1 do
5 curState← tA [i][”State”]; // set the curState with state of ith row
6 nextState← tA [i + 1][”State”] ; // set the nextState with state of i + 1th row
7 nextTime← tA [i + 1][Timestamp”]; // set the nextTime with timestamp of i + 1th row

/* if the current and next state are not same, calculate the duration. */
8 if curState ! = nextState :

/* take the difference between the timestamp for current and next state. */
9 duration← nextTime- initTime;

10 actState.add (curState); // save activity state
11 actDur.add (duration); // save activity duration
12 initTime← nextTime ; // assign initial time of the next state to initTime

13 end
/* combine state and duration and save it in the CSV file. */

14 ToCSV (concate (actState, actDur));

The second module of the paper which deals with the 3D thermal model construction
and 3D temperature extraction is divided into two steps. In the first step 3D scene is
reconstructed in the form of 3D mesh from multiple stereo RGB images using Algorithm 6
and then the 3D thermal model is generated using 3D mesh and the thermal images. A 3D
dense point cloud consists of 3D points of a scene and a 3D mesh represents the structure
of the 3D scene. 3D mesh generation deals with the problem of surface generation given
a 3D dense point cloud. The quality of 3D mesh depends on the quality of the 3D dense
cloud. In the second step, the 3D thermal cloud and the 2D thermal image is given to the
Algorithm 7 to extract the temperature of 3D coordinates based on its RGB hue and saves
it in the form of CSV file with 3D coordinates and temperature. The flow for the process is
shown in Figure 9.
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Figure 9. Flow Diagram for 3D thermal model.

In this paper, to generate a 3D point cloud and a 3D mesh, Python APIs of the tool
named Metashape by Agisoft were used. The tool provides services to generate a 3D
mesh. All the service calls are described in Algorithm 6. Figure 10 depicts the flow of
Algorithm 6. Initially, all the stereo RGB images are loaded into the program to be processed
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(line 4 in Algorithm 6). The first step of 3D mesh generation includes finding the camera
parameters and finding the camera location in the world coordinates. There are two camera
parameters: intrinsic and extrinsic. These parameters map the 3D world coordinates to
2D image coordinate. Camera’s focal length, skew, lens distortion, and the center image
coordinates are the intrinsic parameters [8]. Here, the assumption is that the images
captured by the camera are not skewed and distorted. Thus, the value of the skew and the
distortion parameters are assumed to be 0. Generally, these parameters can be written in
the form of a 3x3 matrix which is shown below:

K =

 fx 0 cx
0 fy cy
0 0 1

 (1)

where fx and fy are the focal length in pixel unit and cx and cy are the center image
coordinates in pixel unit.

Algorithm 6 3D Mesh Generation
Input: Multiple stereo RGB images of the scene
Output: 3D mesh of a scene

1 RGBImages← createList(); // create an empty list to store image names
2 doc← metashapeDocument(); // initialize metashape document
3 chunk← metashapeChunk(); // initialize metashape chunk
4 chunk.addPhotos(RGBImages); // add photos to the chunk object
5 chunk.matchPhotos(); // match key-features between pair of images
6 chunk.alignCameras(); // align cameras and generate sparse 3D point cloud
/* building depth maps using camera parameters and 3D sparse point cloud */

7 chunk.buildDepthMaps();
8 chunk.buildDenseCloud(); // building 3D dense cloud using depth maps
9 chunk.buildModel(); // building 3D mesh using 3D dense cloud
/* export 3D dense point cloud to the directory path provided by filePath */

10 chunk.exportPoints(filePath);
/* export 3D mesh to the directory path provided by modelPath */

11 chunk.exportModel(modelPath);

Figure 10. Flow diagram for Algorithm 6 (3D Mesh Generation).

Rotational and translational matrix are the extrinsic parameters of a camera [8].
Both the parameters can be written in the form of 3 × 3 and 3 × 1 matrix respectively
which is shown below:

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2)

where R is the rotational matrix that represents rotations in X, Y and Z coordinates.
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T =

t1
t2
t3

 (3)

where T is the translational matrix that represents translation in X, Y and Z coordinates.
Using these three matrices, a 3D world coordinate can be mapped to the 2D image

coordinate and vice-versa. The formula for the same is mentioned below:

x = K[R|T]X (4)

xi
yi
1

 = K[R|T]


Xw
Yw
Zw
1

 (5)

where x is the vector of 2D image coordinates (xi, yi) and X is the vector with 3D world
coordinates (Xw, Yw, Zw).

One of the tasks of 3D scene reconstruction is to find these intrinsic and extrinsic
parameters that can re-project the 2D image coordinate to the 3D world coordinate system
with minimal error. The Metashape tool follows the geocentric coordinate system for 3D
models and in this system the origin (0, 0, 0) is located close to the projection centers [53].

The extrinsic parameters can be found by matching key-features from provided
RGB images. Key-features are the features that are translational and rotational invariant.
Thus, these features are most-common in all the captured images of the scene. These key-
features were then used to find the rotational and translational matrix that is extrinsic
parameters between every image pair. Line 5 describes this step using function call
matchPhotos() that finds matching key-features. Line 6 describes the function call of
aligning cameras that aligns every image, finds camera position in world coordinate,
and generates a spare dense cloud using camera parameters. During the third step, a high-
quality depth map was generated (line 7) and the fourth step builds a high-quality 3D dense
point cloud using the depth maps generated in the previous step (Line 8 ). Here, high quality
means that the images were not down-scaled to generate a more detailed 3D dense cloud.
The last step generates the 3D mesh using the 3D point cloud generated in the previous
step (Line 9). 3D dense point cloud and 3D mesh are saved at the directory path specified
by filePath and modelPath, respectively.

Now, we have a 3D mesh with coordinates. However, these coordinates do not have
an assigned hue. Hue is used to find temperature. A 3D model temperature assigned to
its 3D coordinates is called the 3D thermal model. To create a 3D thermal model, the 2D
thermal image is projected onto the 3D mesh created in the previous step. For this task,
a tool named Meshlab is used. To project the thermal image, first, the texture from the
thermal image is generated. Now, the patches of vertices from 3D mesh are re-projected to
the texture and Meshlab will assign each vertex a color based on the re-projection. The re-
projection might introduce some error as the 3D mesh is generated from the images of
RGB camera whereas the re-projection is done using the images produced by the thermal
camera. However, in FLIR ONE PRO, both the cameras are nearer to each other resulting
in a small re-projection error.

The initial and the most important step to generate the texture is to align 3D mesh
and 2D thermal image such that the center of the image and the center of the 3D mesh are
aligned. This step requires camera parameters of the thermal camera. It can be achieved by de-
signing a checkerboard with LED lights [8]. Another solution is to manually align both the
coordinates. We have chosen the latter option and aligned them manually. After aligning
them, the 2D image is projected onto the 3D mesh as mentioned above.

Now, we have a 3D thermal model from which we need to extract the temperature.
To find the temperature from the 3D thermal model Algorithm 7 was designed. Figure 11
depicts the flow of Algorithm 7. The algorithm takes two inputs, one is a 3D thermal model
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and the other is 2D thermal images. The 3D thermal cloud contains 3D coordinates and
RGB hue values. The algorithm first extracts temperature and its corresponding RGB hue
value from the 2D thermal image (lines 2 and 3 in Algorithm 7) and reads the RGB hue of
each 3D points from a 3D thermal model (line 1). Then, the algorithm maps RGB hue to its
corresponding temperature from thermal image resulting in a dictionary with RGB value
as a key and its corresponding value as the temperature (line 4). This dictionary is used to
find the temperature of 3D coordinates (lines 10 and 13).

Algorithm 7 Temperature Extraction
Input: 3D thermal model, Thermal image
Output: 3D coordinates with temperature in (◦C)

/* load 3D points and its corresponding RGB hue from the 3D thermal model */
1 arrayPoints← read3DPoints(3DThermalModel);
2 thermalImage← readImage(thermalImage); // load thermal image
3 tempValue← extractTemp(thermalImage); // extract temperature from thermal image
/* create a dictionary(key: value) and store RGB hue and temperature from thermal image */

4 hueTempDict← createDict(tempValue, thermalImage);
5 temperature← createList(); // create an empty list to store temperature
6 point3D← arrayPoints [:][: 3]; // assign 3D coordinates to point3D array
/* loop through all the 3D points */

7 for i← 1 to len (arrayPoints) do
8 hue← arrayPoints [i][3 :]; // assign RGB hue of ith point to variable hue

/* if ith RGB hue is found in the dictionary then append corresponding temperature */
9 if hue in hueTempDict.keys() then

10 temperature.append(hueTempDict [hue ])
11 end

/* if a newly generated RGB hue is found then find the similar RGB hue using cosine similarity and assign its
temperature */

12 else
13 temperature.append(findSimHue(hue, hueTempDict.keys()))
14 end
15 end

/* combine 3D points and RGB hue, and save it in the CSV file. */
16 ToCSV.concate(point3D, temperature)

Figure 11. Flow diagram for Algorithm 7 (Temperature Extraction).
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However, the 3D thermal model has some newly generated but similar RGB hue due
to extrapolation. To deal with this problem similar RGB hue needs to be found from the
extracted RGB hues of the thermal image. Reference [54] proposed a cosine similarity-
based method to find similarity between two colors. Moreover, reference [55] used cosine
similarity to find similar face colors. Thus, we proposed to use cosine similarity between the
newly generated and existing RGB hues to find the best similar hue (line 13 in Algorithm 7).
The equation for the same is shown below:

Sim(n, e) =
n · e
‖n‖‖e‖ (6)

Here, n is the vector containing the value of newly generated RGB hue and e is the
vector containing the existing RGB hue value. Sim(n, e) is the value of cosine similarity
between n and e. The similarity value is in the range of 0 to 1. 0 being the value for
dissimilar colors and 1 being the value for most similar colors [54]. The temperature of
the best similar hue was assigned to the temperature of the newly generated hue and to
the corresponding 3D coordinate (line 13). This data is stored in the CSV file (line 16).
The CSV file contains four columns, X, Y, Z coordinates, and one for temperature value in
(◦C) corresponding to the 3D coordinate. Results from all the algorithms are mentioned
and discussed in the next section.

4. Results and Discussion

To validate the proposed algorithms, we have conducted a few experiments. The ther-
mal images captured from the FLIR ONE PRO camera are in Multi-Spectral Dynamic
Imaging (MSX) mode. This mode enhances the details of the thermal image by extracting
high contrast edge details using the visual camera. The first experiment conducted was for
heat activity recognition in the stove. An electric stove burner was left on and unattended.
We have captured the video of this scene. This video is given as an input to Algorithm 2 that
extracts the frame from the video and provide it as an input to Algorithm 1. Algorithm 1
detects objects in the input image and extracts information such as object coordinates,
temperatures, and timestamps i.e., image annotation for each frame, and this information
is returned to Algorithm 2 which combines all the annotations for all the frames into one
output CSV file.

We have applied Algorithms 3 and 5 on the video annotations to find out when the
burner was turned on (its temperature was climbing), when it reached its peak temperature
and steady state, how long it was in its steady state, and when it was turned off. Now, this
type of activity detection can be done only by using both thermal and visual information.
This is because it is difficult to find out the temperature and state of the stove by using only
visual information. Furthermore, it is difficult to tell due to which object the temperature
is changing by using only thermal information. A sample frame for the stove experiment
is shown in Figure 12a and its corresponding thermal image is shown in Figure 12b.
Detected objects are shown in Figure 12c. The results of Algorithm 3 on stove experiment’s
video annotations are shown in Table 2. The table depicts the activity state associated with
a frame number. In frame-1, there is no activity, in frame-3 the stove started to heat up,
in frame-12 stove reached the maximum temperature and in frame-18 the stove state is
cooling i.e., the temperature starts decreasing.

Table 2. Stove Activity states for sample frames.

Frame No. Activity State

1 Initial state and no activity
3 Heating phase (Temperature Increasing)

12 Maximum Temperature
18 Cooling phase (Temperature Decreasing)
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(a) (b) (c)
Figure 12. (a) Visual image, (b) Thermal image, and (c) Object detection of a stove/oven.

We have also used video annotations to determine human activities using Algorithm 4
such as people entering or leaving a frame and standing or resting. A sample frame is
shown in Figure 13a and its corresponding thermal image is shown in Figure 13b. De-
tected objects are shown in Figure 13c. The detected activity states of the human experiment’s
video annotations are shown in Table 3. The table has two columns one is the frame number
and the other is the activity state in that frame. For example, in frame-2, there is no human
presence in the room and in frame-3 one person entered the room. For frame-4 one person
is resting, in frame-26 one more person entered, in frame-59 one person is standing and
one is resting, in frame-60 one person went away, in frame-148 one person is sleeping,
in frame-153 one person is standing, and in the frame-232 the person went away. The
activity state of frame-233 depicts that there is no person present. More results for video
annotations of living room and kitchen are mentioned in Tables A1 and A3 respectively.

Table 3. Human Activity States for sample frames.

Frame No. Activity State

2 No person in the frame
3 1 person entered. 0 sleeping. 1 standing. 0 resting. Total person:1
4 0 sleeping. 0 standing. 1 resting. Total person:1

26 1 more person entered. Total person:2. 0 sleeping. 0 standing. 2 resting.
Total person:2

59 0 sleeping. 1 standing. 1 resting. Total person:2

60 1 person went away. Total person:1. 0 sleeping. 0 standing. 1 resting.
Total person:1

148 1 sleeping. 0 standing. 0 resting. Total person:1
153 0 sleeping. 1 standing. 0 resting. Total person:1
232 1 person went away. Total person: 0. No person in the frame.
233 No person in the frame
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(a) (b) (c)

Figure 13. (a) Visual image, (b) Thermal image, and (c) Object detection in a living room.

To evaluate the human activity recognition algorithm, we have calculated recall,
precision, and F1-score of the model. As shown in Table 4, we have calculated the macro
and micro averages of the model. Generally, when the dataset is imbalanced micro-average
is used to evaluate the model. We have described more about these performance metrics
in Appendix B. Table 5 depicts that the activity states, “Person entered”, “Person went
away” and “Resting” have a greater number of false positives. The state “Person entered”
is misclassified when the object detection module detects other objects such as couch as a
person whereas “Person went away” is misclassified when the object detection module fails
to detect a person. For example, if a person is standing in front of another person then the
module fails to detect a person and the algorithm misclassifies the activity as “person went
away”. Furthermore, when a person is sleeping on the couch and the camera is in such a
position that it can capture only the head of the person then the algorithm misclassifies the
activity as resting. However, the algorithm performs well in detecting true positive and
true negative and has the overall accuracy of 93.87%. Furthermore, the computational time
for human activity recognition given an input of image/frame sequences is around 2 s and
for one image/frame the time is around 0.005 milliseconds.

Reference [56] provides a list of state-of-the-art methods for hand-crafted algorithms in
the field of human action recognition. However, as discussed in the literature review section,
references [33–40] use existing datasets, namely the Weizmann, Hollywood2, HMDB51,
Olympic Sports, and UCF50, to validate their performance, and the main objective of
these papers was to improve the performance of human action recognition. Our paper
proposed to combine human activity and heat activity recognition with 3D thermal model
reconstruction for smart home environments, and we proposed to use our own dataset.
Thus, we decided to not compare our results with other methods.

Table 4. Performance metrics for human activity recognition.

Average-Type Recall (%) Precision (%) F1-Score Accuracy (%)

Macro 88.74 73.05 0.80 93.87Micro 95.24 78.08 0.86

Table 5. Results for human activity recognition.

Activity State True Positive False Positive True Negative Negative Falses
(TP) (FP) (TN) (FN)

No person in the frame 59 1 174 0
Person entered 10 27 195 2
Person went away 10 29 191 4
Sleeping 10 0 223 1
Standing 35 1 193 5
Resting 136 15 82 1
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We have applied Algorithm 5 to find the activity duration. The algorithm was applied
to the information extracted for human and heat activity detection. The duration of each
activity is shown in Tables 6 and 7 for stove and human activity, respectively. As shown
in the second row in Table 6 describes that the duration of the heating phase is 7 s, and
the maximum temperature is 3 s. Similarly, the third row in Table 7, one person is resting
for 111 s. This type of data can find many applications in HA systems. For instance,
monitoring stove temperatures and their duration’s can help avoid hazardous situations in
case they are accidentally left on (heating state), by automatically switching off the stove.
Similarly, monitoring human activity duration and presence in a room can be integrated
with HA systems to automatically switch off lighting, televisions, air conditioning systems,
and HVAC when no one is present in the room, etc. hence saving power and energy.

Table 6. Stove activity duration for sample frames.

Activity State Activity Duration (s)

Initial state and no activity 0
Heating phase (Temperature Increasing) 7
Maximum Temperature 3
Cooling phase (Temperature Decreasing) 1

Table 7. Human activity duration for sample frames.

Activity State Activity Duration (s)

No person in the frame 10
1 person entered. 0 sleeping. 1 standing. 0 resting. Total person:1 5
0 sleeping. 0 standing. 1 resting. Total person:1 111
1 more person entered. Total person:2. 0 sleeping. 0 standing. 2 resting. Total person:2 5
1 person went away. Total person:1. 0 sleeping. 0 standing. 1 resting. Total person:1 5
0 sleeping. 0 standing. 1 resting. Total person:1 30
1 person went away. Total person: 0 5
1 person went away. Total person: 0. No person in the frame. 10

Furthermore, we conducted an experiment for heat activity recognition in the refrig-
erator. The idea was to detect the temperature fluctuation when the door is open and to
find the duration of each heat activity. If the temperature in the refrigerator is increasing
due to the high heat transfer rate, for more than a certain amount of duration, the user can
be alerted that the refrigerator door should be closed. This result can be applied to save
electricity and to improve the life of the compressor. As it can be seen from Figure 14 the
temperature starts to increase with some fluctuation when the door is open (after frame
number 5). The result of the activity duration on this experiment is shown in Table 8.
Here, it can be depicted that as someone opens the door, there is a fluctuation in the
temperature and the duration of the state temperature rising is more than temperature
decreasing. More results for activity state and duration are attached in the Appendix A.
(See Tables A5 and A8.)

A scene with a cup of hot water on the shelf of a cupboard was prepared as an ex-
perimental setup to validate Algorithms 6 and 7. A total of 15 stereo RGB images of the
prepared scene was captured to generate the 3D thermal model of the scene. To capture
stereo images, we have captured images from left and the right angle of a scene. These im-
ages were given as an input to Algorithm 6 that generated the 3D mesh of the scene. This
3D mesh and a thermal image were then given as an input to the Metashape to generate
the 3D thermal model. The resulting 3D thermal model is shown in Figure 15c. One of the
RGB images is shown in Figure 15a and the thermal image is shown in Figure 15b.
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Figure 14. Refrigerator temperature fluctuations.

Table 8. Refrigerator activity duration for sample frames.

Activity State Activity Duration (s)

Initial State 5
Temp Rising 6
Temp Decreasing 5
Temp Rising 9
Temp Decreasing 5
Temp Rising 11

(a) (b) (c)

Figure 15. (a) Visual image, (b) Thermal image, and (c) 3D thermal model of a cupboard shelf.

As described in the above section that the first and most important step of the 3D
reconstruction is to find intrinsic and extrinsic camera parameters. The focal length is one of
the important intrinsic camera parameters. The tool calculated the focal length of the RGB
camera as 14.29 cm and the real value of the focal length for FLIR ONE PRO RGB camera
is 15 cm [57]. Thus, the error is 0.71 cm. Due to this error, the depth map generated in the
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next step is not accurate resulting in some invalid 3D points in a dense cloud. To measure
the quality of the 3D dense cloud, Root Mean Square Error of projection was used as a
performance metric. The error calculated was 1.70 pixels. This shows that the generated 3D
dense cloud was not accurate. The total number of pixels generated in a 3D dense cloud was
1,265,231. After getting a 3D dense cloud a 3D mesh was generated. As the 3D point cloud
is not accurate, the 3D mesh generated using these points cannot generate a smooth surface
which can be seen from Figure 15c. However, this phase has generated a 3D temperature
distribution similar to the thermal image provided. For example, warm regions around the
cup can be seen in both thermal image and 3D thermal model.

Using the generated 3D thermal model and the thermal image, as an input to Algorithm 7,
we have extracted the temperature values for each coordinate. The overall process of
temperature extraction takes more computational time as many points have new hue and
cosine similarity takes time to find similar hue as it needs to compare current hue with
all the other extracted hue from the image. Some example coordinates from the output
are shown in Table 9. The coordinate system of the 3D mesh has X-axis as horizontal,
Y-axis as vertical and Z-axis as depth axis. The origin (0,0,0) of the coordinate system of
the cupboard shelf is located at the back wall of the cupboard on which the mug is placed
and centered behind the mug. The 3D coordinates are shown in Table 9 which contains
temperature in ◦C. The first three rows show temperature and coordinates of the heated
mug, fourth row shows temperature around the mug whereas the last coordinate shows
the temperature of the surrounding object which is at the room temperature.

Table 9. Temperature of 3D world coordinates of the cupboard shelf.

X Y Z Temperature (◦C)

0.62 −1.51 −6.13 36.05
0.60 −1.50 −6.13 35.38
0.64 −1.43 −6.12 34.56
1.65 −0.98 −6.30 26.17
−1.59 −2.66 −6.56 13.51

We have conducted another experiment for 3D thermal model generation. For this
experiment, we have captured stereo images of a heated stove in the kitchen. A total of
8 stereo RGB images of the prepared scene was captured to generate the 3D thermal model
of the scene. Using these images as an input to Algorithm 6 and Meshlab, a 3D thermal
model was generated which is shown in Figure 16c. One of the RGB images is shown
in Figure 16a and the thermal image is shown in Figure 16b. The number of pixels
generated for the 3D dense point cloud was 5,825,320. The re-projection error calculated
was 1.58 pixels. Due to this error, the resulting surface of the 3D mesh was not smooth as
it can be depicted from Figure 16c. However, the heated region in the stove and around
the digital clock above the stove can be seen in the 3D reconstructed thermal model.
Moreover, the 3D coordinates with the corresponding temperature is shown in Table 10.
The origin (0,0,0) of the coordinate system of the kitchen was located under the stove
and behind the oven that is the reason for negative Z and X coordinates and positive Y
coordinates for the heated stove. The first three rows show coordinates and temperature
of the heated region of the stove, the fourth row depicts the temperature and coordinates
of the warm region around the stove whereas the last row shows temperatures for the
surrounding objects that are at room temperature. Data obtained from such a 3D thermal
model can be very useful to determine the temperature in 3D space. This data can further
be integrated with HA systems for energy management and risk prevention purposes.
One can effectively detect any heat leakage and counter measures can be taken to save
energy and to prevent dangerous situation.
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(a) (b) (c)

Figure 16. (a) Visual image, (b) Thermal image, and (c) 3D thermal model of a stove.

We have conducted long duration experiments on a living space including a living
room, a kitchen, and a cupboard to validate our algorithms. However, for the sake of brevity,
we have presented only a very small portion of the results in Tables 2–10. For human
activity recognition, we recorded a video of a living room for more than 30 min and
extracted a total of 1495 video annotations from it, and recognized a total of 234 human
activity states. Similarly, for stove activity recognition, we recorded a video for 15 min and
extracted a total of 122 annotations from it, and recognized a total of 42 heat activity states
from this video, and for heat activity recognition in refrigerator we recorded a video for
5 min and extracted a total of 156 annotations from it, and recognized a total of 53 heat
activity states from this video. Furthermore, we reconstructed the 3D model with a total
of 22,210 and 86,578 3D coordinates for the mug and kitchen experiment, respectively,
and extracted the temperature of each of the coordinates as well. We have added some
more results in Appendix A.

Table 10. Temperature of 3D world coordinates of the kitchen.

X Y Z Temperature (◦C)

−2.62 4.82 −5.35 74.43
−1.28 6.63 −3.39 53.29
−1.64 5.24 −3.98 47.64
−1.24 6.40 −3.33 39.28
−0.38 4.02 −3.73 22.02

5. Challenges

The whole process of annotating the video/image with an object’s temperature value
depends on the accuracy of object detection framework. Here, we have used tensorflow’s
object detection APIs. The model is trained on general-purpose 1000 objects, such as ovens,
tables, persons, and cars. For this paper, our main focus is to identify activities in a closed
environment. Hence, there is a high probability that some of the objects present in the image
will not be correctly classified. We assume that for the full implementation, the object de-
tection module will be trained for the task-specific dataset. We also proposed to implement
learning-based methods in the future when we gather the dataset for indoor environments.

Moreover, the following issues can be improved to provide a more descriptive state of
human activity. (1) If a person is sleeping on the couch and the camera detects only some
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of the parts such that a square bounding box is created then the algorithm detects it as a
resting activity rather than sleeping. This can be solved by placing two cameras in the top-
left and top-right corner of a room and we can combine the results from both cameras such
that the bounding box with high-confidence should be counted. (2) Missed-classification:
If we had taken images at 1 or 5 frame/sec and then a person was missed-classified in one
of the frames, then we can easily ignore it as it is unlikely that person can make significant
movement within a small timeframe inside a home environment. Though in our case it
could be possible that a person has moved so handling miss-classification becomes tougher.
Therefore, ideally, the object detection module should have near human-level accuracy.
(3) Tracking people: If two consecutive frames have 2 people in it then it becomes tougher
to evaluate if a person has moved or not by simply looking at their locations in 2 frames as
it might be possible that persons have swapped their locations.

The second module of this paper deals with the problem of 3D thermal model genera-
tion. In this module, to project the thermal image onto the 3D mesh, the thermal camera’s
parameters are required. However, a thermal camera cannot be calibrated using the classi-
cal checkerboard method proposed in [13] as it requires detecting edges and corners in a
chessboard and thermal images do not contain these kinds of features. Thus, to create a 3D
thermal model, we have used a tool named Meshlab which requires human intervention
to align the thermal image and 3D mesh such that their coordinates align, and then the
image is projected onto the 3D mesh. To remove human intervention for 3D thermal model
generation, the thermal camera calibration process can be done. Reference [8] proposed a
method to calibrate the thermal camera using the specifically created thermal calibration
rig. The calibration rig has LEDs located on each corner of the checkerboard and the heat of
these LEDs can be detected in a thermal image. As this method allows the thermal image
to detect corners of the checkerboard, thermal camera parameters can be calculated [8].
This process can reduce the error introduced during manual alignment by providing a way
to automate the process resulting in more accurate results for the 3D thermal model.

Apart from this, the main requirement for the 3D mesh is that the input images
should be stereo. The stereo images provide details of a scene from different angles.
This information is used to extract the depth information of the scene which is then used to
create depth maps. Using the stereo images, highly accurate depth maps and the dense
cloud can be generated. If the camera is in a steady position then the proposed method
produces erroneous results as it generates depth maps with minimal depth information.
This problem can be resolved by mounting two cameras into two elevated corners of a
room in a house or office such that images from the left and right of a scene can be captured.

6. Conclusions

This paper presents various algorithms for thermal and optical imagery-based activity
recognition and 3D thermal model generation in an indoor environment. Activity recogni-
tion in indoor environments consists of two main problems: human activity recognition
and household activity recognition. We have used both RGB and thermal images of a
scene as RGB images provide features for object detection and thermal images provide
information about the temperature. Thermal-RGB image pairs and stereo RGB images
were captured using a FLIR ONE PRO camera for a scene and used to recognize human
and household activity in residential spaces, to determine its duration, and to create a 3D
thermal model of the environment. This was done by first detecting objects in a scene and
then using this information in conjunction with thermal images to finally detect human
and household activities. The human activity recognition’s micro recall, precision, and f1-
score were measured as 95.24%, 78.08%, and 0.86, respectively. In addition to that, the
accuracy of the algorithm was measured as 93.87%. An algorithm was also designed to find
activity duration which can be used by the alert systems to improve safety. The proposed
algorithms were validated by conducting various experiments in an IoT-based setup. A
3D thermal model was generated to get precise 3D heat distribution of an environment
as a 2D thermal image provides limited information. This was done in three steps: (a) 3D
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dense cloud reconstruction, (b) 3D mesh generation, and (c) 3D thermal model generation.
These steps were performed using the tool Metashape by Agisoft and Meshlab. Generated
3D thermal models were accurate with re-projection root mean square error as small as
1.58 pixels. The accuracy of the 3D thermal model depends on the accuracy of the 3D dense
cloud and 3D mesh.

The algorithms and experiments on activity recognition and 3D thermal model gener-
ation presented in this paper can be readily used in home automation, healthcare, monitor-
ing, security, and surveillance systems. The proposed algorithms detect human and heat
activities which can be used to make a safe smart home. Results of both algorithms can be
combined to prevent any hazardous situation. For an instance, if a person is sleeping and a
heat leakage is detected then the person can be alerted using other alert systems to prevent
any accident or if possible the system can turn off the hazardous electrical appliances
automatically to prevent further damage.

This work can further be enhanced by creating a dataset and training a task-specific ob-
ject detection model to solve the problem of undetected objects due to closed environments.
Furthermore, the proposed algorithm for activity recognition is a non-learning-based ap-
proach due to a lack of dataset. In future work, we proposed to create a dataset and use
machine learning-based methods to detect activity in the household environment. More-
over, our approach for 3D thermal model construction requires the manual projection of
the thermal image onto the 3D mesh. This can be automated by finding parameters of the
thermal camera so that no human intervention is required for building a 3D model. These
parameters can also improve the accuracy of the 3D thermal model.
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Appendix A. Supporting Results

Table A1. Video annotations of the living room (40 out of 1495 examples).

Object X Y Width Height Timestamp Max Temp Min Temp Mean Temp Frame

bottle 481.82 246.68 19.93 45.1 16:37:41 21.99 17.39 20.15 1
cup 418.97 258.41 15.96 19.74 16:37:41 21.95 21.03 21.39 1
tv 207.67 102.25 127.61 115.95 16:37:41 39.7 19.85 22.65 1
tv 289.37 103.94 53.32 101.52 16:37:41 22.7 19.95 21.84 1

bottle 485.76 245.31 18.28 45.09 16:37:46 21.92 17.29 20.28 2
tv 208.45 98.55 135.81 117.01 16:37:46 38.84 20.03 22.55 2

cup 421.32 257.32 18.44 20.06 16:37:46 22.09 20.74 21.32 2
person 132.64 28.2 168.42 425.67 16:37:51 31.59 12.97 24.03 3
couch 273.47 193.35 280.71 283.87 16:37:51 31.29 12.97 22.5 3
cup 113.6 281.27 15.87 20.32 16:37:51 22.02 21.3 21.66 3

bottle 132.03 272.27 12.93 34.08 16:37:51 21.88 18.53 21.16 3
person 188.76 165.8 246.37 237.6 16:37:56 33.78 12.47 22.25 4
couch 295.99 203.51 288.52 272.83 16:37:56 33.06 17.99 22.79 4

tv 0.82 122.36 58.91 112.61 16:37:56 22.3 20.35 21.82 4
cup 138.29 282.16 17.49 21.49 16:37:56 22.02 20.93 21.5 4

bottle 199.76 267.12 18.48 44.07 16:37:56 22.09 17.41 20.49 4
cup 158.05 284.28 11.47 23.87 16:37:56 21.84 20.78 21.5 4

person 185.58 165.03 226.64 228.75 16:38:01 34.32 12.07 22.6 5
tv 1.62 118.45 58.78 111.81 16:38:01 22.31 20.14 21.81 5

couch 300.4 201.48 285.36 275.88 16:38:01 33.55 16.21 22.99 5
bottle 200.06 264.6 18.29 43.75 16:38:01 22.39 17.35 20.5 5
cup 139.09 278.02 16.62 21.11 16:38:01 22.06 20.85 21.36 5
cat 285.13 242.21 52.19 39.24 16:38:01 32.1 18.36 23.17 5

person 300.13 150.17 237.7 241.04 16:38:06 33.58 13.04 22.52 6
couch 420.73 202.19 218.28 276.41 16:38:06 31.99 18.0 22.98 6

tv 32.73 115.52 147.96 114.19 16:38:06 37.97 19.74 22.56 6
bottle 315.46 258.57 15.97 44.16 16:38:06 22.57 17.68 20.4 6
cup 254.61 272.39 16.85 19.84 16:38:06 21.94 21.09 21.43 6

person 297.75 162.16 239.3 231.5 16:38:11 34.01 14.2 22.76 7
cup 322.92 270.64 63.15 63.26 16:38:11 23.73 14.87 22.08 7

couch 419.74 211.35 220.26 268.65 16:38:11 32.26 17.92 23.18 7
tv 33.31 119.79 141.71 116.65 16:38:11 37.3 19.89 22.73 7

bottle 313.27 268.28 15.97 43.48 16:38:11 22.39 17.74 20.88 7
cup 252.62 281.82 16.47 19.34 16:38:11 21.9 21.1 21.45 7

dining table 190.83 284.37 151.67 37.29 16:38:11 22.79 16.86 21.49 7
person 293.94 146.54 239.23 241.74 16:38:16 33.32 13.04 22.27 8
bottle 311.21 253.83 19.1 42.24 16:38:16 22.36 17.58 20.44 8
couch 414.75 197.81 224.2 275.75 16:38:16 31.69 18.05 22.81 8

tv 32.44 112.3 142.35 118.14 16:38:16 37.42 20.11 22.53 8
cup 252.16 268.36 16.09 19.24 16:38:16 21.82 20.75 21.26 8
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Table A2. Video annotations of the kitchen (40 out of 122 examples).

Object X Y Width Height Timestamp Max Temp Min Temp Mean Temp Frame

oven 3.32 23.02 470.55 604.51 15:53:13 25.72 23.62 24.62 1
oven 12.94 14.01 416.66 245.26 15:53:13 25.72 24.2 24.71 1
oven 2.12 7.57 410.87 117.05 15:53:13 24.96 24.11 24.62 1

microwave 3.21 6.05 415.41 127.18 15:53:13 24.96 24.11 24.62 1
oven 3.04 27.35 472.57 612.65 15:53:13 25.62 23.73 24.66 2
oven 17.36 12.25 398.45 123.22 15:53:13 25.04 24.15 24.63 2
oven 7.78 85.31 472.22 533.6 15:53:14 46.44 23.96 25.52 3
oven 8.87 302.24 453.28 325.84 15:53:14 46.44 23.94 26.01 3

microwave 36.73 99.96 387.34 140.47 15:53:14 25.37 24.24 24.92 3
oven 3.12 28.52 468.01 597.4 15:53:14 130.11 26.61 30.57 5

microwave 9.49 38.62 385.28 147.89 15:53:14 29.6 26.86 27.17 5
oven 10.92 11.11 452.56 621.36 15:53:14 160.04 26.92 32.02 6

microwave 8.22 41.12 385.88 146.15 15:53:14 30.29 27.22 27.54 6
oven 2.52 42.76 474.53 597.24 15:53:16 182.63 27.12 33.2 7

microwave 10.29 39.66 388.31 154.56 15:53:16 32.52 27.46 27.81 7
oven 4.92 35.37 469.45 604.63 15:53:21 226.21 26.64 35.2 8

microwave 19.49 34.63 377.81 152.34 15:53:21 36.17 27.14 27.94 8
oven 7.02 42.04 458.08 591.47 15:53:22 226.21 26.69 35.48 9

microwave 15.61 47.26 377.38 134.25 15:53:22 32.43 27.16 27.92 9
oven 8.0 43.41 453.44 582.03 15:53:23 226.21 26.63 35.55 10

microwave 9.66 43.51 376.93 139.79 15:53:23 33.11 27.08 27.81 10
oven 5.37 494.2 436.45 139.0 15:53:23 28.47 26.62 27.16 10
oven 9.71 12.47 459.83 614.76 15:53:24 226.21 26.37 34.71 11
oven 16.54 18.39 395.72 120.28 15:53:24 30.38 27.03 27.75 11
oven 7.51 9.28 457.57 630.72 15:53:24 226.21 26.3 34.39 12
oven 3.97 28.26 468.81 602.83 15:53:24 194.45 25.1 32.38 13

microwave 0.0 1.33 406.02 114.39 15:53:24 27.98 25.89 26.76 13
oven 5.28 22.44 474.01 606.97 15:53:24 193.33 25.0 32.12 14
oven 12.3 8.42 410.51 232.79 15:53:24 31.17 25.82 26.75 14

microwave 10.33 6.05 408.84 143.89 15:53:24 31.17 25.84 26.71 14
oven 11.37 34.72 456.68 592.91 15:53:24 180.45 25.15 32.02 15

microwave 19.74 36.61 381.16 148.04 15:53:24 30.98 25.72 26.8 15
oven 25.69 27.59 388.27 182.22 15:53:24 31.22 25.71 26.79 15
oven 4.51 57.21 461.19 577.79 15:53:24 173.35 25.34 32.04 16
oven 8.68 35.48 384.78 151.16 15:53:24 30.25 25.7 26.82 16
oven 9.01 33.05 453.85 590.95 15:53:25 168.78 25.2 31.51 17

microwave 25.25 36.87 380.1 152.9 15:53:25 29.35 25.55 26.67 17
oven 7.69 17.29 472.31 620.37 15:53:25 161.46 25.13 30.75 18

microwave 13.67 26.72 400.06 132.58 15:53:25 27.57 25.54 26.6 18
oven 19.15 16.09 399.29 160.65 15:53:25 29.86 25.52 26.6 18
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Table A3. Human Activity States for sample frames (40 out of 234 examples).

Frame No. Activity State

1 No person in the frame
2 No person in the frame
3 1 person entered. 0 sleeping. 1 standing. 0 resting. Total person:1
4 0 sleeping. 0 standing. 1 resting. Total person:1
5 0 sleeping. 0 standing. 1 resting. Total person:1
6 0 sleeping. 0 standing. 1 resting. Total person:1
7 0 sleeping. 0 standing. 1 resting. Total person:1
8 0 sleeping. 0 standing. 1 resting. Total person:1
9 0 sleeping. 0 standing. 1 resting. Total person:1

10 0 sleeping. 0 standing. 1 resting. Total person:1
11 0 sleeping. 0 standing. 1 resting. Total person:1
12 0 sleeping. 0 standing. 1 resting. Total person:1
13 0 sleeping. 0 standing. 1 resting. Total person:1
14 0 sleeping. 0 standing. 1 resting. Total person:1
15 0 sleeping. 0 standing. 1 resting. Total person:1
16 0 sleeping. 0 standing. 1 resting. Total person:1
17 0 sleeping. 0 standing. 1 resting. Total person:1
18 0 sleeping. 0 standing. 1 resting. Total person:1
19 0 sleeping. 0 standing. 1 resting. Total person:1
20 0 sleeping. 0 standing. 1 resting. Total person:1
21 0 sleeping. 0 standing. 1 resting. Total person:1
22 0 sleeping. 0 standing. 1 resting. Total person:1
23 0 sleeping. 0 standing. 1 resting. Total person:1
24 0 sleeping. 0 standing. 1 resting. Total person:1
25 0 sleeping. 0 standing. 1 resting. Total person:1
26 1 more person entered. Total person:2. 0 sleeping. 0 standing. 2 resting. Total person:2
27 1 person went away. Total person:1. 0 sleeping. 0 standing. 1 resting. Total person:1
28 0 sleeping. 0 standing. 1 resting. Total person:1
29 0 sleeping. 0 standing. 1 resting. Total person:1
30 0 sleeping. 0 standing. 1 resting. Total person:1
31 0 sleeping. 0 standing. 1 resting. Total person:1
32 0 sleeping. 0 standing. 1 resting. Total person:1
33 0 sleeping. 0 standing. 1 resting. Total person:1
34 1 person went away. Total person: 0. No person in the frame.
35 No person in the frame
36 No person in the frame
37 1 person entered. 0 sleeping. 1 standing. 0 resting. Total person:1
38 0 sleeping. 0 standing. 1 resting. Total person:1
39 1 more person entered. Total person:2. 0 sleeping. 1 standing. 1 resting. Total person:2
40 0 sleeping. 0 standing. 2 resting. Total person:2
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Table A4. Stove States for sample frames (42 out of 42 examples).

Frame No. Activity State

3 Initial
3 Initial
5 Temp Rising
6 Temp Rising
7 Temp Rising
8 Max Temp
9 Max Temp

10 Max Temp
11 Max Temp
12 Max Temp
13 Temp Decreasing
14 Temp Decreasing
15 Temp Decreasing
16 Temp Decreasing
17 Temp Decreasing
18 Temp Decreasing
19 Temp Decreasing
20 Temp Decreasing
21 Temp Decreasing
22 Temp Decreasing
22 Temp Decreasing
23 Temp Rising
24 Temp Decreasing
25 Temp Decreasing
25 steady
26 Temp Decreasing
26 Temp Decreasing
27 Temp Rising
28 Temp Decreasing
29 Temp Decreasing
29 Temp Decreasing
30 Temp Decreasing
30 steady
31 Temp Rising
32 Temp Decreasing
33 Temp Decreasing
33 steady
34 Temp Decreasing
35 Temp Decreasing
35 Temp Decreasing
36 Temp Rising
37 Temp Decreasing
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Table A5. Refrigerator States for sample frames (53 out of 53 examples).

Frame No. Activity State

1 Initial
2 Temp Rising
3 Temp Decreasing
4 Temp Rising
5 Temp Rising
6 Temp Decreasing
7 Temp Rising
8 Temp Rising
9 Temp Decreasing

10 Temp Rising
11 Temp Rising
12 Temp Rising
13 Temp Decreasing
14 Temp Rising
15 Temp Decreasing
16 Temp Decreasing
17 Temp Rising
18 Temp Rising
19 Temp Rising
20 Temp Rising
21 Temp Decreasing
22 Temp Rising
23 Temp Decreasing
24 Temp Rising
25 Temp Rising
26 Temp Decreasing
27 Temp Rising
28 Temp Decreasing
29 Temp Rising
30 Temp Decreasing
31 Temp Rising
32 Temp Rising
33 Temp Decreasing
34 Temp Rising
35 Temp Decreasing
36 Temp Rising
37 Temp Decreasing
38 Temp Rising
39 Temp Decreasing
40 Temp Decreasing
41 Temp Decreasing
42 Temp Decreasing
43 Temp Rising
44 Temp Decreasing
45 Temp Decreasing
46 Temp Rising
47 Temp Decreasing
48 Temp Rising
49 Temp Rising
50 Temp Rising
51 Max Temp
52 Temp Decreasing
53 Temp Rising
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Table A6. Human Activity Duration for sample frames (40 out of 142 examples).

Activity State Activity Duration (s)

No person in the frame 10
1 person entered. 0 sleeping. 1 standing. 0 resting. Total person:1 5
0 sleeping. 0 standing. 1 resting. Total person:1 111
1 more person entered. Total person:2. 0 sleeping. 0 standing. 2 resting. Total person:2 5
1 person went away. Total person:1. 0 sleeping. 0 standing. 1 resting. Total person:1 5
0 sleeping. 0 standing. 1 resting. Total person:1 5
1 person went away. Total person: 0. No person in the frame. 5
No person in the frame 10
1 person entered. 0 sleeping. 1 standing. 0 resting. Total person:1 5
0 sleeping. 0 standing. 1 resting. Total person:1 5
1 more person entered. Total person:2. 0 sleeping. 1 standing. 1 resting. Total person:2 5
0 sleeping. 0 standing. 2 resting. Total person:2 11
1 more person entered. Total person:3. 0 sleeping. 0 standing. 3 resting. Total person:3 4
1 person went away. Total person:2. 0 sleeping. 0 standing. 2 resting. Total person:2 6
1 more person entered. Total person:3. 0 sleeping. 0 standing. 3 resting. Total person:3 5
1 person went away. Total person:2. 0 sleeping. 0 standing. 2 resting. Total person:2 4
0 sleeping. 0 standing. 2 resting. Total person:2 11
1 person went away. Total person:1. 0 sleeping. 1 standing. 0 resting. Total person:1 5
2 more person entered. Total person:3. 0 sleeping. 0 standing. 3 resting. Total person:3 5
0 sleeping. 0 standing. 3 resting. Total person:3 5
1 person went away. Total person:2. 0 sleeping. 0 standing. 2 resting. Total person:2 5
0 sleeping. 1 standing. 1 resting. Total person:2 4
1 more person entered. Total person:3. 0 sleeping. 2 standing. 1 resting. Total person:3 6
0 sleeping. 1 standing. 2 resting. Total person:3 4
1 more person entered. Total person:4. 0 sleeping. 2 standing. 2 resting. Total person:4 5
0 sleeping. 0 standing. 4 resting. Total person:4 6
1 person went away. Total person:3. 0 sleeping. 0 standing. 3 resting. Total person:3 4
1 person went away. Total person:2. 0 sleeping. 0 standing. 2 resting. Total person:2 6
0 sleeping. 1 standing. 1 resting. Total person:2 5
1 person went away. Total person:1. 0 sleeping. 0 standing. 1 resting. Total person:1 5
1 more person entered. Total person:2. 0 sleeping. 1 standing. 1 resting. Total person:2 5
0 sleeping. 1 standing. 1 resting. Total person:2 4
0 sleeping. 0 standing. 2 resting. Total person:2 5
1 more person entered. Total person:3. 0 sleeping. 0 standing. 3 resting. Total person:3 5
1 person went away. Total person:2. 0 sleeping. 0 standing. 2 resting. Total person:2 5
0 sleeping. 0 standing. 2 resting. Total person:2 11
1 more person entered. Total person:3. 0 sleeping. 0 standing. 3 resting. Total person:3 4
1 more person entered. Total person:4. 0 sleeping. 0 standing. 4 resting. Total person:4 5
0 sleeping. 0 standing. 4 resting. Total person:4 11
1 person went away. Total person:3. 0 sleeping. 0 standing. 3 resting. Total person:3 5
0 sleeping. 0 standing. 3 resting. Total person:3 6
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Table A7. Stove activity duration for sample frames (16 out of 16 examples).

Activity State Activity Duration (s)

Initial 0
Temp Rising 7
Max Temp 3
Temp Decreasing 1
Temp Rising 0
Temp Decreasing 1
steady 0
Temp Decreasing 0
Temp Rising 0
Temp Decreasing 0
steady 1
Temp Rising 1
Temp Decreasing 1
steady 1
Temp Decreasing 1
Temp Rising 0

Table A8. Refrigerator activity duration for sample frames (35 out of 35 examples).

Activity State Activity Duration (s)

Initial 5
Temp Rising 6
Temp Decreasing 5
Temp Rising 9
Temp Decreasing 5
Temp Rising 11
Temp Decreasing 4
Temp Rising 16
Temp Decreasing 5
Temp Rising 5
Temp Decreasing 10
Temp Rising 20
Temp Decreasing 5
Temp Rising 5
Temp Decreasing 5
Temp Rising 10
Temp Decreasing 5
Temp Rising 5
Temp Decreasing 4
Temp Rising 5
Temp Decreasing 6
Temp Rising 10
Temp Decreasing 5
Temp Rising 5
Temp Decreasing 5
Temp Rising 5
Temp Decreasing 5
Temp Rising 5
Temp Decreasing 20
Temp Rising 5
Temp Decreasing 10
Temp Rising 5
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Table A8. Cont.

Activity State Activity Duration (s)

Temp Decreasing 5
Temp Rising 15
Max Temp 5
Temp Decreasing 5
Temp Rising 5

Table A9. Temperature of 3D world coordinates of the cupboard (20 out of 22,210 examples).

X Y Z Temperature (◦C)

2.0014 0.6398 −7.9673 14.6988
0.4906 −1.928 −6.0505 34.7017
1.7723 −2.871 −6.2441 13.7303
−1.3437 −0.8388 −7.1432 27.2098
0.5947 −0.7864 −5.999 35.4228
0.4679 −0.7649 −5.7605 35.7059
0.0798 −0.5405 −5.8944 35.7748
0.9333 −1.7619 −6.3756 27.7674
0.4979 2.0293 −9.1158 13.9691
−1.7164 −4.2573 −7.0667 13.8242
1.4497 −0.7472 −5.7463 13.6705
0.7368 2.4214 −8.905 14.2158
2.5194 −2.0902 −7.1275 14.6988
−0.1296 2.4935 −9.5485 18.518
2.7819 −0.1195 −6.0593 13.8242
1.1998 −1.2806 −6.5414 31.9194
−0.0629 −0.0563 −7.4047 24.4913
1.5232 2.1706 −9.1267 14.6988
1.9448 1.9133 −9.5913 14.6988
−1.1405 1.0634 −6.7961 13.6363

Table A10. Temperature of 3D world coordinates of kitchen (20 out of 86,578 examples).

X Y Z Temperature (◦C)

−1.9661 0.11 −4.8897 35.4505
−2.6144 6.0175 −5.2324 49.4435
−2.2303 −0.4009 −5.2172 105.2417
−2.3037 7.0193 −4.7563 45.6503
−2.1104 −0.1235 −4.9684 35.4505
0.2324 8.4416 −2.1597 105.2417
−2.081 0.7635 −4.9218 62.018
−0.2367 2.4341 −4.2632 22.0286
−2.2353 4.7756 −4.8054 22.1461
−1.6952 6.5153 −3.9385 22.8406
−6.831 3.6134 −7.1942 22.0442
−3.7903 10.0444 −5.5572 22.0286
0.3989 11.0971 −1.8679 21.9658
−4.4265 10.4278 −5.1591 22.0286
−3.2999 2.6144 −6.417 22.2947
−4.7288 0.011 −8.5779 22.0286
−5.887 0.6152 −8.4636 105.3403
−3.886 1.8818 −7.2735 128.4772
−3.8856 1.1329 −7.3805 41.9647
−4.2032 9.2512 −5.5857 105.3403
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Appendix B. Performance Metrics

For all the performance metrics written below, True Positive (TP) is the number of
observations that belong to a positive class and are correctly classified by the algorithm and
True Negative (TN) is the number of observations that belong to a negative class and are
correctly classified by the algorithm. False Positive (FP) is the number of observations that
are misclassified to the positive class and False Negative (FN) is the number of observations
that are misclassified to the negative class.

Accuracy =
TP + TN

TP + TN + FP + FN
(A1)

Here, the Accuracy is the ratio of the number of true predictions of the algorithm to
the total number of observations.

Recall =
TP

TP + FN
(A2)

Here, the recall is the ratio of the number of true positive predicted by the algorithm to
the total number of observations that actually belong to positive class.

Precision =
TP

TP + FP
(A3)

Here, Precision is the ratio of the number of true positive to the total number of
observations classified as true.

F1-Score = 2 · Precision · Recall
Precision + Recall

(A4)

Here, F1-score is the harmonic average of precision and recall.
When we deal with multi-class problems we generally average these performance

metrics among all classes. For that, we have two types: one is macro-average and the other
is micro-average. Macro-average is calculated by taking the average of the performance
metric of individual classes. For instance, macro-recall can be calculated by taking the
average of recall of each class. Macro-average gives the same weight to each of the classes
during the average. When the dataset is imbalanced then we use micro-average. Let us say
we have a k-class classification problem then the micro-average is calculated as shown in
the below equations.

Micro_Recall =

k
∑

i=1
TPk

k
∑

i=1
TPk + FNk

(A5)

Here, micro recall is the ratio of the sum of the TP of all classes to the sum of the TP
and the FN of all classes

Micro_Precision =

k
∑

i=1
TPk

k
∑

i=1
TPk + FPk

(A6)

Here, micro precision is the ratio of the sum of the TP of all classes to the sum of the
TP and the FP of all classes

Micro_F1− Score = 2 · Micro_Precision ·Micro_Recall
Micro_Precision + Micro_Recall

(A7)

Here, micro F1-Score is the harmonic average of the micro precision and micro recall.
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