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Abstract—Practical implementation of digital signal processing
for mitigation of transmission impairments in optical commu-
nication systems requires reduction of the complexity of the
underlying algorithms. Here, we investigate the application of
convolutional neural networks for compensating nonlinear signal
distortions in a 3200 km fiber-optic 11x400-Gb/s WDM PDM-
16QAM transmission link with a focus on the optimization of the
corresponding algorithmic complexity. We propose a design that
includes original initialisation of the weights of the layers by a
filter predefined through the training a single-layer convolutional
neural network. Furthermore, we use an enhanced activation
function that takes into account nonlinear interactions between
neighbouring symbols. To increase learning efficiency, we apply
a layer-wise training scheme followed by joint optimization of
all weights applying additional training to all of them together
in the large multi-layer network. We examine application of
the proposed convolutional neural network for the nonlinearity
compensation using only one sample per symbol and evaluate
complexity and performance of the proposed technique.

Index Terms—Convolutional neural networks. Nonlinearity
mitigation in fiber-optic links.

I. INTRODUCTION

Capacity demand in communication networks follows a
stable increasing trend over the recent decades due to the
continuing expansion of current and emerging digital appli-
cations and services. Assuming that this trend will maintain,
the potential disparity between growth rates of future traffic
demand and available network capacity is expected to create
a what is known as “capacity crunch” problem. This fact calls
for new approaches to improve the transmission performance
of optical fiber links.

In general, there are two important questions related to
optical networking: What is the best way to design new
high-capacity transmission systems? and How to manage the
existing systems in the most efficient way? The key approach
to contend with the future demand is parallelization - i.e. to
increase the number of communication channels in the spectral
or spatial dimension. These new designs can be used in next
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generation optical communication systems. However, in the
already installed fiber links, possibilities are limited by the
existing infrastructure, requiring different technical approaches
for optimizing the performance. Overcoming fiber nonlinearity
is one of the most challenging tasks in those systems and it
is a major limiting factor for extending their capacity.

A nonlinear fiber channel differs substantially from the
classical linear additive white Gaussian noise channel by the
complexity of the link between the output and input signal. The
output signal is given by the solution of a nonlinear stochastic
partial differential equation(s) with the input signal defining
the initial conditions of the problem. It is well understood
nowadays, that nonlinear fiber communication channels re-
quire the development of conceptually new digital processing
methods capable to deal with the nonlinear transmission
impairments (see e.g. [1], [2], [3], [4], [5], [6] and references
therein). One of those methods is digital backward propagation
(DBP) [7], [8] that digitally mimics the propagation of a signal
through a fiber in the reversed direction at the receiver. Co-
incidentally, backward propagation methodology is a central
building block in many machine learning (ML) approaches
such as neural networks. The basics of back-propagation were
introduced in 1960s in the context of control theory [9] and
then applied in the field of machine learning in [10]. In the
context of neural networks the back-propagation algorithm
is used to identify the optimum layer weights for a specific
training set.

Machine learning methods are generally well suited for
applications in complex nonlinear systems. Therefore, it is
rather natural that ML techniques emerged as a promising
tool to improve performance of complex modern fiber-optic
networks ([11], [12], [13], [14] and references therein), with
the number of publications in the area following an explosive
growth. Neural networks (NN), in particular, are extremely
popular in this field due to the high classification accuracy they
can achieve. However, it is also well-known that there is a lack
of clear and well-defined rules for designing an efficient neural
network architecture to address a particular applications. The
number and size of hidden layers, the type of activation
function and other design options are often addressed by a rea-
sonable enumeration of possible configurations, and heuristic
approaches. Any apriori knowledge of the system’s behaviour
can be extremely useful in the NN training to achieve fast
convergence at a better optimum operating point.

Although DBP-based equalization has been supported by
robust mathematical models, their associated complexity has
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prevented any real time implementation in optical commu-
nication systems [15]. On the other hand, it has been re-
cently shown that deep neural networks can provide a good
approximation of DBP at lower computational cost [16]. The
alternating layers of the proposed architecture corresponded
to the linear and nonlinear signal transformations of the
split-step Fourier method (SSFM). The resulting method was
referred to as learned DBP (LDBP). However, contrary to the
conventional DBP, which requires exact knowledge of all the
transmission parameters to be effective, the parameters of the
LDBP equalizer can be jointly optimized through a supervised
training process allowing a ”blind” operation even on a totally
unknown channel.

In this work we develop a new design of a deep convo-
lutional neural network (DCNN) for mitigating the nonlinear
signal distortions in a long-haul fiber communication system.
To adjust the proposed DCNN to the channel nonlinearity we
applied an activation function based on enhanced SSFM [17]
that takes into account nonlinear interaction of the symbol
under consideration with neighbouring symbols both from
the same and from surrounding spectral channels. We divide
nonlinear layers into groups of filters depending on the dis-
tance between the processed spectral channels, which allows
us to find a trade-off between the computational complexity of
the proposed scheme and its performance. We demonstrated
here that nonlinearity compensation is possible using sampling
with just one sample per symbol (SpS). We examined the
performance of the proposed scheme in a 3200 km 11x400-
Gb/s RRC WDM PDM-16QAM transmission system when
processing single channel or 5 neighboring channels simul-
taneously. We also conducted extensive analysis of computa-
tional complexity of the equalizer based on deep convolutional
neural network and showed the superiority of the proposed
scheme over conventional DBP methods.

The paper is organized as follows. In Section II, we
briefly present the theoretical background of the design of
the convolution neural network and conceptual connection
between DCNN and DBP. Next, we introduce a detailed
description of the proposed DCNN-based nonlinear equalizer,
including complexity analysis. Section III provides detailed
description of the particular transmission system and numer-
ical modeling parameters. Section IV presents the results of
numerical modeling and the comparison between DCNN and
DBP performance. Section V concludes the paper.

II. CNN-BASED PROCESSING AT THE RECEIVER

Based on information theory, an optical communication
system can be considered as a nonlinear channel with memory
defined by the interplay of chromatic dispersion (CD) and Kerr
effect. A conventional optical signal launched in the fiber link
presents an analog function A(z = 0, t) =

∑
k akf(t − kT )

of time t, where ak are complex transmitted symbols, k is
a number of time slot, T is a symbol interval, and f(t) is
a waveform of a carrier pulse. This offers a natural discrete
representation of the signal A(z = 0, t) in the form of an in-
finite (in k) discrete-time series of vectors ξk = (ξ1

k, . . . , ξ
n
k ),

where {ξjk} is a set of regularly spaced signal samples for

j = 1, . . . , n and n/T is a sampling rate. Obviously, at one
sample per symbol, such a vector has just one component and
represent a scalar, that is a particular case of the considered
approach. In a similar manner we can represent received signal
A(z = L, t) at the receiver side as a time series of vectors
ηk = (η1

k, . . . , η
n
k ). Due to channel memory a finite set of

input signals ξk−M , . . . , ξk+M has an impact on the output
signal ηk, where M is a memory parameter.

Convolutional neural networks (CNN) are suitable tools for
time series analysis by processing the elements of the series in
blocks sliding along the input data. A CNN of N layers trans-
forms an input vector x to an output vector ȳ by alternating be-
tween convolution with vectors w(i) and point-wise nonlinear
activation functions f(x): x(i) = f(w(i)∗x(i−1)+b(i)), where
i = 1, . . . , N is an index of a layer, sign ∗ denotes convolution
product, b(i) is a bias vector, x(0) = x and x(N) = ȳ. In
contrast to fully-connected neural networks, where w(i) is
typically represented as a dense matrix describing connection
between all neurons from neighboring layers, in convolutional
neural networks w(i) is usually a matrix or vector of specific
length and it is known as filter or kernel. The elements of the
w(i) and b(i) vectors are considered as learning parameters,
whereas f(x) is a fixed function. During the training process
the learning parameters are updated in a way that minimizes
the difference between the estimated output vector ȳ and the
target vector y of the training set.

Here, we consider a deep convolutional neural network
with structure that inherits from the digital back-propagation
concept [7], see Fig. 1. It is an alternation of linear (convo-
lutional) and nonlinear (activation function) layers, with the
linear layers performing the compensation of the accumulated
chromatic dispersion and the nonlinear layers undertaking
to compensate the response of the medium. We consider a
sampling rate of one sample per symbol. As input x we
consider the vector of received samples {ηk}, {ξ̄k} represents
the estimated symbols at the output of the architecture, target
vector y is the same as the vector of the transmitted symbols
{ak}. The parameters of all layers are jointly optimized after
layer-wise training during the NN learning stage.

In our study, we investigate WDM-signal transmission.
To take into account inter-channel interactions the proposed
DCNN simulate the DBP method based on coupled nonlinear
Schrödinger equations [18], [19]:

∂A
x/y
c

∂z
= −dc

∂A
x/y
c

∂t
− iβ2

2

∂2A
x/y
c

∂t2
+ (1)

+i
8γ′

9

|Axc |2 + |Ayc |
2

+ 2
∑
s6=c

(
|Axs |

2
+ |Ays |

2
)Ax/yc ,

where A
x/y
c is the complex field envelopes for x- and y-

polarization, c is the number of a spectral channel, dc =
cβ2∆ω is the dispersion coefficient corresponding to the walk-
off effect between spectral channels, ∆ω is the channel spac-
ing, β2 represents the second-order dispersion, γ′ = γLeff ,
where γ is the Kerr coefficient, and Leff is the effective
length Leff = (1 − e−αL)/α that accounts for averaging
over periodic loss and gain, L is the amplifier span length
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and α is the fiber loss coefficient. It should be noted, that
the neural network architecture based on coupled NLSEs have
been proposed in [20] for single channel processing of optical
signals. We use this model as the basis of the proposed
scheme because it allows us to process multiple channels at
low sampling in parallel. Note, that DCNN designed this way
accounts for self-phase modulation (SPM) and cross-phase
modulation (XPM) between spectral channels, but not four-
wave mixing (FWM).
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Fig. 1. Deep convolutional neural network architecture.

It is common practice for NN design that all involved
quantities such as network input/output and layer weights
are real-valued rather than complex valued. However, since
the propagation of a telecommunication signal in an optical
fiber is described by the evolution of a complex field en-
velope and the constellation symbols are also complex, it
is worthwhile to implement the NN with complex-valued
arithmetic. We implemented complex numbers and certain
arithmetic operations presenting input complex data as pairs of
real numbers corresponding to its real and imaginary parts. In
addition, the individual polarizations and WDM channels are
processed in parallel, and we considered them as additional
“feature columns” in the data array. Thus, input sequences
of complex symbols of size L for Nch spectral channels and
both polarizations are represented as a real-valued array of
size (L, 4 ·Nch).

The implementation of the proposed DCNN is performed
in MXNet using the Adam optimizer [21] with adaptive
learning rate. Mean squared error between the transmitted and
recovered symbols is used as a loss function. We average the
resulting error over all spectral channels and polarizations.

Aiming at the reduced complexity we consider a DCNN
architecture with each layer corresponding to one span prop-
agation and the input vector sampled at 1 sample per symbol.

A. Recovering of Signal Dispersion Broadening

The DBP method simulates a signal propagation through
a fiber in the reversed direction. Therefore, a signal with

accumulated dispersion, corresponding to the entire length
of the fiber, is used as the input of the approach. Similarly,
samples of the received signal are used as input data for the
developed DCNN. Moreover, the signal should be sampled at
1 SpS. In our study, we transmit root raised cosine (RRC)
pulses with a roll-off factor of 0.1, and therefore the signal
bandwidth is wider then 1/T . As a result, if we downsample
the received signal to 1 SpS directly, we will lose some
of the useful information. To avoid this we perform the
following procedure: first compensate accumulated chromatic
dispersion for the received signal downsampled to 2 SpS,
next downsampling to single sample per symbol takes place,
and then we recover the signal dispersion broadening by the
inverse procedure of the accumulated CD compensation in the
frequency domain. This approach allows us to correctly take
into account the interplay of linear and nonlinear effects for
signals with 1 sample per symbol.

B. Convolution Layers for Chromatic Dispersion Compensa-
tion

Although each linear step of the DBP method can be imple-
mented either in time [22] or in frequency domain [7], a time
domain implementation using finite impulse response (FIR)
filters [22], [23] is more efficient in real time applications.
Furthermore, it is consistent with the one-dimensional (1D)
convolution operation which can be equivalently executed by
the linear layer of a convolutional neural network. In our
case each 1D convolution layer undertakes to compensate an
equal part of chromatic dispersion, although a non-uniform
compensation scheme can be also applied.

Neural network training is a rather long and complex
procedure. Nevertheless, we can improve its efficiency and
achieve fast convergence by creating favourable initial condi-
tions using any preliminary knowledge about our problem, e.g.
we can initialize the layer weights with the coefficients of an
equivalent FIR-based CD compensation (CDC) filters [7], [24].
Specifically in our case, the weights of the convolution layer
were trained first to adapt itself as one of the DBP linear steps.
Such approach allows to obtain CD filters of small length with
acceptable accuracy compared to filters based on frequency-
domain sampling [16]. The resulting convolutional filters with
61 and 151 coefficients are depicted in the insets of Fig. 3(a).

To initialize the weights of the entire neural network, and
thus compensate for the total accumulated dispersion of the
link, one could replicate the previously identified coefficients
for the remaining convolution layers of the NN architecture.
However, the repeated use of single span optimized coeffi-
cients will likely lead to sub-optimal performance [16]. There-
fore, instead, before training the deep NN simulating DBP, a
joint weight optimization for the convolution layer cascade
was performed. The training was achieved by omitting the
in-between nonlinear activation functions and initializing each
linear layer of the cascade with the single-step weight solution
identified by the above process. During the joint optimization
process, we require that, in addition to the filter sequence
compensating for the entire accumulated CD, each filter should
still compensate for the corresponding part of the dispersion
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similar to [16]. The joint optimization was implemented as
follows: the first layer should compensate chromatic dispersion
of one span, at the same time the first two layers compensate
CD corresponding for two spans, the first three convolutional
layers used for CD compensation of three spans, and so
on The application of a joint filter optimization procedure
can significantly reduce the resulting error in compensating
chromatic dispersion and reduce substantially the training
time. To show this we compare different techniques of prede-
termination of convolution layers, including: (i) the proposed
optimization process described above; (ii) joint optimization of
all convolutional layers, but without additional requirement for
individual filters; (iii) initialization of all filters with optimized
coefficients for single span (without joint optimization) and
(iv) initialization of all convolutional layers with random
values.

TABLE I
COMPARISON OF CONVOLUTIONAL LAYER OPTIMIZATION TECHNIQUES

Optimization technique Achieved Q2-factor Number of epochs

Layer-by-layer (i) 14.48 1570
Joint optimization (ii) 14.45 2180
Single step (iii) 14.37 2510
Random (iv) 12.86 10000*

Table I shows the achieved Q2-factor and number of per-
formed epochs for the considered techniques after training
the entire DCNN when processing single channel with an
input power of 2 dBm. By epoch, we mean one pass of the
entire data set through the neural network. It can be seen
that all methods except Random provide a similar level of
performance. At the same time, the method proposed in this
work requires much less epochs, and in all cases, the joint
optimization process takes little time. It should be noted that
in the case of random optimization we stopped the training
process when 10000 epochs were reached.

With the propagation of WDM signals, the chromatic dis-
persion leads to a group delay difference between spectral
channels [19]. Therefore, a neural network processed multiply
channels simultaneously should take this into account in the
architecture design. In the proposed DCNN each channel
and polarization are processed separately in a linear layer.
We assume here that signals at each channel propagate at
the carrier frequency and after the linear step group delay
corresponding to channel frequency and distance propagated is
compensated. To account for the group delay difference, a real-
valued fractional delay (FD) filter for each spectral channel
can be used after convolutional layer at each linear step [25],
[26]. Furthermore, to reduce the computational complexity, we
set the step length so that the time delay for each channel is
divisible by the duration of the symbol interval T , as it was
suggested in [20]. Thereby, we can shift the resulting data
array by the corresponding number of symbols to compensate
for the walk-off between the channels. It should be noted that
in general it is necessary to use additional FD filter after the
last step, since the steps chosen by the method described above
may not completely cover the full transmission length [20].

Simple physical considerations [7], [24] show that the
CD compensating FIR filters are symmetrical. Therefore, to
reduce the computational complexity we also required that
linear convolution layers are symmetric. This requirement
slightly degrades algorithm performance, but almost halves the
complexity.

C. Activation Function for Fiber Nonlinearity Compensation

Selection of the appropriate nonlinear activation function is
an important design issue in the NN design. Its main task is to
create advanced mappings between the network’s inputs and
outputs, which are essential for the processing of complex
data. On the other hand, in fiber-optic communications the
Kerr nonlinearity has a well defined form, creating for each
sub-step of the DBP method the following transfer function :

A(z + h) = e−iγDBPh|A(z)|2A(z), (2)

where γDBP is the effective (that includes losses through the
Leff ) fiber nonlinear parameter and h is the sub-step length.
As mentioned earlier, when designing a neural network it is
beneficial to make use of any pre-existing knowledge of the
underlying physical effects it is asked to address. Therefore,
it is natural to consider the activation function mimicking the
nonlinear DBP step. There are many approaches that focus
on reducing complexity and improving performance of the
DBP method, for instance, the enhanced split-step Fourier
method [17], [27], where neighboring samples are also used
at a nonlinear step. In this case, the nonlinear sub-step of the
DBP method (2) can be rewritten as:

Ak(z + h) = e
−iγDBPh

∑Rr
j=−Rl

αj |Ak+j(z)|2Ak(z), (3)

where Ak(z) ≡ A(z, t = k/f), f – sampling rate, R =
Rl + Rr + 1 is a number of included symbols and αj are
real-valued coefficients. In a similar manner we introduce a
nonlinear activation function for the neural network as follows:

f(zk) = e
−i

∑Rr
j=−Rl

αj |zk+j |2zk, (4)

where αj are real-valued trainable weights.
Note that the sum in the exponent is similar to the formula

for an one-dimensional convolution layer with the real-valued
coefficients. Thus, the implementation of the enhanced SSFM
in a nonlinear sub-step of a deep convolutional neural network
is possible by using a convolution layer with filter {αj} to
the squared symbol modules |z|2 and then calculating the
nonlinear Kerr activation function.

D. Second Polarization and Neighboring Spectral Channels
Accounting

Considering the interaction between the polarizations and
neighboring spectral channels, we took into account only
cross-phase modulation effects as described in the propagation
equations (1). Then using the enhanced SSFM the nonlinear
activation function has the form:

f(z
x/y,c
k ) = e−iΦ

x/y,c
k z

x/y,c
k , (5)
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Φ
x/y,c
k =

Nch∑
s=1

Rs,r∑
i=−Rs,l

αcs,i
(
|zx,sk+i|

2 + |zy,sk+i|
2
)
,

where zx/y,c are data from the x- or y-polarization and cth
channel and Nch is the number of the processed spectral
channels. It should be noted that we use the same weights for
both polarization of each WDM-channel. At the same time,
we divide the coefficients αcs,i into groups depending on the
distance between the spectral channels c and s. For example, if
c = s the coefficients αcc,i correspond to SPM effects and we
refer the real-valued convolution layer determined by these
weights as SPM filter. Accordingly, coefficients with c 6= s
correspond to XPM effects and by analogy with SPM filters
we call it XPM-k filters for the spectral channels spaced at k
channel spacing. Such a division can be justified if we turn
to the inset of Fig. 3(b), where coefficients for SPM, XPM-1
and XPM-2 filters of the central spectral channel with a width
of 41 obtained after training DCNN processed 5 neighboring
channels are presented. It should be noted that by XPM-k we
denote a set of the filters, so for the central channel there
are one XPM-1 and one XPM-2 filters corresponding to the
left adjacent channels (XPM-1(+) and XPM-2(+) in the instet)
and filters XPM-1(-) and XPM-2(-) for the right neighbors.
Filters XPM-k(+) and XPM-k(-) have the similar shape but
with reversed coefficients. We can see that depending on the
desired scale of the coefficients taken into account, we can use
SPM and XPM filters of different widths. Moreover, different
numbers of left and right neighboring symbols can be used. We
also can see that the resulting SPM filter is symmetrical. So by
analogy with linear convolution layers to reduce complexity
we also required that these filters are symmetric during the
training.

E. Complexity analysis

The estimate of computational complexity is performed
in terms of the number of real multiplications (RMs) per
transmitted symbol, the addition operations are not taken into
account. In this work, we investigate DCNN that process single
channel or five central channels from WDM channel grid and
the complexity analysis will be devoted to these cases.

Let us first estimate the complexity of a one-dimensional
real convolution layer. Such a layer of width S can be
described by the formula:

yi =

(S−1)/2∑
k=−(S−1)/2

wk · xi+k, (6)

and, therefore, requires S real multiplications. Complex form
of a convolution can be written as

w = (d ∗ z), wn =
∑
k

dkzn−k, (7)

where d = a + ib, z = x + iy, w = u + iv are complex
numbers. If we split a result into real and imaginary parts

un =
∑
k

akxn−k −
∑
k

bkyn−k, u = (a ∗ x)− (b ∗ y),

vn =
∑
k

bkxn−k +
∑
k

akyn−k, v = (b ∗ x) + (a ∗ y),

(8)
it can be seen that single complex-valued convolution can be
realised using four real-valued convolution and two addition
operations. As a result, complex convolution layer of size
S requires 4 · S real multiplications per transmitted symbol.
It should be noted that since we use symmetric filters for
linear layers, before the complex convolution we can add
together the corresponding left and right symbols, thereby
reducing the required number of real multiplications. Then the
computational complexity of the complex convolution layer is
2 · (S + 1).

Implementation of the nonlinear activation function (2)
in complex-valued arithmetic is straightforward and can be
performed as follows:

fRe(z) = cos (γDBPP ) · x+ sin (γDBPP ) · y,
f Im(z) = sin (γDBPP ) · x− cos (γDBPP ) · y,

P = |x|2 + |y|2.
(9)

So the implementation of the Kerr function requires a
calculation of the cosine and sine functions and 7 real multipli-
cations. We assume here that cos and sin functions are defined
by pre-computed tables, thus no additional multiplications are
required for their calculation.

For the enhanced activation function after calculating of
squared data modules (2 real multiplications per symbol) we
need to apply one-dimensional real-valued convolution layer of
size R that requires R real multiplications. It should be noted
that since we use the same coefficients for different polariza-
tion, we actually perform convolution once for both polariza-
tions. Therefore, a term with the number of multiplications
required by such convolution is included to the complexity
formula with a coefficient of 0.5. Next, implementation of
the activation function in complex-valued arithmetic requires
an additional 4 real multiplications in accordance with the
formula (9). So one nonlinear activation function layer in the
case of one channel requires NL1 = 0.25·(R+ 1)+6 RMs per
transmitted symbol. This formula already takes into account
the symmetry of SPM filter by analogy with linear convolution
layers.

In the case of 5 channels, in total we use 5 SPM filters, 8
XPM filters for the closest adjacent spectral channels (XPM-
1), 6 XPM filters for the channels spaced at two channel
spacing (XPM-2), 4 XPM-3 filters and 2 XPM-4 filters. So
one nonlinear activation function layer in case of 5 channels
requires a total NL5 = 0.25 · (R+ 1) + 0.8 ·R1 + 0.6 ·R2 +
0.4 ·R3 + 0.2 ·R4 + 6 RMs per transmitted symbol, where Rk
are width of XPM-k filters.

Let us consider a deep neural network used to process
Nch spectral channels with both polarization components, and
consisting of Ns layers, and suppose that the first output
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symbol has already been calculated. Then, when calculating
the second and subsequent DCNN output symbols, most of
the necessary coefficients will be already calculated. In this
case we need to compute only once a complex convolution
and once an enhanced nonlinear activation function on each
convolution layer. Thus, the total computational complexity
of the proposed deep convolutional NN for the second and
subsequent symbols is

CDCNN = Ns · (NLi + 2 · (S + 1)) + n · 4 · SFD, (10)

where i = 1 or 5 depending on the number of processed
channels, n = 1 if the FD filter with SFD coefficients is used
and n = 0 otherwise.

Thus, provided that the first output symbol has been calcu-
lated in advance or that a large number of symbols have been
processed, that the complexity of first symbol computing be-
comes insignificant, we can use the expression (10) to estimate
the required number of real multiplications per transmitted
symbol for the entire deep convolutional neural network.

For an accurate comparison with other methods, we also
take into account the computational complexity of the chro-
matic dispersion equalization (CDE) block. It includes the
chromatic dispersion compensation and the recovering of the
signal dispersion broadening, which is actually the same as the
CDC, but in the opposite direction. So this block corresponds
to two linear steps of the DBP method with 2 and 1 samples
per symbol, respectively, and its computational complexity in
terms of number of real multiplications per transmitted symbol
is [15]:

CCDE = 4 ·
(

2N (log2N + 1)

(N −ND2
+ 1)

+
N (log2N + 1)

(N −ND1
+ 1)

)
, (11)

where N is the FFT size and NDq = qτD/T , where τD
corresponds to the dispersive channel impulse response. The
factor 4 in the expression corresponds to the fact that one
complex multiplication can be expressed through 4 real ones.
We optimized FFT size N to get the minimum computational
complexity. Finally, the complexity of the overall deep convo-
lutional neural network equalization scheme can be calculated
as the sum of CDCNN and CCDE .

We compare the performance of the proposed scheme with
the digital back-propagation method processed one or five
spectral channels. In the case of single channel the computa-
tional complexity of the DBP method in terms of the number
of required real multiplications per transmitted symbol can be
estimated as [15]:

CDBP−1ch = 4NSpNStpSp

(
N (log2N + 1) q(
N −NDq + 1

) + q

)
, (12)

where NSp is the total number of spans, NStpSp is the number
of propagation steps per span and q is the oversampling factor.

In the case of five WDM channels transmission, we consider
the DBP method based on coupled NLSEs (1) similar to
DCNN. It allows to compensate only SPM and XPM effects,
but we can use a small number of samples per symbol to
reduce the computational complexity. In this case, the linear
step is the same as in the case of single channel DBP, and
therefore it requires the same number of real multiplications
per transmitted symbol. The nonlinear step has the following
form:

Ax/yc (z+h) = e−i
8γh
9 (|Axc |

2+|Ayc |
2+2

∑
s6=c(|A

x
s |

2+|Ays |
2))Ax/yc (z).

(13)
For the single channel DBP it is assumed that the value

of the nonlinear phase shift can be obtained using a lookup
table [15], [28], and then nonlinear step (2) requires single
complex multiplication per sample. In the case of 5-channel
DBP, first we need to calculate the optical intensity for each
channel and polarization that requires 2 RMs per sample and
after summing in the exponent, we can also use the lookup
table to obtain the phase shift. So, to calculate the nonlinear
step we need to perform 2 real and 1 complex multiplication
per sample or 6 RMs in total. Thus, the computational com-
plexity for 5-channel DBP in terms of the number of required
real multiplications per transmitted symbol can be estimated
as

CDBP−5ch = NSpNStpSp

(
4
N (log2N + 1) q(
N −NDq + 1

) + 6q

)
.

(14)

III. TRANSMISSION SYSTEM MODEL

The simulated transmission link is depicted in Fig. 2. Trans-
mission of 11 WDM channels with polarization multiplexing
has been studied. Each channel transmitter generates 16-QAM
modulated root raised cosine pulses at symbol rate 64 GBaud,
resulting in 512 Gb/s channel rate that includes 28% forward-
error-correction overhead, making net information rate 400
Gb/s per channel. A Gray-coded constellation diagram, a
roll-off factor of 0.1 and an oversampling factor of 32 has
been used in the numerical modelling. The frequency spacing
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between the channels was 75 GHz. The central wavelength of
the emitted signal band was located λ = 1550 nm. All system
and signal parameters used in the modelling are summarized
in Table II.

TABLE II
TRANSMISSION MODEL PARAMETERS

Parameter Value Parameter Value

Attenuation 0.2 dB/km COI Wavelength 1550 nm
Dispersion 17 ps/nm/km RRC Roll-off 0.1
Nonlinearity 1.2 1/W/km Symbol Rate 64 GBaud
Distance 40×80 km Channel Spacing 75 GHz
Noise Figure 4.5 dB Channel Data Rate* 512 Gbit/s

*including 28% FEC overhead

The generated signal is subsequently launched into a trans-
mission link that consisted of 40 spans of 80 km single mode
fiber each making total propagation distance of 3200 km. A
standard EDFA with a 4.5 dB noise figure compensates the
losses of each span. Signal propagation is modelled by the
Manakov equations [29]:

∂Ax/y

∂z
=

[
−α

2
− iβ2

2

∂2

∂t2
+ iγ

8

9

(
|Ax|2 + |Ay|2

)]
Ax/y.

(15)
The propagation equations have been solved using a stan-

dard second-order symmetrical split-step Fourier method [18].
We didn’t include polarization-mode dispersion (PMD) and
principal states of polarization rotations caused by fiber bire-
fringence in our simulation. To take into account these effects,
real-valued FD filters and trainable 2x2 rotation matrix on each
layer can be used as proposed in [25].

After transmission, the optical signal is coherently detected.
Each channel is demultiplexed with a root raised cosine
matched filter of the same roll-off factor as at the transmitter.
Then a chromatic dispersion equalization stage is used. It is
described in detail in II-A and consists of downsampling to 2
SpS, chromatic dispersion compensation, down-conversion to
single sample per symbol and recovering of CD broadening.
Next, the nonlinear equalization (NLE) is applied by means
of a deep convolutional neural network. We use 221 16-QAM
symbols to train DCNN and 217 symbols for testing (the same
number of symbols is used to calculate BER in the case of
CDC and DBP equalizations). Mini-batch size is 217 symbols.
Discrete distribution generator with random seed from MKL in
C++ is used to generate transmission data. For convolutional
layer weight initialization before joint optimization we used
MXNet normal initializer with sigma = 0.05. All nonlinear
filters are initialized with a zero vector of appropriate length
with 1 in the center. The learning rate is initially set at 2 ·10−4

and it is halved if the losses don’t decrease for 100 epochs in
a row.

For comparison purpose, we also consider the nonlinear
equalizers based on the DBP method. In this case, after
downsampling to 2 SpS DBP for central channel for SPM
compensation [7] or DBP for 5 channels based on coupled
nonlinear NLSEs [18] are applied. It should be noted that

for the DBP method we numerically optimized nonlinear
parameter, because its value depends on the dispersion map,
number of propagation steps and launched power [7]. At the
next step, we compensate for the remaining nonlinear phase
shift of all symbols (joint phase rotation in the complex plane)
using the least mean square (LMS) algorithm. After nonlinear
equalization step we apply the demodulation and calculate bit
error rate (BER) for the central channel of interest (COI).

IV. NUMERICAL RESULTS

The first step of our study was to investigate the influence of
the main characteristics of the proposed NLE scheme on the
efficiency of nonlinearity compensation. We start out analysis
by considering the 40-layers (1 layer per span) deep convo-
lutional NN processing central channel with both polarization
and signal transmission with launch power of 2 dBm.

-30 -15 0 15 30

0.01

0.02

0.03

-60 -30 0 30 60

0.01

0.02

0.03

(a) (b)

Fig. 3. BER as a function of convolutinal CDC filter width (a) and “nonlinear”
SPM filter width (b). Insets: (a) trained linear filters with 61 and 151
coefficients, (b) trained SPM, XPM-1 and XPM-2 filter coefficients.

We optimize the filter width from linear and nonlinear
layers to find a trade-off between the DCNN performance
and computational complexity. Fig. 3(a) shows BER as a
function of CDC filter width for deep convolutional NN with
13 coefficients for SPM filter on each nonlinear step. As we
can see, a neural network with linear filters width less than 50
coefficients cannot effectively compensate for the CD and the
resulting BER level is higher than one-step CD compensation
in frequency domain (dashed line “CDC” in the figure). On
the other hand, application of filters with a width more than
100 coefficients just slightly increases the performance. The
resulting lower bound close to the analytical estimation of the
1-span channel memory [30]:

MCD = 2π|β2|LSpB/T ≈ 50, (16)

where LSp is the span length and B is the signal bandwidth.
However, it was shown [16] that the required CDC filter width
is significantly larger than predicted by (16).

Fig. 3(b) shows BER as a function of “nonlinear” SPM
filter width for DCNN with fixed CDC linear filter width on
each layer (101 coefficients). The leftmost point on the figure
corresponds to the case of the conventional DBP, when no
information about neighboring symbols is used in nonlinear
steps (1 coefficient width). It can be seen that using even one
neighboring symbol on each side (3 coefficients width) allows
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us to reduce BER by 23% compared to neural network without
enhanced SSFM. Usage of SPM filters with more than 10
coefficients leads only to a slight performance improvement.

Steps per

span
SpS

CDC filter

width

SPM filter

width

Compl.

x1000

1 StpSp 1 2 - - 6.06

16 StpSp 16 2 - - 97.05

6k RMs 1 1 71 13 6.35

20k RMs 1 1 251 25 20.87

DBP

DCNN

Fig. 4. Q2-factor (recalculated from the directly counted BER) as a function
of launch power per channel for NLEs processed single channel.

To evaluate the efficiency of the proposed scheme we
compared it with a linear compensator and DBP with different
number of steps per span. We determine BER using direct
error counting and then recalculate Q2-factor from BER using
standard approach [31]:

Q2 [dB] = 20 log10

[√
10 erfc−1

(
8BER

3

)]
. (17)

Fig. 4 shows Q2-factor for COI as a function of launch
power per channel for different configurations of NLE algo-
rithms. As expected, the system with the linear compensator
(grey line) shows the worst performing. Red line corresponds
to the digital back-propagation method with 2 samples per
symbol and 1 step per span (DBP - 1 StpSp) and it re-
quires approximately 6000 RMs per transmitted symbols. For
comparison we also consider DCNN with an architecture
designed to have the same computational complexity (DCNN
- 6k RMs). The main parameters and the complexity of the
considered NLEs can be found in the table at the bottom
of the figure. In this case the proposed scheme overtakes
the DBP method by 0.31 dB. We are also interested in the
best performance improvement achievable with these NLEs.
Orange line corresponds to the DBP method with 2 SpS and
16 steps per span and a further increase in the number of steps
does not lead to a significant performance improvement. The
best performance obtained by DCNN is indicated by the blue
line and it requires 20874 RMs per transmitted symbol. The
best achieved Q2-factor for deep convolutional NN processed
single channel exceeds linear equalization performance by
0.82 dB and it is 0.15 dB lower then the best Q2-factor for
the single channel DBP with 2 SpS. It should be noted that in

this case DCNN has a computational complexity of almost 5
times less than the DBP method.

Steps

per

span

SpS

CDC

filter

width

SPM

filter

width

XPM-1

filter

width

XPM-2

filter

width

XPM-3

filter

width

XPM-4

filter

width

Compl.

x1000

16 StpSp 16 2 - - - - - - 99.61

96 StpSp 96 2 - - - - - - 597.66

DCNN 24k RMs 1 1 251 31 40 43 37 21 24.23

DBP

Fig. 5. Q2-factor (recalculated from the directly counted BER) for the channel
of interest as a function of launch power per channel for NLEs processed five
spectral channels.

We also considered the deep convolutional NN that pro-
cessed 5 WDM channels simultaneously and compared it with
the DBP method for 5 channels based on coupled NLSEs (1)
with different number of steps per span. Fig. 5 shows Q2-factor
for COI as a function of launch power per channel for different
configurations of NLE algorithms. Red line corresponds to
multi-channel DBP method with 2 SpS and 16 steps per span.
It should be noted that multi-channel DBP with fewer steps
per span shows the same performance or lower than the single
channel DBP with 1 step per span, with significantly greater
computational complexity. The best performance obtained by
DCNN is indicated by the blue line and it requires 24234
RMs per transmitted symbol. Its parameters can ber found in
the table at the bottom of the figure. Orange line corresponds
to the 5-channel DBP method based on coupled NLSEs
with the best performance improvement. It has 96 steps per
span and a further increase in the number of steps does not
lead to a significant performance improvement. The proposed
scheme overtakes the linear compensator by 1.2 dB and multi-
channel DBP with 16 step per span by 0.7 dB. It shows the
performance improvement lower by 0.36 dB compared to the
best Q2-factor achieved by 5-channel DBP method, but in
the same time, DCNN has significantly less computational
complexity. The received constellation diagrams, for the cases
of linear compensator and DCNN based equalization taken at
the point of optimum launched power, are shown in the inset
of Fig. 5.

Subsequently we compared the computational complexity
of the proposed NLE scheme based on deep convolutional
NN with the DBP method based on coupled NLSEs in case
of processing single and five spectral channels. Fig. 6 shows



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JLT.2021.3051609, Journal of
Lightwave Technology

9

8 StpSp

16 StpSp

32 StpSp

64 StpSp

64 StpSp

16 StpSp

1 StpSp

2 StpSp

3 StpSp

4 StpSp

6 StpSp

8 StpSp

100105 5020 600

0.2

0.4

0.6

0.8

1.0

1.2

1.4

96 StpSp

Fig. 6. Q2-factor improvement (recalculated from the directly counted BER)
for COI as a function of the number of required real multiplications per
transmitted symbol.

the achieved Q2-factor improvement in comparison with the
linear compensator for DCNN and DBP in terms of required
number of real multiplications per transmitted symbol. For
DBP the number of steps per span varied and we considered
DCNN with a different number of coefficients on linear and
nonlinear layers. Dotted lines indicate maximum performance
improvement achieved using the DBP method for single (red
line) and five (orange line) spectral channels. As we can see, in
all cases, DCNN-based equalizers show a larger performance
improvement compared to the DBP method with the same
complexity. It should be noted that when comparing with a
single channel DBP equalizer, DCNN for 1 channel shows
up to 0.45 dB higher Q2-factor improvement with the same
complexity, while 5-channel DCNN scheme achieve up to
0.75 dB higher performance improvement. Moreover, deep
convolutional neural network processed five WDM channels
shows better performance with lower computational complex-
ity compared to the maximum achieved Q2-factor for single
channel DBP.

V. CONCLUSION

We studied application of the convolutional neural networks
for compensating nonlinear distortions in a long-haul ultra-
high capacity fiber-optic transmission system. The introduced
DCNN architectures mimics the traditional DBP algorithm
by using each linear convolutional layer to compensate for
the chromatic dispersion on a subsection of the link and the
nonlinear activation layer to cancel the corresponding Kerr-
effect induced nonlinearity. As a further development of the
previously studied DNN-based compensation schemes [16],
[20], we customize the nonlinear activation function to account
for a different number of neighboring symbols from adjacent
spectral channels, enabling to suppress a large portion of the
XPM introduced signal distortions with low computational
complexity. Furthermore, to achieve fast training and secure
convergence in the optimum operating point a thoughtful 2-
stage weight initialization scheme was applied by identifying
the sub-optimal values for the single layer and then performing

joint optimization of the weights when cascading linearly all
the convolutional layers of the DCNN architecture.

Through a detailed complexity analysis the number of
real multiplications has been identified as a function of the
dimensions of the architecture. In addition we examined the
performance of the proposed scheme in a 3200 km 11x400-
Gb/s RRC WDM PDM-16QAM transmission system when
equalization was applied separately on a per channel basis,
or the nonlinear equalizer was compensating simultaneously
5 neighboring channels. The results showed that our scheme
exceeded the performance of the linear equalizer by 0.8 dB
in the single channel scenario and by 1.2 dB in the multi-
channel case. When comparing with a DBP equalizer of
the same complexity, in the single channel compensation
case, the DCNN scheme achieves up to 0.45 dB higher Q2-
factor improvement performance. More impressive are the
results in the multi-channel equalization case, in which the
complexity of the DCNN remains almost unchanged, whereas
the DBP schemes require significantly a higher number of
real multiplications per transmitted symbol. Our simulations
show that the suggested DCNN based equalizer can have
4 times less complexity than a multi-channel DBP based
scheme and still achieve 0.7dB more improved Q2-factor
performance. Our results show clearly the great potential of
our proposed equalization method in extending the capacity
of future transmission systems.
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