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Abstract 

The microencapsulation of volatile phase change materials is an important and challenging 

area for low-temperature thermal energy storage. Our previous studies have effectively 

addressed the challenge of long-term volatile core retention and also indicated that the quality 

of the obtained poly(urea-formaldehyde) microcapsules is highly affected by various process 

parameters, including reaction temperature, initial pH, reaction time, and homogenization 

speed. In this paper, the Taguchi orthogonal array has been employed to optimise controllable 

process parameters to identify the most synergistic combination, in order to maximise the 

payload, yield, and encapsulation efficiency. The Taguchi signal-to-noise ratio results 

substantiated that the most efficient combination of parameters was 3 hours reaction time, pH 

3.5, 55 °C reaction temperature, and 1200 rpm homogenization speed. With this combination 

of parameters, microcapsules with superbly high payload of 95.2 %, as well as a yield of 30.5 

% and encapsulation efficiency of 71.1 % were amalgamated. In addition, Analysis of 

Variance (ANOVA) was also utilised to demonstrate the mean response magnitudes (% 

contribution) of each of the four controllable process parameters, in terms of contribution for 

the payload, yield, and encapsulation efficiency. Overall, it was indicated that the temperature 

is the most influential parameter at 83.1 % contribution, followed by pH at 6.8 %, reaction 

time at 5.2 %, and homogenization speed at 4.9 %. Such findings in this work postulate the 

fundamental insights into maximising the output of the formulation conditions, which in turn 

is aimed to minimise the time and cost of production of the microcapsules. 
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1. Introduction  

Phase change materials (PCMs) are an auspicious group of materials that are prodigious for 

their use in thermal energy storage (TES) applications. As PCMs undergo phase changes, 

thermal energy is released at nearly constant temperatures. These assembly of materials are 

alluring due to their high energy storage density over a small temperature range [1]. PCMs are 

pertinent for their use in thermal regulation applications where there are periodic heat 

input/dissipation and intermittent energy supplies [2]. However, employing PCMs in a 

traditional manner without any protective medium emanates the inconvenience of increased 

associated costs, such as specific heat exchange surfaces, latent heat devices, metal matrices 

[3–8].  

PCMs can be encapsulated by an inert wall material to circumvent the issue of leakage in unit 

operations. There has been an abundant array of researchers that have encapsulated PCMs, 

notably Brown et al. [9].  Microcapsules with a rough outer surface were bequeathed, with a 

smooth inner membrane, as is a common feature in many microencapsulation studies [9–12]. 

Substantial attention is concerted on the encapsulation of PCMs with melting points ranging 

from − 10 to 80 °C, many of which are employed for energy storage applications, and for use 

in building envelopes [13–18]. Some research has been conducted recently on the 

microencapsulation of low melting temperature volatile PCMs, such as heptane [19–21] for 

their potential applications in cryogenic processes. Volatile PCMs are more challenging to 

encapsulate due to higher vapour pressures, resulting in difficulty in encompassing the core 

material during storage or employment in extreme temperature ranges. For example, at 20 °C 

heptane has a vapour pressure of ~ 5.3 kPa, whereas dicyclopentadiene has a vapour pressure 

of ~ 0.18 kPa, rendering heptane a more difficult core material to contain in the microcapsule 

for extended time periods. 
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The microencapsulation process relies on multiple controllable and uncontrollable 

formulation process parameters, which interrelate in a synergistic manner [13]. The optimal 

combination of key controllable parameters is pivotal for the overall process, in terms of 

increasing production output, process efficiency, reducing energy consumption, as well as 

decreasing the effects of uncontrollable parameters.  Due to the capacious variables that are 

involved in the encapsulation process, it can be an arduous task to assign the individual 

outcome of specific parameters [22]. Conventionally, optimization studies involve the 

variation of one controllable parameter, while other controllable parameters remain constant. 

However, this is a very strenuous technique that can be both time consuming and expensive 

[23]. In order to determine the optimal conditions for the formulation of the microcapsules to 

gain high payload and encapsulation efficiency, a time-efficient orthogonal factorial design 

method known as the ‘Taguchi’ method was utilised instead in this paper as it offers the 

advantage of optimizing the process with fewer required experimental procedures [24]. The 

‘Taguchi’ method is a robust systematic experimental design technique to minimize 

uncontrollable factors [24–26] and has been widely used in an array of fields such as the 

optimization of drilling parameters in the drilling of steel [25] and the parametric study of 

epoxy loaded PMMA microcapsules [24]. The Taguchi method is a powerful tool to identify 

the optimal combination of process parameters in order to reduce the cost, improve the 

quality, and/or increase the efficiency.  

In conjunction with the ‘Taguchi’ technique, the Analysis of Variance (ANOVA) method is 

an established method that is utilised to verify the percentage contribution of each process 

parameter on the desired outputs. In particular, the parametric studies have been carried out 

on PCM microcapsules with less volatile core materials, such as PMMA [24], paraffin wax 

[27], hexadecane [28] and lauric acid [29].The recent advancement in the retention of volatile 

organic compounds for low temperature energy storage applications inflates the requirement 
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of optimising process conditions for the successful and efficient core encapsulation [19]. In 

this paper, experimental work on the microencapsulation of volatile PCMs has been 

conducted firstly to find the optimal combination of formulation parameters (including 

reaction time, pH, homogenization speed and reaction temperature) using the Taguchi 

technique, and then to examine the contribution of these parameters using the ANOVA 

method.  The overall goal is to identify the optimal controllable process parameter values and 

also which parameters need to be precisely controlled while maintaining reasonably high 

payload, yield, and encapsulation efficiency for potential scale-up manufacturing.  

2. Experimental Procedure  

For the following section, heptane was used as the core material, to be encapsulated with urea 

and formaldehyde, via the one step in situ polymerization approach.  During the formulation 

process, each component was weighed, in order to calculate the payload, encapsulation 

efficiency and the yield of the microcapsules. Optical microscopy was utilised to observe the 

microcapsule morphology and core material retention, while scanning electron microscopy 

was used to further characterize the morphology, shell roughness and shell thickness of the 

microcapsules. Further characterization was carried out with a mastersizer to measure the size 

distribution.  

2.1. Microcapsule formulation

 

Figure 1. The one step in situ polymerization process for the formulation of poly(urea-formaldehyde) (PUF) 

microcapsules. 
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The following chemicals and materials were purchased from Sigma-Aldrich (UK): Heptane 

(246654, anhydrous, 99%), urea (U5128, ACS reagent grade 99.0-100.5%), formaldehyde 

solution (47608, for molecular biology, BioReagent, ≥ 36.0 % in H2O), Nile red (72485, for 

microscopy), gelatin (04055, from porcine skin), resorcinol (398047, ≥ 99.0 %). Ammonium 

chloride (RC-015) was purchased from G-biosciences (UK). Unless otherwise stated or 

specified, all the materials from the suppliers were used without further modification or 

purification. 

Figure 1 illustrates the formulation process. The emulsifier solutions were prepared prior to 

the experiment, by mixing gelatin in 150 g of distilled water to make a gelatin concentration 

of 0.03 wt%. It was ensured that the gelatin emulsifier fully dissolved in the water before the 

reaction proceeded. Using a Sartorius Secura 124-IS analytical balance, 2.5000 g urea, 0.2500 

g ammonium chloride, and 0.2500 g resorcinol were measured into the previously prepared 

150 ml beaker, with an acceptance of (+/−) 0.0005 g. Using an IKA RCT magnetic stirrer, the 

solution was stirred until it was completely clear. Subsequently, the pH was measured using a 

Mettler Toledo FiveEasy pH meter and was further adjusted to the required value by adding 

dropwise 1 molL-1 HCl solution or NaOH solution when necessary. The pH was left to 

stabilize for 5 minutes. 

During the stabilization period, the core material was prepared. Nile red was dissolved in 10 

mL heptane via ultra-sonification for 5 minutes, to be used as a non-destructive core material 

retention indicator, based on the method proposed by Zhang et al. [21]. After the 5 minutes of 

pH stabilization, the 150 mL beaker was then placed under a Silverson L5M homogenizer 

under fume hood conditions. The homogenization was initiated, and the core material was 

injected into the 150 ml solution via a 10 mL syringe. This was left for 20 minutes to fully 

disperse the core material into the solution.   
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Successively, 6.5 mL of formaldehyde was measured into a 10 mL syringe. After the 20 

minutes proceeded, the homogenised solution was transferred into a 250 mL jacketed beaker, 

which included 4 stainless steel baffles of standard configuration to stimulate mixing. This 

was connected to a Julabo ME-F25 water bath. A Rushton turbine agitator blade (IKA R3004 

30 mm diameter) connected to an IKA MINISTAR 20 Control Mixer was used to keep the 

emulsion stabilized, with a stirring speed of 600 rpm. The formaldehyde was injected into the 

jacketed beaker, and the program was set on the water bath to initiate the reaction. The 

program consisted of the temperature being maintained at 20 ºC for 30 mins, and then at a rate 

of 1 ºC/min, the temperature was raised to the required reaction temperature. The temperature 

was held at the set temperature for the duration of the reaction time, and then cooled down to 

20 ºC at a rate of 1 ºC/min. This formulation was proved to be effective, as observed in our 

previous publications [19,21].   

After the reaction completed, the products were centrifuged 4 times at 5000 rpm  (relative 

centrifugal force (RCF) of 3480 ) with a Labnet Z-306 Hermle Universal Centrifuge, for 5 

minutes each time. A vacuum filter was then used to wash the samples, with 5 L of warm 

water. Once the capsules were formulated, they were re-dispersed in distilled water and kept 

in centrifuge tubes, which could then be dried and used for further characterization when 

needed. 

2.2. Post-formulation observation  

The optical images of the microcapsules were obtained from a Leica DMRBE microscope, 

straight after the formulation process and 24 hours after drying the microcapsules in air, to 

observe the core material retention. As Nile red was dispersed into the core material, the 

emission spectra of the Nile red were gathered with a CoolLED pE-300 SB LEDs 

illumination system, which was fitted onto the microscope, with an excitation wavelength of 
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460 nm. In this case, Nile red can be used as a core material indicator, employing the 

principle of solvatochromism [19,21,30]. A bright green colour emitted from the 

microcapsules would indicate core material retention, whereas a red colour would indicate 

loss of core material.  

The morphology and shell thickness of the microcapsules were characterized with a Hitachi 

TM3030Plus Tabletop SEM. Prior to the SEM investigation, the capsules were coated with 5 

nm of gold using a Quorum Q150R ES gold sputter, utilising argon as the inert gas, with a 

pressure of 0.5 bar. The size distributions of the microcapsules and the evolution of the 

polymer shell material size over time were examined using a Malvern Mastersizer 2000 

Particle Size Analyzer with a wet dispersion unit (Hydro 2000S). Distilled water was used as 

the dispersant. The obtained shell thickness and size distributions were used to assist the 

parameter range selection for further ‘Taguchi’ and ANOVA analysis and also to validate the 

quality of the formulated microcapsules.   

2.3. Payload, yield and encapsulation efficiency 

To characterize the payload of the microcapsules, the dried samples were weighed and then 

compressed with a Lloyd X Materials Testing Machine. A maximum force of 80 kN at 10 

mm/min for 120 s was used to compress the microcapsules to breakage, to release the 

heptane. Successively, the capsules were left to dry in a fume hood for a duration of 4 hours 

for further evaporation of the heptane. The dry capsule shells were then weighed. The payload 

of the formulated microcapsules (PL) which is the mass ratio of the core materials to the 

microcapsules was calculated by: 

PL = 1 −  ��	��     (1) 

Jo
urn

al 
Pre-

pro
of



where w��  is the weight of the compressed capsule shells, and w� is the weight of the 

uncompressed dried microcapsules. 

The yield of the formulation process which is the mass ratio of the product to raw materials 

was then calculated by: 

Yield =  �������    (2) 

where w�   is the total mass of the formulated dry microcapsules, and w����  is the weight of 

all the materials used for synthesizing the shell and core, excluding the water. 

The encapsulation efficiency (EE) which is the percentage of encapsulated core materials was 

then calculated by: 

EE =  ��× ��
�� !"      (3) 

where Hep%& is the total amount of heptane supplied for the homogenization process. 

2.4. Thermal Cycling  

Thermal cycling for the microcapsules was carried out using a TA Instruments DIL 806 

Dilatometer, incorporated with a liquid nitrogen dewar and a PolyScience water bath. 

Ultrathin double-sided tape (Tesa 68,557 ultrathin PET tape) was placed on a glass slide, and 

the microcapsules were placed on top. The microcapsules were observed under FM before 

and the cycling, with a precise marked location. 10 cycles were then performed with 25 L of 

liquid nitrogen from 25 °C to –140 °C, at a heating/cooling rate of 7.5 °C/min. The samples 

were then observed in the same location after cycling under FM, for comparison of the 

integrity and core material retention.  
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2.5. Differential Scanning Calorimetry  

A Mettler Toledo DSC 3 was used to observe the phase transition of the MPCMs, with liquid 

nitrogen employed as the coolant. The N2 gas flow was set at 20 mL/min, and the 

cooling/heating rates were 5 °C/min. The microcapsules were sealed inside 40 µL aluminium 

crucibles. The temperature profile was set to cool down from –60 °C to –140 °C, then 

isothermally maintaining this temperature for 5 minutes, and then heating back up to 60 °C, 

all at a rate of 5 °C/min.  

3. Results and Discussion  

3.1. Process parameter selection  

In this study, various process parameters can be selected to be optimized, in order to 

maximise the yield, payload and/or encapsulation efficiency. Nguon et al. [13] discussed the 

various variables that can be manipulated to target various determining parameters. For 

example, to optimize yield, previous studies variables that were optimized included core/shell 

ratio, reaction time, homogenization speed, initial pH, and the heating rate [13]. For the 

payload, parameters such as reaction temperature, homogenization rate, reaction time and 

core/shell ratios were deliberated [13]. In our process, the payload as well as the 

encapsulation efficiency are the key optimal targets while the yield is a secondary indictor. As 

compact shell is required to retain the highly volatile core material, a constant and low 

core/shell ratio was selected based on our preceding experience [19–21]. As a result, we select 

the reaction time, reaction temperature, pH value and the homogenization speed as the 

process controllable parameters and we have carried out the process variable screening 

experiments prior to the Taguchi orthogonal array experiments to identify the range of these 

parameters. 

3.1.1. Reaction Time  
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To preliminarily explore the effect of time on the reaction progression, a batch was made at 

pH 3.5 and 55 ºC, consisting of the reactive substituents without the heptane core material, to 

examine the size growth of the shell polymer particles over time. The experimental conditions 

were based on the method carried out by Brown et al. [9]. As shown by Figure 2, it seems that 

a rapid increase in the polymer size occurs from time 15 min to ~ 90 min and stabilises at ~ 

120 minutes onwards. Therefore, a 3-hour reaction time was proposed as the minimum, 

followed by 4 hours, and 8 hours. A 2-hour batch (containing the heptane core) was initially 

formulated but there was immediate leakage of the heptane, as observed under the 

fluorescence microscope (FM), whereas a 3-hour batch survived the 24 hours of ambient 

drying, as shown in Figure 2 (b) and (c).  

  

Figure 2. (a) Size growth profile of the shell particles over a duration of 4 hours; (b) 24-hour dried FM image of the 
microcapsules formulated over 2 hours; (c) 24-hour dried FM image of the microcapsules formulated over 3 hours (scale bars 
are 100 µm). 
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As the in-situ polymerization reaction is dependent on the initial pH of the reaction, this was 

an essential factor to study. Methylol-ureas are low molecular weight pre-polymers that are 

formed in the initial stages of the encapsulation process. Higher pH values would result in 

higher amounts of methylol-ureas, leading to smoother samples. Lower pH values result in 

methylene and ether bridged compounds, resulting in rougher and potentially more porous 

shells [31], which may affect the payload and the long term retention of the core. However, it 

is important to note that the one-step in situ polymerization process can only occur in acidic 

pH, and there must be a limitation on how low the pH is set to bequeath smooth 

microcapsules. Rochmadi et al. [32] stated that in acidic conditions, the rate of condensation 

is higher, and provided a proposed reaction rate equation: 

R() =  k+,C()./ +  k�a2C() +  C(),45  (4) 

where R() is the overall condensation reaction rate for the formation of urea-formaldehyde 

(UF) particles,  k+ is rate constant, k�a is the mass transfer coefficient, C() is the aqueous 

phase UF pre-polymer concentration, C(),4 is the UF pre-polymer concentration on the 

microcapsule surface, k+,C()./ is the rate of formation of the UF polymer 

micro/nanoparticles, and k�a2C() +  C(),45 is the rate of formation of the microcapsule shell. 

Rochmadi et al. [32] stated that the reaction rate constant, k+, is proportional to the H+ 

concentration in the solution. Therefore, a very high H+ concentration in the solution (a low 

pH), results in a higher k+, consequently promoting the rate of formation of branched UF 

particles at an accelerated manner. This is in agreement with the work carried out by 

Katoueizadeh et al. [33], who stated that at high pH values (above 7), the condensation 

reactions did not occur. 
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Wang et al. [34] investigated the effect of pH for the formulation of liquid poly sulphide with 

a UF shell, with a pH range of 2 to 4.5. It was observed that at pH 4.5, there was a 

deceleration of the polymerisation rate, while at pH 2, accelerated polymerization was 

observed, with increased surface roughness of the microcapsules due to participate formation.  

 

To investigate the effect of pH, 3 batches were made, all with 3 hours reaction time, 55 ºC 

and a homogenization speed of 1200 rpm. The initial pH values were altered, 

With values of 2.5, 3.5 and 4.5. It can be seen from the SEM micrographs on Figure 3 (a) that 

the pH 2.5 samples had a much rougher shell surface, with a larger proportion of UF 

microparticles. The sample with pH 4.5 yielded a much smoother profile, with smaller UF 

satellite nanoparticles present.  Central areas of the image were selected and using ImageJ (an 

image processing programme) and MATLAB, the proportion of the smooth profile to the 

lighter satellite particles in terms of total area on the SEM micrographs were quantified, as 

seen on Figure 3 (b). With 5 images taken, the average proportion of satellite particles (SP) to 

the smoother membrane (M) was postulated. It was calculated that the pH 2.5 had a SP 

composition of 13.3 %, while pH 3.5 had 6.3 %, and pH 4.5 with 3.3 %. Therefore, in this 

work the pH range was selected to be 2.5-4.5. 
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Figure 3. (a) SEM micrographs of the surface of individual microcapsules with various pH values made with the following 
reaction conditions: 3 h reaction time, 55 C reaction temperature, 1200 rpm homogenization speed; (b) binary images of the 
SEM images for the increasing pH samples (binary images are all 650 pixels by 650 pixels). 

 

3.1.3. Reaction temperature 

The reaction temperature in the one step in situ polymerization process is also another 

important factor to study. The rate of UF polymer formation and microcapsule shell thickness 

is proposed to be determined by the pH and reaction temperature [13]. Fan and Zhou [35] 

proposed that the porosity of the outer shell layer is dependent on the rate of UF nanoparticle 

formation. Nguon et al. [13] propositioned that the rate of nanoparticle formation is dependent 

on the rate of polycondensation, which is also affected by the reaction temperature. For 

example, during the encapsulation of palm oil with a UF shell, an increase of the reaction 

temperature from 50 °C to 70 °C resulted in the increase of nanoparticle formation and 

resulted in a reduction of encapsulation efficiency by 80 % [32]. Furthermore, the 

encapsulation of liquid polysulphide with a UF shell at 80 ºC resulted in very irregular 

microcapsules with poor core material retention and large precipitates [34]. Increasing the rate 

of polymer formation (by increasing the temperature), results in greater formations of 

pH 2.5 pH 3.5 pH 4.5 

(a) 

(b) 
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nanoprecipitates, shortening the deposition on the core surface [13]. However, a temperature 

that is too low is not enough to break the energy barrier required for the reaction. Cosco et al. 

[18] disclosed that during the encapsulation of epoxy with a UF shell at 60 °C and 40 °C, low 

reaction temperatures affected the encapsulation efficiency. To explore the effects that the 

reaction temperatures have on the encapsulation efficiency and payload, a range of 45 °C, 55 

°C and 65 °C will be used for the Taguchi orthogonal array.  

3.1.4. Homogenization Speed  

For the core material dispersion into the aqueous phase, a minimum shear rate is required for 

the mixing between the two immiscible phases. If this minimum shear rate is achieved, there 

is an inverse relationship between the size of the droplets, and the homogenization rate 

[18,48]. Depending on the shear rate, the morphology and size distribution of the 

microcapsules will vary. During the encapsulation of n-octadecane, Zhang et al. [36] observed 

an increase in diameter with a decrease in homogenization speed, as well as a smoother shell, 

leading to a higher payload. Dong et al. [37] also observed that an increase in the 

homogenization speed while encapsulating peppermint oil, led to multinuclear microcapsules 

with a lower oil content. There have been many studies in which the homogenization speed 

has been varied to study the effects on the microcapsules, many of which ranging from 400 

rpm to 2000 rpm [9,16,29,35,37]. For this study, a range of 600 rpm, 1200 rpm and 1800 rpm 

were used.  
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3.2. Signal to noise (S/N) analysis for the microcapsule formulations  

The Taguchi orthogonal array was utilized to identify the optimal process parameter 

combination. In this study, the controlled variables are altered in order to manipulate the noise 

factors (uncontrollable factors). These noise factors are external stimuli that are difficult to 

control, affecting the formulation process. Examples of these include ambient temperature, 

process equipment vibrations and environmental humidity. The identification and consequent 

exploitation of the optimal control factor settings is therefore the aim to enhance the 

formulation process.  

From the results, the signal to noise ratio (S/N) can be calculated, in which the key control 

variables can be identified to reduce the noise factors [23–25]. In this study, the S/N ratios for 

each of the control factors were calculated, in order to maximise the payload, yield and 

encapsulation efficiency of the microencapsulation process. Depending on the goal of the 

experimental targets, there are three main cases of S/N ratios, as shown in Table 1. These 

three cases are termed as ‘nominal is best’, ‘larger is better’ and ‘smaller is better’ S/N values. 

Since this study is aimed to maximise the yield, payload and encapsulation efficiency, the S/N 

ratio targets to achieve that ‘the larger is better’ were used. The S/N values are calculated 

from experimental outputs, in which S is the signal value, N is the noise value, n is the 

number of experimental repetitions, y% is the measured response value (payload, yield, or 

encapsulation efficiency). The S/N ratio values were used to quantitively measure a response 

(e.g. the microcapsule payload) as a result of altering a parameter in the formulation process. 

As discussed in section 3.1, the four factors to be investigated include reaction time, pH, 

temperature and homogenization speed. Table 2 conveys the synthesis conditions utilized to 

prepare the microcapsules, all of which have 3 levels. Minitab, a statistical design software 

package, was utilised to design the Taguchi orthogonal array, as shown in Table 3. 
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Table 1. S/N ratio experimental goals and equations. 

S/N Ratio Experimental Goal Ratio 

Nominal is the best  Positive, zero or negative :SN; =  −10 log ?1n @,y%/ − yA/
&

%BC
D 

Larger is better Maximise the response :SN; =  −10 log ?1n @ 1y%/
&

%BC
D 

Smaller is better Minimising the response :SN; =  −10 log ?1n @ y%/
&

%BC
D 

 
 
Table 2. Selected reaction control factors and respective levels. 

Level 

Factor 

Reaction 

time (h)  
pH 

Temp 

(°C) 

Homog. 

Speed  

(rpm) 

1 3 2.5 45 600 

2 4 3.5 55 1200 

3 8 4.5 65 1800 

 
 
Table 3. Orthogonal array of process variables for optimization. 

Run 
Reaction 

time (h) 
pH 

Temp 

(°C) 

Homog. 

speed 

(rpm) 

1 3 2.5 45  600 

2 3 3.5 55 1200 

3 3 4.5 65 1800 

4 4 2.5 55 1800 

5 4 3.5 65 600 

6 4 4.5 45 1200 

7 8 2.5 65 1200 

8 8 3.5 45 1800 

9 8 4.5 55 600 
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Table 4. Taguchi orthogonal experimental results for the payload, yield, and encapsulation efficiency, as well as the 
respective calculated S/N values. 

Run 

Factors Results   

Time pH Temp 
Homog. 

Speed (rpm) 

PL 

(%) 

S/N 

PL  

Yield 

(%) 

S/N 

Yield  

EE 

(%) 

S/N 

EE  

1 3 2.5 45 600 30.5 34.5 11.8 26.2 5.9 20.2 

2 3 3.5 55 1200 95.2 44.3 30.5 34.5 71.1 41.8 

3 3 4.5 65 1800 87.3 43.6 28.6 33.9 61.7 40.6 

4 4 2.5 55 1800 85.5 43.4 28.7 33.9 61.9 40.6 

5 4 3.5 65 600 96.1 44.4 28.9 33.9 68.7 41.5 

6 4 4.5 45 1200 15.2 28.4 13.8 27.6 5.3 19.3 

7 8 2.5 65 1200 41.1 37.0 16.1 28.9 33.9 35.4 

8 8 3.5 45 1800 24.2 32.4 12.3 26.6 7.4 22.2 

9 8 4.5 55 600 95.3 44.4 28.7 33.9 67.4 41.3 

 

The effects of the reaction factors on  the payload, yield and encapsulation efficiency were 

collated and quantified, as displayed in Table 4. The experimental results were evaluated, and 

the corresponding S/N values were calculated. From primary observation, it is apparent that 

the lowest payloads were obtained for the samples produced at 45 ºC, with 30.5% (S/N 34.5), 

15.2 % (S/N 28.4) and 24.2 % (S/N 32.4) for reaction-set 1, 6 and 9 respectively. A similar 

trend is also observed for yield and encapsulation efficiency. To further explore this, OM and 

FM were utilised to observe the microcapsules.  

Over a 24-hour period, the core material retention was studied, by utilising a fluorescence 

microscopy to study the nile red preservation in the capsule. The bright green colour displays 

core material retention, whereas the dim or red colour indicates leakage or collapse. It is 

conveyed that in Figure 4, Figure 5, and Figure 6 all of the capsules produced at 45 ºC had 

very poor retention, with the majority of the capsules collapsing over a 24-hour period. 

Furthermore, another batch that was produced at 65 ºC, and the capsules also collapsed after 

24 hours, as seen on image 7(C) on Figure 6.  
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Figure 4. OM and FM images of set 1-3 microcapsules, dispersed in water and after a 24 h drying period (All scale bars are 
100 µm). 

 

Figure 5. OM and FM images of set 4-6 microcapsules, dispersed in water and after a 24 h drying period (All scale bars are 
100 µm). 
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Figure 6. OM and FM images of set 7-9 microcapsules, dispersed in water and after a 24 h drying period (All scale bars are 
100 µm). 

 

As well as the OM and FM images to analyse core material retention, a 7-day payload 

analysis was carried out by observing the weight change over time, as shown in Figure 7. The 

results are in agreement with the OM and FM images, and all of the capsules prepared at 45 

ºC  had very low retention, with set (1) having 17 % on the 7th day, set (6) having 13 %, and 

set (8) having 25 %. Furthermore, set (7) also had a low payload of 41 %, in agreement with 

the FM image 7(D) in Figure 6. There were 3 batches that had exceptionally high payloads 

above 90 %, which included set (2) obtaining 94 %, set (5) obtaining 96 % and set (9) 

obtaining 95 % after the 7-day ambient drying period. However, reaction-set 2 was produced 

with the lowest reaction time of 3 hours, while reaction-set 5 and 9 were 4 and 8 hours 

respectively. In terms of time and cost saving, a 3- or 4-hour reaction time with excellent 

payload would be beneficial, while an 8-hour reaction would not provide any additional 

benefits in terms of payload in this case. 
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Figure 7. Payload measurements over a 7-day period for the 9 sets of formulated batches, with (a) 3 hour reaction, (b) 4 hour 
reaction and (c) 8 hour reaction. 
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Figure 8. SEM micrographs of reaction sets 1-9 for the 3-hour, 4-hour and 8-hour reaction. For each set, the overall 
morphology, individual capsule and surface roughness is shown. Shell thickness micrographs for sets 1-9 also displayed. 

 

Discerned in Figure 8 are the microcapsule SEM micrographs and shell thickness. All of the 

in situ polymerisation processes at 45 °C (sets 1, 6 and 8) produced much rougher 

microcapsules, as well as thicker shells. For example, reaction set 1 had a shell thickness of 

984 ± 86 nm, while reaction set 2 and 3 had shell thicknesses of 255 ± 19 nm and 217 ± 14 

nm respectively. The UF particles formed at 45 ºC engendered thick and rough shells, with 

poor coverage and high resultant porosity, which may contribute to the poor payload and high 

leakage of the microcapsules.  It is also evident that the higher the temperature for the 
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microcapsules, the thinner the shells are observed to be. However, as deliberated, the 

prerogative over the kinetics of the reaction is also affected by the pH of the reaction, which 

can also affect the surface roughness. It is onerous to discern whether reaction time had much 

of an effect on the shell thickness, due to the synergistic properties of the multi-component 

factorial experimental conditions. 

S/N ratio plots were then plotted for each process parameter studied; (a) the reaction time, (b) 

the pH, (c) the reaction temperature and (d) the homogenization speed, as conveyed in Figure 

9. As the aim of this work was to maximise the response, the higher the S/N ratio, the more 

significant that parameter was at reducing the noise factors. Taking into account of the 9 

orthogonal arrays, it can be seen that 3 hours reaction time had the highest S/N ratio. A pH of 

3.5 was calculated to have the highest S/N ratio, followed by a stirring speed of 1200 rpm, as 

well as a temperature of 55 ºC. Therefore, the most efficient combination of process 

parameters is 3 h, pH 3.5, 55 ºC and 1200 rpm. Customarily, a confirmation experiment is 

required for these specific parameters to evaluate the individual S/N ratios for the payload, 

yield, and encapsulation efficiency, however, it is expedient that reaction run number 3 has 

these exact parameters, as shown in Table 3. With these results, it is evident that 3 hours 

reaction time is sufficient to create capsules with excellent core material content and 

retention.  

The study carried out by Brown et al. [9] for the formulation of dicyclopentadiene 

microcapsules had process parameters of 4 h, pH 3.5, 55 ºC, and various stirring speeds from 

200 – 2000 RPM. Other examples of the formulation processes being maintained for 4 hours 

include Ullah et al. [38], Bolimowski et al. [39] and Zhang et al. [40]. However, this study has 

shown that conceivably 3 hours would have been sufficient for the reaction time, for a more 

volatile core material, which would result in saving of time and cost. 
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Figure 9. S/N ratio plots for the effects of process parameters on (a) the reaction time, (b) the pH, (c) the reaction temperature 
and (d) the homogenisation speed.  

 

 

 
 
Figure 10. (a) FM images of microcapsules before and (b) after thermal cycling (10 cycles) (Scale bars are 100 µm). (c) DSC 
measurements of pure heptane PCM and the microencapsulated PCM with the reaction conditions of 3 h, pH 3.5, 55 °C and 
1200 rpm. 

 

 

Jo
urn

al 
Pre-

pro
of



The thermostability of MPCS is a pivotal factor to ensure the successful utilization in latent 

heat energy storage systems. Subsequently, by measuring the thermo-physical properties of 

the PCMs, thermal stability of PCMs can be established. Thermal cycling of the PCMs was 

then carried out with the microcapsules produced with the most efficient parameters (3 h, pH 

3.5, 55 ºC and 1200 rpm) and the results are seen in Figure 10 (a) and (b). It is observed that 

the FM images before and after cycling showed very little differences after 10 cycles, as the 

bright green-fluorescent colour and shape integrity of the microcapsules were maintained.  

As seen in figure 10 (C), the melting point of the encapsulated batch was –113 °C, and a 

melting point of –89 °C, compared to pure heptane sample with a freezing and melting point 

of –93 °C and –89 °C degrees respectfully. The latent heat for the MPCM sample was 

calculated to 99.8 J/g via the integration of the DSC data. This is comparable to various other 

studies in which PUF-paraffin microcapsules formulated via in situ polymerization had latent 

heat values of 74.2 J/g [41], 47.7 J/g [42] and poly(melamine-formaldehyde) (PMF)-paraffin 

microcapsules with values of 102.9 J/g and 90.8 J/g [43].  

3.3. ANOVA analysis of variance  

Analysis of Variance (ANOVA) is a statistical model that is utilised to evaluate the mean 

response magnitude (% contribution) for each parameter in the orthogonal experiments [44]. 

The influence of each experimental factor with respect to the payload, yield, and the 

encapsulation efficiency was determined by one-way ANOVA analysis. In this analysis, the 

sum of the squares (total variation) is equal to the sum of the squares of deviation for all of 

the experimental parameters and the error components (e.g. adding the variation for each 

experimental factor). The following equations were used for the ANOVA analysis: 

SSE =  SS� +  SSF  +  SSGG     (5) 
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SSE =  ∑ y%/  −  IJ
&&C      (6) 

SSK  =  ∑ LMN!J� O�%BC − IJ
&     (7) 

 

 

where SSE is the total sum of squares, SS� is the sum of squares of the payload, SSF is the sum 

of squares of the yield, SSGG is the sum of squares of the encapsulation efficiency, n is the 

number of repeats, Sy%/ is the sum of all the trials involving parameter k at level i, and G is the 

resultant data for all the trial runs.  

One-way ANOVA analysis was carried out for the payload, encapsulation efficiency and the 

yield, as conveyed in Table 5, Table 6, and Table 7. For the payload, it is observed that 

temperature had the highest contribution, followed by homogenization speed, pH, and time. It 

was expected that temperature would have a large effect on this factor, as observed in section 

3.2, capsules produced at 45 °C did not survive ambient drying conditions. As the 

homogenization speed also affects the morphology and core content of the microcapsules, this 

is perhaps why it is the second most significant factor. For the yield, as seen in Table 6, 

temperature again is the most significant factor, followed by pH, reaction time and 

homogenization speed. Again, temperature is observed to be the most significant parameter in 

this case. For the encapsulation efficiency, as conveyed in Table 7 temperature again is the 

most imperative parameter, followed by pH, reaction time and homogenization speed. 

Figure 11 illustratively conveys the percentage contributions on the radar graphs for the 

payload (a), yield (b) and encapsulation efficiency (c), as well as the combined overall 

contribution for the payload, yield, and encapsulation efficiency. The combined bar chart has 

very consistent overall results, exhibiting that temperature is the main determinant, with a 

value of about 83.1 % contribution, followed by pH at 6.8 %, proceeded by reaction time at 

5.2 %, and finally a homogenization speed contribution of 4.9 %.  
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Overall, it is very clear that temperature is the main governing factor in these reactions, which 

is in agreement with the results observed in Table 4. This has ultimately shown the key 

considerations  when designing experimental conditions for in situ polymerization processes. 

Table 5. ANOVA for the microcapsule payloads 

Payload - Analysis of variance 

Source 
Degree of 
Freedom 

Sum of 
Squares 

Variance 
Percentage 
Contribution 

Time 2 479.8 239.9 5.0 

pH 2 597.8 298.9 6.2 

Temp 2 7670.1 3835.0 79.9 

H. Speed  2 849.6 424.8 8.9 

Error 0 0 0 0 

Total 8 9597.3 4798.6 100.0 

     
 

Table 6. ANOVA for the microcapsule yield 

Yield - Analysis of variance 

Source 
Degree of 
Freedom 

Sum of 
Squares 

Variance 
Percentage 
Contribution 

Time 2 43.9 22.0 7.9 

pH 2 48.7 24.4 8.8 

Temp 2 442.1 221.1 79.9 

H. Speed 2 18.4 9.2 3.4 

Error 0 0 0 0 

Total 8 553.2 276.7 100.0 

 

 
Table 7. ANOVA for the microcapsule encapsulation efficiency 

Encapsulation Efficiency - Analysis of variance 

Source 
Degree of 
Freedom 

Sum of 
Squares 

Variance 
Percentage 
Contribution 

Time 2 144.6 91.5 2.7 

pH 2 291.2 183.5 5.3 

Temp 2 5866 3087.9 89.5 

H. Speed 2 259.2 86.4 2.5 

Error 0 0 0 0 

Total 8 6561 3449.4 100.0 
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4. Conclusions  

In this work, the Taguchi orthogonal experimental design was used to study the process 

optimisation of PUF microcapsules containing a core of volatile heptane paraffin as PCM. 

The influences of experimental parameters of reaction time, pH, temperature and 

homogenization speed were all examined. The S/N ratio plots for the four parameters 

conveyed the most efficient combination: 3 h, pH 3.5, 55 ºC and 1200 rpm. Systematically, it 

was observed that capsules with exceptional payload (95.2 %) long-term core material 

retention and thermal stability were produced. Such findings convey the significance of this 

work, with many researchers utilising 4 h and longer reaction times for less volatile core 
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Figure 11. Radar graphs conveying the percentage contributions of the process conditions on (a) the payload, (b) the yield (c) 
the encapsulation efficiency; (d) the combination of all the contributions. 
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materials, as well as higher temperatures for the formulation process, which is superfluously 

more timely and costly. The ANOVA analysis presented an insightful observation into the 

parameters that had the most governing effects of the process. It was observed that 

temperature had the highest effect, and microcapsules were not formed under 45 ºC. 
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