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Abstract—Cybercriminals are becoming more sophisticated
wearing a mask of anonymity and unleashing more destructive
malware on a daily basis. The biggest challenge is coping with the
abundance of malware created and filtering targeted samples of
destructive malware for further investigation and analysis whilst
discarding any inert samples, thus optimising the analysis by
saving time, effort and resources. The most common technique
is malware triaging to separate likely malware and unlikely
malware samples. One such triaging technique is YARA rules,
commonly used to detect and classify malware based on string
and pattern matching, rules are triggered and alerted when their
condition is satisfied. This pattern matching technique used by
YARA rules and its detection rate can be improved in several
ways, however, it can lead to bulky and complex rules that affect
the performance of YARA rules. This paper proposes a fuzzy
hashing aided enhanced YARA rules to improve the detection rate
of YARA rules without significantly increasing the complexity and
overheads inherent in the process. This proposed approach only
uses an additional fuzzy hashing alongside basic YARA rules
to complement each other, so that when one method cannot
detect a match, then the other technique can. This work employs
three triaging methods fuzzy hashing, import hashing and YARA
rules to perform extensive experiments on the collected malware
samples. The detection rate of enhanced YARA rules is compared
against the detection rate of the employed triaging methods to
demonstrate the improvement in the overall triaging results.

Index Terms—Malware Triaging; YARA Rules; Fuzzy Hash-
ing; Import Hashing; Ransomware; Indicator of Compromise;
IoC String.

I. INTRODUCTION

The significant growth in malware and its related cyberat-
tacks is a major concern for every individual, organisation,
business and government. The malware writer exploits simple
software-aided techniques to advanced Al-aided techniques to
perform these cyberattacks in a more sophisticated manner
[1]. Therefore, counter measures to prevent these cyberattacks
require a corresponding sophisticated response, including more
intelligent mechanisms. However, due to the large quantity of
malware produced and collected daily, it is equally important

to scrutinise these large sample sizes for their validity and con-
centrate the main effort and time for those samples which are
indicated as a malicious in nature. This requires a preliminary
investigation process called triaging to determine likely mal-
ware and unlikely malware samples [2]. This triaging process
can be a static process or dynamic process [3], where dynamic
process is more comprehensive, nonetheless, the static process
is comparatively safer as all samples are investigated without
being executed or run. Some popular static triaging methods
are fuzzy hashing, import hashing and YARA rules, where
YARA rules have become the most extensively used method.

YARA rules are one of the most effective and popular mal-
ware triaging methods used to detect malware based on string
and pattern matching. The Indicator of Compromise (IoC)
string is one of the most important parameters of YARA rules,
including how many IoC strings and how they are selected
for a rule, which is crucial for its success. Nonetheless, the
generation of YARA rules requires a thorough understanding
of security and an in-depth analysis of malware and their
families. Though YARA rules can be generated easily and
automatically, however, they still require further processing
to achieve their optimal performance. When YARA rules are
triggered, a malware alert is generated for a sample when the
set condition (mostly a string-matching condition) in the rule is
satisfied otherwise the sample is not alerted as malware. If only
few or none of the selected strings are found in the targeted
samples then YARA rules do not flag samples as malware even
though they may be malware.

There are a number of mechanisms to remedy this issue,
for example, the addition of more strings to extend its search
criteria, however, there is a disadvantage as increased and
complex rules can adversely affect the performance of YARA
rules. Moreover, this is not an easy task for users to write
such a complex set of YARA rules or modify automatically
generated rules, as it requires significant expertise in computer
security [4], [5], [6]. Consequently, it is essential to find an



easy solution to make YARA rules more efficient without
incurring all complexities stated earlier. This paper proposes
fuzzy hashing aided enhanced YARA rules to improve the
detection rate of YARA rules without significantly increasing
the complexity and overheads of YARA rules. The proposed
method utilises an additional fuzzy hash function alongside
the basic YARA rules, thus complementing each other, so
that when one method cannot find a match, then the other
can and vice versa [7]. This paper employs three triaging
methods fuzzy hashing, import hashing and YARA rules to
perform extensive experimentation and comparison on the
collected ransomware samples, namely the four categories
WannaCry, Locky, Cerber and CryptoWall. Subsequently, it
evaluates the performance of the three fuzzy hashing methods
SSDEEP, SDHASH and mvHASH-B to establish the best-fit
fuzzy hashing method to integrate with YARA rules.

The paper is divided into the following sections: Section
II discusses the chosen triaging methods YARA rules, import
hashing and fuzzy hashing. Section III explains the collection
and verification process of ransomware samples. Section IV
discusses ransomware triaging process employing the selected
triaging methods: fuzzy hashing, import hashing and YARA
rules. Section V discusses the ransomware triaging process
employing the proposed enhanced YARA rules. Lastly, Section
VI presents the summary of the research work and suggests
some future work.

II. MALWARE TRIAGING METHODS

A. YARA Rules

YARA rules are developed to detect malware by primar-
ily matching its signatures/strings with the existing malware
signatures/strings [8], [9]. These rules contain predetermined
signatures/strings related to known malware which is used
in attempting to match against the targeted files, folders, or
processes [10]. YARA rules consist of three sections: meta,
strings and condition as shown in Figs. 1 and 2. Here,
strings can be classified into three types of strings: text
strings, hexadecimal strings and regular expression strings.
Text strings are generally a readable text complemented with
some modifiers (e.g., nocase, ASCII, wide, and fullword) to
manage the process more effectively [11]. Hexadecimal strings
are a sequence of raw bytes complemented with three flexible
formats: wild-cards, jumps, and alternatives [11]. Regular
expression strings are similar to text strings as a readable
text complemented with some modifiers; which are available
since version 2.0 and increases the capability of YARA rules
[11]. Text strings and regular expressions which express a
sequence of raw bytes through the use of escape sequences.
The final part of YARA rules is a rule condition that specifies
the number of signatures/strings required matching with the
target to declare the sample as malware [12]. YARA conditions
determine whether to trigger the rule or not, however, these
conditions are Boolean expressions similar to those used in all
other programming languages [11].

rule RuleName
{
meta:
description = “descriptions of rule”
author = “name”
date = “dd/mm/yyyy”
reference = “url”

strings:

Stext_string1 = “text1 you wish to find in malware”
Stext_string2 = “text2 you wish to find in malware”

Shex_string1 = {hex1 you wish to find in malware}
Shex_string2 = {hex2 you wish to find in malware}

rule WannaCry
{
meta:

description = “Generic Signature of WannaCry”
author = “Nitin Naik”

date = “01/06/2018"

reference = “www.mydomain.com”

strings:
Stext_stringl = “encrypt”
Stext_string2 = “bitcoin”

Shex_stringl = {B6 D3 56 A5 78 43}
Shex_string2 = {E8 27 F9 83 C4 82}

Sreg_exp_stringl = /md5: [0-9a-fA-F]{32)/
Sreg_exp_string2 = /state: (on|off)/

Sreg_exp_stringl = /regular expressions1 you wish to find in malware/
Sreg_exp_string2 = /regular expressions2 you wish to find in malware/

condition:
Stext_string1 or Stext_string2 or
Shex_stringl or Shex_string2 or
Sreg_exp_stringl or Sreg_exp_string2

condition:
Stext_string1 or Stext_string2 or
Shex_string1 or Shex_string2 or
Sreg_exp_stringl or $reg_exp_string2
} }

Fig. 1. YARA Rules: Syntax Fig. 2. YARA Rules: Example

B. Fuzzy Hashing

Fuzzy hashing is used to determine the similarity between
digital files, which makes it a very useful method for malware
analysis as several pieces of malware and their variants possess
some similarity with each other, which is not detected by a
cryptographic hash as it has a binary outcome i.e., either the
two files are exactly identical or not [13], [14]. In a fuzzy
hashing technique, the file of interest is split into several
blocks and each block is treated separately for calculating
its hash, finally, hashes of all the blocks are concatenated to
obtain the fuzzy hash of that file (see Fig. 3). A number of
factors affect the size of the fuzzy hash of a file, comprising
of the block size, the size of the file and the output size
of the chosen hash function [15]. Fuzzy hashing methods
are divided into different types namely: Context-Triggered
Piecewise Hashing (CTPH), Statistically-Improbable Features
(SIF), Block-Based Hashing (BBH) and Block-Based Rebuild-
ing (BBR) [16], [17], [18]. Forensic analysis of malware
requires a thorough knowledge of the degree of similarity
between known malware and inert files to assess files for their
threat potential. This is especially important when considering
the analysis and clustering of suspected malware in order
to discover new variants [19]. As a result, the use of the
similarity preserving property of fuzzy hashing is useful in
malware analysis while comparing unknown files with known
malware families, where samples possess similar functionality,
yet different cryptographic hash values [2].

1) SSDEEP: The SSDEEP fuzzy hashing technique was
specially created to distinguish spam or junk emails [13]. It
splits a file into several blocks depending on the data given
in the file. These blocks and their endpoints are created by
employing an Adler32 function involved in a rolling hash
method [15]. Subsequently, a hash is created for each block
and finally, hashes of all the blocks are concatenated to
obtain the fuzzy hash of that file. The Damerau-Levenshtein
distance measure is used to compute the similarity distance of
concerning files.
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Fig. 3. Generation of Fuzzy Hash Value in Fuzzy Hashing Method [10]

2) SDHASH: The SDHASH fuzzy hashing technique dis-
covers common and uncommon attributes in a file and matches
the uncommon attributes with those in another file to find the
degree of similarity of these files [20]. Normally an attribute
is a 64-byte string and is detected based on the calculation of
entropy. The SDHASH fuzzy hash of a file is computed by
employing SHA-1 hash function and Bloom filters. A Bloom
filter is a probabilistic and space-efficient data structure used
to establish that an element is a member or not a member of
the set. The Hamming distance measure is used to compute
the similarity distance of concerning files.

3) mvHASH-B: The mvHASH-B fuzzy hashing technique
focuses on preserving the data unchanged in the case where
there is a minor change between files, it ensures the same hash
value while preserving the similarity. Nonetheless, mvHASH-
B uses the concept of majority voting to transform the input
data, encoding the majority vote bit sequence with Run-Length
Encoding (RLE), and finally generating the mvHASH-B fuzzy
hash employing Bloom filters [21]. Furthermore, it employs
its own outlined hash function which is comparable with the
standard SHA-1 function, with better run time efficiency.

C. Import Hashing - IMPHASH

Import hashing is another method that can be utilised to
determine the similarity of digital files. It generates a hash
value from the particular segment (Imports) of a Portable
Executable (PE) file (see Fig. 4), which contains informa-
tion about all the functions imported by an executable from
DLLs. Import hashing utilises function calls included within
a program, where the order in which they are called and these
functions are utilised to generate a hash value called IMPort
HASH (IMPHASH). Precisely, this IMPHASH is generated
from the Import Address Table (IAT), which is a list of
the program and their functions required by an executable
including all the other DLL files which are to be bound and
linked with the relocatable code of the original program to
build the final application [22]. Thus, two pieces of software
that were compiled with similar code except with a different
order of functions will generate different IMPHASH values.
This method is analogous to fuzzy hashing with regard to its
speed, computation, complexity and hash size, however, it is

noteworthy that IMPHASH provides a binary similarity result,
rather than the degree of similarity of two files.

} IMPHASH

Fig. 4. Generation of IMPHASH Value from the Import Address Table (IAT)
of a Portable Executable (PE) File [10]

III. COLLECTION OF MALWARE SAMPLES

In this implementation, one of the most prevalent malware,
ransomware was selected to perform all triaging operations
and evaluating the performance of enhanced YARA rules.
Ransomware was selected for the experiment as it is one of
the most relevant and damaging malware that exploits victims
for the financial gain. Numerous types of ransomware were
created and used in cyberattacks, though, some ransomware
categories were worthy of more focus due to their severity
of attacks and financial loss. Based on primary research, four
ransomware categories were targeted for this work: WannaCry,
Locky, Cerber and CryptoWall [23], [24], [25]. Thousands
of malware samples were downloaded from the two sources
Hybrid Analysis [26] and Malshare [27]. Later, these samples
were verified for their credibility as numerous samples were
false samples. It was critical to select only credible samples of
a specific category as a reference to test all triaging methods
and enhanced YARA rules successfully. These samples were
investigated based on the information available on VirusTotal
[28]. To determine that every sample was indeed genuine mal-
ware or ransomware and belonged to a specific ransomware
category, the criterion was set that it must be identified as
malware by at least 40 or more detection engines on VirusTo-
tal. To check the ransomware category of collected samples,
their category from WannaCry, Locky, Cerber and CryptoWall
was verified manually on the recognized detection engines on
VirusTotal. This sample collection and verification process was
very lengthy and time consuming. Finally, 1000 ransomware
samples were selected out of several thousand samples, and
equally divided 250 samples into four ransomware categories
WannaCry, Locky, Cerber and CryptoWall. The four different
categories of ransomware were chosen to evaluate how each
triaging method works on different types of ransomware.



IV. MALWARE TRIAGING PROCESS USING Fuzzy
HASHING, IMPORT HASHING AND YARA RULES

Originally, the three selected triaging methods fuzzy hash-
ing, import hashing and YARA rules are utilised to carry out
the triaging process on the collected and verified ransomware
samples, of the four ransomware corpora WannaCry, Locky,
Cerber and CryptoWall. These three triaging methods are se-
lected to perform static analysis which should be fast, efficient
and resource-optimised. Fuzzy hashing and import hashing
are compact, fast and resource-optimised triaging methods
[2]. In addition to the accuracy of malware analysis results,
these criteria are very decisive in determining the appropriate
method for the analysis of a large volume of malware. This
section discusses the methodology and experiment of each
triaging method for the collected ransomware samples. The
experiment is aimed at illustrating the similarity detection
success rate of each triaging method for each ransomware
category separately and collectively. It is expected and most
probably that each sample of the same category holds some
similarity to other samples in that category. Therefore, exper-
iments evaluate how many samples within one category are
matched with at least one other sample of the same category
by each triaging method.

A. Fuzzy Hashing: Methodology

When fuzzy hashing is applied on an unpacked ransomware
sample, it generates a fuzzy hash value for that ransomware
sample. This fuzzy hash value can be matched against either
existing identified ransomware samples or their fuzzy hash
values. If the fuzzy hash of a sample in question matches
with any of the pre-identified ransomware samples or its fuzzy
hash value then the fuzzy hash result is generated as a degree
of similarity between the two. This fuzzy similarity result
is presented in the range of 1% (least matched) to 100%
(exactly matched), however, it is entirely at the discretion of
security experts how they interpret this value depending on
their analysis requirement. Generally, a threshold value can be
set to accept or ignore the fuzzy similarity score to determine
as matched or not matched scenario respectively. The fuzzy
hashing should only be used as an initial investigation that may
assist in any further analysis but not as a conclusive result [29].

B. Fuzzy Hashing: Experiment

In this experiment, the SSDEEP, SDHASH and mvHASH-B
fuzzy hashing methods were used to detect similarity for each
ransomware category separately. It was important to assess
the performance of these three methods in different threshold
conditions for comparison purposes; therefore, their similarity
detection results were evaluated in four different conditions:
1) when all the fuzzy similarity scores were considered (1-
100%), 2) when those fuzzy similarity scores were considered
which are greater than 10%, 3) when those fuzzy similarity
scores were considered which are greater than 20%, and 4)
when those fuzzy similarity scores were considered which
are greater than 30%. The four evaluation results for four
ransomware categories are presented in Tables I to IV. One

of the most important findings in all four evaluation results is
that the results of SDHASH and mvHASH-B fuzzy hashing
methods decreased and in some cases quite significantly as the
similarity threshold value increased. The detection rate of the
SSDEEP fuzzy hashing method is lower, however, consistent
in all four experiments [14], [30]. At the final similarity
threshold limit of 30%, most SSDEEP results are superior to
the other two fuzzy hashing methods. This finding is crucial
when utilising these similarity results in further analysis as
they can affect the next stage (e.g., clustering or classification)
result significantly.

TABLE I
SIMILARITY DETECTION RESULTS OF THE SSDEEP, SDHASH AND
MVHASH-B Fuzzy HASHING METHODS FOR WANNACRY RANSOMWARE

CORPUS
Fuzzy Hashing Match- | Similarity Similarity Similarity
ing Criteria for Wan- | Detection Rate | Detection Rate | Detection Rate
naCry Ransomware of SSDEEP of SDHASH of mvHASH-B
Based on all Fuzzy Sim- | 91.2% 93.6% 90%
ilarity Scores (1-100%)
Based on Fuzzy Simi-|91.2% 93.6% 90%
larity Scores above the
Threshold of 10%
Based on Fuzzy Simi-|91.2% 90% 84.4%
larity Scores above the
Threshold of 20%
Based on Fuzzy Simi-|90.8% 90% 84.4%
larity Scores above the
Threshold of 30%
TABLE II

SIMILARITY DETECTION RESULTS OF THE SSDEEP, SDHASH AND
MVHASH-B Fuzzy HASHING METHODS FOR LOCKY RANSOMWARE

CORPUS
Fuzzy Hashing Match- | Similarity Similarity Similarity
ing Criteria for Locky | Detection Rate | Detection Rate | Detection Rate
Ransomware of SSDEEP of SDHASH |of mvHASH-B
Based on all Fuzzy Sim- |42% 58.4% 72.4%
ilarity Scores (1-100%)
Based on Fuzzy Simi- |42% 38.4% 64%
larity Scores above the
Threshold of 10%
Based on Fuzzy Simi-|41.6% 35.6% 36.4%
larity Scores above the
Threshold of 20%
Based on Fuzzy Simi-|41.6% 30.4% 33.6%
larity Scores above the
Threshold of 30%

C. Import Hashing: Methodology

Similarly, when import hashing is applied on an unpacked
ransomware sample, it generates an IMPHASH hash value for
that ransomware sample. Moreover, this IMPHASH hash value
can be matched against either existing identified ransomware
samples or their IMPHASH hash values. If the IMPHASH
hash matches with any of the pre-identified ransomware sam-
ples or its IMPHASH hash value then the result is generated as
a matched sample with one or more samples. However, it does
not provide a degree of similarity, rather a binary output (i.e.



TABLE III
SIMILARITY DETECTION RESULTS OF THE SSDEEP, SDHASH AND
MVHASH-B Fuzzy HASHING METHODS FOR CERBER RANSOMWARE

CORPUS

Fuzzy Hashing Match- | Similarity Similarity Similarity
ing Criteria for Cerber | Detection Rate | Detection Rate | Detection Rate
Ransomware of SSDEEP of SDHASH of mvHASH-B
Based on all Fuzzy Sim- | 33.6% 71.2% 94.8%
ilarity Scores (1-100%)
Based on Fuzzy Simi-|33.6% 62.8% 90.4%
larity Scores above the
Threshold of 10%
Based on Fuzzy Simi-|33.6% 37.6% 36.8%
larity Scores above the
Threshold of 20%
Based on Fuzzy Simi- |33.6% 28.4% 36%
larity Scores above the
Threshold of 30%

TABLE IV

SIMILARITY DETECTION RESULTS OF THE SSDEEP, SDHASH AND
MVHASH-B Fuzzy HASHING METHODS FOR CRYPTOWALL
RANSOMWARE CORPUS

Fuzzy Hashing Match- | Similarity Similarity Similarity

ing Criteria for Cryp- | Detection Rate | Detection Rate | Detection Rate
toWall Ransomware of SSDEEP of SDHASH |of mvHASH-B
Based on all Fuzzy Sim- | 28% 52.4% 83.6%

ilarity Scores (1-100%)

Based on Fuzzy Simi-|28% 32.8% 56.8%

larity Scores above the

Threshold of 10%

Based on Fuzzy Simi- |28% 24% 20.8%

larity Scores above the

Threshold of 20%

Based on Fuzzy Simi-|28% 20.4% 20.4%

larity Scores above the

Threshold of 30%

either matched or not matched). The import hashing should
only be used as an initial investigation that may help in any
further analysis but not as a conclusive result [2].

D. Import Hashing: Experiment

In this experiment, the import hashing method was used
to detect similarity for each ransomware category separately.
The similarity detection results for all the four ransomware
categories are shown in Table V. The import hashing result is
a mixed result when compared with the fuzzy hashing results.
In one case it is somewhat better however, in other cases it is
slightly lower. It is worth noting that import hashing can only
be used on PE file format, therefore, its effectiveness depends
on the type of samples investigated.

E. YARA Rules: Methodology

The first two triaging methods are hashing methods and
are similar in terms of generating a hash of a sample when
they are applied. YARA rules are different from hashing
as rule generation requires a reverse engineering process. It
requires an in-depth analysis of malware and their family to
generate YARA rule(s) for a specific malware or their family.
Therefore, generation of effectual YARA rules demands effort

TABLE V
SIMILARITY DETECTION RESULTS OF IMPORT HASHING FOR WANNACRY,
LoCKY, CERBER AND CRYPTOWALL RANSOMWARE SAMPLES

Detection Rate for Particular|Similarity Detection
Ransomware Category Rate of Import Hashing
WannaCry Ransomware Samples |87.6%
Locky Ransomware Samples 31.6%
Cerber Ransomware Samples 61.6%
CryptoWall Ransomware Samples |27.2%

and expertise, unlike both hashing methods, where untrained
personnel can apply the process of hash generation to generate
hashes and perform the analysis. YARA rules can be generated
manually or automatically, whilst automatic rule generation is
easier than the manual process, however, it may require some
post-processing operations to optimise them. Here yarGen
tool [31] is employed to generate the YARA rules for all
ransomware samples. This tool generates two types of rules
ordinary rules and super rules depending on the malware
sample types by utilising some intelligent techniques such
as Fuzzy Regular Expressions, Naive Bayes Classifier and
Gibberish Detector [32]. All the basic YARA rules generated
for ransomware samples contain up to 20 strings based on their
highest scores and do not include IMPHASH as it is employed
as one of the triaging method in the paper.

F. YARA Rules: Experiment

In this experiment, after generating YARA rules for all four
ransomware categories separately, they are used to detect sim-
ilarity for each ransomware category separately. The similarity
detection results for all four categories are shown in Table VI.
The result of YARA rules is a mixed result when compared
with the both hashing results, as in two cases it is slightly
improved, and in others it is not. However, there is a caveat
here as these basic YARA rules were generated by yarGen
with its default settings, it means different YARA tools may
generate different rules which might produce different results
[33]. Furthermore, if the number of strings and attributes
are increased or decreased then it may change the analysis
results. If the number of strings and attributes are significantly
increased then it adversely affects the performance of YARA
rules as malware analysis is always performed on a large
sample size.

In summary, all three triaging methods performed slightly
better and slightly worse, and it is difficult to determine
the best triaging method for all given scenarios. Therefore,
further analysis is required to improve the performance of the
triaging methods. YARA rules are customisable and contain
some advanced features, whereas fuzzy hashing can be a
compact and add more value to YARA rules. Accordingly,
this integration of YARA rules and fuzzy hashing would be
examined in the next section of proposed enhanced YARA
rules.



TABLE VI
SIMILARITY DETECTION RESULTS OF YARA RULES FOR WANNACRY,
LocKY, CERBER AND CRYPTOWALL RANSOMWARE SAMPLES

Detection Rate for Particular |Similarity Detection
Ransomware Category Rate of YARA Rules*
WannaCry Ransomware Samples |89.6%
Locky Ransomware Samples 54.4%
Cerber Ransomware Samples 77.2%
CryptoWall Ransomware Samples |27.6%

YARA Rules*: These rules are generated by yarGen tool util-
ising machine learning methods Fuzzy Regular Expressions,
Naive Bayes Classifier and Gibberish Detector, where simple
rules contain up to the 20 highest scored strings.

V. MALWARE TRIAGING PROCESS USING THE PROPOSED
ENHANCED YARA RULES

A. Enhanced YARA Rules: Methodology

The Indicator of Compromise (IoC) string is one of the
most important parameters of YARA rules and the quantity
of strings and how they are selected for a rule is crucial for
its success. However, threat actors are equally intelligent and
understand such mechanisms and attempt evasion by using
perceptive modifications in their malware. If only few or none
of the selected IoC strings are found in the targeted samples
then YARA rules do not flag samples as malware even though
they may be malware. Accumulating a large number of IoC
strings in rules may increase the computational complexity and
affect the performance of YARA rules significantly. Addition-
ally, in order to write such complex YARA rules or modify
automatically generated rules, a high degree of expertise is
required in cyber security [4], [S], [6]. Consequently, it is
essential to find an easy solution to make YARA rules more
efficient without incurring all complexities stated earlier. This
requires exploring alternative mechanisms other than IoC
strings to enhance YARA rules. Fuzzy hashing is a compact,
fast and resource-optimised mechanism employed for triaging
which may not be effective on its own, nonetheless it can
complement YARA rules enhancing its triaging performance
without affecting complexity significantly [2]. Fuzzy hashing
attempts to find structural similarity between the two files in
their entirety, in circumstances where the selected IoC strings
cannot be found in the sample. Additionally, fuzzy hashing
can provide the degree of similarity of each matched sample
alongside the outcome of YARA rules which is not achievable
in YARA rules alone. Sometimes they can complement each
other in finding a missed opportunity by one of the mech-
anisms. Thus, the combined search result can increase the
accuracy and confidence level of the overall triaging process.
The logical approach for the implementation of the proposed
enhanced YARA rules is shown using the pseudocode in
Algorithm 1 and Fig. 5.

B. Enhanced YARA Rules: Experiment

The enhanced YARA rules with fuzzy hashing were evalu-
ated utilising three tried and tested fuzzy hashing approaches

Finds loC Strings

in Samples
Suspicious Assessment
Samples for Result with
Initial | YARA Rules [ Degree of
Assessment Similarity

— >

Fuzzy Hash

Finds Structural
Similarity in Samples

Fig. 5. Fuzzy Hashing Aided Enhanced YARA Rules

Algorithm 1: Pseudocode for the Proposed Fuzzy Hashing
Aided Enhanced YARA Rules
S, Set of Samples for Investigation
R, Set of YARA Rules
$, Set of Strings in a YARA Rule
F, Set of Fuzzy Hashes of Known Malware
F, Fuzzy Hash Value
B, YARA String Count Threshold
o1, Fuzzy Hash Similarity Threshold
A, Degree of Similarity
C, Counter for Matched Strings
for (i =1;i < |S|;i++) do
for (j =1;5 <|R|;5++) do
for (k=1;k < |$|;k+ +) do
if $, € S; then

L Cij++

if ) C;; > Br OR A(Fs,, Fy) > or [F, € F)
then

return Y ARA Rule

SSDEEP, SDHASH and mvHASH-B. This evaluation was
to determine whether this integration was successful or not,
and if successful, then which fuzzy hashing method produced
greater accuracy in results. The similarity detection results of
enhanced YARA rules utilising three different fuzzy hashing
methods for all the four ransomware categories are shown
in Table VII. Here, the fuzzy similarity scores greater than
30% were utilised for all the three fuzzy hashing methods.
Noticeably, enhanced YARA rules with all the three fuzzy
hashing methods showed a minor improvement, but SSDEEP
fuzzy hashing contributed to the highest improvement in the
overall result of triaging. Interestingly, for one ransomware



category Cerber, no fuzzy hashing could improve the result
of YARA rules, however, in this case, YARA rules already
produced better results than other methods, which can com-
pensate the fuzzy hashing “miss outs”. Alternatively, in all
those categories where YARA could not produce respectable
results, fuzzy hashing assisted improvement in the results,
which is crucial for the success of this integration. On the
basis of these experiments, the SSDEEP based result of YARA
rules is recommended as the final results of enhanced YARA
rules. Furthermore, SSDEEP is more compact, faster and a
resource-optimised fuzzy hashing method in comparison to
the SDHASH and mvHASH-B methods [14], [30].

TABLE VII
SIMILARITY DETECTION RESULTS OF ENHANCED YARA RULES
UTILISING Fuzzy HASHING SSDEEP, SDHASH AND MVHASH-B FOR
WANNACRY, LOCKY, CERBER AND CRYPTOWALL RANSOMWARE

SAMPLES

Detection Similarity Similarity Similarity
Rate for | Detection Rate of | Detection Rate of | Detection Rate of
Particular Enhanced YARA | Enhanced YARA | Enhanced YARA
Ransomware | Rules based | Rules based | Rules based on
Category on SSDEEP on SDHASH mvHASH-B-

(Similarity Score | (Similarity Score | (Similarity Score

>30%) >30%) >30%)
WannaCry 93.2% 92.8% 92%
Ransomware
Samples
Locky 59.6% 58% 58.4%
Ransomware
Samples
Cerber 77.2% 77.2% 77.2%
Ransomware
Samples
CryptoWall 38.4% 34.8% 34.4%
Ransomware
Samples

C. Comparative Evaluation of the Triaging Results of En-
hanced YARA Rules with Different Triaging Methods

Finally, the triaging results of enhanced YARA rules (SS-
DEEP fuzzy hashing based) are compared against the triaging
results of all other triaging methods as shown in the Table VIII
and Fig. 6. Evidently, basic YARA rules performed somewhat
better than the other two triaging methods fuzzy hashing and
import hashing. Nonetheless, enhanced YARA rules produced
slightly better results (67.1%) than basic YARA rules results
(62.2%). This improvement is not large but still indicates the
moderate success of this integration of YARA rules and fuzzy
hashing methods.

VI. CONCLUSION

This paper proposed fuzzy hashing aided enhanced YARA
rules to improve the detection rate of YARA rules with-
out significantly increasing the complexity and overheads of
YARA rules. This proposed approach utilised an additional
fuzzy hash value alongside basic YARA rules to complement
each other when one method is unable to find a match and
vice versa. This work employed three triaging methods fuzzy
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90.00%

80.00%

70.00% 67.10%
62.20%

48.50%

a0.00%
3000%
2000%
1000%
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g

Fig. 6. Overall Similarity Detection Rate of SSDEEP, SDHASH, mvHASH-
B, IMPHASH, YARA Rules and Enhanced YARA Rules for the collected
Ransomware Corpus

hashing, import hashing and YARA rules to perform extensive
experiments on the collected ransomware samples. Finally,
the detection rate of enhanced YARA rules was compared
against the detection rate of the selected triaging methods,
where enhanced YARA rules produced slightly better results
for collected ransomware samples in comparison to all other
methods. However, the success of this integration is dependent
on the nature of malware samples as fuzzy hashing may
work well in some cases but may not in others. The selected
SSDEEP fuzzy hash is compact and does not increase the
complexity of enhanced YARA rules significantly; however,
other fuzzy hashing methods may increase the complexity
of enhanced YARA rules, all these factors require further
investigation in the future.
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