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Abstract: Bismuth-doped fibre amplifiers offer an attractive solution for expanding the band-
width of fibre-optic telecommunication systems beyond the current C-band (1530-1565 nm).
We report a bismuth-doped fibre amplifier in the spectral range from 1370 to 1490 nm, with a
maximum gain exceeding 31 dB, and a noise figure as low as 4.75 dB. The developed system is
studied for forward, backward, and bi-directional pumping schemes and three different signal
power levels. The forward pumping scheme demonstrates the best performance in terms of the
achieved noise figure. The developed amplifier can be potentially used as an in-line amplifier
with >20dB gain in the spectral band from 1405 to 1460 nm.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

An exponentially growing demand for the optical networks capacity is a stable current trend
that is likely to continue due to the current deployment of 5G networks, the fast development of
cloud and numerous online services, the emerging machine-to-machine communications, and
many other bandwidth-hungry applications [1,2]. The conventional optical network systems
exploit only about 11 THz of a much larger silica-glass-based optical fibre bandwidth. This
is defined by the availability of well-developed and commercially available Er-doped fibre
amplifiers operating in C- and L- optical bands (1530-1620 nm). There are currently three
main approaches to increasing the capacity of fibre-optic transmission systems and meeting the
ceaselessly rising demand: (i) more efficient use of the existing systems, e.g. the development
of the new modulation formats; (ii) the development of the spatial division multiplexing (more
fibre or new fibres with more spatial channels), and (iii) the development of systems capable to
utilise the huge spectral bandwidth of the existing fibre base - the multi-band transmission (MBT).
The application of the high-order modulation formats requires increase of the signal-to-noise
ratio and this is limited by the nonlinear effects in optical fibre [3], spatial division multiplexing
requires either the use of dark-fibres or the deployment of new optical fibre infrastructures, while
MBT maximises the return-on-investments in the existing infrastructures [4] by the transmission
in the so-called O, E, S, L, and U optical bands.

First commercial MBT systems already coming to the market target transmission in C+L-band
systems based on Erbium-doped fibre amplifiers (EDFAs). Operation in the L-band adds 60 nm
to the conventional 35 nm C-band. As the next step, it is natural to continue bandwidth expansion
into the next closest band that is S-band. However, the transmission in O- and E-bands should
be considered as well, as they are very attractive for transmission, especially using special pure
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silica fibre with low loss in this spectral region [2]. However, multi-band transmission requires
novel types of amplifiers for corresponding spectral bands. Many amplifier technologies were
proposed to cover some or multiple bands using neodymium (Nd) [5], praseodymium (Pr) [6], or
Tm-doped fibres [7], and Raman fibre amplifiers [8]. It was suggested already a time ago that Pr-
as well as Nd-doped optical fibres demonstrate emission in all the O-, E-, and S- telecom bands
but suffer from the strong excited-state absorption noticeably spectrally narrowing the net gain
and suppressing its magnitude [5,9—12]. A rapid non-radiative transition between G4 and 3Fy
levels contributes to the poorer (as compared to EDFAs) performance of the Pr-doped fluoride
fibre amplifiers [10] and prevents creation of Pr-doped silica fibre amplifiers that would be fully
compatible with standard telecom fibres. There is a competition between the 4F, /2 - 45 12 4F, 2

- *I11)2, and *F3) - *I13)» electronic transitions in the Nd-doped optical fibres [5,9,10]. The
magnitude of the optical gain observed in the E- and S- telecom bands in the result of the *F3 /2"
413 /2 transition is substantially limited by the ASE originating from other transitions. In spite of
a significant recent progress achieved with a micro-structured Nd-doped silica fibre allowing
suppression of the unwanted transitions through spectral filtration [9], such fibres still require
further development in order to match the performance of Er-doped fibres. On the other hand,
Raman fibre amplifiers have the drawback of high pumping power requirements and relatively
higher noise.

Since the first reports [13] Bi-doped fibre amplifiers (BDFAs) have been extensively studied
as promising amplification platform for multi-band transmission [14-25]. Using different
host materials such as aluminosilicate, phosphosilicate, and germanosilicate glass allows to
significantly shift emission spectrum from 1150 to 1500 nm [18,26,27]. Bi-doped fibre amplifier
with record bandwidth of 115 nm, 31 db gain, and 4.8 noise figure (NF) in the O and E bands has
been recently reported [24]. The first successful data transmission experiment characterised on
three signal wavelengths in E-band was reported in [21] and first multi-channel amplification
was reported in [20]. Moreover, the performance of Bi-doped fibre amplifier spectrally adjacent
to EDFA range was studied in [23] using both backward and forward pumping scheme. The
state-of-the-art review on Bi-doped fibre amplifiers and lasers was presented in [18]. Despite the
advances in development of BDFAs in the E- and S-bands the direct comparison of different
pumping schemes including bi-directional one has not yet been conducted in E and S-bands.
In this paper we demonstrate BDFA based on germanosilicate active fibre operating in the
spectral range from 1370 to 1490 nm with the maximum gain of 31 dB, a minimum noise
figure of 4.75 dB, and >20 dB gain bandwidth of around 55 nm. Moreover, we compare three
different pumping schemes including forward, backward, and bi-directional ones, and evaluate
the amplifier performance with different signal powers of -20 dBm, -10 dBm, and 0 dBm.

2. Methods and experimental setup

The Bi-doped germanosilicate fibre used in this work was fabricated in Dianov Fiber Optics
Research Center using MCVD-solution [28]. The core of fibre consists of 95 mol% SiO2, 5
mol% GeO2 and <0.01 mol% of bismuth. The fibre core and cladding diameter are 9 um and
125 pm, respectively. The numerical aperture (NA) is 0.14, and the cutoff wavelength is around
1.2 um. The spectral properties of the fibre are similar to one reported in [21,28] The developed
Bi-doped fibre amplifier based on 320 m long piece of active fibre and the experimental setup
for gain and NF measurements are depicted in Fig. 1. Due to low concentration of Bi-related
active centres typical length of Bi-doped fibre in amplifiers exceeds 100 m that might lead to the
increased NF due to Rayleigh scattering [29].

Two tunable lasers (TL) operating in spectral ranges of 1340-1440 nm and 1410-1490 nm
are used as a signal radiation for characterisation of Gain and NF characteristics of developed
amplifier in spectral range of 1370-1490 nm. The first amplifier is used to cover spectral band
before 1440 nm, and another one in the band of 1440-1490 nm. The radiation of the TLs pass



Research Article Vol. 11, No. 1/1 January 2021/ Optical Materials Express 129

I e

Isolator

Isolator
Isolator

Isolator WDM WDM .
Pump diode Pump diode
1320 nm 1320 nm

Fig. 1. Scheme of the BDFA. TL: tunable laser; TFF-WDM: thin film filter wavelength
division multiplexer; Bi: Bi-doped fibre; OSA: optical spectrum analyser; PM: power meter.

polarisation independent isolator with minimum isolation of 32 dB and internal losses less
than 3 dB in spectral band of 1390-1490 nm. After the isolator the radiation is coupled into
Bi-doped fibre through thin film filter wavelength division multiplexer (TFF-WDM). The key
components of the developed setup are TFF-WDMs with very steep and consistent transmission
(1300-1362 nm) and reflection (1370-1565 nm) bands with constant optical loss of 0.1 dB.
The radiation of two pump diodes operating at the wavelength of 1320, used as forward and
backward pumping, passes 1320 nm polarisation independent isolators and is coupled into the
active fibre through TFF-WDMs. After a subsequent amplification in the Bi-doped fibre signal
radiation passes another TFF-WDM and the 1390-1490 nm polarisation independent isolator and
is detected in either optical spectrum analyser (OSA) or power-meter (PM). The OSA is used for
both peak-to-peak gain measurements and the noise spectral power density substraction for NF
calculation that is found using the source substraction technique described in [30] and using the
following equation:

Protal 1 Psse

Ghv * G * hv ) M

where psrq and pge are the total noise spectral density on the output of the amplifier and the
input source noise spectral density, respectively; G is the gain, 4 is the Planck constant, and v
is the photon frequency. The noise spectral density was achieved from the signal spectrum by
approximating of the spectral noise level on the signal wavelength. Moreover, the noise spectral
density was calibrated in regards with the power received by the PM. The gain was measured by
recording spectra at the input and output of the amplifier and comparing their signal peak power
increment.

NF = 10log(

3. Results
3.1.  Forward pumping scheme

The performance of the developed BDFA is characterised for the forward, backward, and
bi-directional pumping schemes and three different signal levels of -20 dBm, -10 dBm, and O
dBm. The gain and NF for the forward pumping scheme and 3 different signal levels are depicted
in Fig. 2.

The gain increases with the pump power increase and saturates at high pump powers for all
signal power levels in Fig. 2(a,c,e). The maximum gain of 30.36 dB is achieved at the wavelength
of 1430 nm, pump power of 470 mW and signal power of -20 dBm. The gain spectrum shows
a significant flattening with the increase of signal power leading to an widening of -3dB gain
bandwidth from 27.28 to 52.1 nm for -20 dBm and 0 dBm signal power, respectively. Moreover,
increase of the signal power leads to consistent gain reduction from maximum value of 30.36 dB
to 18.63 dB for -20 dBm and 0 dBm of signal power. This effect also causes the increase of NF
value from 4.75 dB to 5.56 dB.

The corresponding NF and is shown in Fig. 2(b,d,e). The NF decreases with the increase of
the pump power and saturates along with the gain saturation. The significant increase of NF
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Fig. 2. Dependencies of the measured gain (upper row) and the noise figure (bottom row)
on the wavelength for different pump powers in a forward pumping scheme: a,b) gain, NF
for -20 dBm input signal power; c,d) gain, NF for -10 dBm input signal power; e,f) gain, NF
for 0 dBm input signal power.

closer to 1390 nm corresponds to the amplification at the edge of the gain band, the decrease of
the isolator transmission, and the influence of the water absorption tail. The amplification at
the 1370 nm occurs due to stimulated emission from the pump level and leads to decreased NF
in comparison to the signal amplification at 1390 nm. The amplification beyond the presented
spectral band was not possible due to the limitations of the TFF-WDM reflection band starting
from the 1370 nm. The minimum NF of 4.75 dB is achieved with - 20 dBm signal at the 1435
nm wavelength and 470 mW of the pump power. The comparison between the gain, the gain
bandwidth, and the NF for all pumping schemes are presented in Table 1.

Table 1. Characteristics of pumping schemes for different signals for 470 mW of the pump power
for forward pumping scheme, 454 mW of the pump power for backward pumping scheme, and 472
mW of the pump power for bi-directional pumping scheme.

Signal power Pumping scheme Gain, db Bandwidth, nm NF, db
forward 30.36 27.28 4.75
-20 dBm backward 30.59 28.98 5.3
bi-directional 30.52 29.08 5.26
forward 25.63 42.38 4.82
-10 dBm backward 26.88 38.19 5.52
bi-directional 26.57 37.13 5.5
forward 18.63 52.1 5.56
0dBm backward 19.63 44.87 6.43
bi-directional 19.5 42.93 6.95

3.2. Backward pumping scheme

As the next step, the backward pumping scheme was investigated with all three signal powers,
i.e. the optical gain and the NF were measured. The behaviour of the gain and NF spectra is
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similar to the backward pumping scheme, with slightly higher gain and lower NF (Fig. 3).The
maximum gain for -20 dBm signal power is equal 30.59 dB at the wavelength of 1430 nm and
the pump power of 454 mW. The maximum gain bandwidth for -20 dBm is wider than that of
the forward pumping scheme and is equal 28.98 nm. However it is also narrower than that of
backward pumping scheme in case of 0 dBm signal and is equal to 44.87 nm. The minimum NF
magnitude is 5.3 dB for signal power of -20 dBm at the wavelength of 1430 nm and the pump
power of 454 mW. The observed higher NF level in comparison to the forward pumping scheme
is, indeed, expected for the non-uniformly pumped active fibre [31].
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Fig. 3. Dependencies of the measured gain (upper row) and the noise figure (bottom row)
on the wavelength for different pump powers in a backward pumping scheme: a,b) gain, NF
for -20 dBm input signal power; c,d) gain, NF for -10 dBm input signal power; e,f) gain, NF
for 0 dBm input signal power.

3.3. Bi-directional pumping scheme

As the last step, the bi-directional pumping scheme is investigated in terms of gain and NF
(Fig. 4). The total pump power of the diodes pumping the active fibre with equal power in both
directions is indicated in Fig. 4. As the maximum pump power of the bi-directional pumping
scheme is significantly higher than those of both forward and backward pumping schemes, the
maximum value of gain and gain bandwidth, and minimum value NF are compared at the similar
power of 472 mW (dark blue line with arrows in Fig. 4).

The maximum gain for the -20 dBm signal power is equal 30.52 dB at the wavelength of 1430
nm and the pump power of 472 mW. The maximum gain bandwidth for -20 dBm is the widest
than other pumping schemes and is equal 29.08 nm. However, in the case of 0 dBm signal it is
also narrower than that of backward pumping scheme and is equal to 42.93 nm. The minimum
NF magnitude is 5.26 dB for the signal power of -20 dBm at the wavelength of 1430 nm and
the pump power of 472 mW, which is a slightly better value than that of the backward pumping
scheme.
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Fig. 4. Dependencies of the measured gain (upper row) and the noise figure (bottom row)
on the wavelength for different pump powers in a bi-directional pumping scheme: a,b) gain,
NF for -20 dBm input signal power; c,d) gain, NF for -10 dBm input signal power; e,f) gain,
NF for 0 dBm input signal power.

4. Discussion

430

The developed amplifier was studied using different pumping schemes with slightly different pump
powers, and we would like to compare the power dependencies of gain and NF characteristics.
As the both optical gain and noise figure have also a spectral dependence, we averaged the
spectral magnitudes of these parameters in the range of 1400-1480 nm in order to compare an

average performance of the pumping schemes. Such dependencies for forward, backward and
bi-directional pumping scheme are presented in Fig. 5.

a) b)
25 T T T T 8.5 T T T .
»4/A
— ——e— 8.0
201 = : \
= 8757 .
c:" IS |
= —=— Backward B ° —=— Backward
5 / ——Forward Z 7.0 \ ——Forward 1
1591 —a— Bi-directional| \\ —a— Bi-directional
/ 6.5 1
104 | . . . 0 . | | |
100 200 300 400 500 100 200 300 400 500

Pump power, mW

Pump power, mW

Fig. 5. Dependencies of the Gain (a) and NF (b) on the pump power

The graphs show that, almost for all pump powers, the highest gain was achieved in the
backward pumping scheme. The bi-directional pumping scheme showed intermediate gain
magnitudes relatively to the backward and forward pumping schemes. The forward pumping
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scheme demonstrated a lower optical gain as compared to other pumping schemes. On the
other hand, the lowest noise figure is achieved with the forward pumping scheme. The noise
figure for bi-directional and backward pumping schemes is almost the same with slightly better
performance in the bi-directional scheme with pump powers less than 200 mW. Thus, the uniform
pumping plays the crucial role for the amplifier performance in terms of the noise figure. It is
worth noting that the NF for the forward pumping shows a noticeable saturation with the pump
power as compared to the bi-directional and backward pumping schemes. This indicates that a
significant increase in the pump power for the bi-directional and backward pumping schemes
will be comparable with the forward pumping NF. The same gain saturation was observed in the
backward pumping scheme. Therefore, it is preferable to use the forward pumping scheme in
order to achieve a moderate gain and an excellent noise performance with a relatively low pump
power. Obviously, NF and gain characteristics should be nearly the same in all pumping schemes
when the gain medium is well pumped.

The measured power conversion efficiencies (PCE) for three different pumping schemes are as
follows: 15.3% for forward pumping scheme, 16.3% for bi-directional pumping scheme, and
19.8% for backward pumping scheme. The PCE of around 20% is the typical value for L-band
EDFAs [32], and less than that of C-band EDFAs. The further increase of the PCE can be
performed by using fibre Bragg gratings [33], double pass configuration [34], or shifting pump
wavelength closer to the absorption maximum. The maximum output signal power exceeds 100
mW. However, we have recently demonstrated the BDFAs operating in the vicinity of 1.45 mu;m
with output powers of several hundreds of milliwatts [20,23]. Although it is already sufficient
for application in practice, further scalability is anticipated, since >50% lasing efficiency with
>10-W output power have been already reported [35].

The current results presented in this work show a certain overall increase in the performance
of BDFA, i.e. the increase of the maximum gain (or the minimum NF) in comparison to our
previous works with 27.8 dB gain and 7.4 dB NF [20], and 27.9 dB gain and 5 dB NF [23].
In [24], a significant optical gain was observed also below 1390 nm down to 1345 nm. The
usage of phosphosilicate Bi-doped fibres with a highly pronounced emission band around 1.3 pm
could contribute to this phenomenon [26]. The usage of two laser diodes operating at different
wavelengths of 1270 nm and 1310 nm could lead to the excitation of of two types of Bi-related
optical centres. Thus, two types of Bi-related optical centres can be stabilised in the same glass
host and a laser action can be achieved for both of them with the change of the pump wavelength
[17]. In this work, the left part of the gain spectrum showed a continuous growth; however, a
detailed study of this part was impossible due to the increased optical loss of the TFF-WDMs
and the isolators in this spectral area. Therefore, the detailed study of the Bi-doped fibres in the
shorter-wavelength region is planned in the future.

5. Conclusion

A BDFA with the maximum gain of 31 dB and the minimum noise figure of 4.75 dB has been
developed and studied in the forward, backward, and bi-directional pumping schemes. The
demonstrated amplifier has a high gain (>20dB) in the whole spectral band of 1405-1460 nm.
The three pumping schemes were compared in terms of the average noise figure,optical gain
performance, and PCE. It was concluded that the forward pumping scheme is the most promising
as the excellent performance can be achieved at lower pump powers. However, it should be
improved in terms of PCE, and the possible solutions are covered in the discussion. The high
optical gain and the low NF of the BDFA operating in the E- and S-bands reported in this work
with the overall BDFA performance comparable to the conventional EDFAs allows to consider
BDFAs as a promising in-line amplifier with a potential to double the capacity of conventional
C-band EDFA systems.
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