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Abstract— Traffic signals provide one of the primary means
to administer conflicting traffic flows. Existing signal control
strategies, operating on hand-crafted rules, fail to efficiently,
autonomously adapt to the changing traffic patterns. Each
signal control system independently manages one intersection
at a time and regulates navigation of vehicles through that
intersection. Current systems cannot co-operate to optimize
aggregate traffic flows through multiple road intersections.
Consequently, they are susceptible to making myopic signal
control decisions that might be effective locally, but not globally.
Instead, we propose a system of multiple, coordinating traffic
signal control systems. This paper presents the first application
of multi-agent deep reinforcement learning (DRL) to achieve
traffic optimization through multiple road intersections solely
based on raw pixel input from CCTV cameras in real time.
This set of traffic control agents is shown to significantly out-
perform independently operating (both DRL-trained and loop-
induced) adaptive signal control systems, by increasing traffic
throughput and reducing the average time a vehicle spends in an
intersection. Additionally, this paper, introduces attention-based
visualization to interpret and validate the proposed multi-agent
signal control methodology.

I. INTRODUCTION

Traffic congestion is a serious problem, costing substan-
tially to drivers in terms of wasted fuel and time. Among
others, in the urban road networks, inadequate traffic signal
timings is one of the repeated causes of congestion. Exerting
real-time, adaptive control is potentially useful in a variety
of intelligent transportation systems applications, including
signal control. The primary limitation of conventional signal
control methods is the need for pre-specified models of
the traffic environment. The purpose of having pre-specified
models is to effectively visualize the picture of present or
imminent traffic conditions. The pre-specified traffic envi-
ronment specifications are required to be constructed by
the domain experts. Furthermore, these models must be
generic enough to cover a variety of traffic conditions, as
it can be impractical to have a separate model independently
demonstrating each potential traffic situation. However, a
generalized traffic model may lack the ability to reliably
reflect the full range of traffic flow patterns. For instance,
TRANSYT,; one of the state-of-the-art adaptive signal control
systems, only uses a platoon-dispersion model to determine
the arrival pattern of vehicles, irrespective of the prevailing
traffic conditions.

Reinforcement Learning (RL) [1] is a successful paradigm,
that obviates the need of pre-specification of the environment
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Fig. 1: A view of Traffic3D’s graphical display (the simula-
tion environment used in our experiments).

model. The environment RL agents operate in, is not known
in advance. Instead, RL agents monitor their environment
through perception, influence it by implementing actions
and learn by observing the outcomes of their actions. RL
was first applied to traffic signal control in the 1990s,
with the first techniques limited to tabular Q-learning [2].
Traditional RL methods suffered from limited scalability
and optimality in practice. However, in recent years, deep
neural networks (DNNs) have proven their effectiveness in
significantly improving the performance of RL methods;
facilitating end-to-end learning (i.e. mapping from sensory
inputs to action outputs) and completely eliminating the need
for hand engineering of task-specific features by domain
experts [3]. To accomplish a particular task, the DRL (Deep
Reinforcement Learning) agent learns the set of environment
features that are significant in each task. These agents derive
efficient representations of high-dimensional, raw sensory
data (such as videos and images) and subsequently uti-
lize these to generalize the past experience to new unseen
situations. In recent papers [4], [5], we presented a truly
adaptive signal control agent that directly responds to the
actual traffic conditions in a single intersection; achieving
effective signal control in the face of complex, imprecise
traffic environment. In this paper, to further establish the
resilience of our DRL-based signal control approach, we
investigate the utilization of multi-agent DRL to real-time
adaptive traffic signal control through a network of road
intersections.

A number of RL tasks (such as autonomous driving
and robotic manipulation) can be naturally modelled as
cooperative multi-agent systems. However, RL agents at-
tempting to single-handedly solve these tasks perform poorly,
as their joint state and action spaces grow exponentially,



leading to dimensionality explosion. This paper, for the
first time, establishes network-level coordination between
multiple DRL-based signal control agents operating on visual
traffic data (i.e. the agents solely operate on camera feed
to optimize an aggregate of traffic flows through a network
of intersections). Having the ability to visually perceive the
prevailing traffic state enables our signal control agents to
extensively process the traffic environment and subsequently
learn its intricate feature representations (including vehicle
types and their precise positions) that would otherwise be
tedious to determine using widely-used traffic data collection
methods (such as induction loops and microwave detector
[6D.

Incorporating the concepts and perspectives from re-
cent work in the field of multi-agent planning [7], [8],
to achieve network-level coordination between individually
operating local signal control agents, we apply an actor-
critic [9] RL approach. We implement a centralised critic
that enables global learning, while each actor’s execution is
local. To achieve network-level optimality, the centralised
critic operates on all the available state information (i.e.
concatenation of local states of the collaborating signal
control agents). In contrast, each actor (i.e. each participat-
ing signal control agent) operates exclusively on its own
limited local observation of the environment. We compare
our proposed centralised learning method against baseline
methods: (1) fully-decentralised learning (outlined in Sec. V-
A), (2) fully-independent learning (outlined in Sec. V-B),
and (3) loop-induced signal control (outlined in Sec. V-C).
Our experiment-based evaluations reveal that our research
approach leads to a positive emergence of coordinated be-
havior between individual signal control agents; resulting in
significant performance improvement over above mentioned
baseline methods. To further demonstrate the effectiveness
of our research methodology, in this paper, we work towards
explainable Artificial Intelligence and for the first time
illustrate the interpretability of our signal control agents’
decisions using attention-based visualization (Sec. VII-D).

II. RELATED WORK

Conventional signal control methods; independently op-
timizing the flow of traffic through one intersection at a
time, operate on pre-programmed signal regime plan. The
phase time interval may change based on the peak or quiet
hours, but they are not otherwise optimized. However, over
the years, as the volatility of traffic patterns outpaced the
effectiveness of pre-programmed signal control methods,
interdisciplinary methods (such as RL) are being studied to
adaptively configure signal regimes. There exists a large body
of work on RL-based adaptive signal control, however, the
majority of recent studies are conducted on single junctions,
using relatively simplified traffic state information (e.g. a
vector specifying the presence of vehicles at an intersection
and their respective speed information) [10], [11]. Our work,
in contrast, utilizes visual inputs, rendering an extensive
representation of the prevailing traffic state (including flows,

types of vehicles, weather conditions, etc.) to decide the
configuration of signal regimes across a network of junctions.

Only a handful of studies address signal control opti-
mization through multiple intersections. In [12], tabular Q-
learning is applied to each intersection in a multiple inter-
section traffic environment. This work is further extended in
[13], in which traffic regions are dynamically clustered to
improve observability. In [14], both Q-learning and SARSA
are used, with traffic state observability enhanced using
neighbourhood information sharing. Tantawy et al. [15]
implemented a heuristic communication between tabular Q-
learning-based intersection control agents, in which each
message consisted of the estimated neighboring agents’ sig-
nal control policies. Chu et al. [16] used the max-sum com-
munication for Q-learning-based intersections, in which each
message signified the impact of a neighbouring intersection
on each local Q-value. Most of these research studies imple-
ment value function-based approaches (Q-learning, SARSA)
for traffic optimization. Value function-based methods are
often criticized for being unstable and in practice are diffi-
cult to use. They are inclined towards finding deterministic
policies, whereas in a dynamic environment like traffic, an
effective policy is expected to be stochastic.

Closest to our work [17], traffic is optimized through
a network of intersections in a decentralized fashion. The
authors devise a fully-decentralized multi-agent signal con-
trol method. In each local agent’s state observation infor-
mation, observations and fingerprints of neighboring agents
are included such that each local agent is more aware of
regional traffic distribution, while we use a centralized critic
and decentralised actors to perform centralised learning and
decentralised execution. Furthermore in [17], handcrafted
traffic state features (i.e. cumulative delay of first vehicle
and number of vehicles approaching an intersection within
50m range to the intersection) are used. In contrast, our
signal control methodology is end-to-end trainable and, to
our knowledge, is the first to depend solely on camera
feed for traffic optimization in real time. Deep learning
models are known to offer insights that go well beyond
human understanding. In this paper, we analyse our agents’
decision-making through specialised visualisation techniques
(Sec. VII-D).

III. BACKGROUND AND NOTATION

In this section, we introduce our signal control agents’
implementation-based on deep reinforcement learning.

A. Deep Reinforcement Learning (DRL)

In a basic RL setting, an agent aims to achieve a goal
by interacting with an uncertain environment. A standard
RL framework is mathematically modelled as a Markov
Decision Process (MDP), which can be represented as a
tuple < S, A, T, R, >, where S and A are the state and
action spaces respectively. v € (0,1) denotes the discount
factor, which models the relevance of immediate rewards
over the future rewards. After observing a state, an agent
working under the policy 7 : S — A produces an action.



Given current state s; and action a;, the transition function
T :8 x Ax 8+ RT determines the distribution of the
next state s;y;. The reward function R is determined by
R: S x A~ R. An episode 7 ~ M with horizon H is a
sequence of state, action, reward (50, ag, 7o, ..., SH,QH, rH)
at every time-step t. The discounted episodic return of 7 is
determined by R; = Zf{: o V'r¢. Given the agent’s policy
7, the expected episodic return is defined by E.[R,]. The
expected episodic return is maximized by optimal policy 7*

7w = arg maxE; o [ Rr]. 1)
e

A deep neural network (my) with parameters 6 in high-
dimensional RL settings represents policy 7*. The agent aims
to learn 6* that achieves highest expected episodic return,

0" = arg maxE. - [Rr]. 2)
0

In actor-critic RL [9], the actor is the policy 7(als)
with parameters 6, based on which actions are estimated,
while the critic computes value functions to help the actor
in learning. Action and value function are estimated using
function approximators and the gradient is estimated from
trajectories sampled from environment. R; is replaced by
an expression equivalent to Q(s¢,u:) — b(s;), where b(s;)
contributes in reducing the variance. If R; is replaced by
A(s¢,ut), then b(s;) = V(s¢). R(t) can also be replaced by
the temporal difference error; v+ + vV (st41) — V (s), which
is an unbiased estimate of A(s;, u;).

B. Multi-agent Reinforcement Learning (MARL)

In this paper, we consider a network of signal control
agents (forming a multi-agent system). In this setting, our
goal is to train signal control agents to effectively par-
ticipate in optimizing traffic flows at a global network
level. We consider a multi-agent extension of the Markov
Decision Processes (MDPs); defined by a tuple £ =<
S,U,P,r,Z,0,n,~y >, where n agents (represented by a €
A = [1,...,n]) act in the environment E. The true state
of the environment is represented as s € S. At each time-
step, each agent independently, simultaneously chooses an
action u® € U, forming a joint action space u € U = U™,
which produces a transition in the environment (represented
by P(s/ | s,u):S x Ux + [0,1]). For their individual
selected actions, the agents receive their individual rewards;
r(s,u):S x U +— R and v € (0,1) denotes the discount
factor. Given the real-world traffic complexity, we consider
partially observable traffic settings, where each agent acts
on its local observations z € Z (based on the observation
function O(s,a):S x A — Z). Each agent depends on
an action-observation history (represented by 7¢ € T =
(Z x U)*), based on which it conditions a stochastic policy
7(u® | 7):T x U ~ [0,1]. The discounted return is
denoted by R; =Y 7 4'r¢11. The agents’ goal is to learn
a policy that maximizes their expected discounted returns.

IV. OUR AUTONOMOUS MULTI-INTERSECTION SIGNAL
CONTROL METHODOLOGY

In this section, we describe the implementation for our
signal control agents; including the MDP settings; state,
action, reward specifications.

) Vehicle
movements

Fig. 2: Possible Signal Phases and Vehicle Movements.

A. Problem Definition

Under our research methodology, we consider a multi-
intersection road scenario in which a set of signal control
agents act in parallel. Each signal control agent controls one
intersection in the network by directly mapping RGB images
(describing the prevailing traffic state) to actions (controlling
the traffic signals). Our goal is to achieve effective coor-
dination of agents’ actions such that their joint utility is
maximized.
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Fig. 3: An illustration of Intersection Grid.

B. Traffic Model Simulation

Due to economic and safety concerns, an agent can-
not be trained via DRL to autonomously control traffic
signals in real world. Simulation is deemed as a safe,
cost-effective, controlled tool catalyzing protocol develop-
ment. All the experiments presented in this paper are
conducted using our novel traffic simulation environment;
Traffic3D [18], [19]. Traffic3D is publicly available at
https://traffic3d.org/en/latest/. For the current work, we sim-
ulated 3D four-way intersection scenarios with microscopic
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Fig. 4: Our Multi-Intersection Actor-Critic Network Framework. We use network parameter sharing (described in Sec. IV-F)
to implement one actor and one critic network, which is shared by all the agents.

traffic properties. We investigated real-world traffic data and
conducted sensitivity analysis of key traffic environment
(such as weather and lighting conditions) and vehicle sim-
ulation (such as distribution of maximum speeds, lane and
car-following behavior etc.) parameters to calibrate our sim-
ulator’s parameters - both physical (supported by NVIDIA’s
Physx [20]) and visual (using real-time global illumination
[20D).

C. Traffic Movement Simulation

Traffic movement is defined as the vehicles navigating
across an intersection (from an entrance lane to an exit
lane). Based on real-world guidelines, we define a set of
possible, non-conflicting vehicle movements to allow their
safe passage through the intersections (illustrated in Fig. 2)
[6]. Signal phases are configurable and it is possible to have
simultaneous execution of more than one phases. Vehicles
can either go straight or turn right/left, route selection prob-
ability is parameterizable in our simulator. Fig. 3 illustrates
our intersection network grid. Each intersection is a four-way
intersection.

D. Learning Environment Setup: MDP Settings

Our simulated traffic environment is illustrated in Fig. 1.
At each MDP time-step, concurrently operating signal con-
trol agents interact with the traffic environment every t
seconds (i.e the agents sense the prevailing state of the
traffic environment using the visual data, based on which
they configure traffic signals in real time for ¢ seconds). The
smaller the ¢, the more often the agents will be asked to make
a decision about the configuration of traffic signals. In the
current work, to ensure greater adaptiveness, we set ¢ to 10s,
which implies that at each MDP step, we have a minimum
green signal time duration of 10s. After 10s elapses, based
on the prevailing state of the traffic, the agents may decide to
have the same signal configuration or change it. Real-world

minimum/maximum signal time durations dictated by traffic
regulation rules, can also be conveniently accommodated by
our simulation model. Following are the MDP settings for
our signal control agent; including state, action spaces and
reward design.

1) State Space: Each actor (i.e local signal control agent)
operates solely on camera footage to achieve signal control
in real time. Actors only perceive the current state of the
traffic environment in and around the intersections that they
are controlling. In contrast, the centralised critic operates on
global state of the traffic (i.e. concatenation of local observa-
tions of all actors). For faster computation, we downsize the
input images to a compact resolution of 100 x 100, having
experimentally verified that this does not impair our agents’
decision making.

2) Action Space: At each MDP time-step, each signal
control agent selects one of the available phases, to be
implemented for a duration of ¢ seconds. Based on the
set of admissible vehicle movements (illustrated in Fig. 2),
signal phases are configured [6]. We define a set of discrete
actions A such that each computed action corresponds to
each phase. For instance, an action a; corresponds to a phase
p1 (i.e. < a; — p1 >). At each MDP time-step, given the
current state of the traffic, the signal control agents share the
common goal to select the signal phase that best serves the
existing traffic demand.

3) Reward Design: To evaluate/optimize the overall ef-
ficiency of road networks, both delay and throughput are
considered as acceptable metrics. In this paper, we focus
on optimizing joint traffic throughput across the network of
intersections and subsequently, reducing the average time a
vehicle spends in an intersection. To accomplish this task,
we define two reward functions: (1) a success reward of +1
for every vehicle passing safely through an intersection; and
(2) a penalty of -1 for every vehicle waiting at the start of
an intersection.



E. Network Architecture

Fig. 4 illustrates our actor-critic network framework. Given
the nature of input data (i.e. vision-based), both our actor and
critic networks comprise three convolutional layers (Convli,
Conv2 and Conv3). Along with the convolutional layers, our
critic network includes a linear layer (Linear4). In contrast,
for our actor network, we use long-short term memory
(LSTM) as the last layer to memorize a short history. Traffic
flows form a complex spatial-temporal structure, resulting in
non-stationary MDP if the agents do not have access to any
previous data to rely on. LSTM networks provide an implicit
memory that improves performance in partially-observable
environments. As seen in Fig. 4, the actor network takes an
RGB image as input (depicting the current traffic state of
a signal control agent) and produces action probabilities as
output (from which an action deciding the signal phase is
sampled). The critic network takes an RGB image as input
(depicting the current traffic states of all the participating
signal control agent) and produces state values as output.

F. Network Parameter Sharing

Agents may learn successful policies more efficiently
using parameter sharing, as it allows learning simultaneously,
based on all agents’ experiences. Furthermore, parameter
sharing enables large-scale application of the proposed multi-
intersection optimization approach, as it is infeasible to have
a separate actor and critic network for each intersection in a
multi-intersection scenario. In this paper, to improve learning
efficiency and economise on training time, the agents are
allowed to share parameters among each other, i.e. we im-
plement one actor network and one critic network, which are
shared by all the agents (illustrated in Fig. 4). However, the
agents still demonstrate their respective independent behav-
iors, as each agent receives different observations based on
the prevailing traffic situation in and around the intersection
it is controlling.

G. Single Agent Credit Assignment in a Multi-Agent Envi-
ronment

One of the primary challenges of multi-agent environments
is marginalization of each agent’s individual contribution
towards a global reward. In a recent multi-intersection
signal control implementation [17], at each time-step, all
signal control agents receive the same global reward (i.e.
total aggregated reward through a network of intersections);
keeping them oblivious to their true individual contribution
towards network-level traffic optimization. In contrast, in the
current work, the agents operating under both, our proposed
centralised learning method (Sec. IV-H) and baseline meth-
ods (Sec. V) are allowed to observe their individual local
rewards. From our research perspective, deducing each signal
control agent’s individual reward is fairly straightforward.
Almost all real-world traffic intersections are equipped with
induction loops or rely on cameras, which are used to count
the vehicles. Since our reward signal includes traffic through-
put; thus deducing each signal control agent’s independent
contribution towards the global network reward is possible.

H. Centralised Signal Control Learning Protocol (our
method)

Within urban road networks, following a decentralised
framework, any local signal control agent might be suscep-
tible to myopic signal control decisions that work effectively
locally, but fail to globally optimize traffic on the network
level. To avert this possibility, we implement an actor-critic
approach such that our critic is centralised, that conditions
on the combined observations of all the actors to output a
consensual value estimate. While each actor (i.e. each signal
control agent) acts independently-based on its private, local
observation of the traffic environment without knowing the
state of other actors (illustrated in Fig. 4). Our actor network
(shared to all actors) represents the policy 7, parameterized
by 6. Given a team of actors (i.e. signal control agents)
consisting of N agents, let u = {uq,....,ux} represents all
agents’ actions and o = {01, ....,0n} represents all agents’
observations. The gradient of the expected return for an agent
i, J(0) = E[R] is represented as:

VoJ(0) = Es~p,u~x(s)[Vologmg(ulo)V™ ()], (3)

where, V™ represents a centralised critic network that
takes as input the concatenated state information of all
participating signal control agents and outputs a centralised
state value (i.e it produces a single state-value function after
considering the observations of all agents). The policy is
updated in the direction of the gradient, illustrated as:

0+ 0+ aVyJ(h), 4)
where, « is a step-size parameter.

V. BASELINES FOR COMPARISON

We compare our multi-intersection signal control strategy
with both RL-based and conventional signal control-based
methods.

A. Fully-Decentralized Signal Control using Augmented
State and Local Rewards [17]

In contrast to our centralised signal control methodology
(outlined in Sec. IV-H), here we implement an actor-critic
based completely decentralized protocol for traffic opti-
mization through a network of intersections. Signal control
agents communicate with one another in the absence of
any central controller. At each MDP time-step, each signal
control agent independently executes an action based on
its local information and the information shared by its
neighbors, which increases observability of each local agent.
This approach, using information sharing, aims at diffusing
local state observations of agents across the network of
intersections.

B. Fully-Independent Signal Control using Local State and
Local Rewards [9]

A straightforward method to implement actor-critic DRL
for autonomous signal control is to have each signal control
agent control its individual intersection by independently



learning its own policy and the corresponding state-value
function. Learning is independent in this setup, without any
central controller or interaction between local agents. At each
MDP time-step, both actor and critic networks operate on
same local observations.

C. Loop-Induced Signal Control (no learning involved) [6]

Lastly, we compare our research findings against the
standard induction loop-based adaptive signal control [6].
In loop-induced adaptive signal control, a loop detects ap-
proaching vehicles along each incoming lane, within 50m
to the junction, that are idling overhead and an electronic
impulse is sent to the signal circuit - to switch the red light
to green.

All our baseline methods use same configuration of signal
phases, outlined in Sec. IV-C.

VI. EVALUATION METRICS

We define the following performance metrics used to
evaluate our research findings;

A. Traffic Throughput

At each MDP time-step, traffic throughput gives the ag-
gregate number of vehicles that manage to pass through the
network of intersections. Higher throughput corresponds to
a larger number of vehicles passing through the intersec-
tions; indicating a superior multi-intersection signal control
method.

B. Journey Travel-Time

At each MDP time-step, journey travel-time is defined as
the time interval between vehicles arriving at an intersection
stop-line and reaching the end of the intersection. Lower
journey travel-times indicates a better multi-intersection sig-
nal control method.

VII. EXPERIMENTS AND RESULTS

We simulated a realistic multi-intersection traffic environ-
ment with time-variant traffic flows. A view of the traffic en-
vironment used for experimentation is illustrated in Fig. 1. To
our knowledge, this is the first study considering optimization
of traffic flows through multiple intersections based on visual
traffic data. Given the same number of signal control agents,
in this section we empirically investigate the performance
of our multi-intersection signal control strategy (outlined in
Sec. IV-H) in contrast to various relevant baseline methods
(outlined in Sec. V). The evaluation metrics used in all
experiments are outlined in Sec. VI.

A. Centralised signal Control (our method)

Following the framework illustrated in Fig. 4 and dis-
cussed in Sec. IV-H, we implement centralised learning of
decentralised policies. At each MDP time-step, our cen-
tralised critic network acts on the global traffic state i.e.
concatenation of local states of all signal control agents. In
contrast, every actor (i.e. every signal control agent) acts on
its individual local observation of the prevailing traffic state
of the intersection under consideration. As seen in Fig. 5(a)

and Fig. 5(b), average traffic throughput (red line) is highest
and average junction travel-time (red line) is lowest using our
centralised signal control strategy. Centralised critic acting
on the global traffic state observation; is able to perceive
the overall state of the traffic environment at the network
level (i.e. around the network of intersections). With respect
to the value function (outputted by critic network), agents
efficiently determine the jointly optimal actions (i.e. signal
control agents harmonize to maximize the total return).
Furthermore, since the centralised critic is aware of the traffic
distribution at the network level, this mitigates the known
non-stationarity problem of multi-agent environments. Our
results signify that multiple agents operating in the same
environment do not always require to have an explicit
communication amongst themselves to learn coordinated
behaviors. This implies that collaboration/cooperation is still
possible without information sharing among the agents.

B. Fully-Decentralized Signal Control using Augmented
State and Local Rewards

In this setup, based on the method discussed in Sec. V-A,
we implement a fully-decentralised learning of agent (actor)
policies. Each local agent has access to an augmented state
information including regional traffic distribution and coop-
erative strategy, i.e. observations and fingerprints (current
policy) of neighboring agents. At each MDP time-step, both
actor and critic networks receive as inputs, this augmented
state information. As seen in Fig. 5(a) and Fig. 5(b), both
average traffic throughput (brown line) and average junction
travel time (brown line) get worse in decentralised learning
scenario. This indicates that having access to information
from neighboring agents is not always beneficial, it can
interfere in learning. Furthermore, agents having access to
their individual rewards in a decentralised multi-agent envi-
ronment can become greedy and tend not to sacrifice for the
greater good. Therefore, having a centralised controller with
a wider picture of environment, may be useful. In general,
finding a globally optimal solution for multiple agents oper-
ating with partial information of their environment without
any central overseer, is considered intractable [21].

C. Fully-Independent Signal Control using Local State and
Local Rewards

In this setup, based on the method discussed in Sec. V-B,
the learning is completely independent without any central
controller or any communication between the agents. Agents
only operate on their local observations. At each MDP time-
step, both actor and critic networks are fed with same local
observations of the traffic environment. As seen in Fig. 5(a)
and Fig. 5(b), independent learning results in both average
traffic throughput (blue line) and average junction travel time
(blue line) getting as worse as in the case of decentralised
learning. This indicates that agents learning independently-
based on their local field-of-view, are susceptible to myopic
decisions which leads to overall inferior performance of the
signal network.



Centralised Signal Control (our method)
Fully-Decentralised Signal Control using Augmented State and Local Rewards [10]
Fully-Independent Signal Control using Local State and Local Rewards [14]
Loop-induced Signal Control (ne learning) [11]
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Fig. 5: Graphs demonstrating our centralised signal control method vs fully-decentralised, fully-independent and loop-induced
signal control). (a) Average Throughput. (b) Average Journey Travel Time.
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Fig. 6: Visualization results. (a) Original Image (b) Grad-cam Activation-Firetruck and Public Bus (c)
Next Signal Phase Activated (bus given priority to pass through the intersection).

Loop-induced signal control (green line) performs the
worst in all cases, as this method fails to; (1) extensively view
the traffic environment due to induction loops’ operational
narrow range, and (2) continuously modify agents’ traffic
optimization decisions-based on the dynamically changing
traffic flow patterns, as there is no learning involved. Due
to brevity, we could not share all our research findings.
In a more expanded version of paper, we will include
results on effectiveness of the proposed multi-intersection
signal control approach around different network topologies,
varying weather and lighting conditions.

D. Signal Control Decisions’ Interpretability

With the help of deep learning, DRL applied to visual traf-
fic data from road intersections eliminates the need to have
pre-engineered features describing the traffic environment.
However, deep learning models; Deep Neural Networks
(DNNs) are known to be black boxes and visualizing these
models can help in understanding the high-level behavior
of our signal control agent and discover the parts of the
visual input that influenced a certain signal control decision.
Greydanus et al. [22] explored the utility of visual stimuli in
making decisions in the Atari domain using saliency maps.



To the best of our knowledge, DNN models used for signal
control optimization have not been previously visualized.
In the current work, we take a step towards explainable
Artificial Intelligence and illustrate the interpretability of
our signal control agent’s decisions. We implement Grad-
CAM [23] to produce heatmap on top of the input image to
depict the critical area that dominates a certain signal control
decision. Grad-CAM facilitates the visual explanations of
convolutional neural networks (CNNs) using gradient-based
localization. This approach uses the gradients flowing into
the final convolutional layer to generate a coarse localization,
highlighting the important areas in the visual input leading
to a certain network output. Grad-CAM has been previously
applied to produce visual explanations for the tasks such as
image classification, image captioning and visual question
answering. To our knowledge, in this paper, Grad-CAM is
applied for the first time to produce visual explanations for
a reinforcement learning and a traffic optimization task.
Our visualization results signify that our signal control
method, apart from prioritizing the swift movement of traffic
based on the prevailing traffic demand captured by wide-
range cameras (for brevity we could not include these results
here), it also attends to different types of vehicles. As
seen in Fig. 6(b), our DRL-based signal control method
shows activation around emergency and public vehicles to
prioritizes their movement through the intersections. Our
visualization research findings reflect that DRL applied to
visual traffic data enables signal control based on key traffic
features (such as vehicle type and their relevance) that would
otherwise be infeasible to explore or exploit using popular
traffic data collection methods (such as induction loops).
It also validates the benefit of using visual traffic data in
providing more flexibility (for e.g. larger detection areas)
compared to typically used induction loops with narrow op-
erational range. Furthermore, visualizing the output of DNN
algorithms has the potential of breaking barriers in machine
learning research. We expect that this DNN visualization will
help transportation engineers gain further trust in applying
deep learning paradigms to autonomous transportation.

VIII. CONCLUSION

This paper presents the first application extending deep
reinforcement learning methods to optimize traffic through
multiple intersections based solely on visual traffic data,
without hand-crafted traffic state features. We demonstrate a
centralised controller that is able to bring about a principled
learning strategy between the signal control agents, resulting
in positive emergence of cooperative behavior among them
in a scenario where each agent has access only to the
partial state of the traffic environment. In future work,
we plan to introduce algorithms addressing the limitations
arising from centralisation: while it results in effective traffic
optimization in multi-intersection scenarios, as the number
of agents/intersections increases, the centralised critic’s state
input dimensionality increases exponentially and is suscep-
tible to single-point-of-failure.
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