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Abstract
We propose a self-organization scheme for cost-effective and load-balanced
routing in multi-hop networks. To avoid overloading nodes that provide
favourable routing conditions, we assign each node with a cost function that
penalizes high loads. Thus, finding routes to sink nodes is formulated as an
optimization problem in which the global objective function strikes a balance
between route costs and node loads. We apply belief propagation (its min-sum
version) to solve the network optimization problem and obtain a distributed
algorithm whereby the nodes collectively discover globally optimal routes by
performing low-complexity computations and exchanging messages with their
neighbours. We prove that the proposed method converges to the global opti-
mum after a finite number of local exchanges of messages. Finally, we demon-
strate numerically our framework’s efficacy in balancing the node loads and
study the trade-off between load reduction and total cost minimization.

Keywords: distributed optimization, routing, load balancing, belief propagation,
self-organization

1. Introduction

Large-scale wireless networks employing multi-hop transmissions are an integral component
of the internet of things [1]. For example, such networks can consist of a massive number of
sensors that collect data from the environment and send it to central controllers. In essence,
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the multi-hop transmission problem can be mapped onto a routing task on a network with a
particular non-linear cost. Specifically, since in multi-hop networks each wireless node can
relay other nodes’ messages, it is highly relevant to direct the information flows from the
source nodes to the destinations efficiently in terms of, e.g., energy consumption or relia-
bility. Sending the flows along the minimim-cost paths towards the destinations potentially
leads to overloading those nodes that provide favourable routes, which can cause quick bat-
tery depletion or decrease the resilience of the network against node failures [2–5]. Therefore,
information should be routed through the network so as to minimize costs while trying to
balance the node-loads. Moreover, given their scale, such networks must be designed to be
self-organizing and adaptive.

There is a large body of work studying energy efficient routing protocols (see, e.g., the sur-
vey [6]). A typical objective is to maximize the network lifetime by maximizing the minimum
lifetime over all nodes, where the lifetime of a node is defined as the ratio between its resid-
ual energy and its energy expenditure [2–4]. However, the network lifetime objective does not
account for the total routing cost (total energy in this case) and thus can be inefficient in this
respect, similar to minimum-cost routing being suboptimal for node balancing. It is therefore
relevant to investigate objectives that favour solutions that are somewhere ‘in-between’ these
two extremes.

At the heart of the model studied is the routing task itself, which is a hard computational
problem and obtaining exact globally optimal solutions is possible only in small systems using
established optimization methods, such as Integer Linear Programing, that do not scale well
with the system size. Various heuristics are also being used to obtain suboptimal solutions
for small to medium size networks in specific contexts, for instance, congestion pricing [7],
differential games [8] and space-time network [9]. However, due to the inherent non-linearity
and complexity of the problem they suffer from multiple sub-optimal solutions.

Statistical physics methods have been developed to study large-scale systems with non-
linear interactions between system variables that exhibit macroscopic emergent behaviour.
Disordered systems are arguably most suitable for studying optimization under constraints,
where the disorder may refer to the underlying topology, i.e. the specific choice of edges in
a graph, or strength of interaction between system constituents [10]. Dedicated techniques
developed in this area and have been used to gain insight and devise optimization algo-
rithms for real systems with similar characteristics, from error-correcting codes [11], to K-
satisfiability [12], graph colouring [13, 14] and compressed sensing [15]. While the routing
problem is slightly different due to the non-linear interaction between non-localized objects
-the routes- it can also be addressed using similar methods. The cavity and replica meth-
ods have been employed to study generic routing problems [16, 17] as well as specific
variants for problems that require node-disjoint [18] and edge-disjoint [19] routing, of par-
ticular relevance to the optimization of integrated circuits and optical communication net-
works, respectively. The cavity method also provides an effective routing algorithm in its
microscopic manifestation.

In this work, we propose an algorithmic strategy for distributed multi-hop networking
whereby the nodes coordinate and organize themselves so as to route the information to the
destinations in an efficient and balanced way. To this end, we consider balanced routing as
the minimization of a network objective function, which includes the overall cost of the routes
(given by generic link costs) and an additional term that penalizes the node-loads. The objective
function provides a tunable trade-off between total cost efficiency and fairness of the distri-
bution of the node loads. The possible routes from source nodes to destinations are coupled
in the objective function, which creates a competition for the shortest (i.e., least cost) routes
to the sinks. To solve the optimization problem, we use the min-sum version of the belief
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propagation (BP) method [10]. In this way, we obtain a distributed algorithm which finds
globally optimal routes in a decentralized manner with low-complexity local computations
and message exchanges between neighbouring nodes. We also show that the proposed method
converges to the global optimum in a finite number of iterations.

2. Network model and problem formulation

We assume a data collection scenario in which a set Vs = {1, . . . , n} of n nodes generate and/or
relay information that has to be delivered to any subset of the m destination nodes (e.g., gate-
ways, access points) in Vd = {n + 1, . . . , n + m}. The nodes in Vs are simple devices with
constrained resources (energy, memory, processing capabilities, etc) and can participate in rout-
ing each other’s packets towards the destination nodes. Packets generated by a source node in
Vs can travel to a destination in Vd over different routes; moreover, they can be delivered to
different destination nodes.

We model the wireless network as a directed graph G(V , E), with V = Vs ∪ Vd and E being
the set of edges (links). An edge (i, j) ∈ E indicates that node i can transmit to node j directly.
For each i ∈ V , Ei denotes the set of all edges incident to i, while Eout

i and E in
i stand for the

sets of its outgoing and respectively incoming edges. Node i ∈ Vs generates information at a
rate of ri units (we assume a certain unit rate [r]), where ri ∈ N; if ri = 0, the node is just a
relay node. The capacity of edge e ∈ E is ue units, ue ∈ N>0, such that the amount of flow
xe units carried by e satisfies 0 � xe � ue. The assumption that the rates and capacities are
integer multiples of [r] is not restrictive, because any set of rational numbers can be expressed
in this way by finding an appropriate unit [r]. Moreover, if any of the rates and capacities
have irrational values, it is necessary to convert them to rational numbers to represent them
on a computer. We associate each link e ∈ E with the weight ce > 0 representing the cost
of transferring a unit over edge e. For example, the cost can be the transmit power required
to ensure a certain data rate, the expected transmission count (ETX), or hop-count (when
ce = 1). We further assume that the network is in the unsaturated traffic regime and pack-
ets are transferred between neighbours according to a medium access scheme, which we do
not concern ourselves with here.

The routing solution space consists of those configurations {xe}e∈E which satisfy the flow
conservation constraints∑

e∈Eout
i

xe −
∑
e∈E in

i

xe = ri, for all i ∈ Vs, (1)

and the capacity constraints 0 � xe � ue, for all e ∈ E . The two constraints ensure that all gen-
erated flows are delivered to the destinations such that edge flows do not exceed the respective
capacities. We assume that the solution space is non-empty. The total cost of a configuration
{xe}e∈E is

∑
e∈Ecexe. Furthermore, we define the load of node i to be the amount of flow∑

e∈Eout
i

xe it has to forward.
In general, there are many feasible configurations, each implying different sets of routes,

path lengths, total costs, distribution of node loads, etc. A common objective is to minimize
the total cost, which, as one can notice, turns data collection into a (linear) minimum cost net-
work flow problem [20]. However, such an approach may yield solutions wherein some nodes
that provide low-cost forwarding edges experience high loads. We are therefore interested in
balancing the node loads in a cost-effective manner.
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3. Proposed objective for load balancing

We seek a trade-off between minimization of the total cost and minimization of the loads of
individual nodes. To this end, for each i ∈ Vs we introduce the strictly-increasing convex func-
tion φi : [0,∞) → R to penalize the load of the ith node. The functions can vary over the nodes
to reflect their different load-tolerances depending on residual energies, capabilities etc. Now,
we formulate the optimization problem

minimize
x∈R|E|

(1 − w)
∑
e∈E

cexe + w
∑
i∈Vs

φi

⎛
⎝ ∑

e∈Eout
i

xe

⎞
⎠

subject to
∑

e∈Eout
i

xe −
∑
e∈E in

i

xe = ri, ∀ i ∈ Vs,

0 � xe � ue, ∀ e ∈ E ,

(2)

where w ∈ [0, 1] is a parameter that balances cost-efficiency and load minimization. When
w = 0, we recover the linear minimum cost flow problem [20], which gives the most cost-
efficient flow configuration; however, this setting usually does not provide well-balanced loads
and therefore we focus on w > 0. The selection of its value depends on the particular applica-
tion. We keep it generic in the following and discuss the selection for the example in the results
section.

In the following, we assume that the functions φi are piecewise-linear convex (PLC)
with integral breakpoints, which is very convenient for obtaining a simple message-passing
algorithm with provable convergence to the correct solution, as we show next in propositions
1 and 2. An example of such function is one that takes the value yα, with α > 1, at each
breakpoint y ∈ N and varies linearly between consecutive breakpoints; the higher the value
of α, the stronger the load y is penalized. Such a choice provides a simple way to select the
efficiency-fairness trade-off by tuning the parameter α.

4. BP algorithm for balanced routing

BP is a generic message-passing algorithm for solving large-scale inference and optimiza-
tion problems in graphical models. It has a distributed nature whereby the nodes of the graph
perform simple local computations and exchange messages with their neighbours. While BP
provides correct solutions when the underlying graph is a tree, its correctness and convergence
cannot be generally guaranteed for graphs with cycles, with few exceptions [10, 21]. Nonethe-
less, for graphs with cycles, the BP heuristic often performs very well. In network problems,
the min-sum algorithm is applied to find the shortest path between two nodes [22] or minimize
path lengths and link congestion [16]. For the min-cost network flow problem with linear or
PLC costs on edges, BP was shown in [21] to converge to the correct solution (if the solution
is unique). Compared to [21], our objective (2) (with w > 0) additionally includes node costs
given by the PLC functions {φi}; therefore, the application of BP gives the novel algorithm
described next3.

3 Alternatively, by using the node splitting technique [20, p 41], one can transform (2) into a min-cost network flow
problem with PLC costs on edges, which can be solved using BP [21, theorem 6.1]. However, BP on the transformed
graph is different from algorithm 1 that we obtain here, see footnote 4.
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For each node i ∈ Vs, we define a function ψi that reflects the flow conservation constraint
at node i, i.e., it maps each vector z ∈ R

|Ei|
+ of edge flows to

ψi(z) =

⎧⎪⎨
⎪⎩

0, if
∑

e∈Eout
i

ze −
∑
e∈E in

i

ze = ri,

∞, otherwise.

Furthermore, we define

f i(z) = ψi(z) + w φi

⎛
⎝ ∑

e∈Eout
i

ze

⎞
⎠ ,

which additionally includes the load penalty for node i ∈ Vs. On the contrary, destination nodes
do not have any constraints and ‘accept’ any flows on their incoming edges, so we set f i(z) = 0,
for any i ∈ Vd and z ∈ R

|Ei|
+ . Next, we capture the cost and capacity constraint of edge e ∈ E

by introducing the function ge : R→ R ∪ {∞} given by

ge(z) =

{
(1 − w)cez, if 0 � z � ue,

∞, otherwise.

We can now reformulate (2) as the equivalent problem

minimize
x∈R|E|

∑
e∈E

ge(xe) +
∑
i∈V

f i(xEi ), (3)

where xEi includes those components of x with indices in Ei.
We apply the min-sum version of BP to solve (3). Given that each edge variable node has

exactly two neighbour function nodes from the set { f i}, we simplify the standard message
updates by defining the messages (4) in algorithm 1. At iteration t, for each node i ∈ Vs and
incident edge e ∈ Ei, where either e = (i, j) ∈ Eout

i or e = ( j, i) ∈ E in
i , the algorithm computes

the message mt
i→e, which becomes an input to neighbour j at the next iteration. Since f i is the

zero function for all i ∈ Vd, the messages computed by destination nodes do not change with t
and thus are not updated.

Algorithm 1 has the following interpretation. Every node is seeking to determine the flow on
each of its incident edges while satisfying its local flow conservation constraint and minimizing
its load. The message mt

i→e(z) can be viewed as a local cost that node i attributes to allocating
z units to edge e; thus, the message is a function of the flow. For any z, the message update
(4) includes: (i) the cost of sending flow z over edge e and (ii) the minimum cost of allocating
flows to the rest of the edges that are incident to i such that flow conservation is ensured. The
latter cost is the result of a local optimization, which looks for the feasible configuration of
the flows on the incident edges that minimizes an objective function that includes the cost of
the load of node i and the local costs (messages) estimated by the neighbouring nodes4. The
message updates have low-complexity, as we show next.

4 If using BP on the augmented graph obtained by node-splitting (see footnote 3), then mt
i→e effectively depends on

messages over incoming (if e ∈ Eout
i ) or outgoing (if e ∈ E in

i ) edges that were computed at t − 2, i.e., it uses outdated
information, which slows down convergence, as figure 2(c) shows.
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Algorithm 1. Distributed algorithm for balanced routing.

Input: The graph G(V , E), edge costs {ce} and capacities {ue}, data rates {ri}, and parameters α and w
Output: Estimates {x̂e}e∈E of the optimal edge flows of (2)
1: Initialize m0

i→e(z) = ge(z), for all i ∈ V , e ∈ Ei, z ∈ R+

2: for t = 1 to T do
3: For each i ∈ Vs and e ∈ Ei, update

mt
i→e(z) = ge(z) + min

z̃∈R|Ei|
+ :̃ze=z

{
fi(z̃) +

∑
e′∈Ei\e

mt−1
k→e′ (̃ze′ )

}
, (4)

for all z ∈ R+, where e′ = (i, k) or (k, i).
4: end for
5: For each e = (i, j) ∈ E , compute the belief function

bt
e(z) = mt

i→e(z) + mt
j→e(z) − ge(z) (5)

and determine its minimizer
x̂t

e = arg min
z

bt
e(z) (6)

6: return x̂t =
(

x̂t
e

)
e∈E

Proposition 1 (complexity). For each i ∈ Vs, e ∈ Ei and t � 1, the message mt
i→e is a

PLC function with breakpoints in {0, 1, . . . , ue}. The complexity of its update (4) is linear in
the total capacity of the input and output edges of node i and logarithmic in |E in

i | and |Eout
i |.

Proof. The proof is by induction on t. At t = 0, algorithm 1 initializes the messages to trivial
PLC functions. Suppose at iteration t − 1 all messages are PLC functions with integral break-
points. We provide the proof for mt

i→e with e ∈ Eout
i , as the case e ∈ E in

i is very similar. Let

ψ(1)
y : R

∣
∣
∣E in

i

∣
∣
∣ → R ∪ {∞}, y ∈ R, be

ψ(1)
y (z) =

⎧⎪⎨
⎪⎩

0, if
∑

e′∈E in
i

ze′ + ri = y,

∞, otherwise,

and define ψ(2)
v : R

∣
∣
∣Eout

i

∣
∣
∣−1 × R→ R ∪ {∞}, v ∈ R, given by

ψ(2)
v (z, y) =

⎧⎪⎨
⎪⎩

0, if y −
∑

e′∈Eout
i \e

ze′ = v,

∞, otherwise.

(7)

Now, we define the function

h(y) = min
z̃∈R|Ein

i |

⎧⎨
⎩ψ(1)

y (z̃) +
∑

e′=(k,i)∈E in
i

mt−1
k→e′ (̃ze′ )

⎫⎬
⎭+ wφi(y). (8)

The minimization in the rhs is a so-called interpolation of PLC functions whose complexity is
logarithmic in the number of functions and linear in the total number of their linear pieces [21].
Since mt−1

k→e′ has breakpoints in {0, 1, . . . , ue′} and φi is also PLC with integral breakpoints, it
follows that the function h is itself PLC with integral breakpoints and at most Uin

i pieces, where
Uin

i =
∑

e′∈E in
i

ue′ + ri; moreover, h can be computed in O(Uin
i log |E in

i |) operations. Now, we
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write (4)

mt
i→e(z) = ge(z) + min

z̃,y

⎧⎨
⎩ψ(2)

z (z̃, y) + h(y) +
∑

e′=(i,k)∈Eout
i \e

mt−1
k→e′ (̃ze′ )

⎫⎬
⎭ . (9)

Given that h and the messages at t − 1 are PLC with integral breakpoints, the interpolation in
the second line gives again a PLC function; its computation takes O

(
Ue

i log |Eout
i |

)
operations,

where Ue
i =

∑
e′∈Ei\eue′ . The addition of ge, which is linear in [0, ue], makes mt

i→e PLC with
integral breakpoints. �

We establish that algorithm 1 outputs the optimal solution after a finite number of iterations.

Proposition 2 (convergence). Suppose (2) has a unique optimal solution x∗5. Then,
there exists a finite integer T∗ such that the output of Algorithm 1 satisfies x̂t = x∗, for any
t � T∗.

Proof. Although our objective function (2) is different than that of the min-cost network
flow problem with linear (or PLC) edge costs, we can use the same proof strategy as in [21,
theorem 4.1, theorem 6.1]. The difference is that we need to define an appropriate residual
graph [20]. Denote by G(x) the residual graph of G(V , E) with respect to the flow x ∈ R

|E|.
G(x) has the same vertices V , while we define its edges and their costs as follows: for any
e = (i, j) ∈ E , if xe < ue, then e is also an edge in G(x) with capacity ue − xe and cost
cx

e = (1 − w)ce + w limz→0+ (φi(y + z) − φi(y)) /z, where y =
∑

e′∈Eout
i

xe′ is the load of node

i; if xe > 0, then G(x) additionally includes the directed edge e′ = ( j, i) with capacity xe and
cost cx

e′ = −(1 − w)ce + w limz→0− (φi(y + z) − φi(y))/z. At the unique optimal solution x∗,
all the directed cycles of the residual graph G(x∗) must have positive costs (according to the
negative cycle optimality criterion [20]). The proof relies on this property and follows the same
steps as that of [21, theorem 4.1]; therefore we omit the details. �

5. Numerical results

As an example, we consider a wireless sensor network consisting of n = 200 sensors that send
measurements to any of the m = 4 sink nodes (collectors). The wireless network is modelled by
a random geometric graph [23]. Specifically, the sensor nodes are independently and uniformly
distributed inside the unit square, while the sink nodes are placed to evenly cover the area, as

illustrated in figure 1. Any two nodes i and j that are spaced by less than
√

2 ln n
πn , which is on the

order of the critical connection range [24], are connected by the directed edges (i, j) and ( j, i).
In each trial, a new network realization is generated (we discard the network realizations that
are not connected). Then, we randomly select k sources out of the n nodes; the sources generate
information at unit rate, while the remaining n − k nodes act as relays. The cost associated with
each link is the ETX, which is drawn uniformly at random from the interval [1, 3].

For the proposed balanced routing scheme, algorithm 1, we select the parameter w such that
the two terms of the objective function (2) (representing the routing cost and the node load,
respectively) are somewhat balanced. For this, we impose the condition that, when a node

5 When the costs {ce} are generic (e.g., random), it is highly likely that (2) has a unique solution. Otherwise, it is
possible to add small noise to the costs such that the modified problem has a unique solution which very closely
approximates the solution of the original problem [21].
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Figure 1. A network instance generated from the considered random geometric graph
model; n = 200 nodes (circles) and m = 4 sink nodes (triangles); the edges of the graph
are represented by dotted lines.

Figure 2. Simulation results for n = 200, m = 4 and various fractions k/n of source
nodes: (a) Improvement of the total cost and maximum load relative to minimum-cost
routing; (b) Jain’s fairness index for the node loads; (c) empirical cdf of the minimum
number T ∗ of iterations required for algorithm 1 to converge when k/n = 0.3.

has a load of one unit which is forwarded over an edge of maximum cost, the two terms of the
objective function that correspond to this node should be equal; i.e., (1 − w)cmax = wφ(1) = w,
which gives w = 0.75.

We evaluate the total cost, the maximum of the node loads {yi}n
i=1, the Jain’s index,

J = 1
n

(∑n
i=1 yi

)2
/
∑n

i=1 y2
i ∈ [1/n, 1], as a measure of fairness in the distribution of the loads

and the empirical distribution of the minimum number T ∗ of iterations required for algorithm 1
to converge. We compare the results obtained using our algorithm against minimum-cost rout-
ing which is instantiated by setting w = 0 in algorithm 1. The results in figure 2 are obtained by
averaging from 200 independent trials. In figure 2(a), we observe that balancing with α = 1.25
reduces the maximum load by 25%–40% compared to minimum-cost routing across all frac-
tions of source nodes, while the total cost increases by no more than 6%. Increasing α to 1.5
brings larger reduction of the maximum load, of about 40%–50%, and a higher relative total
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cost of up to about 10%. Figure 2(b) shows that the balanced routing scheme provides signifi-
cantly fairer load-distributions. As illustrated in figure 2(c), the number of iterations required
to find a balanced solution is higher than for min-cost routing and increases with α. We also
evaluated BP on the graph transformed by node splitting (see footnotes 1 and 2) and, while it
outputs the same solutions, it requires a higher number of iterations than our method, as shown
in figure 2(c).

6. Conclusion

We formulated balanced routing in large-scale networks (such as internet of things) as opti-
mization of an objective function that provides a tunable trade-off between total cost efficiency
and fairness of the distribution of the node loads. In the proposed decentralized scheme, the
nodes collectively find the globally optimal routing solution through low-complexity local
computations and exchanges of messages with neighbours. The scheme provides significantly
fairer solutions than minimum-cost routing at the expense of slightly increased total cost and
higher number of required iterations.

There are several interesting directions to explore further, such as adapting the framework
to specific models of energy consumption, including in the design the notions of reliability,
trust among nodes and security, but also extending the framework to take into account the
scheduling of the transmissions.
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