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ABSTRACT Meta-modelling is a technique that facilitates the construction of new languages to be used in system development.
Although meta-modelling is supported by a number of tools and technologies, notably the Meta Object Facility from the OMG,
there is no widely accepted precise basis for meta-modelling that can be used to develop and study language-based approaches
to system development. Recent advances in meta-modelling have proposed several approaches to mixing types and instances,
and allowing constraints to hold over multiple levels. This article proposes a collection of key characteristic features that are
used to define a foundational self-contained unifying meta-language that is evaluated through several examples.
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1. Introduction
Meta-languages have a long and illustrious history in Computer
Science. They have been used for programming language def-
inition (Quinlan et al. 2019), controlling proof systems (Bry
2018), architecture description languages (Oquendo 2016), the
basis of tooling (Kon et al. 2002) and controlling and gener-
ating programs (Culpepper et al. 2019). Recently, motivated
by interest in Domain Specific Modelling Languages (Brand
et al. 2018) there is interest in meta-modelling languages for
language engineering (de Lara et al. 2015) as represented by
MOF and OMME (Volz & Jablonski 2010). These languages
provide concepts that are used to express modelling languages
as models, and typically provide mechanisms for expressing
types, relationships, properties, behaviour and constraints.

Given that a modelling language can be modelled, we might
expect there to be a self describing meta-language from which
all other languages can be generated. A single language will
support reuse of language fragments and entire languages that
can be quality assured. A single meta-language implies a sin-
gle API that facilitates tool reuse. A self-describing extensible
meta-language lifts the benefits of reuse and quality assurance
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to the level of modelling tools and their semantics: a simple
example is a property-based editor that can be used to interro-
gate any part of a multi-level model. A universal meta-language
that includes semantics and operational features provides a ba-
sis for both model and tool interoperability (Van Tendeloo &
Vangheluwe 2017a). Despite attempts to achieve this, for ex-
ample MOF, EMOF and EMF (Fouquet et al. 2012), and the
Modelverse (Van Tendeloo & Vangheluwe 2017b) a common
universal implementation-independent self-describing language
has yet to emerge.

Language definition consists of syntax and semantics. The
abstract syntax of a language is often expressed using a class-
based model. The semantics is given by attaching constraints to
the model. A typical example of an object-oriented constraint
modelling language is the Object Constraint Language (OCL)
(Liu & Özsu 2018; Cabot & Gogolla 2012; Richters & Gogolla
1998; Gogolla & Vallecillo 2019; Doan & Gogolla 2018) that
allows first-order logic formulas to be applied to instances of a
class, thereby requiring instances of the class to satisfy precisely
expressed conditions. As described in (Clark & Frank 2018;
Clark et al. 2015a), when OCL constraints are associated with
meta-classes, the conditions apply to classes, this provides a
way of expressing structural and behavioural semantics for a
language. Other systems of describing model-based constraints
have been proposed, for example (Pschorn et al. 2019; Gil et
al. 1999), however the semantics of the constraints are always
given by an external system and therefore not part of the model.

An AITO publication

http://dx.doi.org/10.5381/jot.2020.19.3.a11


One of the difficulties in achieving a common basis for
model-based language engineering is the problem of providing
a meta-circular description of constraints, which are necessary
for semantic definitions. Typically, meta-languages avoid the
problem, by representing constraints as external strings, for
example EXTREMO (Segura & de Lara 2019). As noted in
(Urbán et al. 2018):

For any practical modeling technique, having a con-
sistent and powerful operation language is more than
a desired feature. Such a feature enables models to be
truly self-contained by incorporating the semantics
and the dynamic nature of the models as their inte-
gral part, instead of relying on an externally provided
substitute.

The language DMLAScript motivates the need for a self-
describing language of operations, however the semantics of
the language are not described by the language itself. Object-
oriented language researchers have achieved meta-circularity,
for example (Cointe 1987, 1996; Herzeel et al. 2008), which
has been used as the basis of the XModeler meta-modelling tool
(Clark et al. 2015a,b). However, in both these cases, the key
features of self-description rely on implementation issues which
prevents the languages being self contained.

Extensibility in programming languages is facilitated through
a technique called bootstrapping (Polito et al. 2015) where a
collection of kernel objects are created that support compilation
and interpretation of the language. Extension points are pro-
vided by the bootstrap that can be used to modify the language
syntax and/or semantics. The authors (Polito et al. 2015) argue
that bootstrapping is:

A beneficial engineering practice because it raises the
level of abstraction of a program making it easier to
understand, optimise, evolve, etc.

In addition, many programming languages offer reflective fea-
tures (Herzeel et al. 2008) that, with or without bootstrapping,
provide access to (introspection) and the ability to modify (in-
tercession) a running program.

This article provides a step-by-step bootstrap of a meta-
circular language for language engineering. The basic represen-
tation for objects is similar to that of an object calculus (Abadi &
Cardelli 2012) although we do not consider type checking. The
aim of the language is to support the definition of many different
languages, all of which have the same (meta)*-representation
and whose semantics are defined using the same core concepts
that are based on a kernel meta-object-protocol (MOP). MOPs
have been used elsewhere to support programming language en-
gineering (Kiczales et al. 1991) and meta-modelling (Cuadrado
& de Lara 2018); the aim of this article is to combine the ben-
efits of both by applying programming language engineering
to modelling languages. The language is evaluated by showing
how it can build itself, can support multiple concrete syntax
definitions, and can define an extended meta-language based on
potency.

Section 2 provides a brief overview of meta-modelling, its
uses, and approaches to the issues related to mixing types and

Figure 1 OMG four-level meta-modelling hierarchy
(Henderson-Sellers & Unhelkar 2000)

instances. Section 3 describes a collection of requirements for
a universal language. Section 4 provides a step-by-step con-
struction of a language that satisfies the requirements. Although
the language is textual, many modelling languages provide a
graphical syntax; section 5 shows how the language can be used
to build graphical language syntax. Section 6 provides examples
of the language to build modelling languages.

2. Related Work
Engineering of information systems places an increasing em-
phasis on the use of models, either directly to aid design and
implementation, in a more formal sense for code generation
or as the backbone to model-driven engineering (MDE) (e.g.
(Sánchez-Cuadrado et al. 2012)) or model-based engineering
(Selic 2012).

Models must be described in some way; typically using a
notation (a.k.a. concrete syntax) associated with a modelling
language. The language itself may be defined in many ways
but typically a meta-model is used for this purpose e.g., (Kühne
2006; Henderson-Sellers 2011, 2012). That meta-model must
itself be defined, by a meta-meta-model. Together with the
instances conformant to the model, this leads to an identifica-
tion of four abstraction levels of interest to the modeller and
meta-modeller (Fig. 1). Although in use for over two decades,
a four-layer architecture like that of the Object Management
Group (OMG) raises some concerns for example strict meta-
modelling (Atkinson 1999, 1997) that constrains the instance-of
relation to only be permitted between pairs of conterminous lay-
ers and never within a layer. This led to a proposal (Atkinson &
Kühne 2003) to differentiate between so-called ontological and
linguistic meta-modelling as a means of addressing strictness
(Atkinson et al. 2011a,b).

Meta-modeling is used in a number of ways to support
language-based SE. These include:

language definition: A meta-model is a language that is used
to create models using general-purpose languages (GPL),
such as UML, where there is no pre-defined application
domain, and domain-specific languages (DSL), where the
languages support a particular application domain such as
telecoms or finance (Reinhartz-Berger et al. 2013). There
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may be mixtures of GPLs and DSLs and there are inter-
esting variations whereby a DSL can be categorised as
external where it is effectively stand-alone, or embedded
when it is used as part of a wider language. Meta-modelling
languages support multiple types of embedding, such as
homogeneous whereby the host language provides exten-
sion facilities for defining the embedded language, and
heterogeneous when the language extension is resolved
externally, perhaps through some form of library or rewrite
system (Clark & Tratt 2010).

language integration: Meta-modelling is often used to
achieve the integration of a number of disparate languages
by supplying a single data definition that allows elements
from one language to be referenced meaningfully from a
different language. The multiple languages of UML (UML
Profiles) are an example of this. In practical terms, a single
meta-modelling language also provides a uniform export
format that allows multiple independent tools to work to-
gether to form tool-chains.

methodology integration: A meta-model is a useful concep-
tual framework to provide the necessary links between the
language (and even language elements) and the process-,
product- and people-related aspects of the methodology
within which it will be used. For example, the ISO/IEC
24744 meta-model (Henderson-Sellers & Gonzalez-Perez
2008) provides the necessary constructs to state which
work products are expressed in what languages and who
and when are expected to create and use them during en-
actment.

uniformity: A uniform representation is key to providing a rich
collection of tools that support the system development
process. Given the rise of domain-specific techniques, it
is important that freshly minted languages integrate with
existing languages as described above. It is also important
that modelling tools do not become obsolete as new lan-
guages are developed. For example, model editors or code
generators that rely on general structures of languages
should run against a wide range of current and future
language definitions. Therefore, a key feature of meta-
modelling technologies is that tools can be written against
a uniform representation.

There are a number of current approaches to meta-modelling:

strict meta-modelling: As noted above, instances, models and
their meta-models exist in different domains that cannot
mix freely.

clabjects: Soon after the publication of the first version of the
UML in 1997, concerns were raised about the notation used
that was not consistent across models and meta-models.
This led to the idea of potency associated with the notion
of deep instantiation (Atkinson & Kühne 2001; De Lara
& Guerra 2010; de Lara et al. 2012), also introducing the
idea of an entity with both a class facet and an object facet,
given the name clabject (Atkinson 1999).

OCA: Researchers have proposed two different kinds of meta-
model structures: ontological meta-modelling in contrast
to the linguistic meta-modelling utilized in a strict meta-
modelling architecture. This was later called the Orthogo-
nal Classification Architecture (OCA) (Atkinson & Kühne
2005) extended to become Pan Level Model (PLM) and
the Level-agnostic Modeling Language (LML) (Atkinson
et al. 2011a).

powertypes: The need to provide access to, and control over,
the meta-types of elements in a model when designing
languages led to proposals for powertypes (Gonzalez-Perez
& Henderson-Sellers 2006; Henderson-Sellers & Gonzalez-
Perez 2005). This is a methodological approach that uses
standard classes both conventionally and as meta-classes by
disciplined use of instance-of associations. The approach
allows the modeller to control attribute definitions at M2
that affect the properties in model elements at M1.

As described in (Jácome-Guerrero & de Lara 2020) the need for
creating models containing elements from multiple type levels
is increasingly recognised. This has led to a number of tools
including DeepTelos (Jeusfeld 2019), FMMLx (Clark & Frank
2020), Melanee (Atkinson & Gerbig 2016) and MetaDepth
(De Lara & Guerra 2010). However, in many cases these ap-
proaches are based on annotations added to a model to indicate
the type level at which the information is to be defined and the
core meta-language is not exposed to the modeller, preventing
them from defining and using a family of languages. Where the
meta-language is exposed, it does not address execution in any
sense. Our aim is to provide a unifying meta-language that can
be used to explain and compare the key semantic features of
tools and approaches described above.

3. Domain Analysis
Reflection has been studied by several programming language
and technology platform researchers leading to a collection of
language requirements (Ancona & Cazzola 2004). Although
the contribution of this paper relates to the specification of
model-based languages for describing systems, the requirements
provide a basis as a domain analysis for the language presented
in the rest of the article. This section presents the requirements
that will be reviewed when the language is evaluated in section
6. The reflective language requirements are as follows:

introspection: The ability of a system to reason about its own
state. This implies that there is a representation for those
aspects of the system that can be introspected, and full
meta-circularity implies that the whole system can be rea-
soned about to any level of detail. In the case of the lan-
guage presented in this article, all data is represented by
objects whose properties are available for inspection.

intercession: The ability of a system to change its own struc-
ture or behaviour. The language presented in this article
is used to specify modelling languages and therefore inter-
cession occurs in terms of the ability to change expression
evaluation through an object-oriented MOP (Chari et al.
2018).
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referents: Used to describe the features of a system that are
reflected. A meta-circular language places a requirement
that the referents used in introspection and intercession are
represented in the same way at each level of the reflective
tower. The language presented in this article uses objects
to represent all features including basic atomic data, col-
lections and operations. Thus when any of these items are
reflected, the resulting referents are also objects.

reflective tower: The levels that are traversed when introspec-
tive steps are performed. In general this raises a question
regarding the top-most level in the tower, however a meta-
circular system has an additional requirement that the top-
most level is self-describing supporting an infinite number
of levels through a loop.

reification: The act of reflecting on a particular language ele-
ment or state of computation. For programming languages
with computational state, this raises an interesting chal-
lenge because referents must be found for otherwise hidden
parts of the execution machinery. For a specification lan-
guage this is less challenging because system descriptions
are state-less.

Modelling languages are organised around concepts as exem-
plified by MOF (Favre & Duarte 2016) including classes, asso-
ciations, operations, constraints, attributes, and packages. Our
proposal is that, in order to achieve the meta-circular features
defined above, all of these concepts can be implemented in
terms of objects that support the following concepts:

type: Each object is an instance of exactly one type. It must
be possible to reflect and produce a referent to the type of
an object. One approach to achieve an infinite reflective
tower is for the type referent to also be an object.

slot: Each object contains a collection of slots. It must be
possible to reflect on an object’s slots, each of which will
also be objects.

classification: A type will classify a collection of objects. This
is the basis for model-based specification where constraints
are used to define the semantics of the model instances.
Recently there has been interest in deep classification of
models (Atkinson & Kühne 2015) that traverses multiple
type levels.

message passing: The behaviour of objects are given by op-
erations that are invoked as a result of message passing.
Reflection requires that referents are provided to the opera-
tions whose structure can be accessed through object-based
operations including an object-based representation for an
expression language.

collections Objects are grouped together using collections. Col-
lections are used as the glue that is used to build models
(packages) and model-instances (snapshots). Introspection
and a reflective tower is achieved by making collections
objects.

views: Modelling languages make a distinction between ab-
stract and concrete syntaxes. A concrete syntax is some-
times referred to as a view on the abstract syntax and it
must be possible to define views over models.

integration: Meta-modelling is often used to achieve the in-
tegration of a number of disparate languages. This has
recently been referred to as globalising modelling lan-
guages (Combemale et al. 2014). A single meta-modelling
language also provides a uniform serialisation format that
allows multiple independent tools to work together to form
tool-chains.

Together these form the requirements for the meta-circular lan-
guage defined in the rest of this article.

4. A Meta-Modelling Kernel
Our proposal is to bootstrap a reflective, extensible system
whereby everything is an object. This is an idea first proposed
by the creators of Smalltalk and analysed in the context of
system modelling in (Bézivin 2005). We aim for a simple set
of rules supporting configurations of objects that constitute
self-describing languages. The system consists of a simple
object-representation and sugarings that are convenient lan-
guage structures that de-sugar into the basic representation.
This section defines the kernel of the system and shows that it
is self-consistent.

4.1. Object Representation
Everything is an object. An object is denoted (T)[n 7→ o;...]

where T is a type, n is a name, and o is an object. A simple
example of an object is a two-dimensional point: (Point)[x 7→
10;y 7→ 20]. Note that the type Point and the values 10 and
20 are all objects. The identifiers x and y name slots and slot
reference uses the infix _._ operator: therefore, given a suitable
definition for object equality =, if p is the point object defined
above then p.x=10 and p.type = Point.

Each object has an identity i that can optionally be refer-
enced, as in the object (T,i)[...]. In addition, an object’s
slots may be omitted when we write it out, therefore, (Point,
p1)[x 7→ 10] and (Point,p1)[x 7→ 10;y 7→ 20] refer to the
same object.

Note that the value 10 is itself an object of type Int. Each
integer is a distinguished object. Again, with reference to a
suitable equality operator it must be the case that if (Int,i)[..
.] = (Int,j)[...] then the two identities must be the same.
It is convenient if we conflate each integer with its identity. The
same applies to all standard atomic datatypes such as booleans
and characters.

Collections of objects are organized into list-objects that are
either (Nil)[] or a pair (Pair)[head 7→h;tail 7→t] for some
objects h and t. Lists provide an obvious opportunity for sugar,
where↔ means syntactically equivalent to:

1 [] ↔ (Nil)[]
2 [o] ↔ (Pair)[head 7→ o; tail 7→ []]
3 [h | t] ↔ (Pair)[head 7→ h; tail 7→ t]
4 [h,o,...] ↔ (Pair)[head 7→ h; tail 7→ [o,...]]
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Lists can be concatenated using _+_ and support a collection of
operations that are described in section 4.5. It is convenient to
be able to construct and manipulate lists using comprehension
expressions. For example, if l is the list [2,3,4] then [x*2 |

x ← l] is the list [4,6,8].
A slot is an object (Slot)[name 7→ n; value 7→ v] which

has the sugared form n 7→ v. The slot slots is used to ex-
tract the slots of an object as instances of the type Slot. For
example:

1 (Point)[x 7→ 1; y 7→ 2].slots = [’x’ 7→ 1, ’y’ 7→ 2]

4.2. Object Views

Beyond trivial models, rendering everything as an object will
obviously become unworkable due to the number of objects
and their relationships. Therefore, we seek a means to address
the usability of the approach. Our proposal is to treat objects
as abstract data and to define all concrete representations of
objects as views that must be precisely defined with respect to
the abstract data type for objects.

In this way, we can have multiple views over the same objects.
General purpose views, such as UML object diagrams, can be
defined that apply to any object configuration. Other views may
be partial, for example UML class diagrams, but still work with
a wide range of object configurations providing they conform to
some general pattern. Domain specific views can be defined for
configurations of objects that exhibit very specific properties.
Note that the relation between object configuration and concrete
view will be one-to-many. Views may be textual, graphical or a
mixture of the two.

Concrete views of the abstract object representation are es-
sentially relations between two models. The relation itself is
a model and can be defined independently of the two models
it relates. Section 5 shows how diagrams can be defined using
this approach. Not all models have a convenient graphical rep-
resentation, so we shall start by outlining how textual languages
can be constructed for configurations of objects. The usual way
of defining such relationships is to use grammars, however a
simpler and more abstract approach can be used by inverting
the relationship: specify the abstract representation by mapping
to a string using an operation called display.

The following is a simple example for two-dimensional
points where pattern matching is used to extract the values
for slots named x and y, and + is used to concatenate strings:

1 display((Point)[x 7→ v; y 7→ w]) =
2 ’(’ + v + ’,’ + w + ’)’

Now it is possible to use the notation (1,2) instead of (Point)
[x 7→1; y 7→2]. As described below, operations are defined by
classes and invoked by message passing. We assume that there
is a suitable definition of display for all classes, for example:

1 (Point)[x 7→ 1; y 7→ 2].display() = ’(1,2)’

In addition, l.displays() omits the leading [ and trailing ]

of a list by producing a string containing the display of each
element in the list l separated by commas.

4.3. Operations: Invocation
Consistent with all object-oriented approaches, the class of an
object defines named operations that may be invoked using
the n-place _._(_, . . . , _) operator. A small number of such
operations are built-in, but most are defined using the features
of the kernel.

All the basic data-types, such as integer and boolean, have
the expected operations, for example 1.+(2)=3, which can be
conveniently written 1+2=3. Consider + as a built-in operator;
as such it is a supplied function consisting of a set of triples
(o, a, r) where o is the target, a is a list of arguments and r is
the result. The kernel will detect the use of such built-ins and
use the designated set of triples appropriately.

There is an important built-in operation called send that
can be used to send messages to a target. It is important for
meta-circularity that any built-in can also be sent using send,
therefore: i.+(j)=i.send(’+’,[j]). Furthermore, it must be
the case that o.send(m,a)=o.send(’send’,[m,a]).

Note that since the language supports execution, there is
the possibility for errors where the wrong type of argument is
presented to operators. Two, not necessarily distinct, approaches
present themselves: (1) perform static type analysis; (2) perform
dynamic type analysis. Static analysis is challenging in such a
meta-circular language system and is left as a separate research
activity. Dynamic analysis is possible, but would require type
checks to be inserted when identifiers are introduced (such as
function arguments) and require an error handling protocol to
be defined. The latter is assumed to be possible, but omitted
since it would introduce additional orthogonal features to the
language.

4.4. Expressions and Constraints
An expression is an object that supports an operation eval

with a single argument, a list of slots called an environment,
mapping free variables to their values. Constraints are boolean
expressions that apply to configurations of objects. Classes use
constraints to define instance-hood for candidate objects, i.e.,
whether a given object can be considered to be an instance of a
particular class.

Constraints are objects that conform to a particular interface
that is defined by an abstract class Constraint. For example:

1 (Greater,c)[
2 left 7→ (Add)[
3 left 7→ (Int,10)[];
4 right 7→ (Int,20)[]];
5 right 7→ (Int,2)[]
6 ]

is a constraint. For convenience, constraint views are defined
using the usual expression-based representation: c = 10 + 20

> 2. An expression may include variables such as 10 + 20 > x

where a variable is an object (Var)[name 7→ ’x’].
Constraints are attached to a class and have a designated vari-

able that will be supplied with the value of a candidate object. If
the expression evaluates to true then the candidate is classified
by the class. This, in conjunction with meta-circularity, allows
the kernel to impose structural conditions on objects, even those
that are part of its own definition. A simple example is the
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classification constraint of Point that requires the candidate to
have two slots with names x and y whose values are classified
in turn by the class Int.

4.5. Operations: Definition
Operations are parameterised expressions. They serve to ab-
stract over patterns of expressions and form the basis of queries
over objects. Note that there is no notion of side-effect built into
the kernel, and therefore no notion of state-based execution.

Consider defining a simple operation to determine whether
an element exists in a list. The operation has the form:

1 (Operation,o)[
2 env 7→ [member 7→ o];
3 args 7→ [
4 (Arg,e)[name 7→ ’element’],
5 (Arg,l)[name 7→ ’list’]
6 ];
7 body 7→ (If)[
8 test 7→ (Eql)[
9 left 7→ e;

10 right 7→ (Dot)[
11 object 7→ l;
12 name 7→ ’head’
13 ]
14 ];
15 conseq 7→ true;
16 alt 7→ (Apply)[
17 op 7→ (Var)[name 7→ ’member’];
18 args 7→ [
19 e,
20 (Dot)[
21 object 7→ l;
22 name 7→ ’tail’
23 ]
24 ]
25 ]
26 ]
27 ]

Notice that the operation makes use of self reference in order
to recursively process the list. The recursion occurs through
the closed-in environment that is part of an operation. Concrete
syntax makes the object easier to work with:

1 λ[member](element,list)
2 if element = list.head
3 then true
4 else member(element,list.tail)

The symbol λ introduces an operation. It is followed by an
optional name within [ and ] that can be used for self reference.
This is followed by the argument names, and finally the opera-
tion body. Since operations are objects just like everything else,
we are free to mix objects and operations.

Operations form the basis of a wide range of list-
manipulation. The following list operations are provided: ∀
where l.∀(p) is true when the predicate p returns true for
each element in the list l; ∃ where l.∃(p) is true when the
predicate p returns true for any element in the list l; l.∃!(p) is
true when the predicate p returns true for exactly one element
in the list l; filter where l.filter(p) is the list created by
removing each element in turn that does not satisfy the predicate
p; 3 where l.3(x) is true when the element x is contained in the
list l; select where l.select(p,a,y) is the result of applying
operation a to the first element x of l for which p(x) is true and

y if no such element exists; flatten where l.flatten() ex-
pects l to be a list of lists and returns a list formed by appending
all elements of l in order. # maps a list to its length.

Arguments of an operation will support patterns so that when
the operation λ((C)[s 7→ v])e is supplied with an object of
type C it extracts the value of the slot named s and binds it to
the name v for the execution of the body e.

4.6. Naming, Scoping and Recursion
Objects can refer to themselves via their identity:

1 (Pair,ones)[
2 head 7→ 1;
3 tail 7→ ones
4 ]

producing the list [1,1,1,...] The scope of such names is
limited to the body of the object being defined. Therefore,
the name ones above is limited to the values of the slots head
and tail. Mutual recursion can be achieved in such a system
if we assume that objects that wish to refer to each other are
surrounded by an enclosing definition that itself is recursive, for
example:

1 (Object,defs)[
2 ones 7→ (Pair)[
3 head 7→ 1;
4 tail 7→ defs.twos
5 ];
6 twos 7→ (Pair)[
7 head 7→ 2;
8 tail 7→ defs.ones
9 ]

10 ]

producing the list [1,2,1,2,1...].
Where an object contains named elements, we will typically

use nested slots. Therefore, a dictionary can be constructed as:

1 (Dictionary,dict) [
2 a 7→ (Object)[...],
3 b 7→ (Object)[...],
4 lookup 7→ λ(k,d)
5 dict.slots.select(
6 λ(s) s.name = k,
7 λ(s) s.value,
8 d)
9 ]

Containers of named elements such as classes and packages
support an operation called lookup which is supplied with a
name and and a default value, and returns the value of the
element with the supplied name or else returns the default value.
The expression dict.lookup(’a’,d) is written dict::a to be
consistent with namespace syntax in modelling languages such
as UML.

4.7. Classification
A class is an object that classifies its instances. The classifica-
tion relation is defined using constraints. The following is an
object that classifies two-dimensional points:

1 (Class,Point)[
2 name 7→ ’Point’;
3 supers 7→ [Object];
4 attributes 7→ [
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5 (Attribute)[name 7→ ’x’; type 7→ Int],
6 (Attribute)[name 7→ ’y’; type 7→ Int]
7 ]
8 ]

Note that the classifier of this object is Class and therefore
such an object is termed a class. As in most object-oriented
systems, the class has a name, super-classes, and defines some
attributes that determine the slots that instances of the class must
have. Features are inherited by sub-classes. Since classes are
ubiquitous the following syntax is defined:

1 display((Class)[ name 7→ n;
2 supers 7→ S;
3 attributes 7→ A;
4 constraints 7→ C;
5 operations 7→ O]) =
6 ’class ’ + n + ’ extends ’ + S.displays() + ’{’ +
7 A.displays() +
8 ’constraints {’ +
9 C.displays() +

10 ’}’ +
11 ’operations {’ +
12 O.displays() +
13 ’}’ +
14 ’}’

This leads to a fairly standard class-definition construct. The fol-
lowing class definition uses the new syntax for two-dimensional
points:

1 class Point extends Object {
2 x:Int;
3 y:Int;
4 operations {
5 display() =
6 ’(’ + x.display() + ’,’ + y.display() + ’)’
7 }
8 }

An important feature of classes is their ability to classify their
instances. Every class defines a collection of constraints that
must evaluate to true for any instance of the class. The can-
didate instance is supplied to the constraint as the value of the
variable self and the slot-values of the candidate are available
as variables with the same name as the slots:

1 class PosPoint extends Point {
2 constraints {
3 x >= 0 and y >= 0
4 }
5 }

Now it is possible to check for any specific instance whether
it conforms to the type or not: PosPoint.instance?((10,20))
=true and PosPoint.instance?((-10,20))=false. For every
class C there is a predicate C? that is defined by C? = λ(o) C.

instance?(o).
A class may define operations that are available to its in-

stances:

1 class Point extends Object {
2 x:Int;
3 y:Int;
4 operations {

5 distance(p) =
√
(x− p.x)2 + (y− p.y)2

6 }
7 }

Now (0,0).distance((2,3))=3.61. The class Attribute is
defined:

1 class Attribute extends Object {
2 name:Str;
3 atype:Class;
4 operations {
5 display() = name + ’:’ + atype.name
6 }
7 }

The class Operation is defined with attributes me being the
name used for recursive invocation within the operations, env
containing bindings for free variables in the body, a sequence
of argument names and a body. When the operation is invoked
it is supplied with the target of the invocation that will be bound
to the name self when the body is evaluated together with the
argument values:

1 class Operation extends Object {
2 me:Str;
3 env:[Slot];
4 args:[Arg];
5 body:Exp;
6 operations {
7 invoke(target,values) =
8 body.eval(env +
9 [’self’ 7→ target] +

10 [me 7→ self] +
11 target.slots +
12 target.type.ops() +
13 [a 7→ v | (a,v) ← args * values])
14 }
15 }

A class c has an ordered list of super-classes c.supers. The
kernel uses this relation to implement inheritance so that each
feature defined by a super-class is available in the sub-class.
For example, an attribute defined by a super-class is used when
calculating the slots of an instance of a sub-class. The usual
requirement that there are no cycles in the inheritance relation
for a class is enforced. The super-classes of a class defaults
to [Object]. Given that there are potentially multiple super-
classes for c, the inheritance relation is a lattice where certain
features may occur multiple times. There seems to be no agreed
way to resolve such repetitions: some languages force explicit
resolution, others impose a resolution rule. Given that the se-
mantics of inheritance is extensible in the kernel, we provide a
default rule: repeatedly inherited classes are resolved to their
final occurrence in a left-to-right depth-first lattice traversal.
Where named elements are redefined in different classes that
occur in the flattened lattice, the first occurrence overrides later
occurrences.

4.8. Meta-Types
The classifier of an object is also an object. Therefore, classes
have classes and so on. Such an arrangement is an example
of a golden braid: instance, class and meta-class (Hofstadter
1979). The meta-class Class is used as the classifier of the
class Point. The kernel relies on a self-describing golden-braid.
The following class is used to classify lists of the same type of
element:

1 class Listof extends Class {
2 etype:Class;
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3 operations {
4 instance?(o) =
5 o.list?() and o.∀(λ(x) etype.instance?(x))
6 display() = ’[’ + etype.name + ’]’
7 }
8 }

The definitions given so far are sufficient to define the meta-class
Class as an instance of itself. Note that we will incrementally
define the class and use def C::o(a...) = e to mean an opera-
tion named o that is owned by class C.

1 class Class extends Object {
2 name : Str;
3 supers : [Class];
4 attributes : [Attribute];
5 operations : [Slot(Operation)];
6 constraints : [Constraint];
7 }

The operations for Class define what we mean by inheritance
of features and the structural relation that must hold between a
class and its instances. We define a class to inherit from another
class c as follows:

1 Class::supers() =
2 [self] +
3 [c | p ← supers; c ← p.supers()].remDups()
4 Class::inherits?(c) = supers().3(c)

The super-classes of a class are used to define all the attributes
and constraints that are available to it:

1 Class::atts() = [a|c ← supers(),a ← c.attributes]
2 Class::ops() = [b|c ← supers(),b ← c.operations]
3 Class::cond() = [a|c ← supers(),a ← c.constraints]

A class is able to check whether it classifies a candidate object.
The instance? relation checks that the candidate has a type
that inherits from the receiver, checks that slots of the candi-
date match the attributes of the receiver and checks that all the
constraints of the receiver hold for the candidate:

1 Class::instance?(o) =
2 o.type.inherits?(self) and
3 atts().∀(λ(a)
4 o.slots.∃!(λ(s)
5 s.name = a.name and
6 a.type.instance?(s.value))) and
7 o.slots.∀(λ(s)
8 atts().∃!(λ(a)
9 s.name = a.name and

10 a.type.instance?(s.value))) and
11 cond().∀(λ(c)
12 c.eval([self 7→ o] +
13 [s.name 7→ s.value | s ← o.slots]))

The definition of Class works in conjunction with Object to
ensure that all instances are correct:

1 class Object {
2 type:Class;
3 slots:[Slot];
4 constraints {
5 type.instance?(self)
6 }
7 operations {
8 dot(n) =
9 slots.select(λ(m 7→ _) n=m,λ(_ 7→ v) v, error)

10 send(n,vs) =
11 type.ops().select(

12 λ(m 7→ (Operation)[args 7→ as])
13 n=m and #vs = #as,
14 λ(_ 7→ f)
15 f.invoke(self,vs),
16 error)
17 display() =
18 ’(’ + name(type) + ’)’ +
19 ’[’ + displays(slots) + ’]’
20 }
21 }

The operations dot and send describe how the operators _._

and _._(_,...,_) behave and provide the meta-object protocol.
Just as atomic data are viewed as being governed by external
rules, the expected behaviour is defined for any object whose
slot access and operation invocation would be governed by the
definitions given above. This does not preclude sub-classes
of Object from redefining either of these operations, thereby
providing language-centric MOPs.

Meta-classes can manipulate objects in terms of their funda-
mental components via type, id and slots. These slot names
are axiomatic and have special meaning so that we can drill
into object-structures to any depth without encountering data
types that are unknown within the world of the kernel. The
axiomatic intern operator is provided in order to restore the
balance. Given an object o, the following rule must hold:

1 o = intern(o.type,o.id,o.slots)

4.9. Snapshots and Packages
The notion of object as a particular instance of a class can be
generalised to the idea of a snapshot (object container) being an
instance of a package (class container). This forms the basis of
a wide range of specialised types of model.

A package is a class container and therefore specialises Class
with a new attribute classes. The parents of a package must
all be packages and the attributes of a package must all refer to
classes defined by the package. The definition of inherits? is
specialised to require that every class in a package extends a
class in a parent package:

1 class Package extends Snapshot, Class {
2 constraints {
3 objects.∀(Class?);
4 attributes.∀(λ(a)
5 objects.3(a.atype));
6 supers.∀(λ(p)
7 p.type.inherits?(Package)) }
8 operations {
9 display() = ... as shown concretely below...

10 allObjects() =
11 objects +
12 [ p.objects | p ← supers ].flatten()
13 inherits?(p) =
14 objects.∀(λ(c)
15 p.allObjects().∃(λ(s)
16 c.inherits?(s)))
17 instance?(o) =
18 o.type.inherits?(Snapshot) and
19 o.package.inherits?(self) and
20 o.objects.∀(λ(o)
21 objects.∃(λ(c)
22 c.instance(o))) and
23 Class::instance?(intern(self,o.slots))
24 }
25 }
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A snapshot is an object container that refers to a package in
order to classify its contents. Since the slots of the snapshot
itself are used for managing the relation between the objects it
contains and the package that classifies those objects, an extra
attribute called bindings is defined that can be used to name
the objects in the snapshot. A constraint is used to ensure that
the package correctly classifies the snapshot:

1 class Snapshot extends Object {
2 package:Package;
3 objects:[Object];
4 bindings:[Slot];
5 constraints {
6 package.instance?(self);
7 bindings.∀(λ(b)
8 objects.contains?(b.value))
9 }

10 operations {
11 display() = ... as shown concretely below ...
12 lookup(k,d) =
13 bindings.select(
14 λ(s) s.name = k,
15 λ(s) s.value,
16 d)
17 }
18 }

We can define some syntax for snapshots and packages. The
following package defines a simple model for people and their
pets. Since a package is also a snapshot, we must define its
meta-package, in this case Kernel. The name of the package is
People:

1 package People:Kernel
2 class Person {
3 name:Str;
4 pets:[Animal]
5 }
6 class Animal {
7 type:Str
8 }
9 }

The following snapshot is an instance of People

1 snapshot s:People {
2 (People::Person,fred)[
3 name 7→ ’Fred’;
4 pets 7→ [s::fido]
5 ];
6 (People::Animal,fido)[
7 type 7→ ’Dog’
8 ]
9 }

Packages provide the basis of languages. Extensions of Kernel
contain meta-classes that can be used in models. For example,
classes in OCL expressions can be used to refer to all their
instances: C.allInstances(). The following package extends
Class with a list of its instances:

1 package IKernel:Kernel extends Kernel {
2 class IClass extends Class {
3 instances:[self];
4 }
5 class IPackage extends Package {
6 constraints {
7 objects.∀(IClass?)
8 }
9 operations {

10 instance?(o) = ... as before... and

11 o.objects ⊆
⋃

c∈objects
c.instances

12 }
13 }
14 }

Models based on IKernel rather than Kernel create instances
of IPackage instead of instances of Package. The new form of
package requires each class to have a slot named instances

that manages a list of their instances. Furthermore, any snapshot
that is an instance of an IPackage can only contain objects that
are elements of the class-instance lists.

4.10. Meta-Circularity
The kernel definition is completed with the following meta-
circular definition for the package Kernel (assuming atomic
types such as Str are builtin):

1 package Kernel:Kernel {
2 class Object { ... }
3 class Slot { ... }
4 class Class { ... }
5 class Constraint { ... }
6 class Operation { ... }
7 class Arg { ... }
8 class Exp { ... }
9 class Listof { ... }

10 class Pair { ... }
11 class Nil { ... }
12 class Attribute { ... }
13 class Snapshot { ... }
14 class Package { ... }
15 }

where the definitions for the classes have been given in the
preceding sections. Bootstrapping the Kernel is achieved by
creating a recursive data structure from basic objects that is
consistent with the definition given above, together with an
evaluator described below.

Figure 2 shows an evaluator for the kernel language. The
function eval accepts a kernel expression e and an environment
ρ and evaluates e in the context of ρ. The evaluator proceeds by
case analysis on the expression e.

If e is an object expression then the result is a new object
(note that operators starting with an upper-case letter are data
constructors). The object references itself using the recursion
operator Y.

A dot-expression handles the pseudo-slots type, slots and
id specially. The dot function checks whether the value o has
redefined the operation dot and uses message passing to invoke
the redefined operation. If dot has not been redefined then the
interpreter can handle the slot access directly.

A send-expression is handled specially in the case that the
message is invoke and the target is an instance of Operation.
In that case the interpreter can handle the message using eval.
In the case of +, the interpreter can directly handle addition of
numbers. The ellipses indicate that all other built-in operators
such as + are handled in the same way.

The essential interpretive actions are: invocation, slot-access
and message-passing. Note how checks are performed by the
interpreter that allow the basic definitions for these actions to be
redefined. Note also that the definitions of operations in kernel
classes Operation and Object are consistent with the default
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1 eval(e,ρ) =
2 case e {
3 ObjExp(c,i,ss) −→ Y(λ(o) Obj(eval(c,ρ[i 7→ o]),[n 7→ eval(e,ρ[i 7→ o]) | Slot(n,e) ← ss]))
4 DotExp(e,n) −→ dot(eval(e,ρ),n)
5 SendExp(e,n,es) −→ send(eval(e,ρ),n,[eval(e,ρ) | e ← es]
6 InternExp(e1,e2) −→ Obj(eval(e1,ρ),eval(e2,ρ))
7 OpExp(i,ns,e) −→ mkOp(ρ,i,ns,e)
8 }
9

10 dot(o,n) =
11 if redefinesDot?(o)
12 then send(o,’dot’,[n])
13 else
14 case n {
15 ’type’ −→ type(o)
16 ’slots’ −→ slots(o)
17 ’id’ −→ id(o)
18 else getValue(getSlot(o,n))
19 }
20

21 send(o,n,vs) =
22 if redefinesSend?(o)
23 then send(o,’send’,[n,vs])
24 else
25 case n {
26 ’invoke’ −→
27 if isOp?(o)
28 then eval(dot(o,’body’),
29 dot(o,’env’) +
30 [dot(o,’me’) 7→ o, ’self’ 7→ head(vs)] +
31 [ n 7→ v | (n,v) ← dot(o,’args’) * head(tail(vs)) ] +
32 dot(o,’slots’) + send(type(o),’ops’,[]))
33

34 else send(o,’send’,[’invoke’,[n,vs]])
35 ’+’ −→ if numbers?(vs)
36 then add(vs)
37 else send(getOp(o,n),’invoke’,[o,vs])
38 ...
39 else send(getOp(o,n),’invoke’,[o,vs])
40 }

Figure 2 Meta-Circular Kernel Evaluator

actions of the interpreter. In addition note that the interpreter
supports reflection in the sense that data in the interpreter (ρ for
example) is available as slot-bindings. These features result in a
meta-circular kernel.

In order for this to be meta-circular, we require that Kernel?(
Kernel) holds. This is difficult to establish without tooling since
all the objects in the definition must be checked against their
classes, and, since the classes themselves are part of the package,
this requires the classes to be self-describing. The Kernel has
been implemented as part of the XModeler toolkit1 and has
been used to implement the rest of the toolkit including diagram
tools, model browsers, model editors, model transformers and
libraries. The XModeler Kernel contains many more classes
than the language described in this article, but the essential
features are the same. XModeler can be instructed to apply the
Kernel-defined constraints to itself (over 100 classes) and to
produce a report that shows that it is self-consistent.

1 https://www.wi-inf.uni-duisburg-essen.de/LE4MM/

5. Concrete Syntax, Views and Diagrams

Languages are defined in terms of their abstract syntax and their
concrete syntax. The abstract syntax is a machine-oriented view
of the language that can be conveniently stored and manipulated
by an algorithm. The concrete syntax is a human-oriented view
of the language and consists of rules that govern how the ab-
stract syntax is displayed on the page or the screen. Note that
it is not possible to denote elements of a language abstractly;
as soon as we make a mark on a page or screen, we are using a
concrete syntax. This leads us to the conclusion that a language
consists of a single abstract syntax, concretely expressed as a
data model, and potentially many concrete syntaxes with a web
of relationships holding the models together. To be specific,
consider a traditional programming language, the abstract syn-
tax is concretely defined as a collection of data type definitions,
the concrete syntax is concretely defined as a BNF grammar
and the parser defines a relation that holds the two together.

Modelling languages of the kind we are considering have
an abstract syntax whose instances are objects and links. A
convenient way to concretely represent such an abstract syntax
is as a class diagram or as a text definition. We refer to both of
these as views of the language, neither being more important
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than the other. Consider the class diagram: it is essentially a
graph where nodes are labelled with boxes and text. Therefore,
we can create a model of such diagrams and concretely represent
that model as a class diagram. The modelling language must
be related to the class diagram model; this can be achieved (as
shown below) as a relationship model R that re-uses existing
language constructs. Therefore, the model of class diagrams is
related to itself via R. Again, we find that meta-circularity has
appeared since the model of class diagrams is represented as a
self-describing class diagram.

Concrete syntax can take many forms. Earlier examples in
this article showed a display() operation used to implement
the relation between models and the very simple concrete syntax
model for strings. Diagrams are used extensively for models
in order to convey structure and relationships (Moody 2009);
therefore this section addresses diagrams and how concrete
syntax models of diagrams can be related to the abstract syntax
models of a language. In principle, a diagram can show objects
from any mixture of different levels in the golden braid. The
following is a simple package that represents diagrams based
on graphs:

1 package Diagrams:Kernel {
2 class Diagram extends Object {
3 N:[Node];
4 E:[Edge];
5 constraints {
6 [ e.src | e ← E ] ⊆ N;
7 [ e.tgt | e ← E ] ⊆ N
8 }
9 class Node extends Object {

10 x:Int;
11 y:Int;
12 width:Int;
13 height:Int;
14 operations {
15 above?(n) = y > n.y + n.height
16 isIn?(n) =
17 isIn?(n.x,n.y) and
18 isIn?(n.x + n.width, n.y + n.height)
19 isIn?(x!,y!) =
20 x! >= x and
21 x! <= x + width and
22 y! >= y and
23 y! <= y + height
24 }
25 }
26 class Box extends Node {
27 contents:[Node];
28 constraints {
29 contents.∀(λ(d)
30 isIn?(d)) and
31 width=max([d.width | d ← contents]) and
32 height = max([d.height | d ← contents])
33 }
34 }
35 class Text extends Node {
36 text:Str;
37 constraints {
38 width = #(text) * CHARWIDTH;
39 height = CHARHEIGHT
40 }
41 }
42 class Triangle extends Node {
43 operations {
44 incident?(n) =
45 (x + width/2,y + height) =
46 (n.x + n.width/2,n.y)
47 }

Figure 3 Kernel Abstract Syntax as a Diagram

48 }
49 class Edge extends Object {
50 src:Node;
51 target:Node;
52 label:Node;
53 }
54 }

A diagram consists of nodes and edges. A node has a position
and may be a box, some text or a triangle. A box contains other
displayable elements. A triangle implements a predicate that
determines whether it is incident on the base of a node. Edges
gave source and target nodes and use nodes as labels.

A diagram model such as that shown in figure 4 can be used
as the basis of a wide range of views for different packages
of model element. Figure 3 shows the Kernel package drawn
using these diagram elements and figure 4 shows the Diagrams

package drawn as a diagram. The rest of this section describes
an approach for constructing graphical views of models that is
built entirely from modelling elements defined in the Kernel.

The approach uses relationship classes to associate types of
model element with diagram elements. The relationships define
a view on the models in much the same way as a model-view-
controller. The underlying modelling language does not know
anything about how its elements are being represented on a
diagram so that it is easy to define multiple views.

Consider the following definition of Packages_x_Diagrams
that defines a simple representation for class diagrams. The
key idea is to set up a collection of relationship classes of the
form A_x_B that relate instances of A to instances of B. The
constraints on the relationship class limit particular instances of
B to be associated with an instance of class A, and vice versa.

Where instances of class A can refer (directly or transitively)
to instances of type G, and similarly where B can refer to in-
stances of type H then it is convenient to allow instances of the
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Figure 4 Diagrams as a Diagram

relationship class A_x_B to refer to instances of a further relation-
ship class G_x_H such that for any a_x_b:A_x_B the following
constraints hold:

1 a_x_b.a.g = a_x_b.g_x_h.g
2 a_x_b.b.h = a_x_b.g_x_h.h

where a_x_b.g_x_h refers to the (suitable constrained) instance
of g_x_h associated with an instance of a_x_b. In this particular
case, the relationship class Package_x_Diagram defines those
diagrams that are appropriate views of a given package. We
deliberately leave the relation underspecified so that it is only
defined up to an equivalence class of possible layouts. The
root class Package_x_Diagram associates a package with a di-
agram in such a way that classes are represented as nodes and
inheritance relationships are represented as edges between the
appropriate nodes:

1 package Packages_x_Diagrams:Kernel {
2 class Package_x_Diagram extends Object {
3 p:Package;
4 d:Diagram;
5 N:[Class_x_Node];
6 M:[Attribute_x_Association];
7 E:[InheritanceEdge];
8 A:[Association];
9 constraints {

10 p.objects = [n.c | n ← N];
11 d.N = [n.n | n ← N];
12 d.E = E ∪ A;
13 [ [i.src, i.tgt] | i ← E] =
14 [ [s.n, t.n] | s ← N,
15 t ← N,
16 ?s.c.parents.3(t.c) ];
17 [ a | c ← p.objects, a ← c.attributes ] =
18 [ m.a | m ← M ] ∪
19 [ a.a | n ← N, a ← n.atts]
20 }
21 }
22 }

The relationship class Package_x_Diagram associates a package
p with a diagram d. The sub-relationships N and M ensure that
the classes are correctly associated with diagram nodes and
the attributes are correctly associated with association-edges
between classes where the type of the attribute is not simple
(i.e., one of Str, Int, etc.)

Constraints on Package_x_Diagram enforce relationships be-
tween instances of the associated classes: all the classes in the
package have exactly one node on the diagram and vice versa.
The edges on the diagram are either inheritance or association
where the inheritance edges hold when one class inherits from
another. An attribute is either shown as text within a class-node
or as an association-edge.

A class-node is a box with a name above a collection of
attributes:

1 class ClassNode extends Box {
2 name:Text;
3 attributes:[Text];
4 constraints {
5 contents.3(name);
6 attributes.∀(λ(a)
7 contents.3(a) and
8 name.above?(a)))
9 }

10 }

The relationship between a class and a class-node is defined as
follows:

1 class Class_x_Node extends Object {
2 c:Class;
3 n:ClassNode;
4 atts:[Field_x_Text];
5 constraints {
6 n.name = c.name.text;
7 [a.a | a ← atts] ⊆ c.attributes;
8 n.attributes = [a.t | a ← atts]
9 }

10 }

The name in the class-box must be the same as that of the class.
Not all attributes of the class need be shown as fields within the
class-node because a field is required to have an atomic type as
shown below.

1 class Field_x_Text extends Object {
2 a:Attribute;
3 t:Text;
4 constraints {
5 text.text = a.name + ’:’ + a.atype.name;
6 [’Str’,’Int’,. . .].3(text.type.name)
7 }
8 }

An attribute that is displayed as an association must have a non-
atomic data type. Whether the multiplicity is shown as * or not
is determined by whether the type is an instance of the Kernel
class Listof:

1 class Association extends Edge {
2 name:Text;
3 mult:Text;
4 }
5 class Attribute_x_Association extends Object {
6 a:Attribute;
7 r:Association;
8 constraints {
9 a.name = r.name.text;
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Figure 5 Package_x_Diagram as a Diagram

10 a.atype = Listof =⇒ mult.text = ’0..*’;
11 a.atype 6= Listof =⇒ mult.text = ’’;
12 not([’Str’,’Int’,. . .].3(a.atype.name))
13 }
14 }

Finally, an inheritance edge only holds between class-nodes and
includes a triangle that is incident upon the super-class:

1 class InheritanceEdge extends Edge {
2 t:Triangle;
3 constraints {
4 source.type = ClassNode;
5 target.type = ClassNode;
6 label = t;
7 label.incident?(target)
8 }
9 }

Figure 5 shows the relation between packages and dia-
grams viewed as a diagram. Given the three packages Kernel,
Diagrams and Packages_x_Diagrams it is possible to display
graphical views for any package. Therefore, we have used lan-
guage definition to view them in two different ways: textual
and graphical. In addition, it is always possible to have a lowest
common denominator view of a package: as a nested collection
of objects. This is only one of many different representations for
the configuration of objects that conform to the type Package

, thereby supporting our proposal that Kernel is a basis for
modelling as language engineering.

6. Evaluation
The evaluation criteria for the Kernel language is to exhibit the
features defined in section 3. This section discusses how Kernel

supports the foundational features and then proceeds to define
two languages using Kernel: a MOF-like language that is a
simplification of Kernel and a potency-based language where
attributes can be labelled with instantiation levels.

6.1. Evaluation of Key Features
Section 3 set out the key features of a meta-circular language
for model-based language engineering. The Kernel language
achieves introspection and reification through the uniform rep-
resentation of all data as objects and the meta-slots type, slots,
id, and the meta-operation intern(). There is no limit to the
depth of introspection such that models can be transformed and
re-constructed to achieve intercession. Execution is based ex-
clusively on a MOP in terms of dot and send, which allows
the language system to be arbitrarily extensible and therefore
intercession is achieved within the context of a specification
language. All aspects of the language have corresponding refer-
ents that can be reflected upon via the meta-operations. Since
the type of an object is also an object and Class is an instance of
itself, the Kernel achieves an infinite self-contained reflective-
tower.

Although the Kernel does not contain basic modelling ele-
ments it has been designed to support the key features required
by languages such as MOF. We have shown that classes, at-
tributes, operations and constraints are easily supported and
can be varied through specialisation. Packages and snapshots
provide a basis for constructing both language definitions and
user-level models. Views can be supported by following a pat-
tern of specification for a model-view controller. Although each
object is limited to have a single class that is the value of the
slot named type, this is sufficient to support a range of clas-
sification strategies including languages that support multiple
roles (Georg & France 2002) or powertypes (Gonzalez-Perez &
Henderson-Sellers 2006; Henderson-Sellers & Gonzalez-Perez
2005; Clark et al. 2014).

6.2. A MOF-based Language
MOF is very similar to Kernel in that it is a self-describing
extensible structural model, although MOF does not contain
an expression evaluator that is necessary to support constraints.
MOF can be defined as an extension to Kernel where the key
elements of MOF are simply extensions to the equivalent ele-
ments in Kernel with some additional constraints. MOF intro-
duces some extra features that are not present in Kernel such
as Namespace, PackageableElement, and Classifier. All of
these elements can be defined as extensions of Kernel::Object
and Kernel::Class with suitable constraints. Space precludes a
complete definition, although the following provides an outline
of the approach:

1 package MOF:Kernel extends Kernel {
2 class MOFClass extends Class {}
3 class MOFStructuralFeature extends Attribute {}
4 class MOFPackage extends Package {
5 constraints {
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Figure 6 A model written in a potency-based language
(adapted from (Aschauer et al. 2009))

6 objects.∀(λ(o)
7 MOFClass.instance?(o))
8 }
9 }

10 ...
11 }

Note that MOF inherits all features from Kernel, but the addi-
tional constraint limits MOF packages to contain MOF classes.
This definition is representative of the class of MOF-like lan-
guages that can be defined as an extension of Kernel with some
additional structural constraints.

6.3. A Potency-Based Language
Deep instantiation, jointly with potency, has been proposed
as a mechanism that allows multi-level modelling (de Lara &
Guerra 2020). As has been established at the start of this article,
everything is an object and therefore there are no constraints
on level-mixing other than those that are defined within the
language definitions themselves. Potency allows attributes to
be extended with extra information in the form of a numeric
value describing how many type levels must be spanned by
instance-of relations before the attribute is actually instantiated.
For example, an attribute with potency 1 behaves as a regular at-
tribute, yielding a slot when its class gets instantiated. However,
an attribute with potency 2 yields an identical attribute with
potency 1 when its class gets instantiated; one extra instance-of
relation would be necessary to obtain a slot for this attribute.

Our claim is that the kernel language proposed here is a
suitable basis for all such languages. Consider the model shown
in figure 6 (taken from (Aschauer et al. 2009)) that shows a
language (Domain Metatypes) of engines. The class Engine

defines an attribute called max_speed with potency 1 that results
in a slot at the domain type (model) level, and an attribute called
inertia with potency 2 that becomes a slot at a remove of two
type levels.

The engine-based language involves some novel use of at-
tributes at the class level. This can be achieved using our ap-
proach by extending Kernel with two new meta-classes called
DAtt and DClass as follows:

1 package DKernel:Kernel extends Kernel {
2 class DAtt extends Attribute {
3 level:Int;
4 operations {

5 display() = name + ’[’ + level + ’]:’ + type
6 }
7 }
8 class DClass extends Class {
9 operations {

10 atts() = datts(1,self)
11 datts(n,c=(_,c)[]) = []
12 datts(n,c) =
13 [a | a ← c.atts(),?a.type=DAtt,a.level=n] +
14 datts(n+1,c.type)
15 }
16 constraints {
17 atts.∀(λ(a)
18 a.type = DAtt)
19 }
20 }
21 }

A deep-attribute is an instance of DAtt that extends attributes
with a potency level. The idea is that this level defines the num-
ber of instance-of relationships that must be traversed before the
attribute turns into a slot. In addition, a deep-attribute supports
the level as part of the display.

A deep-class is a class whose attributes are deep-attributes
and that redefines the operation atts() in order to take potency
into account. The new definition calculates a list of attributes
using datts in terms of a level n and a class c. If the class is
self-describing (essentially Class) then no deep-attributes are
produced. Otherwise, only those deep-attributes with level n are
returned in addition to those from the class of c with level n+1.
This has the effect of ensuring that the potency-level is correctly
applied to any instance of a deep-class2.

Having defined a new language, we can use it to define the
models shown in figure 6. Firstly, the meta-model is defined as
an instance of the new language. Each class is an instance of
DClass and is therefore required to define deep-attributes:

1 package DomainMetaTypes:DKernel {
2 class Engine:DClass extends DClass {
3 inertia[2]:Float;
4 max_speed[1]:Int;
5 }
6 class DieselEngine:DClass extends Engine {
7 preheat_time[1]:Float
8 }
9 class OttoEngine:DClass extends Engine {

10 ignition_alpha[1]:Float
11 }
12 }

A model written in the language of domain meta-types has
classes that are instances of Engine or one of its sub-classes.
As such an engine-class will have slots corresponding to deep-
attributes with potency level 1:

1 package DomainTypes:DomainMetaTypes {
2 class DType:DieselEngine {
3 ECU_version[1]:Float;
4 max_speed=5000;
5 preheat_time=1.5;
6 }
7 }

A snapshot that is an instance of the model defined above will

2 An implementation of a fully-defined language would need to override the
atts() operation so that it can be used to compute attributes that are used in
different situations including class instantiation, class display, inheritance, etc.
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contain objects whose slots correspond to the deep-attributes
with the appropriate potency-levels as shown below:

1 snapshot DomainInstances:DomainTypes {
2 (DType)[
3 inertia=0.28;
4 ECU_version=7.3
5 ]
6 }

There are three occurrences of the golden braid in this example
including one reflexive traversal of Kernel:Kernel). Kernel,
MOF and DKernel are examples of meta-languages that can be
defined in the framework, and we claim that other languages,
such as those described in (Atkinson et al. 2014) can also be
represented and analysed.

The meta-classes in DKernel can be reused across multiple
languages (DomainMetaType being one example), unlike the
meta-classes of Smalltalk. Given that the semantics of Kernel
is defined in terms of a constraint that uses atts, and that the
parents relation allows redefinition of operations, this means
that the core semantics of the Kernel is both extensible and
replaceable. The redefinition of display in DAtt provides a
domain-specific view of the new language and allows potency
values to be specified as part of an attribute definition.

7. Conclusion
Our aim is to produce a meta-circular level-agnostic basis for
model-based language engineering. We have reviewed current
advances in meta-modelling and defined a self-contained new
language that supports an arbitrary number of golden braid
occurrences based on a single representation for all model ele-
ments, that is highly extensible including its own core semantics.
We have also shown how the language can support both text
and graphical views that are equivalent to domain-specific lan-
guages.

The kernel language is simple and can be implemented as
demonstrated by the XMF and XModeler toolkit that is capa-
ble of both describing and reasoning about itself. The toolkit
was reported as a leading technology for Software Engineering
(Helsen et al. 2008) and has been used for a variety of applica-
tions including modelling languages for aerospace applications,
telecoms applications (Achilleos et al. 2007), and enterprise
modelling languages and methods (Johanndeiter et al. 2013;
Frank 2014, 2019).

Our intention is that the kernel language defined in this arti-
cle provides a basis for ourselves and others to experiment with
language definitions. Language features such as objects having
multiple types, mixed static and dynamic typing, delegation, pro-
totypes, aspects, facets, multi-level modelling, projective views,
weaving, product-lines, and different approaches to modularity,
can all be constructed and made to interoperate.

In (Gogolla et al. 2005), the authors show how the golden
braid can be represented on a single object-diagram. This al-
lows OCL constraints to range over the all levels and thereby
support clabjects and potency. This is very similar to the ap-
proach developed in this article and it would be interesting to
see how the two approaches can co-exist through views, perhaps
through the use of projectional editors (Voelter & Pech 2012).

Because all such kernel-defined languages are based on a single
object representation, it is feasible to build a collection of tools
that work against well defined sub-sets of objects and thereby
develop a shared library.

The Kernel has some limitations that we plan to address
through further work. Several modelling frameworks support
action languages that can create and modify objects. The Kernel
is a specification language currently does not deal with side-
effects and state, but could be extended with features such as pre
and post-conditions as used in OCL. The Kernel lacks a formal
semantics that can be used to validate it in terms of completeness
and consistency. All Kernel objects are an instance of exactly
one class which might be seen as a limitation. We claim that
languages where objects can exist in multiple classification-
states at the same time can be defined, although this has yet to
be demonstrated.

Finally, the use of reflection and meta-circularity through a
MOP can compromise the efficiency of language execution. To
a greater extent, the purposes of this article is to demonstrate
that a meta-circular kernel can be defined and shown to sup-
port a variety of useful language extensions. Efficiency can
be achieved, as demonstrated by XModeler where most of the
tooling (approximately 200k lines of source code) is written in a
kernel-like language that compiles to a bespoke virtual machine
written in Java. In making XModeler efficient, care is taken to
identify standard data usage that can be handled conventionally,
and those uses that require a MOP. In addition, XModeler adds
side effects to the kernel and supports updates to definitions
such as those presented in (de Lara et al. 2018). Adding actions
to the kernel language presented in this article would achieve
the same effect at the expense of losing referential transparency.
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