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Abstract

Background and objective: The human brain displays rich and complex patterns of

interaction within and among brain networks that involve both cortical and subcortical

brain regions. Due to the limited spatial resolution of surface electroencephalography

(EEG), EEG source imaging is used to reconstruct brain sources and investigate their

spatial and temporal dynamics. The majority of EEG source imaging methods fail

to detect activity from subcortical brain structures. The reconstruction of subcortical

sources is a challenging task because the signal from these sources is weakened and

mixed with artifacts and other signals from cortical sources. In this proof-of-principle

study we present a novel EEG source imaging method, the regional spatiotemporal

Kalman filter (RSTKF), that can detect deep brain activity.

Methods: The regional spatiotemporal Kalman filter (RSTKF) is a generalization of

the spatiotemporal Kalman filter (STKF), which allows for the characterization of dif-

ferent regional dynamics in the brain. It is based on state-space modeling with spatially

heterogeneous dynamical noise variances, since models with spatial and temporal ho-
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mogeneity fail to describe the dynamical complexity of brain activity. First, RSTKF

is tested using simulated EEG data from sources in the frontal lobe, putamen, and

thalamus. After that, it is applied to non-averaged interictal epileptic spikes from a

presurgical epilepsy patient with focal epileptic activity in the amygdalo-hippocampal

complex. The results of RSTKF are compared to those of low-resolution brain electro-

magnetic tomography (LORETA) and of standard STKF.

Results: Only RSTKF is successful in consistently and accurately localizing the sources

in deep brain regions. Additionally, RSTKF shows improved spatial resolution com-

pared to LORETA and STKF.

Conclusions: RSTKF is a generalization of STKF that allows for accurate, focal, and

consistent localization of sources, especially in the deeper brain areas. In contrast to

standard source imaging methods, RSTKF may find application in the localization of

the epileptogenic zone in deeper brain structures, such as mesial frontal and temporal

lobe epilepsies, especially in EEG recordings for which no reliable averaged spike

shape can be obtained due to lack of the necessary number of spikes required to reach

a certain signal-to-noise ratio level after averaging.

Keywords: deep sources, dynamical inverse solution, EEG, EEG inverse problem,

EEG source imaging, Electroencephalography, epilepsy, epileptiform activity,

Kalman filter, LORETA, RSTKF, source reconstruction, spatiotemporal Kalman

filter, state space, STKF, subcortical sources.

1. Introduction1

Eelectroencephalography (EEG) is a non-invasive electrophysiological method which2

measures the time series of electric potential differences on the surface of the head that3

are caused by the summation of neuronal depolarization shifts on postsynaptic mem-4

branes of a large number of neurons. Due to its high temporal resolution (The maxi-5

mum sampling rate of modern EEG systems is in the KHz range), EEG can be used to6

study brain function and track temporal brain activity. In order to increase the spatial7

resolution of EEG, source imaging uses these surface measurements and estimates the8

generators of electrical activity in the brain. EEG source imaging has found numer-9
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ous applications in cognitive brain research, neuropsychiatry, clinical neurology, and10

neuropediatrics [1–4].11

The problem of source reconstruction from surface EEG becomes particularly chal-12

lenging when changes of electrical activity on the scalp result from neuronal depolar-13

ization in deep brain structures, since deep sources generate only weak surface signals14

and are often masked by the activity of strong cortical sources. The localization of15

deep sources can have many applications in clinical and cognitive research, e.g., in un-16

derstanding normal and pathological brain function as well as studying brain networks17

[5–7]. An example of a deep source that is important for clinical application is epileptic18

activity in the hippocampus, since hippocampal pathology is the most frequent cause19

of the mesial temporal lobe epilepsy which may be successfully treated by surgery [8].20

Regarding the solution of the EEG inverse problem, we will limit our discussion21

here to distributed-source methods (for an overview please refer to [9–12]). In these22

methods the activity of the whole brain is estimated for each time point using the whole23

scalp EEG. In order to obtain a unique solution to the EEG inverse problem, standard24

EEG source imaging methods impose constraints on the solution space using, e.g.,25

a penalty function or a Bayesian framework [13]. Among the standard source recon-26

struction methods, low-resolution brain electromagnetic tomography (LORETA) is one27

of the most frequently used approaches [14]. This method applies spatial smoothness28

as a constraint to obtain a unique solution to the EEG inverse problem and penalizes29

non-smooth solutions. Standard methods, such as minimum norm and standardized30

LORETA (sLORETA) [15], were shown to be problematic for the localization of deep31

sources especially when cortical sources masked the deeper activity or in the presence32

of multiple sources [12]. Additionally, the majority of the standard source reconstruc-33

tion methods localize the sources at a specific time point without making use of the34

source reconstruction results of the previous time points, i.e., they are static or instan-35

taneous methods. The temporal information of the EEG recordings includes useful36

information about the locations of the sources and the interactions between them.37

A dynamical inverse solution avoids the shortcomings of static methods by tak-38

ing the information from the source reconstructions at the previous time points into39

account when reconstructing the sources at a certain time point [16–18]. State-space40
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modeling is a flexible modeling approach to implement a dynamical inverse solution41

from EEG time series [19]. A state-space model consists of two equations that describe42

the spatiotemporal dynamics in the brain and the measurement process respectively.43

The reconstruction of the brain’s primary current density, which is defined as the sys-44

tem’s state, is transformed into a problem of state estimation. The Kalman filter [20]45

provides the optimal linear solution for the problem of state estimation. If Gaussian46

noise is assumed, the Kalman filter is optimal in the sense that it provides the mini-47

mum mean square error estimates of the state variables. If the Gaussianity condition48

is not fulfilled, the Kalman filter is still the best linear minimum mean square error49

estimator [21]. Modified versions of the Kalman filter have found many applications50

in inverse modeling, especially in high-dimensional problems of climate and ocean51

modeling [22–24]. However, the estimation of parameters and the propagation of huge52

covariance matrices become infeasible in case of high dimensionality. Instead of the53

full Kalman filter, filters that are based on strong simplifications of the deterministic54

model and low-rank approximations of the covariance matrices are usually employed55

to solve the problem of high dimensionality [24–26].56

The spatiotemporal Kalman filter (STKF) [18] is a dynamical solution of the high-57

dimensional EEG inverse problem that is based on a modification of the traditional58

Kalman filter. This method and its adaptive forms belong to the family of distributed-59

source inverse methods. Within the framework of STKF, the state-space model param-60

eters are estimated via maximum likelihood (ML). In addition to spatial smoothness,61

STKF uses temporal smoothness to obtain a unique solution to the EEG inverse prob-62

lem. The spatiotemporal smoothness constraint can be implemented by appropriate63

design of the parameter matrices within the state-space model. Since both LORETA64

and STKF use spatial smoothness constraints, we consider it useful to compare their65

performance, in order to ascertain the additional advantages of temporal smoothness in66

the STKF model. In previous work, the original STKF model was found to be superior67

to LORETA with respect to the localization of sources of alpha rhythms, epileptiform68

discharges, and focal seizures from EEG recordings [27–32]. When applied to local-69

ize sources of a focal seizure from an EEG recording, STKF showed more accurate70

and consistent localizations of the seizure onset, compared to LORETA [27]. Addi-71
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tionally, STKF produced more accurate source reconstructions from small numbers of72

electrodes (9 and 19 electrodes), compared to LORETA [30].73

The STKF method is based on a linear state-space model with spatially and tem-74

porally constant parameters. The performance of the method depends on the dynami-75

cal model, and the accuracy of the results could be improved with more accurate and76

more physiological dynamical models. An important limitation of this model is that77

it assumes spatial homogeneity of the brain, in contradiction to what is known about78

functional specialization and modularity of the brain. In order to mitigate the above-79

mentioned limitation of the original STKF model, namely the spatial homogeneity of80

the model parameters, and to permit multiple areas in the brain to have their own dy-81

namics, the state-space model was modified in this work to describe different brain82

regions using different dynamical noise variance parameters. Based on the previous83

experience of the authors, the dynamical noise variance parameter was judged to be the84

most influential one among the parameters of state-space models, and the stochastic85

part of the dynamical model was extended accordingly. This new approach is named86

the regional spatiotemporal Kalman filter (RSTKF).87

The aim of this work is the extension of the dynamical approach of spatiotemporal88

Kalman filtering (STKF) by allowing for region-specific dynamics in the state-space89

model of the brain. The hypothesis here is that this extension permits the correct lo-90

calization of active subcortical areas in the brain from surface EEG, since each one91

of these areas will be allowed to have its own dynamics. Additionally, we expect this92

extension to improve the accuracy and spatial resolution of EEG source reconstruc-93

tion results, due to the regional specification of model parameters. In this paper, we94

will test the RSTKF using simulated as well as clinical EEG data. We will concen-95

trate on single-source scenarios and the clinical application of the localization of the96

epileptogenic zone from EEG in presurgical evaluation. The results of RSTKF will be97

compared to those of LORETA and STKF. We expect RSTKF to outperform LORETA98

and STKF with respect to accuracy and spatial resolution of the source reconstruction99

results.100
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2. Materials and Methods101

In the first section, the regional spatiotemporal Kalman filter algorithm is first de-102

scribed. After that, the setup for source imaging of simulated EEG data is described. In103

the last section, the setup for source imaging of clinical EEG data of epileptic spikes is104

described. For these analyses, the EEG source imaging results from LORETA, STKF,105

and RSTKF are compared. In order to avoid the inversion of high-dimensional matri-106

ces, the alternative implementation of LORETA from [18, 33] was used in this paper.107

Additionally, the Akaike Bayesian Information Criterion (ABIC) was used to estimate108

the regularization parameter, as in [18, 33]. The preprocessing and source imaging was109

performed in MATLAB (Mathworks, MATLAB 7.12, R2011a). The visualization of110

EEG source imaging results was done using the open-source Fieldtrip toolbox [34].111

The whole procedure of preprocessing, head modeling, source imaging, and validation112

is summed up in Fig. 1.113

[Figure 1 about here.]114

2.1. The regional spatiotemporal Kalman filter (RSTKF)115

Until now, the model parameters of the STKF were non-adaptive with respect to116

both time and space. Due to the brain’s modularity and functional specialization, we117

believe that introducing non-homogeneity in space, e.g. in lobar or sub-lobar levels,118

is essential to describe the different processes that occur in different parts of the hu-119

man brain. The distinction of different regions in the brain was introduced into the120

LORETA constraint in [35]. Assuming spatial homogeneity of the parameters was121

only a strong assumption with the purpose of making parameter estimation feasible.122

The RSTKF uses a 3D voxel grid whose grid points are labeled according to the brain123

region. This classification or labeling process is non-trivial, especially for individual124

anatomies. According to Wold’s decomposition theorem [36], a very sophisticated de-125

terministic model which is accompanied by a simple stochastic model, can be replaced126

by a fairly simple deterministic model in addition to a sophisticated stochastic model127

in the description of the system’s dynamics by a state-space model [19, 36].128
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In this paper, a simple deterministic model of the dynamics was used in addition129

to a more detailed model of the stochastic term. For each brain region, a separate130

dynamical noise variance is assigned and the values of these dynamical noise variances131

are learned from the data using ML parameter estimation. Mathematically, the RSTKF132

uses the same equations and model parameters that are used by the STKF, except for133

the modified description of the dynamical noise term ηt and its covariance matrix ΣηL .134

The measurement of EEG time series is modeled as follows:

yt “Kjt `εt . (1)

Here, yt is the Nyˆ 1 vector of measurements at time t, where Ny represents the135

number of EEG electrodes. The NyˆN j matrix K is the lead field matrix, or gain136

matrix. This matrix includes the contribution of each voxel to each EEG electrode.137

Jt is the N j ˆ 1 vector of primary current density values in the brain. The brain is138

represented as a volumetric 3D voxel grid, and each grid point is the location of three139

current dipoles. Each one of these three current dipoles points to one of the three140

Cartesian coordinates, in the x, y, or z directions. With Nv denoting the number of grid141

points, the number of current dipoles N j equals 3ˆNv. This grid is then further divided142

into Nr regions, where Nr is the number of modeled regions in the brain.143

One solution to the high dimensionality of the EEG inverse problem is to use

a modification of the standard Kalman filter as implemented in the STKF approach

[18]. In order to tackle the high-dimensional EEG inverse problem, the Kalman filter

is transformed from a fully-coupled state-space into a weakly-coupled system, which

only retains nearest-neighbor coupling. This is done by using the second-order discrete

Laplacian operator to decouple the state-space model, preserving only nearest-neighbor

interactions. This transformation is called spatial whitening [18, 37]:

j̃t “ Ljt . (2)

The N jˆN j Laplacian matrix L is the discrete second-order spatial Laplacian operator

and approximates the second spatial derivative. In order to calculate the Laplacian

matrix, the neighboring grid points for each grid point v are found and the matrix of
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neighbors Ω is constructed according to:

Ωv́v “

$

&

%

1 if v́ is a neighbor of v

0 otherwise
(3)

Only 6 neighbors in the positive and negative x, y, and z directions are considered in the

computation of the Laplacian matrix. Then the following equation is used to compute

the Laplacian matrix:

L“
ˆ

INv ´
1
6
Ω

˙

b I3. (4)

After that, a low-dimensional Kalman filter is calculated at each grid point, the state

of which is influenced by the average value of the current densities of the neighboring

grid points. For the autoregressive (AR) model of order 1, the state dimension Nst is 3

and the dynamical model can be written as follows

j̃v,t “ AL j̃v,t´1`BLũv,t ` η̃ t .

The 3ˆ 3-dimensional local state transition matrix AL characterizes the voxel’s self-

dynamics, whereas the contribution of the neighboring voxels to the voxel’s current

density is described by the 3ˆ3-dimensional local input matrix BL. The local extrinsic

control input vector ũpv,tq consists of the average value of the previously computed

current densities of each voxel’s immediate neighbors.

ũv,t “
1
6

ÿ

v́PN pvq

j̃v́,t´1.

Finally, the 3ˆ 3-dimensional local dynamical noise covariance matrix Ση̃ L and the

AL and BL matrices [38] are defined by

AL “ a1I3, BL “ bI3, Ση̃ L “ σ
2
η̃pvqI3.

Here, ση̃
2pvq P ση 1

2, . . . ,ση N r
2 , with Nr being the number of modeled regions in the144

brain.145

In [32] the reformulation of the standard autoregressive model of order 2 into an

augmented state-space model, in which the standard second-order AR component is

reformulated as a first-order one, is explained. In the new model, Nst equals 6 and the
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equation of the dynamical model becomes [32]:
»

–

j̃v,t

j̃v,t

fi

fl“ AL

»

–

j̃v,t´1

j̃v,t´1

fi

fl`BL

»

–

ũv,t

0

fi

fl`

»

–

η̃ t

0

fi

fl .

The 3ˆ1-dimensional vector ¯̃jv,t is the predicted value of ¯̃jv,t`1. As for the model pa-

rameter matrices, the 6ˆ6-dimensional local state transition matrix AL is constructed

as follows:

AL “

»

–

a1I3 a2I3

I3 0

fi

fl .

Likewise, the 6ˆ6-dimensional local input matrix BL is constructed as follows:

BL “

»

–

bI3 0

0 0

fi

fl .

Finally, the local dynamical noise covariance matrix Ση̃L can be written as [38]:

Ση̃L “

»

–

σ2
η̃

I3 0

0 0

fi

fl .

In the above-mentioned dynamical model, autoregressive moving average (ARMA)146

type modeling consists of autoregressive (AR) and moving average (MA) parts. In prin-147

ciple, each of these parts could do the modeling alone, so there is a kind of redundancy148

between them. Just for the sake of flexible and parsimonious modeling, both parts149

are used. Variance parameters correspond to the MA part. Due to this redundancy, it150

seems risky to allow regional dependence both for AR and MA parts; this may lead151

to overfitting. A similar situation, namely time-dependent variance, suffers from the152

same problem.153

The lead field matrix K is now replaced by the Laplacianized lead field matrix K̃

which is calculated as follows:

K̃“KL´1.

We should also mention that the measurement noise covariance matrix Σε is assumed

to have the following structure:

Σε “ σ
2
ε I3.
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In the following, Nst represents the dimension of the state for each grid point. In the

prediction phase, the STKF uses the dynamical model to make predictions about the

current density values at the next time point:

j̃v,t|t´1 “ AL j̃v,t´1|t´1`
1
6

BL
ÿ

v́PN pvq

j̃v́,t´1|t´1.

Now, the Nst ˆNst -dimensional local state prediction error covariance matrix is calcu-

lated from:

Σ j̃ v,t|t´1
“ ALΣ j̃ v,t´1|t´1

Aᵀ
L`Ση̃L .

After that, the state predictions for all grid points are used to compute a measurement

prediction

yt|t´1 “ K̃j̃t|t´1.

The difference between the actual and predicted measurement values constitutes the

N jˆ1-dimensional measurement prediction error, residual, or innovation

ry,t “ yt ´yt|t´1.

Let K̃v denote the Nyˆ 3-dimensional sub-matrix within the lead field matrix K̃ that154

corresponds to grid point v. Since K̃ is a global matrix linking all positions in the brain155

with all EEG electrodes, therefore it depends very much on the spatial position and,156

thereby, on the region.157

Then, the innovation covariance matrix is calculated as follows:

Σry,t “
ÿ

v
K̃vΣ j̃v,t|t´1

K̃ᵀ
v `Σε .

After calculating the innovation and its covariance matrix, the Nst ˆNy-dimensional

local Kalman gain matrix is calculated using:

Gv,t “Σ j̃v,t|t´1
K̃ᵀ

v Σ´1
ry,t .

After that, the Nst ˆ1-dimensional local filtered state estimate is computed from:

j̃v,t|t “ j̃v,t|t´1`Gv,try,t .
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The local Nst ˆNst state estimation error covariance matrix is obtained from:

Σ j̃v,t|t
“
`

INst ´Gv,tK̃v
˘

Σ j̃v,t|t´1
.

The final vector of state estimates and its error covariance matrix are transformed back

from the weakly-coupled state-space into the fully-coupled state-space using the fol-

lowing equations:

jt “ L´1 j̃t .

Σ jv,t|t “ L´1Σ j̃v,t|t
L´1ᵀ.

The Kalman filter calculates the state estimate and its error covariance matrix. The158

parameter matrices of the state-space model, however, need to be estimated before159

calculating the output of the Kalman filter.160

In this paper, the optimal parameters of the state-space model are obtained using

minimization of the Akaike Information Criterion (AIC) [39], which corresponds to

Maximum-Likelihood estimation with an additional constraint favoring parsimonious

models. The AIC is defined by

AICpθ KFq “ ´2L pθ KFq`2NKF .

Here, θKF denotes the vector of model parameters of the RSTKF. L pθKFq denotes

the log-likelihood, i.e., the probability that the data were generated by a model with

parameter vector θKF . NKF denotes the dimension of the parameter vector θKF . Now

for the RSTKF, the following parameter vector was used:

θ KF “
“

a1,a2,b,σ2
η̃1
, . . . ,σ2

η̃N r
,σ2

ε

‰ᵀ
.

The parameter vector was divided into three groups, and at the beginning of the parame-161

ter estimation procedure these groups were individually optimized. The dynamical AR162

parameters a1,a2,b constitute the first group. The second group includes the dynamical163

noise variance parameters σ2
η̃1
, . . . ,σ2

η̃N r
and the third and final group contains solely164

the measurement noise variance parameter σ2
ε . This approach alleviates the problems165

of slow convergence, parameter redundancy at the optimal point, and ill-conditioned166
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parametrization of the state-space model. After the group-wise optimization, all pa-167

rameters should be jointly optimized [19].168

The RSTKF is used to evaluate the AIC according to equation 2.1 and the following169

definition of the log-likelihood:170

L pθ KFq “ ´
1
2

T
ÿ

t“1

´

log
ˇ

ˇΣry,t

ˇ

ˇ` ry,t
ᵀ
Σ
´1
ry,t ry,t

¯

`Ny logp2πq.

Here, T is the number of time points in the data and Ny is the number of electrodes.171

All EEG data and all source regions are employed by a single modeling approach which172

yields a single value for the AIC, for each given set of model parameters.173

Our approach of parameter fitting is an application of classical maximum-likelihood174

based on the innovation likelihood [19, 40]. Two optimization algorithms were used to175

minimize the AIC. The first method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)176

method, a quasi-Newton approach, as implemented in MATLAB’s Optimization Tool-177

box. The second method is the Nelder-Mead simplex algorithm, which was also used178

as it is implemented in MATLAB. During the analyses, either the BFGS method alone179

or an iteration of BFGS and simplex methods was used for the optimization [18, 32].180

This iteration of the two methods helps when the BFGS faces numerical problems.181

Based on the authors’ experience, numerical problems with BFGS happen only rarely182

for this application of the methods. For this application, the gradient and Hessian of the183

cost function for the BFGS method are estimated numerically by the MATLAB func-184

tion. Cross validation would be used in order to avoid overfitting, but AIC has its own185

penalty term against overfitting. Besides, even with regional parameters our model is186

still very parsimonious (unless we would choose a high number of regions, which is187

infeasible).188

2.2. Source imaging of simulated data189

The first step in the development of the regional spatiotemporal Kalman filter (RSTKF)190

was the use of simulated EEG data from single sources with known locations, orien-191

tations and strengths. Then the depth of these sources was increased and the number192

of modeled brain regions was also increased to investigate the possible problems in the193
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source localization and parameter estimation due to the increase in the source depth or194

the number of model parameters. The simulations in this section were performed using195

the standard realistically-shaped three-compartment head model from the Neuroscan196

Curry software (Compumedics Neuroscan, version 7.0) which is computed using the197

boundary element method (BEM). The source space was defined using a 3D volumetric198

grid with a spacing of 5 mm. For the simulation, the grid had a different grid spacing199

compared to the one used for the inverse solution to avoid an inverse crime. The BEM200

head model consisted of three compartments: inner skull space, outer skull, and BEM201

skin. 3858 nodes described the inner skull space, which includes the brain and the202

cerebrospinal fluid (CSF), and its conductivity value was set to 0.33 S/m. The second203

compartment, the outer skull was built from 2681 nodes and skull compartment con-204

ductivity was set to 0.0042 S/m. Finally, the BEM skin surface had 1504 nodes and205

skin compartment conductivity was set to 0.33 S/m.206

In the first simulation, a single dipole was simulated and the source signal was207

generated in the theta range with a frequency of 4.8 Hz and a sampling rate of 256208

Hz using an autoregressive model of order two. The orientation of the dipole was209

randomly rotating in the yz-plane around the x-axis, which is perpendicular to the ears.210

An example of the randomly rotating dipole and its source signal is shown in Fig.211

2. This simulation scheme was chosen because we hypothesized that the choice of a212

rotating dipole forces the Kalman filter to track the source, since the EEG signal is213

highly sensitive to the orientation of the sources. Additionally, the dynamical nature of214

the Kalman filter makes it easier to assume a deep source that is changing its orientation215

than a group of active cortical sources that span the whole cortex. Three different216

simulated EEG datasets were generated using single dipoles with increasing depth; the217

first dipole was placed in the left frontal lobe, the second one was placed in the left218

putamen, and the third one was placed in the left thalamus. In each of these cases,219

the simulated source signal was multiplied with the lead field matrix and -80 dB white220

Gaussian measurement noise was added to produce a 32-channel EEG dataset. The221

sources in the frontal lobe, putamen, and thalamus resulted in signal to noise ratio222

(SNR) values of 45.77, 44.05, and 42.62, respectively. The resulting EEG datasets are223

depicted in Fig. 3.224
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[Figure 2 about here.]225

[Figure 3 about here.]226

In order to test the RSTKF approach, EEG source imaging was performed on the227

simulated EEG data from the frontal lobe, putamen, and thalamus using LORETA,228

STKF, and RSTKF(7). Here, RSTKF(7) denotes a 7-region RSTKF. Based on [5, 6],229

we divided the source space into the thalamus, hippocampus, putamen, and caudate230

nucleus. Additionally, we added the cerebellum and what was left of the left and right231

hemispheres as the last three regions. The definition of the subcortical regions did not232

distinguish left and right structures. We decided to model the cerebellum because of its233

connection to the cerebellar cortex and its involvement in sensorimotor and cognitive234

functions such as language and attention [41]. The LORETA, STKF, and RSTKF(7)235

analyses were performed using the standard BEM head model from CURRY7 (Neu-236

roscan, Compumedics) and the brain was discretized using a 3D volumetric grid with237

7 mm grid spacing.238

The Euclidean distances (in mm) between the simulated and estimated current den-239

sity maxima were calculated for all simulated sources and source imaging methods.240

No repetition, averaging or cross validation were used for the evaluation of the results241

via Euclidean distance.242

Additionally for the case of the thalamic source, which was the deepest source in243

our simulations, the number of modeled regions was varied between two and seven244

regions to test the performance of RSTKF(7). In the first analysis, two regions were245

defined with one region in the thalamus and another one to include the rest of the brain,246

then the analysis was performed for the case of three regions consisting of the thala-247

mus, left hemisphere, and right hemisphere. After that, the hippocampus was added as248

the fourth region. The cerebellum was added in the 5-region RSTKF, while the puta-249

men and caudate nucleus were added for the 6- and 7-region RSTKF, respectively. The250

RSTKF(2) and RSTKF(3) were run using a 3D volumetric grid with 14 mm spacing.251

In all of the aforementioned cases, a 7 mm grid spacing was used for the 3D volu-252

metric grid that describes the source space. In this work, a choice needed to be made253

between using 5 mm grid spacing to represent small or longitudinal subcortical areas254
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with enough grid points or to dilate the segmented subcortical areas in order to make255

their representation with 7 mm grid spacing feasible. The latter approach was used in256

this paper. The classical optimization scheme was used for parameter estimation and257

the dynamical model was an autoregressive model of order 2 for all the analyses in this258

section.259

2.3. Source imaging of single-trial spikes from a presurgical patient of epilepsy260

The EEG data was recorded from a teenage female patient during presurgical eval-261

uation. The patient was diagnosed with a drug-resistant, symptomatic mesial temporal262

lobe epilepsy (TLE) due to a hippocampal sclerosis in the left hemisphere. The di-263

agnosis was performed according to the clinical guidelines described in [42] . The264

patient suffered from daily psychic auras and complex focal seizures. Prior to surgery,265

the EEG showed inter-ictal and ictal changes in the left temporal region. The patient’s266

MRI showed a hippocampal sclerosis, a thickening of the left amygdala and caput hip-267

pocampi. Finally, the neuropsychological tests indicated a dysfunction of the left tem-268

poral lobe. Based on this diagnosis, the patient was operated with selective resection269

of amygdala and the hippocampus. After the surgery, the patient became seizure-free270

(outcome Engel Ib [43]). The data was fully anonymized. According to paragraph 15271

of the Rules of Professional Practice of the Medical Association of Schleswig-Holstein,272

we do not need an ethics vote for the analysis of fully-anonymized data. The study was273

conducted according to the Declaration of Helsinki (current version, 1996) on biomed-274

ical research involving human subjects (Tokyo amendment). Parents or legal guardians275

of participants were informed about the research purposes and gave verbal informed276

consent, which was not recorded, to keep the procedure anonymous.277

The presurgical EEG was registered with a Nihon Kohden system (http://www.nihonkohden.com).278

40 electrodes were placed according to the 10/10 system, including additional tempo-279

ral electrodes. A sampling frequency of 500 Hz was used and the impedance was kept280

below 10 kOhm. First, five artifact-free 4-second EEG segments were marked and vi-281

sually selected, each of which contained a single spike in the middle of the interval.282

In order to reduce the computational time expense, only 0.8seconds of each segment283

were chosen such that the spike’s peak always occurred at 0.5 seconds. The pre-spike284
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interval was longer than the post-spike interval by 0.2 seconds in order to allow for a285

transient of the Kalman filter. The waveforms of the mean global field power (MGFP)286

for the five spikes are depicted in Fig. 4 with markers and voltage maps at the spike287

peaks. The spike onset was determined from the spike component extracted using prin-288

cipal component analysis (PCA). After that, a notch filter (at 50Hz, width of 2Hz) was289

applied to remove the power-supply artifact. Additionally, a high pass filter with a290

cut-off frequency of 0.53 Hz was used to remove any drifts. The filters were forward291

filters of Butterworth type. Additionally, the EEG data was re-referenced to the com-292

mon average reference before applying LORETA, STKF or RSTKF. For every spike,293

the SNR was calculated as described in [28, 44]. The (negative) peak to (positive) peak294

amplitude of the spike, which is defined to fall within 175 ms around the spike peak, at295

the dominant electrode was calculated and divided by the root mean square (rms) value296

of the background activity of the same electrode, which occurs in the 300 ms preceding297

the spike duration (175 ms around the spike peak).298

For head modeling, again the standard 3-compartment BEM head model from299

CURRY7 was used. The source space was defined using a 3D volumetric grid with300

7 mm resolution. CURRY7 was also used to partition the source space into 7 regions301

by generating volumetric grids of every region and using them for labeling the points in302

the source space. The 7 regions included the thalamus, amygdalo-hippocampal region,303

putamen, caudate nucleus, cerebellum, the remainder of the left hemisphere, and the304

corresponding volume of the right hemisphere. The subcortical regions here were not305

divided into left and right structures. The dilation of subcortical structures was also306

used here in order to represent each of these structures with enough points in the 7 mm307

grid.308

[Figure 4 about here.]309

The current density estimates were computed using LORETA, STKF and RSTKF310

and their results were compared using visual inspection and atlas labels from the Auto-311

mated Anatomical Labeling (AAL) atlas [45] to the post-surgical resection as seen in312

the patient’s MRI.313
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3. Results314

3.1. Source imaging of simulated data315

The left frontal source was localized by LORETA, STKF and RSTKF(7) in the316

white matter near the left frontal lobe. The source in the left putamen was localized317

in the white matter by LORETA and STKF and in the left putamen by RSTKF(7).318

The source in the thalamus was localized in the left putamen and left pallidum by319

LORETA, in the left putamen by STKF, and in the left and right thalami by RSTKF(7).320

The distances between the simulated and estimated source maxima are listed in Table321

1, and the source imaging results of these analyses can be seen in Fig. 5.322

[Table 1 about here.]323

[Figure 5 about here.]324

Furthermore regarding EEG source imaging of the data from the thalamic source325

via RSTKF, the source was localized in both thalami in all cases and the maxima of326

the source imaging results were localized in the left thalamus in all cases except for327

RSTKF(5), which localized the source maximum in the right thalamus. Additionally,328

the source localization result of the STKF was present as ghost activity except in the329

case of RSTKF(6) and RSTKF(7), which showed only thalamic activity. These source330

imaging results can be seen in Fig. 5.331

3.2. Source imaging of single-trial spikes from a presurgical patient of epilepsy332

The SNR values of the five selected spikes are 7.45, 11.74, 9.33, 13.28, and 6.26,333

respectively [28]. The dominant electrodes for the first and fifth spikes were F7 and334

AF7. For the second, third, and fourth spikes the dominant electrodes were T9, T7, and335

T9, respectively. At spike onset, LORETA localized the source in the right calcarine,336

white matter, middle frontal region, intersection of superior and middle temporal re-337

gion, and in the left cerebellum, for the five spikes, respectively. STKF produced338

localizations for the five spikes in the white matter, middle temporal region, intersec-339

tion of left insula and inferior triangular frontal region, white matter, and intersection340

of superior and middle left temporal regions. RSTKF localized the sources in the left341
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amygdalo-hippocampal complex, left hippocampus, left amygdalo-hippocampal com-342

plex, left amygdalo-hippocampal complex, and left hippocampus, for the five spikes,343

respectively. The source reconstruction results at spike onset are depicted in Fig. 5a,344

in addition to the post-operative MRI. The anatomical labels of the source maxima are345

listed in Table 2.346

[Table 2 about here.]347

At the spike peak, LORETA localized the source in left amygdalo-hippocampal348

complex, left middle temporal region, white matter, left middle temporal region, and349

in the left amygdalo-hippocampal complex, for the five spikes, respectively. STKF350

produced localizations for the first two spikes in the left amygdalo-hippocampal com-351

plex, and in intersection of superior and middle left temporal regions; the sources for352

the third, fourth and fifth spikes were all localized in the white matter. RSTKF local-353

ized the sources in the left amygdalo-hippocampal complex for all five spikes. The354

source reconstruction results at the spike peak are depicted in Fig. 5b, in addition to355

the post-operative MRI. The anatomical labels of the source maxima are listed in Table356

3.357

[Figure 6 about here.]358

[Table 3 about here.]359

4. Discussion360

4.1. Achievements361

In this paper, a novel method, the RSTKF, was introduced which generalizes spa-362

tiotemporal Kalman filtering by assuming spatially heterogeneous model parameters,363

thus allowing for the modeling of multiple regional dynamic processes in the brain.364

RSTKF(7) was tested on simulated EEG data from the frontal lobe, putamen, and tha-365

lamus. Larger localization errors from LORETA and STKF were observed as the depth366

of the sources was increased. The localization of deep sources in the putamen and tha-367

lamus was possible via RSTKF(7). For these two regions, RSTKF(7) showed smaller368
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localization errors than those of LORETA and STKF. Additionally, the anatomical la-369

bels of the resulting source maxima from RSTKF(7) matched those of the simulated370

sources. The estimated sources via RSTKF(7) had a better spatial resolution than those371

of LORETA and STKF, and no problems such as slow convergence of parameter esti-372

mates or strange and unexpected parameter values were observed in parameter estima-373

tion. In addition to that, the regional definition was changed from two to seven regions374

to test the accuracy of the localization of the thalamic source. In all cases, the thala-375

mic source was localized and, except for the case of 6 and 7 regions, residuals from376

the STKF results were observed as ghost activity. We believe that regional definitions377

with a small number of regions was still to close to the homogeneous model used for378

STKF. Thus, the ghost sources disappeared when a larger number of regions, 6 or 7,379

were used. For the simulated source in the left thalamus, the maximum of the thalamic380

source was localized in the left hemisphere in all cases except for RSTKF(5), which381

showed the maximum of the source in the right hemisphere. The lateralization of the382

same source by LORETA was correct but the localization was wrong.383

Additionally, RSTKF was tested using non-averaged epileptic spikes from a presur-384

gical epilepsy patient with a small lesion in the amygdalo-hippocampal complex. RSTKF(7),385

unlike LORETA or STKF, consistently and accurately localized the sources for all five386

spikes at the spikes’ onsets and peaks. Furthermore, the spatial resolution of RSTKF(7)387

was better than that of LORETA or STKF. The parameter estimation process was suc-388

cessful for all spikes. The lateralization of the source was also correct for all spikes.389

4.2. Alternatives and comparisons390

One of the approaches for the localization of subcortical sources is through the use391

of special forward models. The solution of the EEG inverse problem is not possible392

without the solution of the EEG forward problem. Forward modeling errors may pre-393

vent the localization of deep brain sources. The inclusion of information about the brain394

dynamics and connectivity in dynamic lead field mapping approach [46] improved the395

sensitivity of MEG and EEG to deeper cortical sources. Another important issue that396

affects the modeling of deeper brain structures relates to the definition of the source397

space as a volumetric grid or a surface mesh, and the grid spacing. Another issue is the398
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decision about the inclusion or removal of the cerebellum, brainstem and the subcorti-399

cal structures in the source space. In this context the work of Attal et al. [5–7] has to be400

mentioned who suggested the “deep brain activity (DBA) realistic forward model”. Us-401

ing this forward model, the localization of subcortical structures might become feasible402

with standard inverse methods [7].403

Another approach for the localization of subcortical sources is through the use404

of beamformers. Among the standard source reconstruction methods, the family of405

time-or frequency-domain beamformers such as linearly-constrained minimum vari-406

ance (LCMV) and dynamic imaging of coherent sources (DICS) [47, 48] beamformers407

performed well in the reconstruction of deep brain activity [49–54]. One problem408

of beamformer-based analyses is the need for estimation of the covariance or cross-409

spectral density matrix. In order to obtain an estimate of good quality, longer data410

segments or a large number of trials may be needed.411

Another approach for the localization of deep sources is to use source reconstruc-412

tion to project the surface EEG to the source space and then to perform region-of-413

interest, atlas-informed or whole-brain connectivity analysis to uncover deep brain414

sources. This approach, however, depends on the choice of the source reconstruc-415

tion and connectivity analysis methods and is also affected by the number of electrodes416

and the quality of the head model [55, 56]. An alternative to the former approach is417

given by dynamical causal modeling (DCM) [6, 57, 58] which is a hypothesis-based418

connectivity analysis approach based on physiologically-informed dynamical models.419

The application of this method, however, requires information about source locations,420

which can only be obtained by accurate source reconstruction.421

Compared to source imaging approaches, independent component analysis (ICA)422

is solving a different task, since the former maps into physical space, while the lat-423

ter maps into some unknown space of independent signals. However, it is possible424

to apply source imaging to data preprocessed by ICA, rather than raw data. Some-425

thing similar is done when the data are preprocessed by principal component analysis426

(PCA), for the purpose of dimensionality reduction and suppression of redundant in-427

formation. PCA produces uncorrelated components while ICA results in independent428

components. They are, however, similar to some degree, with PCA forming the first429
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part of most ICA algorithms. PCA and ICA are usually used in the preprocessing step430

for artifact suppression as well as extraction of desired signal components. PCA and431

most ICA algorithms, however, do not access or utilize the temporal information in432

the signals. State-space modeling and Kalman filtering were used in [59] to perform433

source separation and utilize the dynamical information of the EEG signal.434

The assumption that cortical sources are characterized by spatial sparsity allowed435

for the localization of both cortical and subcortical sources via a hierarchical subspace-436

pursuit algorithm [60]. This approach produced promising results in the localization of437

activity from the thalamus and the brainstem.438

Compared to the above-mentioned approaches, RSTKF offers several advantages.439

Unlike the methods that rely on dynamic lead field mapping or the DBA forward model,440

RSTKF uses a standard forward model based on a 3D volumetric grid. LORETA and441

STKF may suffer from the choice of the 3D grid or the definition of the Laplacian442

matrix [27, 28]. The RSTKF, however, does not seem to be affected by these factors.443

Unlike the beamformer approaches, it does not require the estimation of the covariance444

or cross-spectral density matrices and long EEG segments for the analysis. Addition-445

ally, the RSTKF does not need to rely on the accuracy of another inverse method,446

which may critically depend on the number of electrodes or the signal-to-noise ratio in447

the data, as in the case of DCM or any other connectivity analysis approach. Compared448

to PCA or ICA, RSTKF does not risk losing information by removing components that449

include a mixture of desired and undesired signals or need a subjective choice regard-450

ing the choice of which components to suppress. RSTKF can, however, be applied to451

EEG signals that were preprocessed by PCA or ICA. Finally, unlike sparse approaches,452

RSTKF does not assume spatial sparsity to localize deep brain activity. This is impor-453

tant for the localization of extended sources in the brain without distortion or partition454

of these sources.455

Another advantage of the RSTKF is given by the fact that it represents a dynam-456

ical inverse solution, and as such it is able to produce accurate results with less than457

64 EEG electrodes. As has been shown above in the results, such small numbers of458

electrodes do not lead to any loss of spatial resolution. The traditional optimization459

scheme in RSTKF was successful in assigning the largest dynamical noise variance to460
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the expected area in both simulated and clinical EEG data. The lateralization of the461

source was also mostly accurate, despite the fact that the definition of the brain regions462

did not differentiate between left and right structures. In addition to that, all results463

were obtained from non-averaged single spikes with low SNR levels. No averaged464

spike was needed by RSTKF to obtain accurate and consistent localization. The local-465

ization of spike onset in non-averaged spikes is difficult due to the low SNR level, and466

RSTKF has been found to be robust against this effect. The number of electrodes and467

the non-averaged analysis may be relevant for practical application of RSTKF, since468

at many clinics and research centers EEG recordings are performed with 40 electrodes469

or fewer, and some recordings do not show a sufficient number of spikes to obtain a470

reliable averaged spike for source reconstruction.471

Generally, it was shown in [18] that the use of a dynamical inverse solution with472

non-vanishing neighbor interactions in the source space, such as the STKF or RSTKF,473

may make the subspace of silent sources accessible for source reconstruction. This474

represents an advantage of STKF and RSTKF over static methods. In the ideal case,475

all state-space dynamical parameters should be allowed to assume individual values476

for each grid point or, at least, for each region. Concerns about the feasibility of477

parameter estimation, however, limit this possibility and lead to assumptions of spa-478

tial homogeneity, in the case of STKF, or the definition of a few regions in the brain,479

in the case of RSTKF. In [32, 61] an alternative approach for varying the dynamical480

noise variance of the spatiotemporal Kalman filter in space (and time) based on a state-481

space generalized autoregressive conditional heteroscedasticity (GARCH) model was482

suggested; however, for the high-dimensional EEG inverse problem, this model still483

suffers from numerical problems. Additionally, it was not tested for the case of source484

reconstruction of activity from subcortical sources. Currently, the RSTKF is the only485

stable generalization of STKF that showed, compared to LORETA and STKF, better486

spatial resolution, accuracy and the ability to detect deep brain sources.487

4.3. Summary, open questions, and further work488

The development of RSTKF was motivated by the aims of achieving better spatial489

accuracy and improving the localization of subcortical sources. In the field of epilep-490
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tology, malformations in, e.g., the mesial temporal and mesial frontal brain regions can491

cause epilepsy, and these deep sources need to be accurately localized in presurgical492

evaluation for successful treatment and seizure freedom [62]. Additionally, the thala-493

mus plays an important role in the initiation and propagation of focal and generalized494

epilepsies [63]. For these reasons, the development of algorithms for localization of495

subcortical brain structures from surface EEG is important.496

This paper presented only a proof-of-principle study. The analyses presented here497

were performed using a standard realistically-shaped 3-compartment BEM head model;498

in future work we intend to take the individual anatomy into account. Furthermore, we499

intend to validate the new method by using a larger number of datasets, e.g., 5-10 per500

subject, and a larger number of subjects. Regarding simulations, it may not be feasible501

to study the error variability of RSTKF via simulations with hundreds of repetitions502

due to prohibitive computational times. As a compromise, a future study with 20-30503

repetitions will be performed. These simulations will be performed with more realis-504

tic SNR values (5-35 dB) and more sophisticated dynamical models to avoid inverse505

crimes. The repetitions would also allow us to plot the distribution of source location506

results.507

We limited the number of regions in this paper to seven. The optimal number508

of regions could be obtained via ML optimization, by introducing successively more509

regions, and refitting the model. Then the minimum of AIC would show the optimal510

number of regions. But this is a simplified picture. When starting with a large number511

of initial regions, there is a combinatorial multitude of possible sets of larger regions,512

obtained by merging subsets of smaller regions. For all these sets of regions optimal513

models would have to be fitted, and their AIC compared. This would be infeasible. In514

practical work, even fitting a model for one choice of regions is time consuming, and515

this limits the number of regions that can be employed. The choice of regions to be516

included in the model may be guided by prior knowledge regarding possibly relevant517

source locations; but clearly such choice will always introduce a certain subjective bias518

into the modeling.519

The development of the RSTKF method requires the definition of more regions520

with their own dynamical noise parameters, in order to better reflect the anatomical521
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or functional modularity of the brain. Anatomical atlases, such as the AAL atlas [45]522

that include subcortical areas, contain up to 116 regions. In this paper we concen-523

trated on adding more subcortical structures in the choice of regions. In the future,524

the subdivision of the cortical areas into lobes or even gyral and sulcar structures will525

be performed to improve the accuracy of RSTKF for cortical sources. Additionally,526

the choice of the number of regions needs to be a compromise between a small num-527

ber of regions, which may be too close to the STKF, and a large number, which may528

cause larger computational times, identifiability problems and local minima for the op-529

timization algorithms. A larger number of regions may be feasible through a “restricted530

optimization” approach in which subgroups of parameters are optimized.531

In this study we chose to make the MA parameters spatially heterogeneous. The532

idea to have space-dependent AR parameters, however, is not unreasonable. AR pa-533

rameters determine the oscillation frequency, so if different parts of the brain generate534

oscillations with different frequencies, this may be reflected by different AR param-535

eters. This would be a different type of RSTKF model, for which variance, or MA536

parameters, would be independent of region.537

Regarding the choice of the source gird, we intend to use 5mm grid spacing in order538

to represent the small or longitudinal subcortical structures with enough grid points.539

In addition to the grid choice, we used only the classical definition of the Laplacian540

matrix in this study since it results in a non-singular Laplacian matrix. The use of this541

Laplacian matrix, however, suppresses the activity at the borders of the grid, since it542

always assumes the presence of six neighbors to each grid point, which is not true for543

grid points at the borders of the grid [28, 64]. The use of the six neighbors in the x,544

y, and z directions was also chosen because it is common in these kinds of studies. In545

the future, the neighbors in the diagonal directions can be included in the Laplacian546

matrix. Additionally, we intend to test the modified definition of the Laplacian matrix547

from [64] for RSTKF analyses. AIC comparison may be used in the future to compare548

different definitions of the Laplacian matrix.549

The the current study was performed only for single brain sources. We would like550

to emphasize, however, that the activity of the whole brain is estimated by each of the551

the three algorithms without any specification of the number of sources prior to source552
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imaging. The use of single sources was only for validation and not as a parameter for553

the source imaging algorithm. We only used the Euclidian distance as a performance554

measure without any averaging or cross validation. A possible compromise would be555

to have distribution of source location results.. We will use the earth mover’s distance556

(EMD) [65] in the future to compare the spatial distributions of the simulated and557

reconstructed current densities. In a future study we also intend to investigate the ap-558

plications in epileptology or cognitive neuroscience in which simultaneous activations559

of several subcortical sources, or of cortical and subcortical sources. In these cases560

a masking effect may be observed [12] and additional preprocessing steps involving561

filtering or ICA may be needed to disentangle the effects of different sources prior to562

source imaging. Additionally, these analyses will show how long-range connectivities563

are affected by the nearest-neighbor state-space representation, since this is interesting564

for investigations of propagated activity in epileptology.565

Since the whole brain activity is estimated at the same time and not sequentially,566

there is a potential for reduction of the computational time. The computational time567

is linearly proportional to the number of voxels, time points and optimization steps.568

It is, however, non-linearly proportional to the number of electrodes and that is why569

we employ dimensionality reduction approaches when we deal with high-density EEG570

data. Model reduction approaches, e.g. based on singular value decomposition (SVD),571

may be very helpful in improving the computational speed of the RSTKF [31]572

The next step will be to use individual head models and individual atlases of brain573

regions. The localization of subcortical sources may become easier through the reduc-574

tion in head modeling errors [66]. This could be achieved by using detailed state-of-575

the-art 6-compartment finite element (FE) head models, which model the anisotropic576

white matter, gray matter, cerebrospinal fluid (CSF), three layer skull, and skin [4, 67].577

Finally the important cases of simultaneous subcortical activations or simultaneous578

cortical and subcortical activations still need to be investigated using simulated and579

clinical EEG data. The validation of the RSTKF approach may be best performed by580

analyzing simultaneous recordings from surface EEG and from depth electrodes, or by581

analyzing surface EEG recordings of activity from deep brain stimulation (DBS) of the582

thalamus or the subthalamic nucleus (STN) [68].583
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5. Conclusion584

In summary, RSTKF is a dynamical source imaging approach which outperformed585

both LORETA and STKF in both accuracy and spatial resolution based on the data586

analysis that was performed in this paper. The new method has shown promising results587

in the case of deep brain sources from EEG recordings with fewer than 64 electrodes,588

and without the need for averaged spikes. In the future, validation models with DBS or589

simultaneous EEG and depth recordings will be used to validate the RSTKF.590
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Figure 1: A summary of the analysis pipeline which includes EEG preprocessing, head modeling, division
of brain grid into regions based on atlas information, source imaging, and validation based on an anatomical
atlas. The images were produced using CURRY7.

.
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Figure 2: (a) An example of the stochastically-changing orientation of the simulated current dipole in the
thalamus and (b) the time courses of the x-, y- and z-components of the current dipole in addition to the
modulus of the thalamic source current density.

.
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Figure 3: The simulated 32-channel EEG datasets from a single rotating dipole in the frontal lobe, putamen,
and thalamus. In the right column the voltage maps of the highest negative peaks of every dataset are shown.
The images were produced using CURRY7.

.
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Figure 4: The mean global field power (MGFP) of five non-averaged spikes, selected from the EEG recording
of an epilepsy patient. The cursor is located at each spike’s peak. In the right column the voltage maps
corresponding to the spike peaks are shown. The images were produced using CURRY7.

.
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Figure 5: (a) The first row shows the locations of the simulated dipoles in the left frontal lobe (left), left
putamen (center) and thalamus (right). In the second row the EEG source imaging results of LORETA for
the sources in the frontal lobe, putamen, and thalamus are displayed. In the second row the EEG source
imaging results of STKF for the sources in the frontal lobe, putamen, and thalamus are displayed. In the
bottom row the EEG source imaging results of the RSTKF(7) for the sources in the frontal lobe, putamen, and
thalamus are shown. (b) EEG source imaging results of the RSTKF(i), where i “ 2, . . . ,7, for the simulated
thalamic source. The results are visualized as axial MRI slices, and the cursor is placed at the maximum of
the estimated current density in the thalami. Additionally the z-coordinates of the axial slices are shown in
Montreal Neurological Institute (MNI) coordinates. The picture was produced using the Fieldtrip software
[34].

.
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Figure 6: EEG source imaging results of 5 non-averaged spikes using LORETA (top row), STKF (middle
row) and RSTKF (bottom row). The results are visualized as axial MRI slices at each spike’s onset (a)
and peak (b), and the cursor is placed at the maximum of the estimated current density. Additionally the
z-coordinates of the axial slices are shown in MNI coordinates. The location and the extent of the resected
region in two axial slices from the patient’s post-operative MRI is shown in (c). The picture was produced
using the Fieldtrip software [34].

.
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Table 1: Euclidean distance (in mm) between the simulated and estimated current density maxima using
LORETA, STKF, and RSTKF as EEG source imaging methods for the simulated sources in the frontal lobe,
putamen and thalamus.

Method Euclidean dis-
tance (in mm)
between the
simulated and
reconstructed
sources in the
frontal lobe

Euclidean dis-
tance (in mm)
between the
simulated and
reconstructed
sources in the
putamen

Euclidean dis-
tance (in mm)
between the
simulated and
reconstructed
sources in the
thalamus

LORETA 12.8062 20.8327 25.7099
STKF 15.2971 20.3224 24.5967
RSTKF 12.8062 16.0935 11.3578
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Table 2: EEG source imaging results of five non-averaged spikes selected from the EEG recording of an
epilepsy patient. The epileptic focus lies in the amygdalo-hippocampal area. The results were visualized at
the spikes’ onsets defined as 50% of the spike’s rise time. For the maximum source activation, anatomical
labels from the AAL atlas are shown. If the maximum of the estimated source activity falls within the
resected region, the result is concordant, -C-, with the resected region; if the maximum does not fall within
the resected region, the result is disconcordant, -DC-, with the resected region.

Datasets Anatomical labels
of LORETA result

Anatomical labels
of STKF result

Anatomical labels
of RSTKF result

Spike 1 onset Calcarine R
-DC-

Temporal Mid L
-DC-

Amygdala L, Hip-
pocampus L
-C-

Spike 2 onset N \A
-DC-

Temporal Mid L
-DC-

Hippocampus L
-C-

Spike 3 onset N \A
-DC-

Frontal Inf Tri L
-DC-

Amygdala L, Hip-
pocampus L
-C-

Spike 4 onset Temporal Mid L
-DC-

Temporal Mid L
-DC-

Amygdala L, Hip-
pocampus L
-C-

Spike 5 onset Cerebellum 6 L,
Cerebellum Crus
1 L
-DC-

Temporal Mid L
-DC-

Amygdala L, Hip-
pocampus L
-C-
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Table 3: EEG source imaging results of five non-averaged spikes selected from the EEG recording of an
epilepsy patient. The epileptic focus lies in the amygdalo-hippocampal area. The results were visualized at
the spikes’ peaks. For the maximum source activation, anatomical labels from the AAL atlas are shown. If
the maximum of the estimated source activity falls within the resected region, the result is concordant, -C-,
with the resected region; if the maximum does not fall within the resected region, the result is disconcordant,
-DC-, with the resected region.

Datasets Anatomical labels
of LORETA result

Anatomical labels
of STKF result

Anatomical labels
of RSTKF result

Spike 1 peak N \A
-DC-

N \A
-DC-

Amygdala L, Hip-
pocampus L
-C-

Spike 2 peak Temporal Mid L
-DC-

Temporal Mid L
-DC-

Amygdala L, Hip-
pocampus L
-C-

Spike 3 peak Temporal Inf L
-DC-

N \A
-DC-

Amygdala L, Hip-
pocampus L
-C-

Spike 4 peak Temporal Mid L
-DC-

Temporal Inf L
-DC-

Amygdala L, Hip-
pocampus L
-C-

Spike 5 peak N \A
-DC-

N \A
-DC-

Amygdala L, Hip-
pocampus L
-C-
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