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ABSTRACT

We demonstrated how the nonlinear Fourier transform based on the Zakharov-Shabat spectral problem can be
used to characterise coherent structures in dissipative systems. We consider as a particular, albeit important
practical example model equation that is widely used to analyse laser radiation and demonstrate that dissipative
solitons can be described by a limited number of degrees of freedom – discrete eigenvalues. Our approach can
be applied for signal processing in a number of optical systems, from lasers to micro-resonators.
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1. INTRODUCTION

The Fourier transform is arguably one of the most important mathematical methods used in engineering. It is
widely applied in science and technology and is embedded as an inherent part in numerous signal processing
techniques. In conventional engineering applications, the Fourier transform has two major purposes: first, to
decompose a complex signal into its more simple constituents, e.g. present temporal signal in the basis of spectral
components, improving overall understanding of the signal; second, it can facilitate analysis, e.g. allow us to
solve certain type of equations when evolution in the spectral presentation is more simple compared to time
domain. Here we discuss a new engineering signal processing concept for the analysis of localised structures.
We will focus on the optical context, however, the concept is much broader and can be applied across areas of
science and engineering.

We examine new applications of the nonlinear Fourier Transform (NFT) (also known as the inverse scattering
method), that can be considered as a generalization of the standard linear Fourier transform to the case of non-
linear systems. NFT was introduced1–5 as a powerful mathematical method to solve nonlinear partial differential
equations – integrable nonlinear equations. In particular, NFT based on the Zakharov-Shabat spectral problem
(that will be described below) allows one to solve the nonlinear Schrödinger equation (NLSE)2 – one of the
seminal nonlinear models with a range of applications across various fields of science.

The NFT based on the Zakharov-Shabat spectral problem makes it possible to simplify the analysis of the
NLSE and reduce complex nonlinear dynamics to simple evolution in a certain basis – the so-called nonlinear
spectrum that consists of a continuous and discrete part. Recently we have introduced a concept of using NFT
for analysis of the evolution of dissipative, non-integrable systems,6,7 see also.8–10 Nonlinear cubic Ginzburg-
Landau equation (CGLE), that is a particularly important example in the context of modeling laser systems
was considered in.6 We have demonstrated that the optical pulse dynamics in the framework of CGLE can be
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described by a limited number of discrete eigenvalues of the corresponding Zakharov-Shabat spectral problem.
Even though CGLE is not the integrable system, we can still formally compute the nonlinear spectrum of the
optical field at each point during propagation and, thus, study the evolution of the nonlinear spectrum. It was
demonstrated, that under certain conditions, the NFT may allow facilitating analysis of the evolution of coherent
structures with a relatively small number of parameters.

In the current study, we present new results on the application of this approach. To demonstrate that the
NFT based signal processing is not strongly linked to the original NLSE, we consider here both anomalous
and normal dispersion in the CGLE. For both signs of dispersion, stationary solutions in the form of chirped
dissipative solitons are studied. We examine the dependence of their nonlinear spectrum on the amplitude, width,
and chirp, and the ratio of the energy associated with the discrete spectrum to the total energy. We anticipate
that when most of the energy is in the discrete eigenvalues, those stationary regimes that can be described with
high accuracy only by the discrete component of the nonlinear spectrum.

We present here several examples of the solutions of the CGLE with normal and anomalous dispersion when
the fraction of energy associated with the discrete spectrum is above 95% of the total energy. The evolution of
the discrete spectrum is calculated using the NFT, and the optical field in the temporal domain was restored
from the nonlinear spectrum using the method based on the Darboux transformation. A comparison of the initial
and reconstructed optical fields shows good agreement, indicating a potential of presenting complex nonlinear
temporal dynamics by the evolution of a small number of degrees of freedom.

2. MATHEMATICAL MODEL

Similar to the analysis presented in,6 we examine here a new application of the inverse scattering transform,1–5,11

also known as the nonlinear Fourier transform, originally developed for the nonlinear Schrödinger equation
(NLSE):2

i
∂U

∂z
+

1

2

∂2U

∂t2
+ |U |2U = 0, (1)

The Zakharov-Shabat problem (ZSP) for the signal U(z, t) can be written as{
∂ψ1

∂t = −iζψ1 + U(z, t)ψ2
∂ψ2

∂t = −U∗(z, t)ψ1 + iζψ2
(2)

Here the spectral parameter is ζ = ξ + iη. The spectrum of ZSP (2) consists of two parts:
(i) a continuous spectrum that is defined on the real axis of the complex plane ζ = ξ by the complex function r(ξ),
(ii) a discrete spectrum that is given by 4×N real parameters (the set of complex-valued eigenvalues {ζn} having
a positive imaginary part together with complex-valued norming constants {rn}).
The discrete eigenvalues determine a soliton content of the field distribution, with N being the total number
of solitons in the propagating field U(z, t). The discrete nonlinear spectrum defines the soliton content of the
field U(z, t). When U(z, t) represents a set of well-separated solitons, each eigenvalue ζn specifies parameters of
individual soliton: the amplitude 2Im(ζn), the frequency −2Re(ζn), the position Tn = log[|rn|/(2Imζn)]/(2Imζn),
and the phase ϕn = − arg(irn). The total energy of the solution of NLSE can be presented as a sum of the
continuous and discrete spectra:

Et =

∞∫
−∞

|U(z, t)|2dt =

N∑
n=1

4ηn +
1

π

∞∫
−∞

log(1 + |r(ξ)|2)dξ = Ed + Ec, (3)

Consider now an optical field evolving according to the CGLE, having the following form:

i
∂U

∂z
+
s

2

∂2

∂t2
U + |U |2U = i

(
σ + α

∂2

∂t2
+ δ|U |2

)
U, (4)
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where s = −sign(β2), the parameter δ > 0 corresponds to the effective distributed saturable absorber action and
the parameter α > 0 describes the effect of distributed optical filtering. The saturated gain g0 and linear loss Γ
define the parameter σ:

σ(E) =
g0

2(1 + E/Esat)
− Γ

2
, E(z) =

∫
|U(z, t)|2dt. (5)

The CGL equation has special solutions in the form of chirped dissipative solitons

U(z, t) = U1+iC
0 (t) exp {iφz}, U0(t) =

A

cosh (t/τ)
. (6)

The CGL equation (4) is not integrable, however, we can still formally compute the NFT (nonlinear) spectrum
of the optical field U(z, t) at each point z and consider the evolution of the nonlinear spectrum with z (see also12).
The Zakharov-Shabat problem (2) is solved here numerically using the Boffetta-Osborne method.13 A combined
method is used to localize discrete eigenvalues, including the preliminary finding of the zeros of the function a(ζ)
using contour integrals, and their subsequent refinement using the Newton method14 and the exponential 4th
order scheme.15

The application of the NFT-based analysis to the general chirped pulse given by (6) with independent
parameters A, τ , C gives the expression16–20 for the discrete spectrum size N : A2τ2 = C2/4 + (N − 1/2)2. The
set of eigenvalues {ζn} of such pulses is defined as ζn = iηn = i(

√
A2τ2 − C2/4 + 1/2− n), where n are positive

integers satisfying condition
√
A2τ2 − C2/4 + 1/2− n > 0, providing for Im(ζn) > 0. Previously we derived the

analytical expression for the fraction of energy containing in the discrete spectrum:

Ed
Et

=
A2τ2 − C2/4− (ρ− 1/2)2

A2τ2
, (7)

where ρ = frac[
√
A2τ2 − C2/4 + 1/2] is a fractional part of

√
A2τ2 − C2/4 + 1/2.

Next, we restrict the family of pulses (6) to the stationary solutions of the CGLE making the parameters A,
C and τ dependent and defined by δ, α, g0, Γ and Esat. For δ > 0 and α > 0 chirp parameter C is given by the
expression

C = −3

2

(δα+ s/2)

(−δs/2 + α)
± 1

2

√
9

(δα+ s/2)2

(−δs/2 + α)2
+ 8. (8)

Here the sign in the above equation is determined from the condition C/(−δ/2 + α) > 0. It is convenient to
denote R(C,α) = α(C2−1)+sC and B(C,α) = 3αC+ s

2

(
C2 − 2

)
, then remaining dissipative soliton parameters

are given by

A =
√
σB(C,α)/R(C,α), (9)

τ =
√

R(C,α)/σ,

φ = σ
(

2αC −
(
C2 − 1

) s
2

)
/R(C,α).

The energy Es of the steady-state solution is expressed either as

Es = 2A2τ = 2B(C,α)
√
σ/R(C,α) (10)

or as Es = Esat (g0/(2σ + Γ)− 1), see (5). After energy Es is found, it fully determines parameter σ, sign of
which will be important in the following analysis.

The value of the gain coefficient σ for stationary solutions can be found analytically using the definition of
σ (5) and the asymptotic value of the energy Es (10). So we need to solve the following equation in the case of
g0 > Γ and get σ ∈ (−Γ/2, (g0 − Γ)/2):

Esat

(
g0

2σ + Γ
− 1

)
= 2B(C)

√
σ

R(C)
. (11)

We consider now the possible choices of parameters and corresponding solutions.
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R(C) < 0⇒ σ ∈ (−Γ/2, 0):

Esat

(
g0

−2(
√
−σ)2 + Γ

− 1

)
=

2B(C)√
−R(C)

√
−σ = Σ− ×

√
−σ. (12)

Let denote

Q =
1

9

(
E2
sat

Σ2
−

+
3Γ

2

)
, R =

Esat
Σ−

(
Q

3
+
g0
4
− 2Γ

9

)
.

When R2 ≤ Q3 the Eq. (12) has two solutions in the required interval for the strict inequality or only one
for the equality. The corresponding roots read:

√
−σ± = −2

√
Q cos

(
1

3
arccos

R√
Q3
± 2π

3

)
− Esat

3Σ−
,

it is easy to see that −σ+ > −σ−, which leads to E(σ+) > E(σ−). However, the solution with σ+ is
unstable, therefore, in the following, it will not be considered.

R(C) = 0⇒ σ = 0:

Es = Esat × (g0 − Γ)/Γ ⇒ τ =
2B(C)

Es
.

R(C) > 0⇒ σ ∈ (0, (g0 − Γ)/2):

Esat

(
g0

2(
√
σ)2 + Γ

− 1

)
=

2B(C)√
R(C)

√
σ = Σ+ ×

√
σ. (13)

However, we note that stationary solutions with σ > 0 are unstable. To make classification of solutions,
denote:

Q =
1

9

(
E2
sat

Σ2
+

− 3Γ

2

)
, S =

Esat
Σ+

(
Q

3
− g0

4
+

2Γ

9

)
.

Now the families of solutions read: If S2 ≤ Q3, then

√
σ = −2

√
Q cos

(
1

3
arccos

S√
Q3

)
− Esat

3Σ+
;

If S2 > Q3 > 0, then

√
σ = −2 sign(S)

√
Q cosh

(
1

3
arccosh

|S|√
Q3

)
− Esat

3Σ+
;

If S2 > 0 > Q3, then

√
σ = −2 sign(S)

√
|Q| sinh

(
1

3
arcsinh

|S|√
|Q|3

)
− Esat

3Σ+
;

If Q = 0, then

√
σ =

(
Esat
Σ+

(g0 − Γ)

2
+

(
Esat
3Σ+

)3
)1/3

− Esat
3Σ+

.

The existence domain of the CGLE chirped solitons is determined only by the choice of the gain g0, Γ and Esat
parameters and it can be asymptotically expanded to the quadrant δ ≥ 0, α ≥ 0 with Esat × (g0 − Γ)/Γ → 0,
which is illustrated by Fig. 1. Here we considered the parameters g0 = 0.3, Γ = 0.1, Esat = 1 (which give
the energy value Es = Esat × (g0 − Γ)/Γ = 2 at δ = α = 0). First, we computed the dependence of the
characteristics of the nonlinear spectrum of the CGLE stationary solutions (4) on the parameters α and δ, with
all others fixed as described above. Figure 1 present the ratio of the energy of the discrete part of the nonlinear
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Figure 1. Dependence of the fraction of the energy in the discrete spectrum in the total energy Ed/Et, on the parameters
α and δ for g0 = 0.3, Γ = 0.1 in the case of anomalous dispersion (left) and normal dispersion (right). The numbers of
black colour in the figure indicate the number of discrete levels for the corresponding CGLE stationary solutions (6), and
the black lines separate the areas with different eigenvalue counts. The dashed line indicates the level σ = 0 dividing
stable and unstable stationary solutions.

spectrum Ed, to the total energy Et as a function of the parameters α and δ for both signs of dispersion. For
each pair of parameters, continuous and discrete ZSP spectra have been numerically found for the corresponding
stationary solution of the CGLE (6). The number of discrete eigenvalues for each set of parameters is plotted
in the corresponding areas in Fig. 1. One can see that the proportion of the energy containing in the discrete
spectrum to the total energy is always quite high — more than 82%. However, the areas with 1 and 3 discrete
eigenvalues have sub-domains, where the energy ratio exceeds 97.5%. This indicates that dynamics is dominated
by the coherent structures and NFT might be the appropriate way to reduce an effective number of the degrees
of freedom required for the description of this system.

The boundaries separating areas with different discrete eigenvalue count (from 1 to 4) obtained numerically
are in full agreement with the analytical formulae given the numbers of discrete eigenvalues N .

3. NFT-BASED ANALYSIS OF THE DYNAMICS OF DISSIPATIVE SOLITONS

We now examine with more details application of the NFT for analysis of CGLE (4) dynamics with anomalous and
normal dispersion. Numerical modelling was performed using the standard split-step Fourier method (SSFM).
We consider as the initial condition the NLSE soliton in the form

U(z = 0, t) = 0.2 sech(0.2t), (14)

with the peak power, that is less than the power of the stationary solutions of the CGLE (6) with the given
parameters α and δ.

Figure 2. Anomalous dispersion, α = 3.5, δ = 0.35 (σ < 0). (a) original pulse intensity dynamics U(z, t), (b) reconstructed
from the discrete spectrum field U (DS)(z, t), (c) the discrete spectrum (upper part) and the logarithm of |r(ξ)|2 for
continuous spectrum (counterplot), (d) the ratio Ed/Et and the relative L2-norm of the difference between original field
U(z, t) and reconstructed field U (DS)(z, t) (the quantity ∆1) and between the amplitudes |U(z, t)| and |UDS(z, t)| (the
quantity ∆2).
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Figure 3. Normal dispersion, α = 3.5, δ = 0.35 (σ < 0). (a) original pulse intensity dynamics U(z, t), (b) reconstructed
from the discrete spectrum field U (DS)(z, t), (c) the discrete spectrum (upper part) and the logarithm of |r(ξ)|2 for
continuous spectrum (counterplot), (d) the ratio Ed/Et and the relative L2-norm of the difference between original field
U(z, t) and reconstructed field U (DS)(z, t) (the quantity ∆1) and between the amplitudes |U(z, t)| and |UDS(z, t)| (the
quantity ∆2).

The initial field always has only a single discrete eigenvalue, and the peak power of this field increases with
propagation along z. We consider two situations: one with unstable dynamics with σ > 0 when the energy
dissipates, and one with stable propagation with σ < 0, when initial signal approximates to the steady-state
soliton regime. For each of these examples, the nonlinear spectrum was calculated at 500 points along z for 3d
field dynamics figures and at 5000 points for the discrete spectrum evolution figures.

Figures. 2 and 3 shows stable dynamics along z of the field intensity and the dynamics of discrete eigenvalues
ζn = ξn + ηn in the case of α = 3.5, δ = 0.35, σ < 0 for anomalous and normal dispersion, respectively. The
initial single discrete eigenvalue evolves into three clearly seen discrete eigenvalues with that correspond to the
discrete NFT spectrum of the chirped CGLE soliton (6) for the considered values of the parameters. In the case
of anomalous dispersion oscillations that appear at first quickly fade out, and the fourth discrete eigenvalue that
appeared at the beginning disappears. The fourth discrete eigenvalue in the case of normal dispersion periodically
exists, but its imaginary part decreases. The important observation is that the major part of the energy is in
the discrete spectrum, making NFT an attractive approach to reduce the number of degrees of freedom, even
analyzing such unstable dynamics. In both cases the ratio Ed/Et of energies is high, and does not become less
85%, even at the transient regime. The asymptotic value of the fraction of discrete spectrum energy Ed is close
to 97% for anomalous dispersion case, and 96% for normal dispersion. When the fourth discrete eigenvalue in
the last case appears, it pulls the energy from the continuous spectrum, so the ratio Ed/Et temporarily increases.
The field U (DS)(z, t), which is reconstructed from the discrete spectrum, coincides qualitatively with original

Figure 4. Anomalous dispersion, α = 3.5, δ = 0.35 (σ > 0). (a) original pulse intensity dynamics U(z, t), (b) reconstructed
from the discrete spectrum field U (DS)(z, t), (c) the discrete spectrum (upper part) and the logarithm of |r(ξ)|2 for
continuous spectrum (counterplot), (d) the ratio Ed/Et and the relative L2-norm of the difference between original field
U(z, t) and reconstructed field U (DS)(z, t) (the quantity ∆1) and between the amplitudes |U(z, t)| and |UDS(z, t)| (the
quantity ∆2).
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Figure 5. Normal dispersion, α = 3.5, δ = 0.35 (σ > 0). (a) original pulse intensity dynamics U(z, t), (b) reconstructed
from the discrete spectrum field U (DS)(z, t), (c) the discrete spectrum (upper part) and the logarithm of |r(ξ)|2 for
continuous spectrum (counterplot), (d) the ratio Ed/Et and the relative L2-norm of the difference between original field
U(z, t) and reconstructed field U (DS)(z, t) (the quantity ∆1) and between the amplitudes |U(z, t)| and |UDS(z, t)| (the
quantity ∆2).

field |U(z, t)| (see Figs. 2b and 3b), and the relative L2-norm of the difference between them

∆1 =

√√√√√√√√
M∑
j=0

∣∣U(z, tj)− U (DS)(z, tj)
∣∣2

M∑
j=0

|U(z, tj)|2
, (15)

reaches the value ∆1 = 0.22 (∆2 = 0.07 for the absolute values of the fields) at z = 700 in the case of anomalous
dispersion, but growth up to ∆1 = 0.36 (∆2 = 0.17) for the normal dispersion.

Figures. 4 and 5 corresponds to the unstable case (σ > 0). Oscillations of the field intensity distribution
are accompanied by the spatial variations of the discrete spectrum. Again, it can be seen that, from one
initial discrete eigenvalue, the discrete spectrum is growing into several eigenvalues that contain most of the
field energy (more than 95%). Two eigenvalues evolve almost stably with z for the anomalous dispersion, and
three eigenvalues for the normal dispersion. Two others appear and decay periodically with propagation. The
periodically arising fourth discrete eigenvalue merges with the closest discrete point in the NFT spectrum, leading
to quasi-symmetric configuration of these two eigenvalues relative to the real axis and out-of phase oscillations.
The relative L2-norm of the difference between original and reconstructed fields ∆1 and field absolute values ∆2

do not differ from each other not so significantly in these examples compared with previous examples. Moreover,
at z = 700 these errors reaches values ∆1 = 0.15, ∆2 = 0.14 (anomalous dispersion), and ∆1 = 0.26, ∆2 = 0.20
(normal dispersion).
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