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Abstract. Autonomous navigation is a key skill for assistive and service
robots. To be successful, robots have to comply with social rules, such as
avoiding the personal spaces of the people surrounding them, or not get-
ting in the way of human-to-human and human-to-object interactions.
This paper suggests using Graph Neural Networks to model how inconve-
nient the presence of a robot would be in a particular scenario according
to learned human conventions so that it can be used by path planning
algorithms. To do so, we propose two automated scenario-to-graph trans-
formations and benchmark them with different Graph Neural Networks
using the SocNav1 dataset [1]. We achieve close-to-human performance
in the dataset and argue that, in addition to its promising results, the
main advantage of the approach is its scalability in terms of the number
of social factors that can be considered and easily embedded in code in
comparison with model-based approaches. The code used to train and
test the resulting graph neural network is available in a public repository.

Keywords: social navigation, graph neural networks, human-robot in-
teraction

1 Introduction

Human-aware robot navigation deals with the challenge of endowing mobile so-
cial robots with the capability of considering the emotions and safety of people
nearby while moving around their surroundings. There is a wide range of works
studying human-aware navigation from a considerably diverse set of perspectives.
Pioneering works such as [2] started taking into account the personal spaces of
the people surrounding the robots, often referred to as proxemics. In addition
to proxemics, human motion patterns were analysed in [3] to estimate whether
humans are willing to interact. Semantic properties were also considered in [4].
Although not directly applied to navigation, the relationships between humans
and objects were used in the context of ambient intelligence in [5]. Proxemics
and object affordances were jointly considered in [6] for navigation purposes.
Two extensive surveys on human-aware navigation can be found in [7] and [8].
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Despite the previously mentioned approaches being built on well-studied psy-
chological models, they have limitations. Considering new factors programmati-
cally (i.e., writing additional code) involves a potentially high number of coding
hours, makes systems more complex, and increases the chances of including bugs.
Additionally, with every new aspect to be considered for navigation, the deci-
sions made become less explainable, which is precisely one of the main advantages
of model-based approaches over data-driven ones. Besides the mentioned model
scalability and explainability issues, model-based approaches have the intrinsic
and rather obvious limitation that they only account for what the model explic-
itly considers. Given that these models are manually written by humans, they
cannot account for aspects that the designers are not aware of.

Approaches leveraging machine learning have also been published. The pa-
rameters of a social force model (see [9]) are learned in [10] and [11] to navigate
in human-populated environments. Inverse reinforcement learning is used in [12]
and [13] to plan navigation routes based on a list of humans in a radius. So-
cial norms are implemented using deep reinforcement learning in [14], again,
considering a set of humans. An approach modelling crowd-robot interaction
and navigation control is presented in [15]. It features a two-module architec-
ture where single interactions are modelled and then aggregated. Although its
authors reported good qualitative results, the approach does not contemplate
integrating additional information (e.g., relations between humans and objects,
structure and size of the room). The work in [16] tackles the same problem using
Gaussian Mixture Models. It has the advantage of requiring less training data,
but the approach is also limited in terms of the input information used.

All the previous works and many others not mentioned have achieved out-
standing results. Some model-based approaches such as [4] or [6] can leverage
structured information to take into account space affordances. Still, the data
considered to make such decisions are often handcrafted features based on an
arbitrary subset of the data that a robot would be able to work with. There are
many reasons motivating to seek a learning-based approach not requiring fea-
ture handcrafting or manual selection. Their design is time-consuming and often
requires a deep understanding of the particular domain (see discussion in [17]).
Additionally, there is generally no guarantee that a particular hand-engineered
set of features is close to being the best possible one. On the other hand, most
end-to-end deep learning approaches have important limitations too. They re-
quire a big amount of data and computational resources that are often scarce
and expensive, and they are hard to explain and manually fine-tune. Somewhere
in the middle of the spectrum, we have proposals advocating not to choose be-
tween hand-engineered features or end-to-end learning. In particular, [18] pro-
poses Graph Neural Networks (GNNs) as a means to perform learning that allows
combining raw data with hand-engineered features, and most importantly, learn
from structured information. The relational inductive bias of GNNs is specially
well-suited to learn about structured data and the relations between different
types of entities, often requiring less training data than other approaches. In
this line, we argue that using GNNs for human-aware navigation makes possible
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integrating new social cues in a straightforward fashion, by including more data
in the graphs that they are fed.

In this paper, we use different GNN models to estimate social navigation
compliance, i.e., given a robot pose and a scenario where humans and objects can
be interacting, estimating to what extent a robot would be disturbing the humans
if it was located in such a pose. GNNs are proposed because the information
that social robots can work with is not just a map and a list of people, but a
more sophisticated data structure where the entities represented have different
relations among them. For example, social robots can have information about
who a human is talking to, where people are looking at, who is friends with
who, or who is the owner of an object in the scenario. Regardless of how this
information is acquired, it can be naturally represented using a graph, and GNNs
are a particularly well-suited and scalable machine learning approach to work
with these graphs.

2 Graph neural networks

Graph Neural Networks (GNNs) are a family of machine learning approaches
based on neural networks that take graph-structured data as input. They allow
classifying and making regressions on graphs, nodes, edges, as well as predicting
link existence when working with partially observable phenomena. Except for
few exceptions (e.g., [19]) GNNs are composed by similar stacked blocks/layers
operating on a graph whose structure remains static but the features associated
to its nodes are updated in every layer of the network (see Fig. 1).

Fig. 1. A basic GNN block/layer. GNN layers output updated versions of the input
graph. These updated graphs have the same nodes and links, but the feature vectors of
the nodes will generally differ in size and content depending on the feature vectors of
their neighbours and their own vectors in the input graph. A GNN is usually composed
of several stacked GNN layers. Higher level features are learnt in the deeper layers, to
that the output of any of the nodes in the last layer can used for classification or
regression purposes.

As a consequence, the features associated to the nodes of the graph in each
layer become more abstract and are influenced by a wider context as layers go
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deeper. The features in the nodes of the last layer are frequently used to perform
the final classification or regression.

The first published efforts on applying neural networks to graphs date back
to [20]. GNNs were further studied and formalised in [21] and [22]. However,
it was with the appearance of Gated Graph Neural Networks (GG-NNs, [23])
and especially Graph Convolutional Networks (GCNs, [24]) that GNNs gained
traction. The work presented in [18] reviewed and unified the notation used in
the GNNs existing to the date.

Graph Convolutional Networks (GCN) [24] are one of the most common GNN
blocks. Because of its simplicity, we build on the GCN block to provide the reader
with an intuition of how GNNs work in general. Following the notation proposed
in [18], GCN blocks operate over a graph G = (V,E), where V = {vi}i=1:Nv is a
set of nodes, being vi the feature vector of node i and Nv the number of vertices
in the graph. E is a set of edges E = {(sk, rk)}k=1:Ne , where sk and rk are the
source and destination indices of edge k and Ne is the number of edges in the
graph. Each GCN layer generates an updated representation v′i for each node vi
using two functions:

ei = ρe→v(E) =
∑

{k:rk=i}

ek,

v′i = φv(ei, vi) = NNv([ei, vi]).

For every node vi, the first function (ρe→v(E)) aggregates the feature vectors
of other nodes with an edge towards it and generates a temporary aggregated
feature ei which is used by the second function. In a second pass, the function
φv(ei, vi) is used to generate updated v′i feature vectors from the aggregated
feature vectors using a neural network (usually a multi-layer perceptron, but the
framework does not make any assumption on this). Such a learnable function
is the same for all the nodes. By stacking several blocks where features are
aggregated and updated, the feature vectors can carry information from nodes
far away in the graph and convey higher level features that can be finally used
for classification or regressions.

Several means of improving GCNs have been proposed. Relational Graph
Convolutional Networks (RGCNs [25]) extends GCNs by considering different
types of edges separately and applies the resulting model to vertex classification
and link prediction. Graph Attention Networks (GATs [26]) extend GCNs by
adding self-attention mechanisms (see [27]) and applies the resulting model to
vertex classification. For a more detailed review of GNNs and the generalised
framework, please refer to [18].

3 Formalisation of the problem

The aim of this work is to analyse the scope of GNNs in the field of human-
aware social navigation. Our study has been set up using the SocNav1 dataset
(see [1]) which provides social compliance labels for specific scenarios. It contains
scenarios with a robot in a room, a number of objects and a number of people
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that can potentially be interacting with other objects or people. Each sample is
labelled with a value from 0 to 100 depending on to what extent the subjects
that labelled the scenarios considered that the robot is disturbing the people in
the scenario. The dataset provides 16336 labelled samples to be used for training
purposes, 556 scenarios as the development dataset and additional 556 for final
testing purposes.

As previously noted, GNNs are a flexible framework that allows working
somewhere in the middle of end-to-end and feature engineered learning. Devel-
opers can use as many data features as desired and are free to structure the input
graph data as they please. The only limitations are those of the particular GNN
layer blocks used. In particular, while GCN and GAT do not support labelled
edges, RGCN and GG-NN do. To account for this limitation, two automated
scenario-to-graph transformations were used in the experiments, depending on
the GNN block to be tested: one without edge labels and one with them.

The first version of the scenario-to-graph transformation used to represent
the scenarios does not use labelled edges. It uses 6 node types (the features
associated to each of the types are detailed later in this section):

– robot: The dataset only includes one robot in each scenario, so there is just
one robot symbol in each of the graphs. However, GNNs do not have such
restriction.

– wall: A node for each of the segments defining the room. They are connected
to the room node.

– room: Used to represent the room where the robot is located. It is connected
to the robot.

– object: A node for each object in the scenario.
– human: A node for each human. Humans might be interacting with objects

or other humans.
– interaction: An interaction node is created for every human-to-human or

human-to-object interaction.

Figure 2 depicts two areas of a scenario where four humans are shown in a
room with several objects. Two of the humans are interacting with each other,
another human is interacting with an object, and the remaining human is not
engaging in interaction with any human or object. The structure of the resulting
non-labelled graph is shown in Fig.3a.

The features used for human and object nodes are: distance, the relative
angle from the robot’s point of view, and its orientation, from the robot’s point
of view too. For room symbols the features are: the distance to the closest
human and the number of humans. For the wall segments and the interaction
symbols, the features are the distance and orientation from the robot’s frame of
reference. For wall segments, the position is the centre of the segment and the
orientation is the tangent. These features geometrically define the room, which
is relevant to characterise the density of people in the room and the distance
from the robot to each of the walls. For interactions, the position is the midpoint
between the interacting symbols, and the orientation is the tangent of the line
connecting the endpoints. Features related to distances are expressed in meters,
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(a) An area of a scenario where two
humans interacting in a room are de-
picted.

(b) Heat map of the social compli-
ance estimation for the area shown
in Fig. 2a in the different positions in
the environment.

(c) An area of the same scenario with
two humans. The human on the left
is not engaged in any interaction.
The human on the right is interacting
with the object in front of her.

(d) Heat map of the social compli-
ance estimation for the area shown
in Fig. 2c in the different positions in
the environment.

Fig. 2. Different areas of a scenario where social interactions are being held and their
corresponding estimated heat map of “social inconvenience”.

whereas those related to angles are actually expressed as two different numbers,
sin(α) and cos(α). The final features of the nodes are built by concatenating
the one-hot encoding that determines the type of the symbol and the features
for the different node types. It is worth noting that by building feature vectors
this way, their size increases with every new type. This limitation is currently
being studied by the GNN scientific community.

For the GNN blocks that can work with labelled edges, a slightly different
version of the scenario-to-graph transformation is used. The first difference is
that in this version of the scenario-to-graph model there are no interaction nodes.
The elements interacting are linked to each other directly. Robot, room, wall,
human and object nodes are attributed with the same features as in the previous
model. The second difference is related to the labelling of the edges. In this
domain, the semantics of the edges can be inferred from the types of the nodes
being connected. For example, wall and room nodes are always connected by the
same kind of relation “composes”. Similarly, humans and object nodes are always
connected by the relation “interacts with human”. The same holds the other
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(a) Graph without labelled edges.
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(b) Graph with labelled edges.

Fig. 3. Examples of how the scenario-to-graph transformation work based on the sce-
nario depicted in Fig.2.

way around: “composes” relations only occur between wall and room nodes,
and “interacts with human” relations only occur with humans and object nodes.
Therefore, for simplicity, the label used for the edges is the concatenation of the
types involved. The structure of the resulting labelled graph for the scenario
depicted in Fig.2 is shown in Fig.3b.
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Because all nodes are connected to the robot, the GNNs were trained to
perform the regression on the feature vector of the robot node in the last layer.

Using the previously mentioned dataset and the two proposed scenario-to-
graph transformations, different architectures using different GNN blocks were
compared.

4 Experimental results

The experimental results are aligned with the contributions of the paper, which
deal with modelling social conventions. Therefore, we assume that we can build
on top of a third party body tracker and a path planning system and proceed
with the evaluation of the algorithm against the dataset.

The four GNN blocks used in the experiments were:

– Graph Convolutional Networks (GCN) [24].
– Gated Graph Neural Networks (GG-NN) [23].
– Relational Graph Convolutional Networks (RGCNs) [25].
– Graph Attention Networks (GAT) [26].

If available, each of these GNN blocks was benchmarked using Deep Graph
Library (DGL) [28] and PyTorch-Geometric (PyG) [29]. In addition to using sev-
eral layers of the same GNN building blocks, alternative architectures combining
RGCN and GAT layers were also tested:

1. A sequential combination of n RGCN layers followed by n GAT layers with
the same number of hidden units (alternative 8 in table 1).

2. An interleaved combination of n RGCN and n GAT layers with the same
number of hidden units (alternative 9 in table 1).

3. A sequential combination of n RGCN layers followed by n GAT layers with
a linearly decreasing number of hidden units (alternative 10 in table 1).

As a result, 10 framework-architecture combinations were benchmarked. Ta-
ble 1 describes them and provides their corresponding performance on the devel-
opment dataset. To benchmark the different architectures, 5000 training sessions
were launched using the SocNav1 training dataset and evaluated using the Soc-
Nav1 development dataset. The hyperparameters were randomly sampled from
the range values shown in Table 2.

The results obtained (see table 1) show that, for the dataset and the frame-
work/architecture combinations benchmarked, DGL/GAT delivered the best re-
sults, with a training loss of 0.01701 for the development dataset. The parame-
ters used by the DGL/GAT combination were: batch size: 273, number of hidden
units: 129, number of attention heads: 2, number of attention heads in the last
layer: 3, learning rate: 5e-05, weight decay regularisation: 1e-05, number of lay-
ers: 4, no dropout, alpha parameter of the ReLU non-linearity 0.2114. After
selecting the best set of hyperparameters, the network was compared with a
third test dataset, obtaining an MSE of 0.03173. Figures 2b and 2d provide
an intuition of the output of the network for the scenarios depicted in figures 2a
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Alt. # Framework
Network Training Loss

architecture (MSE)

1 DGL GCN 0.02283

2 DGL GAT 0.01701

3 DGL GAT2 0.01740

4 PyG GCN 0.29778

5 PyG GAT 0.01804

6 PyG RGCN 0.02827

7 PyG GG-NN 0.02718

8 PyG RGCN||GAT 1 0.02238

9 PyG RGCN||GAT 2 0.02147

10 PyG RGCN||GAT 3 0.0182

Table 1. A description of the different framework/architecture combinations and the
experimental results obtained from their benchmark for the SocNav1 dataset.

Hyperparameter Min Max

epochs 1000

patience 5

batch size 100 1500

hidden units 50 320

attention heads 2 9

learning rate 1e-6 1e-4

weight decay 0.0 1e-6

layers 2 8

dropout 0.0 1e-6

alpha 0.1 0.3

Table 2. Hyperparameter values. Only applicable to Graph Attention Network blocks.

and 2c considering all the different positions of the robot in the environment
when looking along the y axis.

It is worth noting that, due to the subjective nature of the labels in the
dataset (human feelings are utterly subjective), there is some level of disagree-
ment even among humans. To compare the performance of the network with
human performance, we asked 4 subjects to label all the scenarios of the de-
velopment dataset. The mean MSE obtained for the different subjects was
0.022. This means that the network performs close to human accuracy. Figure 4
shows an histogram comparing the error made by the GNN-based regression in
comparison to humans.

Most algorithms presented in section 1 deal with modelling human intimate,
personal, social and interaction spaces instead of social inconvenience, which
seems to be a more general term. Keeping that in mind, the algorithm proposed
in [6] was tested against the test dataset and got a MSE of 0.12965. The relative
bad performance can be explained by the fact that other algorithms do not take
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Fig. 4. Histogram of the absolute error in the test dataset for the network performing
best in the development dataset.

into account walls and that their actual goal is to model personal spaces instead
of feelings in general.

Regarding the effect of the presence of humans, we can see from Fig. 2d that
the learnt function is slightly skewed to the front of the humans, but not as much
as modelled in other works such as [30] or [6]. One of the possible reasons why
the “personal space” is close to being circular is the fact that, in the dataset,
humans appear to be standing still. It is still yet to be studied, probably using
more detailed and realistic datasets, how would the personal space look like if
humans were moving.

The results obtained using GNN blocks supporting edge labels were inferior
to those obtained using GAT, which does not support edge labels. Two reasons
might be the cause of this phenomena: a) as mentioned in section 3 the labels
edges can be inferred from the types of the nodes, so that information is to
some extent redundant; b) the inductive bias of GATs is strong and appropriate
for the problem at hand. This does not mean that the same results would be
obtained in other problems where the label of the edges cannot be inferred.

5 Conclusions

Although there have been attempts to predict people’s trajectories using graph
neural networks, to our knowledge, this paper presented the first graph neural
network modelling human-aware navigation conventions. The scenario-to-graph
transformation model and the graph neural network developed as a result of
the work presented in this paper achieved a performance comparable to that of
humans. The final model can be used as part of a social navigation system to
predict the degree of acceptance of the robot position according to social conven-
tions. Thus, given the graph representation of a scenario, the GNN provides a
quantification of how good a specific robot location is for humans. Even though
the results achieved are remarkable, the key fact is that this approach allows to
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include more relational information. This will allow to include more sources of
information in our decisions without a big impact in the development.

There is room for improvement, particularly related to: a) personalisation
(different people generally feel different about robots), and b) movement (the
inconvenience of the presence of a robot is probably influenced by the movement
of the people and the robot). Still, we include interactions and walls, features
which are seldom considered in other works. As far as we know, interactions have
only been considered in [6] and [31].

The code to test the resulting GNN has been published in a public repository
as open-source software 4, as well as the code implementing the scenario-to-graph
transformation and the code to train the models suggested.
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