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Abstract: The way we interact with computers has significantly changed over recent decades.
However, interaction with computers still falls behind human to human interaction in terms of
seamlessness, effortlessness, and satisfaction. We argue that simultaneously using verbal, nonverbal,
explicit, implicit, intentional, and unintentional communication channels addresses these three aspects
of the interaction process. To better understand what has been done in the field of Human Computer
Interaction (HCI) in terms of incorporating the type channels mentioned above, we reviewed the
literature on implicit nonverbal interaction with a specific emphasis on the interaction between
humans on the one side, and robot and virtual humans on the other side. These Artificial Social
Agents (ASA) are increasingly used as advanced tools for solving not only physical but also social
tasks. In the literature review, we identify domains of interaction between humans and artificial
social agents that have shown exponential growth over the years. The review highlights the value of
incorporating implicit interaction capabilities in Human Agent Interaction (HAI) which we believe
will lead to satisfying human and artificial social agent team performance. We conclude the article by
presenting a case study of a system that harnesses subtle nonverbal, implicit interaction to increase
the state of relaxation in users. This “Virtual Human Breathing Relaxation System” works on the
principle of physiological synchronisation between a human and a virtual, computer-generated
human. The active entrainment concept behind the relaxation system is generic and can be applied to
other human agent interaction domains of implicit physiology-based interaction.

Keywords: verbal and nonverbal communication; interaction; explicit and implicit interaction;
human to human interaction; human to human communication; human-robot interaction; human-agent
interaction; human virtual-human interaction; gaze; proxemics; physiological synchrony; entrainment

1. Introduction

In this narrative review, we survey research on implicit interaction between humans and
computers—more specifically, the interaction between humans and Artificial Social Agents. Our goal
is to better understand how implicit cues can be used to build natural and satisfactory human
computer interaction systems and to identify gaps in the research. One of the areas which we identify
as under-researched is implicit physiology-driven interaction. To further this area, we present a
framework that uses implicit physiological interaction between a human and an Artificial Social Agent.
The framework harnesses the phenomenon of physiological entrainment found in human to human
interaction. The results from our pilot study support the notion that subtle physiological cues can be
used as implicit signals in a HCI system.
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Since the inception of computers, the way we interact with them has come a long way, both in terms
of hardware and user interface; computers have evolved from bulky static desktops to lightweight
tablets, and from text-based system to gesture and voice-based assistants. Griffin reports that out of the
global population, 27% use voice searches on mobile and that the number of voice searches doubled
from 2015 to 2016 [1]. This shows that voice-based human computer interactions are increasingly
becoming a part of daily lives. We use them, e.g., for ordering food and having them read the news
to us. This high adoption might be because speech is an efficient form of data input—humans can
speak 150 words per minute compared to 40 words when typing [2]—and because speaking does not
require learning new skills. Voice-based assistive systems are a good example of the human-computer
interaction paradigm that works well for query response interactions such as web searches, but that
fail and lead to frustrated users as soon as the interaction becomes more complex [3]. In a study by
TheManifest, 95% of users of voice-based assistive systems experienced frustration, where the system
either misunderstood the query or was triggered accidentally [4]. It is fair to say that, despite recent
progress, interaction with computers does not feel completely natural and there is consensus that HCI
is still not on par with human to human interaction [5,6].

After reviewing the literature on mediated and direct human to human interaction, we identified
three aspects that facilitate natural, i.e., human to human-like interaction between humans and
computers: seamlessness, effort, and satisfaction.

We will conclude this article with a case study where we present a novel system based on
multichannel interaction between a human and an Artificial Social Agent. It explores the use of
nonverbal, implicit, unintentional interaction with an agent. Concretely, we are describing a system
that harnesses the established mechanisms of physiological synchrony, found in human to human
interaction, between human and an artificial human, generated in immersive virtual reality. Our system
sets the stage for future research in nonverbal and implicit interaction capabilities in HAI.

2. The Process of Interaction

Human to human interaction is a seamless, effortless, and satisfactory process. Seamlessness
characterizes a bi-directional interaction that happens continuously without interruptions or delays
in communication between the interacting parties. For example, human to human interaction in the
real physical world is more seamless than an exchange using a video-calling medium; video calling,
in turn, is more seamless than talking over a telephone, and speaking on a telephone is more seamless
than using a text-based interface. The importance of seamlessness is further supported by research
suggesting that interaction delays on conference systems can have a negative impact on users [7].
Besides, delays can lead to people perceiving the responder as less friendly or focused [8]. Doing any
kind of task involves the use of mental resources and requires a certain “effort”. Interacting with others,
for instance, requires an effort in order to send and receive information. Low effort tasks typically
require less attention, are easier to switch between and can be done for a longer period. Studies have
shown that face-to-face interaction takes less effort and is less tiring than a video chat [9].

Ultimately, most interactions either with humans or with computers have a purpose. Hence,
for an interaction to be deemed “satisfactory”, the purpose of the interaction should be achieved with
minimal effort and in a minimum amount of time. Voice-base assistants are an example where users
spend more time communicating the same information to a computer as compared to another human
as they tend to talk slowly and precisely to avoid the need for repetition. Though the purpose of the
interaction might eventually be fulfilled, the time taken is longer, which in turn leads to an inefficient
interaction and in many cases, the user perceiving the interaction as less satisfactory.

2.1. Dimensions of Interaction

“Communication” refers to a process where information is sent, received, and interpreted. If this
information exchange results in a reciprocal influence, i.e., a back and forth between sender and receiver,
we refer to it as an “interaction”. Such a process of interaction between the two agents is illustrated in
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Figure 1. The arrows indicate the transfer of signals between interaction partners. For example, in a
negotiation, people interact to discuss and agree on joint action. One partner discloses their viewpoint,
and the other partner responds with their viewpoint. This process of interchangeable responses and
actions eventually leads to the goal of the process which is to reach a compromise that is agreeable to
all. This example shows that interaction is a socio-cognitive process in which we not only consider the
other person but also the surroundings and social situations.
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Figure 1. The process of interaction between the two agents. Information is sensed and decoded.
In conjunction with the internal state, received messages generate actions through the effector block.

An important aspect of interaction is the means of information transfer from sender to receiver.
Rather than over a single, sequential channel, information is often transmitted using multiple channels
at once (as illustrated by the multiple arrows between the two agents in Figure 1). In multi-channel
communication, stimuli are simultaneously transmitted through different sensory modalities such as
sight, sound, and touch. Characteristically, the individual modalities are used for transmitting more
than a single message. In the auditory domain, the sender can simultaneously transmit language-based
verbal information with prosodic information in the form of the tone of voice. Similarly, the visual
domain can be used to transmit language-based messages in the form of sign language and lip-reading.
The visual modality affords a broad range of nonverbal channels in the form of eye gaze and facial
expressions; people can make thousands of different facial expressions along with varied eye gaze,
and each can communicate a different cue. Smiling, frowning, blinking, squinting, eyebrow twitch or
nostril flare are some of the most salient facial expressions. Beyond the face, other sources of kinesics
information include gestures, head nods, posture, and physical distance. Often people “talk using
their hands” emphasizing the use of hand gestures while communicating. How people sit, stand, walk,
etc., gives vital cues about how they are perceived by their interaction partners.

While the role of olfactory channels in humans is subtle and still debated [10], haptic channels play
an important role in interpersonal communication where a simple handshake is used to communicate
agreement. In the above example of negotiation, the simultaneous transfer of both, verbal and
nonverbal cues plays an important role; feelings of nervousness or hesitancy expressed through body
language or lack of eye contact are perceived as insincerity and disagreement [11].

Broadly speaking, interactions between humans can be classified along the three dimensions of
verbal–nonverbal, intentional–unintentional and implicit–explicit (Figure 2). We have already discussed
the dichotomy of verbal vs. nonverbal communication. While in an intentional communicative act
the sender is aware of what they want to transmit, unintentional signals are sent without a conscious
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decision by the sender. Deitic movements to indicate direction are a typical example for the former,
while blushing is an example of the latter.Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 4 of 25 
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reactions such as sweating and blushing. While some of the examples are straightforward, others 
seem to be more complicated, e.g., expression of anger or sadness are often explicit, nonverbal, and 
unintentional (B). 
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Figure 2. Communication can be classified along the three dimensions of verbal–nonverbal, implicit–explicit,
and intentional–unintentional. Head nods during an interaction are an example of nonverbal, explicit,
and unintentional communication (A). “Freudian slips” fall in the unintentional, verbal and explicit
quadrant (C). An instruction such as “bring me a glass of water” are verbal-explicit-intentional (D).
Irony is an example of communication that combines verbal-implicit-intentional (F) with simultaneous
nonverbal–implicit–intentional communication (E). Nonverbal–implicit–unintentional cues (H) are
closely related to emotion and, therefore, associated with physiological reactions such as sweating
and blushing. While some of the examples are straightforward, others seem to be more complicated,
e.g., expression of anger or sadness are often explicit, verbal/nonverbal, and unintentional (G,B).

The third dimension of implicit vs. explicit is defined by the degree to which symbols and signs
are used. Explicit interaction is a process that uses an agreed system of symbols and signs, the prime
example being the use of spoken language and emblematic gestures. Conversely, implicit interaction is
where the content of the information is suggested independent of the agreed system of symbols and
signs [12,13]. In an implicit interaction, the sender and the receiver infer each other’s communicative
intent from the behaviour.

2.2. The Role of Implicit Interaction

During interaction, the reciprocal influence of interaction partners can result in tight coupling of
behaviours. An example is rhythmic clapping, where individuals readily synchronize their behaviour
to match stimuli, i.e., to match the neighbour’s claps that precede their clap [14]. A similar, implicit and
unintentional form of reciprocal interaction is the synchronizing of physiological states, where both
interaction partners fall into a rhythm. This phenomenon of the interdependence of physical activity
in interaction partners is known as physiological synchrony [15]. Studies have shown that romantic
partners exhibit physiological synchrony in the form of heart rate adaptation [16,17]. Mothers and their
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infants coordinate their heart rhythms during social interactions. This visuo-affective social synchrony
is believed to have a direct effect on the attachment process [18]. In psychology, the phenomenon
where interaction partners unintentionally and unconsciously mimic each other’s speech patterns,
facial expressions, emotions, moods, postures, gestures, mannerisms, and idiosyncratic movements is
known as the “Chameleon Effect” [19]. Interestingly, this mimicking has the effect of increasing the
sense of rapport and liking between the interaction partners [20].

2.3. Interaction Configurations

Interactions are taking place in what we can refer to as different configurations (Figure 3).
The distinguishing feature of the configurations is the number of channels and the use of implicit/explicit,
verbal/nonverbal and intentional/unintentional messages.
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Figure 3. Overview of the relationship between communication configuration, number of channels,
and channel properties. The number of channels decreases from physical world interaction to
video-calling to voice-calling to texting.

The illustration makes it clear why physical interaction trumps text-based interaction:
Multiple parallel channels reduce the risk of interruptions, increasing the seamlessness of the
interaction [21]. The redundancy afforded by multichannel communication increases the overall
reliability of the communication, and because the decoding is distributed over a larger number
of modalities and decoding modules, e.g., for explicit and implicit messages, the overall effort is
reduced, even though in physical interaction there is a greater number of channels to decode [22–24].
Ultimately, the efficiency of the communication and the ability to keep track of the goal achievement
progress leads to a more satisfactory interaction. This view is supported by research suggesting
that incorporating implicit cues in HCI is important for an unambiguous and clear interaction [25].
Furthermore, multiple channels lead to quicker task completion [26], better understanding [27] and
efficient team performance [28].

In order for humans to have a seamless, effortless and satisfying interaction with a computer,
the process needs to be bidirectional and multichannel. The use of multiple channels in an interaction
not only ensures continuity but also adds to the naturalness of this process. We identify verbal, nonverbal,
explicit, implicit, intentional and unintentional as the channels used in an interaction process. Use of
these channels in human to human interaction has been well researched and documented. However,
in HCI especially in the field of HAI, use of multiple channels simultaneously in an interaction needs
to be addressed further in order to put HAI on par with human to human interaction.
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2.4. Artificial Social Agents

The artificial agents in the form of robots and Virtual Humans (VHs) are becoming more
autonomous using the latest technology of artificial intelligence. As robots find their way into
our homes with some advantages over animal pets [29], virtual assistants too are becoming more
sophisticated and therefore most widely used [1,30]. These artificial agents form the basis for advanced
software systems that are being applied in fields such as business, health, and education. Most of these
fields require that these agents have the ability to behave in a social context, in addition to assisting
and problem solving. These abilities allow agents to become common in everyday environments like
homes, offices and hospitals.

As we have seen, for agents to provide seamless, effortless, and satisfactory interaction, it must be
capable of multi-channel messages that afford verbal and nonverbal, as well as explicit and implicit
communication [31]. This kind of interaction is naturally supported by an artificial social agent,
a form of the human-computer interface where the computer communicates with the user through
the representation of an animated human form, either as a computer-generated virtual human or
a humanoid robot. This type of interaction device will additionally have some degree of agency,
allowing them to tailor their feedback behaviour to the specific human they are interacting with.
The term Artificial Social Agent (ASA) is used in this paper highlighting the need for these agents to
understand, interpret and react using social intelligence as do humans [32].

3. A Bibliometric View

Complementary to the review itself, we conducted a bibliometric analysis of the frequency with
which implicit interaction-related keywords occur in the literature. The goal of this analysis is to
understand the overall research landscape better. Note that given the narrative nature of the review,
the bibliometric dataset did not prescribe what literature was included in the survey itself.

Bibliometric Data

For the bibliometric analysis, the following eight key phrases were searched in Google
Scholar: {“human-robot interaction”, “‘virtual agent’ interaction”} × {“proxemics”, “gaze”, “gestures”,
“physiology”} i.e., “‘virtual agent’ interaction proxemics”, “human-robot interaction gaze”, etc. As a
date range, we chose 20 years, from 2000 to 2019. The reason is that the number of publications for the
Virtual Agent Interaction (VAI) themes tends to be very low for the years before 2000. In the robotic
domain, the term “Human-Robot Interaction” (HRI) is well established, while the terminology used to
refer to the interaction with computer-generated, virtual humans is less consistent; terms such as Virtual
Agents, Virtual Humans, Virtual Assistants, Embodied Conversational Agents are used interchangeably.
For our bibliometric data collection, we only used the term “Virtual Agent Interaction”. This limitation
might have led to an under-representation of publications in this domain but avoids the issue of
including terms that can apply to both domains such as embodied agent and terms that are used for
physiological simulations.

Looking at the overall number of publications, we can see that there is a clear difference between
the domains of HRI (58,018) and VAI (10,282) (Figure 4a). This five-fold difference between the two
domains is quite striking and can only in part be explained by an under-representation of literature in the
VAI domain. To accommodate for the overall difference in the number of publications, we normalised
the count of publication using the sum of publications per domain (Figure 4b). For both domains,
the topics of proxemics and gestures are the least and most mentioned, respectively. The largest relative
difference we can find is for the topics of gaze and gestures, where the prior is more prevalent in the
VAI domain, and the latter occurred more in the HRI domain.
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In the span of twenty years, we can see a rapid increase in the number of publications, especially in
the HRI domain (Figure 5a). The visualisation using a log scale shows that the ratio of the themes
remains surprisingly stable over time (Figure 5b). The exception to this is the increase in publications
mentioning proxemics in HRI.
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4. Implicit Interaction between Humans and Artificial Social Agents

To date, a small number of articles have surveyed HRI in nonverbal and a few in implicit
domain [33], but to our knowledge, none have looked at ASAs independent of their physical realisation.
We argue that humanoid robots and virtual humans do share enough communality in their way of
human-like interaction capabilities to treat them as a single category of “Artificial Social Agents”.
Though currently separated domains, we foresee a confluence between the two types of ASAs as
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robots become more physically realistic and virtual reality becomes increasingly immersive. Hence,
our review highlights similarities and differences across the two form of physical realisation and
identifies areas that have received less attention thus far. In HAI, various modalities of interaction
such as gaze, proxemics, gestures, haptics, voice and physiology have been explored previously.
We limited our search to interactions using gaze, physiology, proxemics and gestures as they are
the most popular in nonverbal domain. The secondary search was carried out using the keywords
nonverbal, implicit, and interaction. Our search focused on the most current academic journals
and conference papers published in the English language and primarily within computer science.
The subsequent review highlights the work on HRI and VAI within the most common modalities of
Gesture, Gaze, Proxemics, and Physiology.

4.1. Physical Distance and Body Orientation

Proxemics is the interpersonal distancing behaviour that people observe when interacting
with each other. Hall divides the space around an individual into several layers ranging from
intimate space—which is the nearest, to public space—which is the farthest from an individual [34].
The proxemic hypothesis postulates that the placement of an individual within one’s intimate space
evokes feelings of invasion and discomfort while as the placement of an individual within someone’s
personal space increases persuasiveness. Therefore, proxemics plays an important role in determining
how an individual is perceived by others.

Research on interaction with an ASA suggests that incorporating nonverbal cues like proxemics
improve the persuasiveness and peoples compliance with the robot [35]. Moreover, robots that do
not observe appropriate distancing behaviour are perceived as threatening and disruptive to social
environments and work practices [36]. This could be because the robot’s proxemic behaviour affects
peoples emotional state and their perception of the robots social presence [37]. These results correspond
to research in human to human interaction and suggest that robots interpersonal distancing behaviour
determines how they are perceived by people. Proxemics research, in terms of avoidance rules in a path
crossing, reports that robots that observe normal path crossing rules are treated similar to humans [38]
and instil positive emotional response in people [37]. Similarly, people expressed annoyance and stress
when the robot regarded them as a static obstacle [39].

In another study, the likeability and gaze of the robots also affected the users’ proxemic behaviour.
Robot’s gaze at the users’ leads to an increase in distance between them and the robot if they dislike
the robot [40]. Likeability furthermore is associated with information disclosure. People disclosed less
personal information to the disliked robot and more to the robot they liked [41].

Body orientation has been studied in ASA interaction. When humans communicate, they orient
their gaze towards the focus object. However, if they continue observing the focus object, they align
their body orientation towards that focus object, creating a space where their attention focuses
together. Kendon, calls this “O-Space” [42] and suggests that body position and orientation are the
important indicators of continuous attention while gaze and pointing behaviours indicate instantaneous
attention [43]. Yamaoka et al. developed a model based on the concept of O-Space, where they suggest
that people tend to stand close to their partner and the focus object [44,45]. This, however, was found
to be challenging when a robot was presenting information, where, considering robots own as well as
the listeners’ field of view was important. Therefore, the authors suggest the following constraints
when interacting; proximity to listener, proximity to the object, listener’s field of view, and presenter’s
field of view [46].

The proxemic behaviour in human and virtual human interaction reveals that people observe
similar distancing behaviour with a VH as they do with a real human. When people interact,
they orient their posture according to their interaction partner. Similar observations were recorded
in human and virtual human interaction where users’ changed their posture and orientation in line
with their interaction partner [47]. The presence of a VH can lead to difficulty in remembering
information, indicating the presence of the phenomenon of social facilitation [48]. Multimodal studies
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using proxemic and gaze are studied in human and virtual human interaction too. The direct gaze
of a VH led to an increase in spacing between the VH and the user [48]. Users’ left more distance in
between when approaching the VH from the front compared to the rear of the VH. This study further
reports that gender is associated with proxemic behaviour. Female participants left more interpersonal
distance between them and the VH as compared to men [49].

In sum, research on proxemic behaviour in human agent interaction suggests that if agents follow
the human to human proxemic behaviours as described by Hall [34], people not only perceive them
as socially more present but also as more positive compared to the agents that do not adhere to the
human to human proxemic rules. For example, avoiding getting too close to people by entering their
personal and intimate space and giving “right of way” in a path crossing scenario. By adhering to
human–human proxemic rules, agents are more persuasive, and people comply with them better
compared to an agent that treat people as static objects.

The nature of the task given to participants modules proxemic behaviour; participants playing
a card game with a robot in two scenarios: competing with the robot and cooperating with the
robot. The participants’ found a positive experience when competing with an agent when it was close
compared to when they are cooperating with a distant robot [50].

Another observation is that peoples’ characteristics influence their interpersonal distance with
an agent. People who scored low on agreeableness leave more space compared to those who scored
high. Female participants tend to leave more distance between them and the agent. Pet owners are
comfortable moving closer to the agent and letting the agent come closer to them.

Looking at it from the opposite direction, properties attributed to the agent such as likeability
also affect proxemics: Participants leave more interpersonal distance from a disliked agent. With the
“Uncanny Valley” hypothesis, Mori [51] predicts a specific, non-linear relationship between the
likeability and the likeness. The uncanny valley is the phenomenon where the human likeness of
an agent provokes feelings of dislike in people after a certain threshold. It is a dip in the positive
relationship between an agent’s likeness and likeability.

Based on the above, we can say that the likeness of an agent guides likeability which in turn guides
proxemics. However, studies show that likeability can change based on peoples expectation [52],
and people’s expectations change based on likeness [53], such that as the degree of anthropomorphism
increases, so does the people’s expectations [54]. This suggests that the relationship between likeability
and proxemics is mediated by likeness and user expectations. Given this complexity, the relationship
between user expectations, likeness, likeability and proxemics needs further exploration.

4.2. Interaction through Gestures and Facial Expression

Human to human interaction relies heavily on nonverbal cues like facial expressions and body
movements [55,56]. Gestures are a type of nonverbal movements used to convey an explicit message
or accompany a verbal message. Gestures not only express a command or an instruction but a
specific execution of the gesture can be an indicator of the person’s psychophysiological states [57].
Although the use of nonverbal cues such as gestures make the interaction simpler and natural [58],
culturally diverse gesture styles and the variety of words and pointing gestures used to indicate the
same objects makes gesture recognition a challenge in ASA interaction.

Gesticulation was incorporated in BERTI (Bristol and Elumotion Robotic Torso 1) where it could
exhibit three gestures: a follow-me gesture, where the robot raises its arm, palm upward, towards its
face, makes two strokes, then retracts its arm down; a take gesture, where the robot raises a closed fist
to the centre of its torso, then extends its hand, then retracts its arm down and; a shake-hand gesture
where the robot moves its right arm, palm facing to the left up, and then fully forward, then retracts its
arm down [59]. These gestures are based on findings that suggest human gestures consist of three
phases: preparation, stroke, and retraction [43]. Multi-modal gesticulation systems have been reported
to make human-robot interaction simple and natural [58].
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Another important bodily mechanism used to display emotions is facial expressions [60].
Incorporating naturalistic facial expressions can be challenging as robot’s do not have muscles
like humans and there is a risk of falling into the uncanny valley [61]. In an attempt to tackle this,
Kobayashi and Hara created a robot with facial expressions for surprise, fear, disgust, anger, happiness,
and sadness [62]. Later on, robot Kismet was made that was also capable of producing facial expressions
and changes in body posture [63]. Some robots used a screen to display their facial gestures with an
animated face on the screen like Robovie-X [64], Olivia [65] and Iromec [66].

While in human-robot interaction, use of gestures increases the robot’s persuasiveness [35],
it created a sense of rapport between the user and the agent in human virtual–human interaction [67].
Another similar animation system is available in human and virtual human interaction, which can
produce automated non-verbal behaviours such as nodding, gesturing and eye saccades [68]. Use of
verbal as well as nonverbal cues of gestures and gaze in a multimodal study has also been reported for
turn-taking [69]. However, studies in human virtual–human interaction that solely investigates the
role of gestures are sparse, even though these developments can enhance the expressiveness and aid
communication between a human and virtual human [70].

In summary, ASAs capable of realistic gesticulation and facial expression afford an easier and
faster interaction. Moreover, adding other communication channels such as gaze has been found to
increase the realism of ASA interaction. While most of the studies solely rely on the verbal report and
subjective ratings by the participants, Breazeal’s study reports elicitation of unconscious mirroring
gesticulation behaviours between humans and the robot, where the user and the robot unconsciously
followed each other’s head gestures iteratively [63].

Most of the studies investigating gesticulation are limited in scope as they only consider a subset
of the four gesture types, focusing either on dietic [71], beat [72], iconic [73], or metaphoric gestures [74].
A notable exception is Chidambaram and colleagues who looked at all four gesture types [35].

The development in Human–Robot Interaction in terms of realism of facial expressions has come a
long way from Iromec, presented in 2010 [66], to Sophia, presented in 2019 [75]. However, state-of-the-art
robotic faces still evoke the negative responses towards these human-like realistic-looking robots [61,76]
indicating the presence of the uncanny valley. Interestingly, we can witness here a confluence between
the humanoid robotic and virtual humans domains; higher levels of realism in Virtual Humans equally
has shown the presence of the uncanny valley effect [77,78].

4.3. Communicative Gaze Behaviour

Gaze is the act of looking at something. It is a natural form of interaction where the eye movements
are steady and intentional. It is one of the channels used in an interaction that conveys implicit
messages such as attention, liking and turn-taking [79,80].

There are several facets of gaze discussed in the research, including mutual gaze, referential gaze,
joint attention, and gaze aversions [81]. Mutual gaze is the social phenomenon where both the
interacting entities are gazing at each other [82]. However, people often use gaze aversions when
interacting with one another. This is when the gaze is shifted from the eyes to other parts of the partners
face. In Referential gaze, the gaze is averted towards a common reference or object. Joint attention is
another facet of gaze where interaction partners start with a mutual gaze, followed by a referential
gaze to draw attention towards a common object, and then back to a mutual gaze in some cases.
Establishing an eye gaze sends implicit cues for the opening of the communication channel between
people [83] where they use their observations of others’ eye gaze to obtain implicit cues on the
willingness to carry on or terminate the conversation.

Das and Hasan suggest that gaze is one of the most important aspects of an agent as it is
found to elicit a similar response in the interaction between humans and ASAs as is in human to
human interaction [84]. For example, people exaggerate their actions to re-engage the robot’s gaze,
implying robots gaze conveys implicit cues on attention [85]. Another interesting finding was reported
where users’ in a storytelling session remembered the plot better when the robot used its gaze compared
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to when the robot did not look at them [86]. They further found differences in male and female where
men evaluated robot more positively.

Gaze is studied widely along with proxemics in ASA interaction. Users’ maintain a greater distance
with the robot that maintains a mutual gaze with them [40]. In such multimodal studies, robot’s gaze
behaviour was found to aid in persuasiveness [35] and facilitate user’s understanding of the robotic
speech [87], leading to better interaction with the robot [88]. Another interesting observation is that pet
owners, who are adept at nonverbal communication with their animals, are more sensitive to nonverbal
behaviours, and therefore can exploit information from robotic gaze better than the people who are not
pet owners [88]. Additionally, they took significantly less time and required fewer questions compared
to people who are not pet owners to complete a task with a robot, further indicating that training could
lead to an effective inference of nonverbal cues.

As eye movement requires minimal physical effort by the user, gaze behaviour has been widely
researched in the context of elderly care and assistive technology [89,90]. Li and Zhang designed
a framework to provide assistive systems with the capability of understanding the user’s intention
implicitly by monitoring their overt visual attention [91]. For example, if the user gazes at a specific
location for a pre-determined amount of time, the robot interprets it as an implicit signal conveying
the need for further information [92]. With the intention of monitoring implicit cues of the user’s
attention, Lahiri and colleagues [93] present a similar system where the user and the agent are in
a dynamic closed-loop interaction based on real-time eye tracking. Depending on the level of user
engagement via their gaze behaviour, the agent changes its mode of talking to increase interactivity.
Another study based on the similar closed-loop interaction is by Bee and colleagues, where the agent’s
gaze is changed in response to users gaze [94]. Next to these closed-loop interactions, there are studies
that present feed-forward open-loop interactions, e.g., [95]. Here, the category of the agent’s gaze
behaviour is pre-defined. The categories tested are gaze only, gaze with eye blinks and head nods,
and intermittent gaze at the user. The study reports that the condition where the agent gazed and
performed the actions such as eye blinks and head nods convey interest from the agent while the rest
of the conditions convey disinterest. The study further reports that disinterest from agent leads to a
decreased rapport between the user and the agent. These findings are in line with another study where
they report that if the agents gaze is responsive based on the user’s gaze, it increases the users’ sense of
social presence and rapport [96].

Set in human-robot interactions, a similar feedback approach has been implemented where
based on user’s proxemic behaviour, the robot changes its gaze behaviour. The robot’s “idle state”
condition is triggered when the user is not in the conversational area of the robot. In this state
the robot fixes its gaze to a pre-defined location, stays idle and waits for the user to come closer to
it; The “listening state” is triggered when the user moves into the conversational area of the robot.
Here the robot orients its body towards the speaker and maintains eye contact while listening to the
user; In the “speaking state”—the robot orients its body, maintaining eye contact while speaking to the
user and; In “pointing state”—the robot points out to the reference object and changes its gaze towards
that object [97].

Similar to human–robot interactions, multi-modal studies combining gaze behaviour and
proxemics have been reported in human virtual-human interactions. Changes in gaze led to changes
in the physical distances that people keep between themselves and the VH [48]. An interesting finding
was the effect of gender on distancing behaviour: Female participants were found to increase the
distance between themselves and the VH if the agent maintained a constant gaze. These results are
in line with human–robot interactions, where robots gaze oriented towards the human increased the
distance humans maintained between themselves and the robot [40]. Therefore, gaze and proxemic
behaviours influence each other. However, Fiore and colleagues report that proxemic behaviour is
more influential than the gaze behaviour of the robot [37]. Corroborating this finding, Mumm and
Mutlu report that adding gaze has a contrasting relationship with proxemics—meaning that users
increase the distance between them and the agent if the agent fixed its gaze at the user and vice versa.
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They also bring in the likeability variable reporting that if the users disliked the robot, the gaze from
the robot made them increase the distance to the robot [40].

Implementing realistic eye behaviour is a challenging task as this not only consists of the location
of gaze fixations, their duration, and the speed of saccades but also involves subtle effects such as
pupil’s reaction to light pupil dilation and squinting. Furthermore, the anatomical intricacies in the
eye such as the layered structure of the iris add to the complexity of modelling the visual appearance
of eyes.

Thus far, we have discussed the interaction between humans and ASAs based on salient bodily
cues such as distance and gestures. What about the subtle, implicit interaction cues such as blushing
and breathing? The next section focuses on interaction based on such “physiological” responses.

4.4. Interaction Based on Physiological Behaviour

The implicit cues that people send and receive in an interaction are often unintentional and
very subtle—to the point that neither the receiver nor the sender is aware of these cues. However,
their physiological responses via GSR, heart rate, skin conductance measurements can give away
the effect of the implicit influence. Research in human to human interaction suggests that romantic
partners send physiological cues that lead to heart rate adaptation in partners [16,17]. In HCI, we can
use a similar physiological response such as breathing rate using breathing belts or thermocouple
to record the effect of influence between humans and computers. In human to human interaction,
the phenomenon of interacting people unintentionally and unconsciously mimicking each other is
the Chameleon Effect [19]. The physiological influence causes an iterative effect on the interaction
partners, leading to a state of synchrony between them [15]. This physiological synchrony is pivotal in
nonverbal human–human interaction that helps building and maintaining rapport between people [20].
Therefore, in HCI we are seeing a trend in building systems that mimic the synchronisation process
that exists in human to human interaction. For example, a study reports mirroring between human
and robot [63]. As the robot lowers its head in response to the user’s instruction, the user responds by
lowering their head. It was observed that the cycle continues to increase in intensity until it bottoms
out with both subject and robot having dramatic body postures and facial expressions that mirror
each other. The humanoid robot Nico synchronizes its drumming to that of another person or a
conductor [98]. Nico uses visual and auditory channels to gauge the conductor’s movements to match
their physiology. In a similar study, a robot accompanist can start and stop performance in synchrony
with a flutist, and can detect tempo changes in real time [99].

Biofeedback has been used as an implicit cue, where a robot assesses the anxiety levels of human
participants during a baseball game and acts as a coach in the game. Depending on the anxiety level of
the participant, the robot changes the difficulty level of the game [100,101] Participant’s physiological
signals were measured through wearable biofeedback sensors and analysed for affective cues which
were inferred by a robot in real time. The study reports an improved performance based on anxiety
reduction in participants.

Another study that measured physiological data was by Mower et al., where the users played a
wire puzzle and the game was moderated by either a simulated or embodied robot [102]. The data were
used by the robot to monitor the users’ progress and level of disengagement. Based on the physiological
data of GSR and skin temperature, the level of the game was appropriately adapted to re-engage
the user. In virtual reality-based interactions, physiological responses are reported to be related to
the psychological state where changes in head movements correspond to social anxiety in a virtual
classroom [103]. Furthermore, such responses from users during a relaxation session were evaluated
based on the virtual instructor compared to a video-based human instructor [104]. The results revealed
positive responses from the users reporting lower anxiety levels and higher mindfulness levels with the
virtual instructor compared to a human instructor. The study was modified further where the virtual
instructor was aware of the users breathing and gave regular feedback to the users [105] to improve
the stress reduction and mindfulness. Moreover, the phenomenon of social facilitation—where the task
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performance varies depending on the presence or absence of another person—has been reported in
human virtual–human interaction [106].

A fair amount of research has been done on nonverbal agent behaviours, and some have explored
explicit VAI [104], some implicit behaviours in HRI [107], while some suggest that combining both
explicit and implicit cues in an interaction will lead to a better HAI [108].

The systems we have looked at thus far record physiological activity as an implicit signal that is
interpreted by the computer to assess an internal state of a user. These systems then either use this
signal is to adapt the agent’s behaviour or store it for off-line analysis of the quality of the interaction.
An alternative and rarely explored application is the use of uses of agent’s implicit “physiological”
cues to influence the same behaviour in the user to induce, what in the psychological literature is
referred to as, physiological synchrony.

In the next section, we will illustrate the use of this configuration by presenting a case study
of our novel framework in which a virtual human actively entrains the physiological behaviour,
namely breathing, of a user.

5. Case Study: The Virtual Human Breathing Relaxation System

We present a case study on our system that harnesses a bi-directional implicit interaction between
a human and a VH. Our system explores the implicit behaviours through physiological synchrony
and builds on work from different areas: bio-responsive systems, immersive virtual reality and
breathing entrainment.

We focus on breathing as it has a bidirectional relationship with emotion and cognition [109,110]
and hence improving breathing has a positive effect on mood and improve mental health [111,112].
Several breathing relaxation training exercises are being prescribed to patients with mild to severe
breathing condition like asthma, stress, anxiety, insomnia, panic disorder, chronic obstructive pulmonary
disease, etc. [113,114]. Virtual Reality (VR) has been used in treating some of the disorders mentioned
above such as anxiety, depression, schizophrenia, phobias, post-traumatic stress, substance misuse
and eating disorders [115,116]. VR has also been found useful in relaxation therapies [104]. However,
the systems developed so far heavily rely on explicit, verbal instruction given to the user: In a typical
VR breathing system, a virtual therapist guides the patients breathing into synchrony with their
breathing eventually leading the patient into a relaxed state. Contrary to these approaches, our system
harnesses the established phenomenon in human to human interaction physiological synchronisation.
Physiological synchrony also referred to as entrainment is where the oscillation of one system is being
influenced by the oscillation of another.

5.1. Physiological Synchrony Based on Active Entrainment

Our system is an automated breathing relaxation system that harnesses the known mechanisms
of physiological synchrony through active entrainment. In active entrainment, the oscillations of
one system are influenced by the oscillations of the other system. Both systems influence each other
iteratively in a closed loop and which results in a synchronised oscillation (Figure 6). Hence, in a
system with active entrainment, the oscillations of the target system are recorded, and the controller
system then adapts the rhythm of the external pacemaker such that it can change the target rhythm
gradually over time, by continuously delivering a signal of optimal influence.
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Figure 6. The concept of active entrainment is at the core of the Virtual Human Breathing Relaxation
System (VHBRS). The breathing of a Virtual Human serves as the external pacemaker that influences
the breathing rhythm of the target system, i.e., the user.

In VHBRS, a finite state machine is used to implement the active entrainment: Control system
starts at a pre-set breathing rate, and the target system (i.e., the user) breathes at a different breathing
rate as illustrated in Figure 7. Based on the target system’s breathing frequency, the control system,
in turn, adapts the breathing frequency. Once synchrony is achieved, the control system changes the
breathing frequency gradually, “dragging along” the target systems breathing rhythm until the desired
frequency is achieved. Note that the proposed concept of active entrainment is generic and therefore
can be applied to other physiological measures such as GSR or ECG.
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Figure 7. Active entrainment using a finite state machine. Initially, user and VH are breathing at
different rates (Asynchronous). After time a, the VH changes its breathing frequency to match the
participants (Synchronous). After time b, the VH slows down its breathing frequency. Once the
threshold difference Th between the two breathing frequencies is reached, the VH breaths at a constant
frequency. Depending on whether the threshold is reached, the VH either re-synchronises with the
user or remains at its current breathing frequency.
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System Implementation

On the input side, we are recoding breathing behaviour of the participants using two belts
connected to a BITalino (https://bitalino.com) device. The immersive virtual environment and the
virtual human in VHBRS are created and rendered using the game engine Unity (https://unity3d.com)
as shown in Figure 8. The breathing sounds are controlled using the audio synthesis platform
SuperCollider (https://supercollider.github.io/). The real-time data processing and finite-state machine
are implemented in the Matlab-based tools Simulink (https://uk.mathworks.com/products/simulink.
html) and Stateflow (https://uk.mathworks.com/products/stateflow.html), respectively. The middleware
ActiveMQ (http://activemq.apache.org/) is used for communication between the components.
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5.2. Pilot Study

The full-fledged VHBRS is currently under development. In the first pilot study, we aimed to
determine the feasibility of using breathing signals from a VH, namely body movement and breathing
sounds, to influence the breathing behaviour of participants [117]. As a step toward the closed-loop
control system, we implemented an open-loop system that uses passive entrainment, meaning that
the external pacemaker is set to a fixed frequency independent of the frequency of the target system
(Figure 8). In the pilot study, participants were instrumented with two sensor belts to record chest and
abdominal breathing and placed in an immersive virtual environment where they encountered a VH
(Figure 9). Before the exposure, participants were not given any specific instruction as to what to do
and were not informed about the specific purpose of the study.
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One of the issues with open-loop systems is that the breathing frequency of the VH and the
participant may naturally coincide. To avoid this caveat, the breathing frequency of the VH was
changed repeatedly during a single trial. Specifically, the VH’s breathing frequency was alternated
between two frequencies six times as shown in Figure 10. Each of the phases was two minutes long.Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 16 of 25 
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Findings

Twelve university students participated in the pilot study (10 males and 2 females). The participants
were contacted via emails. To assess the influence of the VH breathing behaviour on the participants,
we calculated the participants’ breathing frequency for each of the six phases of the trial (Figure 11).
A visual inspection of the breathing shows that some participants indeed showed the expected
acceleration and deceleration of the breathing frequency. The occasionally spurious data are due to
issues with the position of the sensor belts and show the challenges associated with recording breathing
data reliably using this method.
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To get feedback on the environment and the VR experience, a post-experimental questionnaire
was used. Three items assessed prior VR experience or motion sickness, while five items pertained to
implicit interaction experience. Results for the latter are shown in Figure 12. The data show that the
participants reported feeling more relaxed after the interaction with the VH, and a majority said that
they noticed the VH’s breathing. All participants reported noticing the change of breathing rate of the
VH. Interestingly, only half of the participants reported being influenced explicitly by the VH while
five participants reported that they were actively trying to synchronise with the VH, even though no
explicit instructions about breathing were given to the participants.Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 17 of 25 
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5.3. Case Study Conclusion

From a technical point of view, we have learned that breathing belts are not robust against changes
in posture. A thermistor-based system that is worn under the nostrils, would provide more robust data,
though this is can make data collection more difficult if there are concerns of the spread of pathogens.
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The questionnaire data shows that the participants were picking up the implicit signal, likely also
because instrumentation with breathing belts makes it clear what cues to look out for. If this is not
desirable and only an implicit, unintentional influence is wanted, one would need to recur to some
level of deception, e.g., by using additional sensors such as GSR and ECG to make it less clear that
breathing is the focus.

Users accepted the expression of implicit “physiological” signals—breathing movement and
sounds—from a computer-generated human, though sensibly, the agent does not require the physiological
processes. It would, in this regard, be interesting to see how users react to a more “corporeal” entity,
i.e., a robot.

Interestingly, even though no stress was explicitly induced at the beginning of the experiments,
participants report in increase is relaxation. In a continuation, this effect could be amplified by
first submitting participants to a stress-inducing task, to then investigate if the VHBRS is able to
accelerate the return to pre-stress baseline. This stress induction would, however, require careful
ethical consideration to make sure participants indeed do not leave the experiment more anxious
than beforehand.

Taken together, we are confident that the full VHBRS which will include real-time,
active entrainment, will provide an effective framework for influencing the user’s levels of relaxation.

6. Conclusions

In this paper, we identified seamlessness, effort, and satisfaction as the key factors of natural
human-computer interaction. We took reference from human to human interaction and from human to
human-mediated interaction to highlight that interaction is a bi-directional and multichannel process
where the actions of one influence the actions of others. The result is a reciprocal action that the receiver
takes based on the effect of sender’s cues. These cues are transmitted over multiple channels that can be
classified along the dimensions of verbal–nonverbal, explicit–implicit, and intentional–unintentional.

The use of multiple channels in an interaction process is so effortless that people often do not
realise that they are using all these channels while interacting. The use of the implicit channel is often
unintentional further reducing the effort required to interact, thereby making the process more efficient.
This is supported by research that suggests incorporation of implicit cues makes the interaction
unambiguous [25] and efficient [26]. These unintentional and implicit cues are frequently the drivers
of physiological responses and therefore pivotal in an interaction. In human to human interaction,
implicit cues lead to change in physiological state with people imitating their partner’s physiology
leading to an increase in rapport and bonding between them.

Although HAI has come a long way, it is still not on par with human to human interaction in
terms of feeling completely natural and efficient. Therefore, we reviewed the literature to highlight the
progress of research on incorporating the multiplicity of channels and on the feedback for reciprocal
action. The literature was reviewed on nonverbal channels with special focus on implicit interactions
between a human and artificial social agent in the form of robots and human and virtual humans.

We focused on the main modalities that capture the implicit interactions namely—Gestures,
Proxemics, Gaze and Physiology. Our bibliometric analysis shows that overall, Human-Robot
Interaction (HRI) is more popular than Virtual Human Interaction (VAI). We can see a trend that
the modality of Gestures is the most popular in both domains. The literature review shows that
incorporating gestures in the interaction between humans and artificial social agents aids the
interaction process by increasing the agent’s persuasiveness and virtual humans’ expressiveness.
Proxemic behaviour of agents can instil the same emotional response in the user as do other humans.
Although proxemics seems to be more relevant to robots, VH too also elicits responses like a human,
especially when mixed with another modality such as Gaze.

Surprisingly, research in all the modalities reports that humans treat ASA and other humans
the same with similar expectations from both. People show an emotional response to these agents
similarly as they do to other humans, e.g., getting offended if they are not given their right of way
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while crossing a road or feel intimidated if they are being constantly gazed at. Humans also show
compliance to these agents if they demonstrate the “humanly” nonverbal cues while interacting and
highlight that agents have the potential to persuade people if they use appropriate nonverbal cues.
The consequence of these behaviours is a positive attribution to the perception of ASA’s if they comply
with the rules that apply in a human to human interaction.

Considering the importance of nonverbal and in specific implicit information exchange in an
interaction, it is no surprise that more research needs to be done within the implicit interaction domain
of HAI. The current literature review accentuates that not many computer systems have been developed
with implicit interaction capability.

In the last section of this paper, we present an example of how such a system would function
using nonverbal, implicit, and unintentional channels within HAI. Our system showcases mechanisms
that are found in human to human interaction. Our system is called the Virtual Human Breathing
Relaxation System and can harness a more naturistic interaction through physiological synchrony and
active entrainment between a human and a virtual human.
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