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Abstract— Passive monitoring in daily life provide valu-
able insights into a person’s health throughout the day.
Wearable sensor devices are play a key role in enabling
such monitoring in a non-obtrusive fashion. However, sen-
sor data collected in daily life reflect multiple health and
behavior-related factors together. This creates the need
for a structured principled analysis to produce reliable
and interpretable predictions that can be used to support
clinical diagnosis and treatment. In this work we develop a
principled modelling approach for free-living gait (walking)
analysis. Gait is a promising target for non-obtrusive mon-
itoring because it is common and indicative of many differ-
ent movement disorders such as Parkinson’s disease (PD),
yet its analysis has largely been limited to experimentally
controlled lab settings. To locate and characterize station-
ary gait segments in free-living using accelerometers, we
present an unsupervised probabilistic framework designed
to segment signals into differing gait and non-gait patterns.
We evaluate the approach using a new video-referenced
dataset including 25 PD patients with motor fluctuations
and 25 age-matched controls, performing unscripted daily
living activities in and around their own houses. Using
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this dataset, we demonstrate the framework’s ability to
detect gait and predict medication induced fluctuations in
PD patients based on free-living gait. We show that our
approach is robust to varying sensor locations, including
the wrist, ankle, trouser pocket and lower back.

Index Terms— Gait modelling, health monitoring, passive
monitoring, gait detection, medication prediction

I. INTRODUCTION

Ubiquitous consumer devices such as smartphones and
wearables are equipped with low power inertial sensors such
as accelerometers and gyroscopes capable of continuously
recording their wearer’s movements. In controlled laboratory
settings, such sensors have been used successfully to measure
symptoms of patients with various movement disorders, such
as Parkinson’s disease (PD) [1]. However, these measurements
only provide a snapshot of the patient’s condition, and may
not be representative of the symptoms experienced in daily
living conditions outside the lab, for example because of
observer effects [2]. Unobtrusive wearable sensors enable us
to monitor patients in daily life, which may provide patients,
care providers and researchers with useful insights into the
course of symptoms [3].

However, obtaining reliable and interpretable measurements
in uncontrolled environments is difficult. One strategy has been
to record the patient’s ability to perform specific tasks (e.g.
walk 10 meters) at different times of the day (active tests)
[4]. An important limitation of active tests is that patients
are interrupted in their daily activities during the tests, which
can lead to high attrition in compliance [5]. Additionally, it is
practically impossible to obtain a continuous view of symptom
fluctuations using short active tests.

Instead of instructing patients to perform specific tasks,
we could use daily routine activities that are affected by
the patient’s condition to measure how someone’s symptoms
fluctuate throughout the day (i.e passive monitoring). An
important example of such activity is walking, otherwise
known as gait. Many movement disorders are associated with
alterations in gait patterns, and neurologists often use in-
clinic gait examination to establish a diagnosis. PD-related
changes in gait patterns consist of continuous impairments
involving slowness and reduced arm swing (bradykinetic gait)
and episodic hesitations to produce effective steps (freezing of
gait). In many patients, bradykinetic gait is already present
early in the disease [6] and is responsive to symptomatic
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medication (e.g. levodopa) [7]. Therefore, measuring free-
living gait could serve as a marker for disease progression
and therapy-related symptom fluctuations in PD patients. This
would allow for unobtrusive remote patient monitoring, and
can potentially facilitate titration of medication, early diagno-
sis and evaluation of new drugs [8].

In order to extract reliable information about a patient’s
free-living gait, we need a principled framework to locate and
summarize gait segments. Important challenges are:

• The scarcity of suitable reference datasets: most available
methods are trained and evaluated using labelled data
from a pre-defined, and sufficiently distinguishable set of
scripted activities, often collected in controlled environ-
ments. This does not reflect free-living conditions, where
much more variation is present due to environmental and
behavioural factors. This means that we need labelled
training data that better reflects real-life variation.

• On the other hand, we need to acknowledge that it
remains infeasible to capture all real-life variation in
training datasets. Highly flexible, supervised systems can
have unpredictable behavior as data shifts outside the
training distribution. Therefore, the free-living setting
asks for principled, interpretable models which can pro-
duce parsimonious signal representations, while account-
ing for distributional changes and uncertainty in our data.

In this work, we propose a unified framework for gait de-
tection and gait pattern analysis. We have combined common
characteristics used for gait analysis into a principled proba-
bilistic graphical model, which can be directly applied to the
accelerometer data. We adopt a flexible nonparametric model
which can locate different gait and non-gait activities that vary
both in terms of their statistical and temporal characteristics.
Specifically, we use a set of high order autoregressive (AR)
processes. The AR process is a parametric model of the
frequency spectrum, hence it directly captures characteristics
derived from the power spectral density of the data. At the
same time, AR processes are time domain models which
allows us to couple them with a nonparametric hidden Markov
model (HMM) leading to an AR-iHMM also known as a
nonparametric switching AR process [9] to capture changes
in behavior patterns and gait types in free-living conditions.

To demonstrate the applicability of this analytical frame-
work, we used a new, unique dataset consisting of sensor
data from various wearables and concurrent reference video
annotations, collected during unscripted daily living activities
in and around the homes of 25 PD patients with motor
fluctuations, and 25 age-matched controls. Using this dataset,
we show that the proposed AR-iHMM can be used in free-
living conditions to accurately detect healthy and pathological
gait across different sensor wear locations. Furthermore, we
show that the model can identify changes in gait pattern after
intake of dopaminergic medication in individuals with PD.

II. RELATED WORK

In the last two decades, advances in wearable sensors have
made it feasible to unobtrusively monitor patients outside
controlled laboratory conditions, allowing us to study real-
life gait patterns. However, to successfully deliver on that

promise, we need tools which can reliably and robustly model
data recorded from wearables in this setting. Here we review
relevant prior work in terms of wearable sensor devices, gait
detection algorithms, and gait characteristics under study.

A. Wearable sensor devices
Because of its simplicity, robustness and affordability, the

3-axis accelerometer is by far the most widely used sensor for
free-living gait analysis. The accelerometer sensor measures
the vector sum of all sources of acceleration acting on the
device in each spatial direction. The unit of measurement
is m/s2 and if the device is not under other sources of
acceleration, the only acceleration measured by the device is
due to the force of gravity (zero magnitude under free-fall).

Sensor devices can be worn on various body locations,
including the trouser pocket, the lower back, the shin or ankle,
the shoe, as well as the wrist. The choice of device location
is influenced by the expected gait detection accuracy, the type
of gait characteristics that can be reliably estimated, patient
acceptance, and the commercial availability of devices. An
extensive review of widely-used wearable devices and their
sensors for gait analysis can be found in Tao et al. [10], and
a focused review on sensor placement for monitoring of PD
can be found in Brognara et al. [11].

There is no consensus on the best device location to detect
and characterize the gait of PD patients, and whether there
is added value in combining multiple locations. Therefore,
we evaluate our proposed framework on various commonly
used sensor locations. Another concern can be the limited
commercial availability and high costs of “research-grade”
devices. For this reason, we include a consumer smartphone
in our comparison, which is widely available and relatively
low-cost.

B. Gait detection algorithms
Most gait detection techniques rely on parametric assump-

tions about the spectral density, time domain distribution or
both [12]. Typically, features are extracted from windows of
fixed width, and the decision to classify a window as gait
or non-gait behavior is made using pre-defined thresholds or
using a trained classifier.

Various features have been been used for gait detection. One
of the most widely used methods for identifying gait is based
on the standard deviation (STD) of a windowed accelerometer
signal [13]. An alternative, and similarly popular approach
is the window-based analysis of spectral features [10]. Gait
is typically highly periodic with Nyquist bandwidth of 10-
15Hz [14]. This has motivated the use of the short-time
Fourier transform (STFT) to detect gait. For example, Sama
et al. [15] studied the energy of the accelerometer signal in
800 different frequency bands. They applied Relief feature
selection to identify the energy bands that are most descriptive
of gait. Karantonis et al. [16] suggested directly analyzing
the Fourier coefficients of the z-axis on the accelerometer to
look for sufficient power at the expected range of walking
frequencies (0.7–3.0 Hz). The time-frequency resolution is-
sues of STFT-based walking detection have sometimes been
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addressed using wavelet transforms. Continuous wavelet trans-
forms often require large computational effort, but discrete
wavelet transforms can be used to efficiently estimate high
quality features of gait [17], more efficiently even compared
to Fourier transform [18, page 254]. We can also encode
the power spectrum directly in the time domain if we use
windowed auto-correlation [19] and then use the values at
a subset of time lags corresponding to the duration of the
gait cycle [20]. Alternatively, a stride template can be formed
offline and online similarity to the template be determined (e.g.
via cross-correlation [21] or dynamic time warping [22]).

A problem with these different window-based feature ex-
traction methods is that signals acquired in daily life are highly
non-stationary. When these non-stationarities occur within a
window, for example, the transition from standing to gait,
they may reduce the usefulness of the extracted features,
particularly in the case of STFT (as we will further discuss in
Section IV).

Gait detection systems not only vary in the features they rely
on, but also in the classification algorithm they use. Support
vector machines and random forest classifiers are commonly
trained on window-based features [23], [24]. In addition,
HMMs have also been used to detect gait based on window-
based features, which offers the advantage of incorporating
the sequential nature of human behavior [25]. Haji et al. [25]
demonstrated that, in more challenging settings, a hierarchical
HMM significantly improves gait detection compared to, for
example, peak detection and dynamic time warping. More
recently, generic activity recognition pipelines based on deep
learning methods [26], [27] are being introduced, although
the scarcity of labelled free-living data currently limits their
practical use.

Despite the heterogeneity in gait patterns, gait detection is
generally treated as a binary classification problem (gait/non-
gait). Whereas this may be appropriate to globally describe
how much users walk, problems can emerge when it is used
as a starting point for evaluating the quality of gait in medical
applications; these systems group all gait together, regardless
of changes in the gait pattern that can occur even within the
same gait segment (e.g. because of changes in symptoms,
pace or environment). As a result, the detected gait segments
are likely heterogeneous and non-stationary, which can be
problematic for subsequent gait pattern analysis (as we will
further discuss in Section IV).

C. Characterization of the gait pattern

Once gait episodes have been identified, studies have used
various approaches to characterize the gait pattern in move-
ment disorders such as PD. Many studies try to identify
important events of the gait cycle, including the heel strike
or initial contact (IC), and final contact (FC) of both feet.
Several variations to peak detection have been used for this,
which may benefit from pre-processing the acceleration signal
using continuous wavelet transforms (CWT) [28]. The timing
of IC and FC events is then used to compute temporal gait
features such as step time, swing time, stance time, and
double support time. Additionally, based on assumptions about

the exact sensor positioning and the biomechanics of gait,
location-specific algorithms can be used to estimate spatial
gait features. For example, having identified the ICs and FCs,
one can use the inverted pendulum model to estimate the step
length from the accelerometer signal of a sensor on the lower
back [29]. Del Din et al. [30] used this approach and showed
that free-living gait analysis discriminated better between PD
patients and healthy controls than lab-based gait analysis,
which illustrates the potential of free-living gait analysis.
Moore et al. [31] suggested that the step length estimated
using an ankle sensor could be used to track the free-living
gait pattern of PD patients, but only included three PD patients
monitored over 24 hours in an apartment-like setting.

Other approaches focus on analyzing the periodicity of the
accelerometer signal during gait, either based on the PSD or
auto-correlation in the time domain. An advantage of these
methods is that they are less dependent on location-specific
assumptions, compared to identifying gait cycle events and
computing the step length. For example, Weiss et al. [32]
computed the width of the dominant frequency in the PSD
during free-living gait (based on the accelerometer signal from
a lower back sensor), and demonstrated that it could be used
to predict future falls in patients with PD. Similarly, Rispens
et al. [33] computed the PSD during free-living gait based
on a lower back accelerometer, and showed that the spectral
power in the lower frequencies, and the amplitude and slope
of the dominant frequency, were related to the number of
falls in older adults. Pérez-López et al. [34] combined the
identification of ICs with analysis of the PSD during individual
strides, and showed that the power in the gait range (based
on a waist accelerometer) was correlated to changes after
medication intake in PD patients. Bellanca et al. [35] suggested
that the harmonic ratio (ratio of the sum of the amplitudes of
the even and uneven harmonics, computing over the PSD of
a single stride) could be used as a measure of step symmetry.
Alternatively, the periodicity of free-living gait can also be
analyzed in the time domain, for example by estimating the
auto-correlation [36].

All analyses mentioned in this paragraph strongly depend
on accurate localization of stationary gait segments, which
may be sub-optimal given current gait detection algorithms.
In this work, we propose that free-living gait analysis can be
improved by employing a unified approach to gait detection
and gait pattern characterization.

III. FREE-LIVING DATA COLLECTION

To allow for a more realistic understanding of the challenges
of modelling free-living gait data, and to evaluate our proposed
model, we have used a new reference dataset from the Parkin-
son@Home validation study [37]. This study includes sensor
data and video recordings during uninterrupted and unscripted
daily life activities in the participants’ natural environment.
For a detailed description of the study design and participants,
we refer to Evers et al. [37]. The de-identified dataset will be
made available to the scientific community in collaboration
with the Michael J Fox Foundation. In brief, both patients
with Parkinson’s disease with motor fluctuations (PD group)
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and 25 age-matched participants without PD (non-PD group)
were recruited. Inclusion criteria for both groups consisted of:
(1) age 30 years or older and (2) in possession of a smartphone
running on Android OS version 4.4 or higher. Additional
inclusion criteria for participants in the PD group were: (1)
diagnosed with PD by a neurologist, (2) receiving treatment
with dopaminergic medication (levodopa and/or dopamine ag-
onist), (3) experiencing motor fluctuations (MDS-UPDRS item
4.3 ≥ 1), and (4) known to have PD-related gait abnormalities,
i.e. bradykinetic and/or freezing of gait (MDS-UPDRS item
2.12 ≥ 1 and/or item 2.13 ≥ 1). PD patients who received
advanced treatment (deep brain stimulation and/or intestinal
infusion of levodopa or apomorphine) were excluded.

Participants were visited in their own homes and each visit
included a standardized clinical assessment (full MDS-UPDRS
[38] and AIMS [39]) and an unscripted free-living assessment
of at least one hour. To ensure indicative behaviors such
as longer gait episodes were captured, assessors encouraged
participants to include these in their routines. Participants
in the PD group were asked to skip their morning dose of
dopaminergic medication before the visit, so that they were
in the OFF medication state at the start of the visit. After
the MDS-UPDRS part III (motor examination) and free-living
assessment were conducted in the OFF state, participants took
their usual medication and the full MDS-UPDRS, AIMS and
free-living assessment were performed in the ON state, i.e.
with the symptomatic effects of medication present.

During the full visit, participants wore various light-weight
sensors on different body locations. In this study, we used
the accelerometer data from the smartphone worn in the front
trouser hip pocket (collected using the HopkinsPD app [40];
all participants were instructed to wear trousers with a front
pocket), and the accelerometer data from Physilog 4 devices
worn on both ankles, both wrists and the lower back. To allow
for time synchronization, all devices were triggered together
(hit ten times against a table) in front of the video camera at
the beginning and end of data collection.

The video recordings during the free-living assessments
were annotated by a research assistant, who labeled as “gait”
any activity that involved at least 5 consecutive steps, with the
exception of any running episodes.

IV. CHALLENGES OF MODELLING FREE-LIVING GAIT

Analysis of free-living gait is challenging because ac-
celerometer data simultaneously reflects disease symptoms,
behaviour, device orientation, sensor location and environ-
ment. This makes it difficult to design a reliable analytical
pipeline which untangles these factors and allows us to focus
solely on representative aspects of the gait that are relevant
for monitoring PD. Before we introduce our proposed model,
we first highlight some of the common estimation challenges
which we aim to address. We use examples from the unscripted
free-living assessments of the Parkinson@Home validation
study.

A. Data filtering and accounting for orientation
Accelerometers measure any forces due to accelerations

which partly prevent the device from free-fall in the Earth’s

gravitational field. If we are interested in monitoring gait,
however, we first need to remove this field effect from the
raw accelerometer data, as irrelevant device rotations (e.g.
slight variations in the attachment of the sensor) may otherwise
confound any inferences we make about a person’s gait.
This analytical step is most commonly done using fusion
of data from a magnetometer, gyroscope and accelerometer
[41], or simply using a digital low pass filter [42] applied
to the accelerometer signal. Sensor fusion is well justified
and commonly used for estimation of more complex tasks
such as sensor positioning and heading, where it outperforms
techniques relying on numerical integration of gyroscopes
[43]. However, due to the inherent smoothness assumption
in the Kalman filter typically used for the fusion, estimates
might be biased during abrupt changes [43]. Different methods
of sensor fusion, such as one that relies on l1-regularization,
can address this problem, but in this work we opt for using
a single sensor approach. Low pass filters can be used in an
accelerometer only setup, but they are poorly justified, since
orientation changes can have a broad bandwidth leading to
unwanted distortions in the time domain depending on the
cut off frequency of the filter. In this work we opt for a
piecewise l1- trend filter as motivated in Badawy et al. [44]
which assumes that changes due to orientation are piecewise
linear [45].

The accelerometer data we use in any subsequent analysis,
is pre-processed by interpolating to a uniform sample rate 1

(i.e. using cubic spline interpolation), applying the l1- trend
filter to each individual axis and computing the magnitude of
acceleration according to

√
a2x + a2y + a2z .

B. Parsimonious representation of gait data

We have seen in Section II that most pipelines for analysis
of gait data involve windowing of sensor data and estimation of
statistical or spectral features. The estimated feature values are
then used to make inferences about the behaviour monitored
at that point in time (i.e. gait vs non-gait) or the gait pattern.
However, in free-living the variability of these features is
large. For example, in Figure 1 we show how much the
window standard deviation differs for both gait and non-gait
classes, even within a single individual. To reduce some of
this variability, we tend to aggregate feature values (i.e. across
time, across individuals, across similar behaviours). The way
we make such aggregation will inevitably affect the quality of
the inferences we make.

Let us consider the following example: we have 10 minutes
of consecutive gait data from a PD patient where the gait
varies significantly across different segments. In Figure 2 we
plot how much the 1 second window standard deviation varies
in time and how this feature variation can be reduced by
smoothing through time. The underlying assumption, which
is commonly made, is that feature values collected closely
in time should be similar (i.e. change smoothly). However,

1Smartphone data is sampled at non-uniform rate of 50-150Hz. The wrist-
worn, shin-worn and lower back Physilog devices output uniformly sampled
data at rate of 200Hz. All accelerometer data is processed in meter per second
squared.
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behaviour can change abruptly, hence this assumption does
not hold. In contrast, we also display the same feature, but
now conditioned on stationary segments of variable length.
This results in a more compact representation of this type of
data that enables simple inference, while still preserving the
important signal characteristics.

C. Spectral estimation challenges
A similar argument can be made for features based on the

spectrum. The support at different frequencies also exhibits
large variation both within gait and non-gait classes, as shown
in Figure 3. Similar to standard deviation, more stable spectral
estimation can be done by aggregating across neighbouring
windows, e.g. using Welch’s overlapped averaging power
spectral density (PSD) estimator [18], [46, Section 7.4]. The
problem is that this still assumes that the signal is stationary
across windows, which is often not the case in free-living data
because of the abrupt changes in behaviour. Even within one
gait segment, the characteristics of the gait pattern can abruptly
shift due to intentional changes (e.g. turning, starting to make
gestures), environment (e.g. changing walking terrain), and
PD symptoms (e.g. hesitations to walk through doorways).
Figure 4 displays an example of this. We show that the Welch
PSD associated with each of the two gait patterns, varies
significantly from the Welch PSD estimated when grouping
both gait patterns together. This underlines that if we condition
on piecewise stationary segments, we obtain more useful
estimates of the spectrum.

An additional problem that arises with estimating Fourier
features in free-living is that accurate estimation of the
spectrum rests on the assumption of periodic continuation
[18]. Because of common non-stationarities in free-living
(e.g. mentioned changes within gait episodes, but also the
start and end of gait episodes), violations of this assumption
are common when using fixed size windows. This can lead
to spurious spectral artifacts, for example caused by Gibbs
phenomenon [18]. Typically, these issues are ameliorated by
using other window functions than the rectangular window,
such as the Hanning window. However, while windowing
matches samples at window edges (by zeroing), it also distorts
the waveform because it causes amplitude modulation.

In conclusion, the usefulness of spectral estimates largely
depends upon accurately locating stationary segments in time,
i.e by accurately detecting the start and end of gait episodes,
and by detecting (abrupt) changes within gait episodes. At the
same time, doing this depends on having access to spectral es-
timates. Because of this interdependence, we propose a unified
framework that addresses both these problems simultaneously.

V. PROBABILISTIC MODELLING OF GAIT

Whereas most systems focus on segmenting accelerometer
data into gait vs. non-gait classes, we first segment the data
into multiple different groups (more than two) and afterwards
assign these groups to gait or non-gait class. We do this
efficiently by designing a flexible, probabilistic model which
is trained directly on the magnitude of acceleration obtained
after removing piecewise linear device orientation changes
(see Section IV).

Fig. 1. Histograms of 1 second window standard deviation of the
magnitude of acceleration from different PD patients during the un-
scripted free-living assessment, collected using a smartphone placed
in the front trouser pocket (top row) and a wrist-worn device (bottom
row). The horizontal axes show the window standard deviation, and the
vertical axes show the normalized bin counts. Blue: gait, orange: non-
gait (according to video annotations).

Fig. 2. Illustrative example of feature smoothing over accelerometer
data during unscripted gait. The top panel displays the magnitude
of 10 minutes of pre-processed accelerometer data collected using a
smartphone placed in the front trouser pocket. In the second panel,
we display the fixed size (1 sec) window standard deviation. In the
third panel, we show the smoothed feature values using standard
moving average in time (5 sec). The bottom panel displays the standard
deviation, computed over approximately stationary segments of variable
length (determined visually).

Autoregressive modelling of gait
The first assumption we make is that the repetitiveness

of the gait cycle (heel strike, midstance, heel off, midswing,
heel strike) is one of the key properties that characterize gait
episodes. The periodic nature of the accelerometer data during
gait [36] makes it efficient to detect and model gait based
on the spectrum, for example using the Fourier transform.
As discussed, Fourier spectral analysis inherently assumes
periodic continuation (see Section IV). So we address this
problem by simultaneously estimating the spectrum and the
start and end points of the stationary gait episodes. To achieve
this, we first model the spectrum of the gait in the time
domain, using autoregressive (AR) processes [18]. An order r
AR model is a random process which describes a sequence
{xt}Tt=1 as a linear combination of previous values in the
sequence and a stochastic term:

xt =
r∑

j=1

Ajxt−j + et et ∼ N
(
0, σ2

)
(1)

where A1, . . . , Ar are the AR coefficients, T denotes the
length of the sequence, and et is a zero mean random variable,
assumed to be an i.i.d. Gaussian sequence (we can trivially
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Fig. 3. Histograms of the spectral energy at typical gait frequencies (0.5
- 10Hz) obtained using STFT with window length 1 second. Each subplot
displays the feature distribution for the unscripted free-living assessment
of a single PD patient, from a smartphone worn in the front trouser
pocket. The horizontal axes are different total energy values, and the
vertical axes show the normalized bin counts. Blue: gait, orange: non-
gait (according to video annotations).

extend the model such that et ∼ N
(
µ, σ2

)
for any real-

valued µ). We assume that the AR noise variance σ2 is
unknown and place a conjugate inverse-Wishart prior over
it. This essentially means that in addition to modelling the
periodicity of the input signals, we also account for changes
in the non-periodic components of the signals. We saw in
Section IV that the window variance of the acceleration can
be a useful discriminator of gait versus non-gait on its own in
certain scenarios. If we assume an AR model of order r = 0,
the variance of et is the variance of the window.

AR processes are commonly used as parametric models of
the PSD since the power spectrum is determined by the AR
parameters [18]:

S (f) =
σ2∣∣∣1−∑r

j=1Aj exp (−i2πfj)
∣∣∣2 (2)

where f is the frequency variable and i denotes the imaginary
unit. This means that the number of non-zero AR coefficients
determines the complexity of the PSD which the model can
represent: there is a peak in the PSD for each complex-
conjugate pair of roots of the coefficient polynomial. Paramet-
ric spectral estimation is often more stable than non-parametric
PSD methods, and can be of high quality using fairly little
data, assuming the model is correct. The parametric model
of the spectrum will allow us to construct a flexible, non-
parametric model of the switching dynamics of different gait
and non-gait activities in free-living. More detailed discussion
on the relative merits of different spectral estimation methods
combined with machine learning, can be found in Little [18].

High order adaptive autoregressive processes

As mentioned above, the AR order r we use will determine
the complexity of this parametric model of the spectrum. The
optimal AR model r is likely to vary across different stationary
segments of sensor data and choosing fixed r which is too large
will lead to problems with parameter estimation (fitting the AR
coefficients). At the same time, gait is typically characterized
by a low fundamental frequency, with bandwidth of up to
10-15Hz (see Section II). This implies the need for fairly
high order r AR processes (together with sufficiently high
sample rate) in order to accurately capture the typical range
of gait frequencies. To address this conflict, we use a non-
conjugate Bayesian prior on the AR coefficients A1, . . . , Ar

which induces sparsity of the coefficients (only a few are non-
zero at any one time). This allows us to draw conclusions about
the AR coefficients that do not contribute to the underlying
dynamics of the gait. In effect, this means that we attempt to
learn fewer than r AR coefficients supported by the signal but
potentially associated with larger AR time delays. This is done
by assuming independent, zero-mean Gaussian priors on the
coefficients A1, . . . , Ar with unknown precisions, which acts
as an automatic relevance determination prior (ARD) [47].
The ARD prior was first proposed in the context of neural
network models in Mackay [47] and then later adopted for
switching AR processes in Fox et al. [48].

Latent switching behavior dynamics
To analyze free-living data, it is insufficient to define a

parametric spectral model for the patients’ gait, because par-
ticipants regularly switch between different gait and non gait
episodes, which results in highly non-stationary time series
(see Figure 4).

Even within gait episodes, the optimal AR parameters
to model the gait might change depending on the speed,
amplitude and other characteristics of the walking pattern. In
order to group similar gait signals, but also separate gait from
non-gait data, we use a switching AR process model (AR-
HMM). However, one drawback of conventional switching AR
processes, is that it requires a fixed number of hidden states
and AR order. Since the heterogeneity in both gait and non-
gait episodes will increase as more free-living data becomes
available, we adapt the more flexible non-parametric switching
AR process first proposed in Fox et al. [9]. The model can
be thought of as an infinite-state extension of the switching
AR process (hence we refer to it as AR-iHMM). Viewing the
switching AR model as a hidden Markov model (HMM) with
AR processes used to model the HMM emissions, then in the
non-parametric switching AR model the parametric HMM is
effectively replaced with an infinite HMM [49].

In the AR-iHMM model, we assume that the data is
an inhomogeneous stochastic process and that multiple AR
models are required to represent the dynamic structure of the
signal, i.e.:

xt =
r∑

j=1

Azt
j xt−j + eztt eztt ∼ N

(
0, σ2

zt

)
(3)

where zt ∈ {1, . . . ,K+} indicates the AR model associated
with time index t. The latent variables z1, . . . , zT describing
the switching process are modelled with a Markov chain. A
transition matrix π is estimated with K+ rows and K+ + 1
columns indicating the probability of specific transitions from
existing state i to existing state j, πij , or from existing state i
to a new state K++1, πiK++1. Transitions that are observed
more often during the training of the model will have higher
probability, represented in the transition term πij .

When K+ � T , this model clusters together parts of the
signal into an, a priori, unknown number K+ of time segments
which are best represented with the same AR coefficients.
In AR-iHMM, K+ is unknown: instead of being fixed it is
inferred from the data and can adapt to new, unseen structure
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Fig. 4. Illustrative example of estimating the power spectral density over an unscripted gait segment that contains switches between two different
gait patterns (i.e. is approximately piece-wise stationary). The top panel displays the signal magnitude of 20 seconds of pre-processed gait data
from a PD patient, obtained from a smartphone worn in the trouser pocket. The red and blue shading indicates different gait states. The bottom
panels display the Welch’s PSD estimates: for data from the red gait state (left); for data from the blue gait state (right); for an equal amount of data
from both (middle). To allow for same resolution in the 3 bottom plots, we have used 20 seconds of data for each plot.

in the data. The AR-iHMM is obtained by augmenting the
transition matrix of the Markov process π underlying the latent
variables z1, . . . , zT with a hierarchical Dirichlet process
(HDP) [50] prior.

VI. RESULTS: GAIT DETECTION

In order to make inferences about changes in the gait
pattern, we first need to verify that our proposed framework
is able to accurately identify gait segments. In this section,
we evaluate our ability to detect gait as annotated in the video
recordings of the Parkinson@Home validation study, using the
pre-processed accelerometer data (see Section IV) from the
smartphones and Physilog 4 devices placed on various body
locations (see Section III). To establish whether our approach
achieves satisfactory results, we include a comparison with
some of the most widely used gait detection algorithms.
It is important to note that our goal was not to perfectly
reproduce the manual (imperfect) video annotations, but to
locate stationary gait segments in time, that can be used to
make inferences about the effect of PD on the gait pattern. For
example, since our method exploits the high periodicity of gait,
we can expect that it is less suitable to detect short, irregular
gait segments. However, this is actually a desirable property
because we expect that the longer, more ”steady-state” gait
segments are most useful to quantify bradykinetic gait in PD
patients.

A. Model based gait detection
We infer the AR-iHMM described in Section V using

scalable iterative MAP inference proposed in Raykov et al.
[51]. Any hyperparameters associated with the AR state priors
or the HDP prior (see Section V) are fixed across patients
and are selected using standard Bayesian model selection. For
each point xt, we consider it is associated with its most likely
state zt = k∗ to enable direct comparison, i.e. we ignore
the estimated uncertainty associated with the segmentation
indicators.

To determine if the identified hidden Markov states should
be classified as gait or non-gait, we consider the AR-based

PSD estimates associated with each state. Specifically, we
compute the total energy at frequencies in the range [0.5
- 10Hz], and select a threshold of minimal spectral energy
that maximizes the balanced accuracy (average of sensitivity
and specificity) averaged across participants (measured against
the manual video annotations for the presence of gait). We
evaluate the performance of selecting the threshold using
leave-one-subject-out cross-validation. Thresholding using a
shared PSD range across participants is done only to enable
a fair and intuitive comparison with the other commonly used
techniques for detection of gait in smartphones and wearables;
in principle, once the AR-iHMM model is trained we can
derive multiple features related to the distribution of the sensor
data and train a supervised classifier on these features.

B. Implementation of existing gait detection algorithms

For the comparison with existing algorithms, we imple-
mented methods that rely on leveraging one or two intuitive,
window-based features from the time and frequency domain,
to separate gait from non-gait classes: STD-thresholding [12],
[13]; STFT-thresholding; normalized autocorrelation step de-
tection and counting (NASC) [19] and continuous wavelet
transform (CWT) thresholding [52]. We evaluate the perfor-
mance of the original formulations of the algorithms, and the
performance after applying our pre-processing pipeline and
adjusting thresholds to maximize the balanced accuracy across
participants using leave-one-subject-out cross-validation2:

• STD-thresholding: we set a threshold based on the 1 sec-
ond window standard deviation to maximize the balanced
accuracy averaged across participants;

• STFT-thresholding: we set a threshold based on the 1
second window total energy at frequencies in the range
[0.5 - 10Hz] to maximize the balanced accuracy averaged
across participants;

• NASC algorithm: the NASC involves first applying STD-
thresholding and then evaluating the auto-correlation of
the remaining data over 2 second windows, specifically

2Different thresholds are used for PD and controls cohorts.
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TABLE I
GAIT DETECTION PERFORMANCE OF THE PROPOSED AR-IHMM AND OF COMMON GAIT DETECTION ALGORITHMS (USING THE THRESHOLDS

REPORTED IN THE LITERATURE, AND AFTER PRE-PROCESSING AND OPTIMIZING THRESHOLDS). WE HAVE COMPUTED THE AVERAGE

PERFORMANCE AND STANDARD DEVIATION USING LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION. FOR PD PATIENTS, WE SHOW THE

PERFORMANCE OF THE COMPLETE FREE-LIVING ASSESSMENTS, AND THE DIFFERENCE IN BALANCED ACCURACY BETWEEN THE PARTS BEFORE

AND AFTER MEDICATION INTAKE.

Method PD Control

Sensitivity Specificity Accuracy difference
before/after medication Sensitivity Specificity

With fixed thresholds
STD-thresholding 77% (15%) 93% (4%) 5% 90% (6%) 96% (4%)
STFT-thresholding 85% (12%) 94% (4%) 3% 86% (6%) 85% (6%)

NASC 87% (9%) 96% (4%) 3% 88% (6%) 97% (4%)
CWT-thresholding 66% (10%) 97% (5%) 5% 70% (4%) 97% (4%)
With optimized thresholds and pre-processing
STD-thresholding 90% (14%) 91% (4%) 5% 93% (5%) 92% (3%)
STFT-thresholding 91% (11%) 89% (4%) 3% 92% (5%) 91% (4%)

NASC 93% (10%) 87% (5%) 3% 94% (5%) 91% (3%)
CWT-thresholding 92% (8%) 85% (5%) 5% 94% (3%) 85% (6%)

Probabilistic modelling
(based on our AR-iHMM) 91% (8%) 91% (3%) 1% 94% (5%) 93% (3%)

looking at the time delays representative of gait. We set a
modified STD threshold, a range of delays, and an auto-
correlation threshold to maximize the balanced accuracy
averaged across participants (iteratively, one at a time);

• CWT-thresholding: we compute the ratio between the
energy in the band of walking frequencies and the total
energy across all frequencies, and set a threshold to max-
imize the balanced accuracy averaged across participants.

Our comparison omits some previously proposed detection
algorithms because (1) they are based on heuristics which
could not be trivially adapted for detection of pathological gait;
(2) they had strong conceptual overlap with the techniques
included in the comparison; (3) they demonstrated very poor
performance on our dataset. In addition, our comparison does
not include an evaluation of deep learning activity recog-
nition and gait recognition pipelines, or deep autoencoder
features which can approximate arbitrarily complex mapping
functions [53]. Although we acknowledge that such methods
may achieve marginally better accuracy, we recognise that
our study is based on a limited number of participants and
it is easy to overfit the free living data. Moreover, our focus
has been on deriving interpretable representation of the data
and gait clustering. Therefore, we effectively compared linear
thresholding of different properties of the data, estimated by
a window-based approach versus estimated from the inferred
model.

C. Results of comparison
In Table I we report the different performance measures

of the tested methods when applied to the accelerometer data
from smartphones. In Table II we also report the balanced
accuracy of all algorithms on accelerometer data from different
body locations (see Section III).

First of all, the results in Table II show that it is feasible
to identify gait using our modelling approach, with at least as
good average performance compared to existing algorithms. In
addition, the results underline the importance of appropriate

pre-processing and threshold adjustment, in particular when
applying algorithms to patients with PD, as indicated by the
significant change in performance.

In most methods, we observed a difference in accuracy
between PD patients and controls, and between before and
after medication intake for PD patients. The latter was most
notable in patients with a strong response to medication. This
difference in accuracy between before and after medication in-
take was less prominent for the AR-iHMM, which also demon-
strated less variability in the performance across PD patients.
Moreover, the performance of the AR-iHMM was relatively
robust to different body locations of the sensor in comparison
to STD-thresholding, NASC, and CWT-thresholding (Table II).

It is worth noting that the prevalences of the gait and non-
gait classes are not balanced in the free-living assessments
from the Parkinson@Home validation study. Across PD pa-
tients, the mean walking time is 16% with a standard deviation
of 6%. Most patients had longer walking episodes between
7 and 20 minutes before and one after medication intake,
combined with many shorter walking bouts. The mean walking
time is slightly higher for non-PD controls at 21% with
the same standard deviation. Because we cannot assume that
this prevalence is representative of truly free-living situations,
we choose to evaluate the methods with measures that are
independent of the prevalence of gait (i.e. sensitivity and
specificity). However, the thresholds were set to optimize the
balanced accuracy (mean of sensitivity and specificity), which
implicitly optimizes for the situation where class prevalences
are equal, and misclassification costs are equal as well. Differ-
ent applications may require different settings of the thresholds
to achieve a different trade-off between false-positives (with
the risk of using non-gait data to predict medication induced
fluctuations, which has no basis) and false-negatives (with the
risk of identifying too few gait segments which limits our
ability to track gait fluctuations throughout the day).



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.3037857, IEEE Journal of
Biomedical and Health Informatics

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (SEPTEMBER 2020) 9

TABLE II
PERFORMANCE OF DIFFERENT METHODS FOR GAIT DETECTION ACROSS DIFFERENT SENSOR LOCATIONS (AFTER PRE-PROCESSING AND

OPTIMIZING THRESHOLDS). THE PERFORMANCE IS EXPRESSED AS BALANCED ACCURACY, EVALUATED ON THE COMPLETE FREE-LIVING

ASSESSMENTS OF PD PATIENTS AGAINST VIDEO ANNOTATIONS.

Method Left Shin Right Shin Left Wrist Right Wrist Lower Back Smartphone
STD-thresholding 94% 94% 77% 76% 91% 90%
STFT-thresholding 93% 92% 83% 81% 90% 90%

NASC 91% 91% 78% 77% 92% 90%
CWT-thresholding 92% 90% 75% 72% 90% 89%

Probabilistic modelling 94% 94% 83% 83% 93% 91%

VII. RESULTS: MODELLING GAIT PATTERN CHANGES

An important potential application of free-living gait anal-
ysis in PD patients is monitoring real-life variations in the
response to medication. The non-parametric nature of our
approach allows us to identify significant statistical changes
in the gait distribution which can be used to locate potential
clinical changes in the gait pattern. In this section, we report
the effectiveness of our probabilistic model for the problem of
classifying gait episodes into “before medication” and “after
medication” classes. We have compared the binary classifica-
tion accuracy using different gait features and different device
locations (described in Section III).

A. Model based discrimination of gait before/after
medication intake

For this classification problem, we considered the segments
that were identified as gait by our model (i.e. states with
sufficient power, see Section VI). The AR-iHMM segments
the data into intervals with the state variables zt denoting
the AR state representing the signal at time indexed t. If we
then assume K+ unique values for zt as t = 1, . . . , T , we
estimate K+ sets of AR coefficients:

{
Ak

1 , . . . , A
k
r

}K+

k=1
. For

each state k we estimate the spectrum based on AR coefficients
Ak

1 , . . . , A
k
r .

Common PSD features used to monitor PD related changes
in the gait pattern include: position of the dominant peak (i.e.
fundamental frequency); height of the dominant peak; width of
the dominant peak; ratio of the first and second peak; energy in
a specific frequency range, and others [54]. In our evaluation,
we consider the height and position of the dominant peak, and
the total energy in the range 0.5-10Hz (gait related information
is expected in this frequency range). Because we expect that
the relative rather than the absolute within-person changes are
relevant to distinguish between before and after medication
intake, we normalized all features per patient using z-scores.

Of the 25 PD patients taking part in the study, 18 had
sufficient walking periods (at least 5 segments of 25 seconds)
both before and after medication. For these patients, we trained
a logistic classifier using each of the features described above,
to predict whether their gait segments occurred before or
after medication intake. For each patient, we computed the
out-of-sample accuracy based on leave-one-subject-out cross
validation3.

3The accuracy of the leave-one-subject-out cross validation is affected both
by the flexibility of the trained classifier, but also the intrinsic variation across
features from different subjects.

B. Prediction accuracy
As displayed in Table III, we could predict with reasonable

accuracy whether a gait segment occurred before or after
medication intake; note that not all patients had visible changes
in their gait pattern after medication intake, so we expect that
achieving perfect prediction accuracy will not be realistic. To
examine how our approach for gait detection affects the ability
to discriminate between before and after medication intake, we
compared accuracy between using the gait segments identified
by our model and using the gait segments as annotated on the
video recordings. For the latter, we learned the AR-iHMM
on all annotated gait data, and used all identified states to
obtain the AR-based PSD. As shown in Table III, the accuracy
to predict before/after medication intake using gait segments
identified by the model was comparable to using annotated
gait segments.

C. Exploratory gait analysis
Because our probabilistic model is unsupervised, we can

use the model not only as a tool to make predictions, but also
as an exploratory tool to study the gait data. For example,
in Figure 5 on the left we show the gait segmentation of a
PD patient with a notable clinical improvement in gait pattern
after medication intake (based on the video annotations),
where different colors indicate different hidden states zt. What
we observe is that the probabilistic model not only allows
us to identify non-gait segments (pink and green), but also
discriminates between different variations in gait quality. In
this patient, the model separates before medication gait (red)
or after medication gait (yellow). By contrast, the right plots
on Figure 5 show segmented gait of a PD patient whose gait
does not notably improve after medication intake (based on the
video recordings). Interestingly, we can still identify different
gait segments both before and after medication intake, but their
pattern of occurrence is similar in both conditions. Further-
more, inspection of the AR-based PSD estimates associated
with the states in both figures indicates that the gait states
on the right in Figure 5 are more similar to each other than
the gait states associated with before and after medication
periods on the left side in Figure 5. It should be noted that
this contrast was not present in all patients, and we show two
illustrative cases here. Further research is needed to identify
all the reasons which can affect the reported change.

VIII. DISCUSSION

In this report we study the problem of passively monitoring
movement disorders such as Parkinson’s disease (PD) in
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Fig. 5. Segmentation of smartphone data during the free-living assessment obtained from the AR-iHMM, from two PD patients with (left) and
without (right) clinically observable changes and in the gait pattern after medication intake. Top: before medication intake. Bottom: after medication
intake. On the left the red, yellow, blue and grey segments are all associated with gait data; on the right the yellow, blue and grey segments are all
associated with gait data, with similar occurrence before and after medication intake; the remaining segments are not associated with gait.

daily living using wearable sensors. This is a challenging
problem because of the large complexity and variation in
daily living sensor signals, in combination with the scarcity
of representative free-living datasets with reliable labels. This
may explain why highly flexible methods such as deep learning
have not been successful in the context of monitoring symptom
fluctuations in PD [55]. This has stimulated the search for
signal models that are based on principled assumptions which
reduce the model’s flexibility while still allowing it to capture
subtle disease-related changes. In this work we propose a
simple, structured probabilistic modelling approach for the
analysis of free-living gait. Our approach is designed to
simultaneously locate stationary gait segments and charac-
terize the gait pattern, based on pre-processed accelerometer
data. We achieve this by adopting a non-parametric switching
autoregressive model, circumventing the need to use window-
based analysis and the need to pre-define the number of gait
and non-gait classes that can be observed in daily life.

We demonstrate our approach on a new reference dataset
including 25 PD patients and 25 controls. The dataset is
unique because it combines unscripted daily living activities
in and around the house with detailed video annotations,
which allows us to test our model on a much more realistic
setting. First, we show that the identified classes can be used
to accurately detect gait. Second, we show that states that
represent gait can be used to predict medication induced
fluctuations in PD patients.

A. Benefits of AR-iHMM model based gait analysis

In addition to the evaluated benefits of the proposed AR-
iHMM, there are some other properties which are not nec-
essarily reflected in the reported comparisons. Our approach
has two key advantages when it comes to estimating the
spectrum of the free-living accelerometer data (or similar
sensors): (1) the time boundaries of each segment of stationary
data are adaptively selected by the model, which avoids the
need for window-based analysis and problems associated with
this; (2) in a fully probabilistic fashion, we can leverage
multiple repeating patterns to get a more robust estimate of
the spectrum. Additionally, our algorithm does not treat the
problem as binary classification, but it is designed to learn
multiple gait and non-gait states. This means that it can deal
with changes in gait pattern during gait episodes. This avoids
grouping different gait patterns together, which can introduce

problems in further gait pattern analyses (see Figure 4). More-
over, because it is unsupervised, the model can be used as an
exploratory tool to locate gait or non-gait segments that share
the same (spectral) characteristics. The user can explicitly
control the prior parameters of the model to determine the
temporal granularity of the segmentation and focus on more
or less detailed changes in the gait signals. This extra control
allows us to focus on sufficiently stationary (“steady state”)
gait segments that are useful to make inferences about the
gait pattern. Lastly, using this fully Bayesian model to describe
the acceleration signals allows us to estimate the uncertainty
involved with both the segmentation and the estimation of the
spectrum.

B. Limitations and future directions
In order to develop an intuitive, robust and easy to interpret

probabilistic signal model for gait data in free-living, we have
made some restrictive assumptions about the distribution and
occurrence of such data in daily life. Despite the flexibility
of inferring an unknown number of different spectral AR
representations, we have focused on the states that have
sufficient spectral power in the gait range to monitor changes
after medication intake. We have shown that this approach
is appropriate for monitoring the highly prevalent continuous
impairments in PD patients (bradykinetic gait). However, by
focusing on short-term interruptions of the gait, the model
could potentially also be very suitable to monitor the more rare
episodic hesitations (freezing of gait) [56], [57]. Because of the
limited number of patients that presented with this symptom
during the free-living assessments of the Parkinson@Home
validation study, this remains to be evaluated using other data
sets. In addition, the proposed framework does not use the
axis meanings in the sensor outputs. This was done because
in smartphones, the default orientation of the device can be
different depending on the user. Our approach can also be
applied to the three-dimensional dynamic component of the
acceleration vector, or to any specific axis.

Due to overlap in typical gait frequencies and PD resting
tremor, we can observe lower gait detection specificity mainly
in the wrist-worn devices, compared to scenarios in which we
have detected and separated PD tremor separately. Simultane-
ous PD tremor and gait detection in free living will be studied
in future work.

Before the framework can used in medical contexts, further
validation is necessary. For example, in the current study
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TABLE III
BALANCED ACCURACY TO PREDICT WHETHER GAIT SEGMENTS OCCURRED BEFORE OR AFTER MEDICATION INTAKE, USING A LOGISTIC

CLASSIFIER BASED ON PSD FEATURES OBTAINED FROM THE AR-IHMM, NORMALIZED PER SUBJECT. WE USE LEAVE-ONE-SUBJECT-OUT CROSS

VALIDATION, AND PRESENT THE MEAN AND STANDARD ERROR ACROSS SUBJECTS. RESULTS ARE COMPARED BETWEEN USING GAIT SEGMENTS AS

ANNOTATED ON THE VIDEO RECORDINGS (”ANNOTATED GAIT”), AND GAIT SEGMENTS IDENTIFIED BY OUR MODEL (”PREDICTED GAIT”).

Feature Device locations
Smartphone Left Wrist Right Wrist Left Shin Right Shin Lower Back

Annotated gait
Peak height 68% (9%) 66% (9%) 68% (9%) 70% (10%) 72% (10%) 70% (10%)

Peak position 57% (8%) 56% (6%) 56% (6%) 56% (8%) 57% (9%) 55% (8%)
Total energy 72% (8%) 67% (9%) 69% (9%) 69% (8%) 74% (9%) 72% (7%)

Predicted gait
Peak height 67% (10%) 63% (12%) 66% (11%) 64% (11%) 66% (11%) 68% (10%)

Peak position 55% (12%) 53% (14%) 52% (15%) 58% (12%) 61 (12%) 59% (11%)
Total energy 75% (8%) 65% (10%) 68% (11%) 70% (9%) 74% (10%) 76% (9%)

protocol the gait before medication intake was measured after
overnight withdrawal of dopaminergic medication. While this
allowed for a detailed assessment of the changes after medi-
cation intake, in some patients the effects in daily life might
be more subtle. Future work will aim to evaluate how well
response fluctuations can be captured for naturally occurring
shorter withdrawal periods in truly unsupervised conditions.

Finally, we emphasize that the developed framework aims
to merely segment varying gait patterns in a principled and
largely unsupervised manner. In order to assign meaning to
detected changes in the gait pattern in fully unsupervised
conditions, e.g. estimate causal effects of medication, further
analysis using a carefully designed causal map is required. For
example, real-life factors such as environment (e.g. crowded
city versus park , indoors electromagnetic fields [58]) and vol-
untary behavior (e.g. making gestures while walking, specif-
ically for the trouser pocket: type of clothing) might also
influence the participants’ gait and our ability to measure it.
While the current data set includes much more environmental
and behavioral variation than lab-based studies, the activities
performed before and after medication intake were similar,
which may not be the case in fully free-living conditions.
Therefore, future work will include adjusting for potential real-
life confounding, using additional contextual sensors such as
GPS.
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