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Integrally geared compressors are characterized by compact and high efficiency machines, which are widely used in modern
processing industries. As an important part of integrally geared compressors, a geared rotor-bearing system exhibits complicated
dynamic behaviors. When running at rated speeds, a coupling system likely produces resonance with an adjusted workload, and a
critical load phenomenon occurs.The dynamic coefficients of bearings, axial force and torque, and gear meshing stiffness vary with
workload because of the interaction between rotors. In this study, a dynamic model of a geared rotor-bearing system influenced
by the dynamic coefficients of bearings, axial force and torque, and gear meshing stiffness is developed. The dynamic responses
of the coupling system are calculated and analyzed by using a typical five-shaft integrally geared compressor as an example. The
effects of different parameters on the dynamic behaviors of the proposed system are also considered in the discussion. The geared
rotor-bearing system is further investigated to examine the failure mechanism of the critical load.

1. Introduction

Integrally geared compressors are key components of pro-
cessing industries. They are applied extensively in refineries,
chemical plants, and other fields because of their compact
structure, high efficiency, and wide performance. Geared
rotor-bearing systems are generally operated beyond the first
or second critical speed, and such systems provide secure and
steady operation that contributes to the safety, stability, and
long-term operation of integrally geared compressors. These
systems can also be considered a set of rotor-bearing systems
dynamically interacting with one another and exhibiting
very complicated dynamic behaviors [1]. Therefore, accu-
rate dynamic knowledge about geared rotor-bearing systems
should be obtained.

Geared rotor-bearing systems can be efficiently modeled
by finite element methods. Nelson and McVaugh [2] used a
consistent matrix approach and developed a finite element
model of a rotor-bearing system by considering the effects
of rotatory inertia, gyroscopic moments, and axial force.
Zorzi and Nelson [3, 4] increased the influence of internal
damping and axial torque on the basis of a previous model
[2]. Kahraman et al. [5] creatively utilized the finite element

method to establish a model of a geared rotor-bearing system
by determining the rotary inertia of a shaft element, axial
force on shafts, flexibility and damping of bearings, material
damping of shafts, and stiffness and damping of a gear mesh.
Their work [2–5] illustrated that accurate dynamic behaviors
can be obtained with finite element method.

Compared with general rotor-bearing systems, geared
rotor-bearing systems are difficult to analyze. Nevertheless,
geared system dynamics have been extensively investigated.
Rao et al. [6] examined the coupling between bending and
torsion caused by gears and considered the axial torque to
determine the lateral response to torsional excitation. Wu
and Chen [7] presented a simple approach to eliminate
torsional vibration in a gear-branched system via finite
element method. Choi et al. [8] and Lee et al. [9] evaluated
the dynamic characteristics of coupled lateral, torsional, and
axial vibration in a helical geared system. Kubur et al. [10]
and Lee and Ha [11] also analyzed the unbalance response of
a geared rotor-bearing system. A dynamic model of geared
rotor-bearing systems has also been developed on the basis
of previous studies and relevant factors, including geomet-
ric eccentricity, transmission error, and some unavoidable
defects [12–14]. The nonlinear dynamic characteristics of
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geared rotor-bearing systems have also been widely explored
[15–17].

The complicated dynamic behaviors, including linear and
nonlinear characteristics, of geared rotor-bearing systems
have been extensively investigated. However, the dynamic
characteristics of geared rotor-bearing systems considering
varyingworkload have been rarely explored. Integrally geared
compressors likely cross numerous critical speeds during
compressor start up. When running at rated speeds, inte-
grally geared compressors produce resonance with adjusted
workload, and a critical load phenomenon occurs. Gao
[18] discovered and successfully resolved a DH integrally
geared compressor failure caused by critical load. Therefore,
our study mainly aims to examine the effect of different
workloads on the dynamic characteristics of a geared rotor-
bearing system and to investigate the failure mechanism of
the critical load.

In this paper, a general finite element approach of geared
rotor-bearing system is presented in Section 2. The dynamic
model of geared rotor-bearing system covers the effects of
bearing flexibility and damping, axial force and torque, and
gear meshing. A five-shaft integrally geared compressor is
modeled and discussed in Section 3. The bearing dynamic
coefficients, axial force and torque, and gearmeshing stiffness
are changed as workload varies because of the interaction in
the geared rotor-bearing system. The dynamic responses of
the system under different parameters are also analyzed. Our
results indicate that the bearing dynamic coefficients and gear
meshing stiffness significantly influence the responses of the
geared rotor-bearing system, but the axial force and torque
slightly influence such responses. The resonance peaks and
their phase of the critical load are obtained from the dynamic
responses affected by the bearing dynamic coefficients, axial
force and torque, and gear meshing stiffness.

2. Dynamic Modeling for Geared
Rotor-Bearing System

In this section, the FE dynamic equation of the geared rotor-
bearing system influenced by the flexibility and damping
of bearings, axial force, axial torque, and gear meshing is
presented. The assembly method of the coupling system
equation is also investigated.

2.1. Rotor-Bearing System Dynamic Equation. The coordi-
nates defining bending as the two planes are shown in
Figure 1. The local coordinate of the finite rotor element is
𝑞𝑒 = [𝑢𝑖, V𝑖, 𝜃𝑖, 𝜓𝑖, 𝑢𝑗, V𝑗, 𝜃𝑗, 𝜓𝑗]. The dynamic equation of the
finite rotor element is as follows:

(𝑀𝑒𝑇 +𝑀𝑒𝑅) �̈�𝑒 − Ω𝐺𝑒�̇�𝑒 + 𝐾𝑒𝐵𝑞𝑒 = 𝑄𝑒, (1)

where 𝑀𝑒𝑇 and 𝑀𝑒𝑅 are the element mass matrices; 𝐾𝑒𝐵 is
the element bending stiffness matrix; 𝐺𝑒 is the element
gyroscopicmatrix;Ω is the spin speed;𝑄𝑒 is the external force
vector of the rotor element. The matrices in (1) are defined in
Appendix A.

The coupling of the input shaft, the impellers of output
shafts, and the gear of the middle shaft are regarded as a rigid

disk (with gyroscopic effect). When the local coordinates are
defined as 𝑞𝑑 = [𝑢, V, 𝜃, 𝜓], the dynamic equation of the rigid
disk is as follows:

𝑀𝑑�̈�𝑑 − Ω𝐺𝑑�̇�𝑑 = 𝑄𝑑, (2)

where Ω is the spin speed; 𝑄𝑑 is the external force vector of
the rigid discs;𝑀𝑑 and𝐺𝑑 are themassmatrix and gyroscopic
matrix for the disk, respectively, and defined as follows:

𝑀𝑑 =
[[[[[
[

𝑚𝑑 0 0 0
0 𝑚𝑑 0 0
0 0 𝐼𝑑 0
0 0 0 𝐼𝑑

]]]]]
]
,

𝐺𝑑 =
[[[[[
[

0 0 0 0
0 0 0 0
0 0 0 𝐼𝑝
0 0 −𝐼𝑝 0

]]]]]
]
.

(3)

The bearings utilized in this paper are limited to those
which obey the governing equations of the form

𝐶𝑏�̇�𝑏 + 𝐾𝑏𝑞𝑏 = 𝑄𝑏 (4)

in the local coordinates, where𝑄𝑏 is the bearing external force
vector; 𝐾𝑏 = [ 𝑘𝑢𝑢 𝑘𝑢V𝑘V𝑢 𝑘VV

] is the stiffness matrix of bearing; and
𝐶𝑏 = [ 𝑐𝑢𝑢 𝑐𝑢V𝑐V𝑢 𝑐VV ] is the damping matrix of bearing.

2.2. Incremental Stiffness due to Axial Force and Axial Torque.
In the integrally geared compressor, the mechanical power
developed by the turbine is transmitted through the input
shaft to the output shaft impellers where gas is pressurized.
The purpose of the geared rotor-bearing system usually
depends fundamentally on this transmission of torque. Each
shaft of the compressor carries some torque about the axis
of rotation. The helical gear meshing is generally used
for integrally geared compressors to ensure the stability of
transmission. The mechanical power of integrally geared
compressors contributes to not only the axial torque but also
the axial force because of the effect of helical gear meshing.
The axial force along the undeformed axis of the rotor occurs
in each shaft of the coupling system. Nelson andMcVaugh [2]
developed the equation of motion for a rotating finite shaft
element, including the effect of axial force. The result is a
stiffening effect if the shaft is in tension or a softening effect
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Figure 1: The local coordinates in the bending planes.

if the force is compressive. The lateral motion of an Euler-
Bernoulli beam element of the axial force is as follows:

𝐾𝑒𝐴

= 𝐹𝑎
30𝑙𝑒

[[[[[[[[[[[[[[[[[
[

36
0 36 sym

0 −3𝑙𝑒 4𝑙2𝑒
3𝑙𝑒 0 0 4𝑙2𝑒
−36 0 0 −3𝑙𝑒 36
0 −36 3𝑙𝑒 0 0 36
0 −3𝑙𝑒 −𝑙2𝑒 0 0 3𝑙𝑒 4𝑙2𝑒
3𝑙 0 0 −𝑙2𝑒 −3𝑙𝑒 0 0 4𝑙𝑒

]]]]]]]]]]]]]]]]]
]

, (5)

where 𝐹𝑎 is the axial tensile force within the element.
The axial torque within a shaft may affect the lateral

behavior, which is similar to the effect caused by the axial
force in a shaft. Relatively few papers or texts on rotor
dynamics consider this coupling, although Zorzi and Nelson
[4] derive the contribution to the stiffness for the lateral
motion of an Euler-Bernoulli beam element, as follows:

𝐾𝑒𝑇 = 𝜏𝑒
2𝑙𝑒

[[[[[[[[[[[[[[[[[
[

0 0 2 0 0 0 −2 0
0 0 0 2 0 0 0 −2
2 0 0 −𝑙𝑒 −2 0 0 𝑙𝑒
0 2 𝑙𝑒 0 0 −2 −𝑙𝑒 0
0 0 −2 0 0 0 2 0
0 0 0 −2 0 0 0 2
−2 0 0 −𝑙𝑒 2 0 0 𝑙𝑒
0 −2 𝑙𝑒 0 0 2 −𝑙𝑒 0

]]]]]]]]]]]]]]]]]
]

, (6)

where 𝜏𝑒 is the transmitted torque within the element.

2.3. Gear Meshing Stiffness. Connecting the shafts through
the helical gear in the geared rotor-bearing system often
causes couple vibration. Helical gear meshing stiffness is
investigated on the basis of a previous study [6]. The rela-
tionship between contact force and displacements of a gear
pair is determined by representing the teeth in contact with
an equivalent stiffness along the pressure line, as shown in
Figure 2. The rotations 𝜃 and 𝜓 are small in a gear pair; as
such, we can disregard these terms. Along the pressure line,
gear𝑖 moves as follows:

𝑥𝑖𝑔 = 𝑢𝑖 sin𝛼 cos𝛽 + V𝑖 cos𝛼 cos𝛽 + 𝑟𝑖𝜙𝑖 cos𝛽 (7)

and gear𝑗 moves as follows:

𝑥𝑗𝑔 = 𝑢𝑗 sin𝛼 cos𝛽 + V𝑗 cos𝛼 cos𝛽 + 𝑟𝑗𝜙𝑗 cos𝛽, (8)

where 𝑟𝑖 and 𝑟𝑗 are the base circle radii of the two gears; 𝛼 is
the pressure angle; 𝛽 is helix angle; 𝜙𝑖 and 𝜙𝑗 are the torsional
displacements of the gears about the 𝑧-axil; 𝑢𝑖 and 𝑢𝑗 are the
displacement of gear𝑖 and gear𝑗 in the 𝑥 direction; V𝑖 and V𝑗
are the displacement of gear𝑖 and gear𝑗 in the 𝑦 direction.

Therefore, the relative displacement at the gear mesh is as
follows:

𝑥𝑔 = (𝑢𝑗 − 𝑢𝑖) sin𝛼 cos𝛽 + (V𝑗 − V𝑖) cos𝛼 cos𝛽
− (𝑟𝑖𝜙𝑖 + 𝑟𝑗𝜙𝑗) cos𝛽 = 𝑁𝑔𝑞𝑔,

(9)

where

𝑁𝑔 = [− sin𝛼 cos𝛽 − cos𝛼 sin𝛽 0 0 sin𝛼 cos𝛽 cos𝛼 cos𝛽 0 0 −𝑟𝑖 cos𝛽 −𝑟𝑗 cos𝛽] ,

𝑞𝑔 = [𝑢𝑖 V𝑖 𝜃𝑖 𝜓𝑖 𝑢𝑗 V𝑗 𝜃𝑗 𝜓𝑗 𝜙𝑖 𝜙𝑗] .
(10)

The strain energy within the gear mesh is as follows:

𝑈𝑔 = 1
2𝑘𝑔𝑥
2
𝑔 = 1

2𝑘𝑔𝑞
𝑇
𝑔𝑁𝑇𝑔𝑁𝑔𝑞𝑔, (11)

where 𝑘𝑔 is the gear mesh stiffness. Thus, the stiffness matrix
of gear mesh is as follows:

𝐾𝑔 = 𝑘𝑔𝑁𝑇𝑔𝑁𝑔. (12)

The matrix of𝐾𝑔 is defined in Appendix B.
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2.4. The Dynamic Equation of Geared Rotor-Bearing System.
Equations (1), (2), (5), (6), and (12) can be combined for
the geared coupled system. The dynamic equation of geared
rotor-bearing system is as follows:

𝑀𝑠�̈�𝑠 + (𝐶𝑠𝑏 − Ω𝐺𝑠) �̇�𝑠
+ (𝐾𝑠𝐵 + 𝐾𝑠𝑏 + 𝐾𝑠𝑔 − 𝐾𝑠𝐴 − 𝐾𝑠𝑇) 𝑞𝑠 = 𝑄𝑠, (13)

where 𝑀𝑠 is the mass matrix; 𝐶𝑠𝑏 is the damping matrix of
bearing; Ω is the spin speed; 𝐺𝑠 is the gyroscopic matrix;
𝐾𝑠𝐵, 𝐾𝑠𝑏, 𝐾𝑠𝑔, 𝐾𝑠𝐴, and 𝐾𝑠𝑇 are the stiffness matrix of the rotor,
bearing, gear, axial load, and axial torque, respectively; 𝑄𝑠 is
the external force vector; 𝑞𝑠 is the displacement vector which
is defined as follows:
𝑞𝑠 = [𝑢1, V1, 𝜃1, 𝜓1, 𝜙1, 𝑢2, V2, 𝜃2, 𝜓2, 𝜙2, . . . , 𝑢𝑛, V𝑛, 𝜃𝑛, 𝜓𝑛,

𝜙𝑛] .
(14)

2.5. Assembly of the Coupling System Equation. In order to
construct an entire geared rotor-bearing system equation,
an assembly method of the single rotor finite element (FE)
models of the shafts, bearings and disks, and the gear pair
FE models is stated as follows. The single rotor FE model
assembly method is detailed in the book by Vollan and
Komzsik [19]. Figure 3 shows such a simple geared system
which is used as an example to illustrate the assembly
method of the entire system equation. The nodes on each
gear are connected by a stiffness matrix. In a geared system,
the element matrices are inserted into the system matrices
in the positions determined by the positions of the local
element coordinates in the global vector.This is demonstrated
diagrammatically in Figure 4 for the example of Figure 3 in
which the nonzero degrees of freedom are shaded.The blocks
in shades of light gray and dark gray denote the positions
corresponding to Rotor 1 and Rotor 2, respectively. The black
squares denote the stiffness matrix for the connection of the
gear meshing, which is split into four blocks that slot into the
position of Node 3 and Node 6 in the entire system equation.
Then, the entire assembled equation of a geared system is
implemented as shown in Figure 4.

2.6. Validation of Dynamic Model. A 600 kW turbo-chiller
rotor-bearing system with a bull-pinion speed-increasing
gear is applied to validate the correctness of the model
proposed in this paper. The dynamic model of the turbo-
chiller rotor-bearing system is shown in Figure 5, and the
system parameters are based on a previous study [9]. With
a test unbalance of 𝑈 = 19.7 g⋅mm attached to the impeller,
the coupled unbalance responses at the driver shaft calculated
by the proposed method are shown in Figure 6. Our results
(Figure 6) are consistent with those described in a previous
study [9].

3. Results and Discussions

Applying the proposed method, we perform an unbalance
response analysis with a five-shaft geared rotor-bearing sys-
tem of an integrally geared compressor (Figure 7). The input

ui

i

uj

j

i

i

j

j

i

kg
jGear

Gear zi

zj

Ti

Tj





Oi

Oj

i

j

Figure 2: Gear meshing system model.

Node 1 Node 2

Node 3

Node 4 Node 5

Node 6

Node 7 Node 8

Rotor 1

Rotor 2

Figure 3: Rotors coupled by a gear.
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Figure 4: Structure of the entire assembled equation for a geared
system.
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Figure 6: Unbalance responses comparing with [9].

shaft and three output shafts (O1, O2, and O3) are coupled
together by the transmission gear of the middle shaft in this
coupling system. Each shaft is a general rotor-bearing system
supported by oil film bearings. The impellers are fixed on the
output shafts to compress the gas.

In the five-shaft geared rotor-bearing system, each shaft
has the same material properties. Young’s modulus of shaft
is 𝐸 = 2.059 × 1011N/m2; shear modulus of shaft is 𝐺 =
7.919 × 1010N/m2; the density of the shaft material is 𝜌 =
7850 kg/m3; and the Poisson ratio of the shaft is V = 0.3.
Table 1 lists the physical parameters of five gears. Five shafts
unbalance and location calculated by ISO-1940-1:2003 [20]
is listed in Table 2 and tilting pad bearing parameters of five
shafts are presented in the Table 3. All the other data for the
system are shown in the Figure 7.

Table 1: Physical parameters of five gears.

Input Middle Output 1 Output 2 Output 3
Power (kW) 15600 15600 4600 6500 4500
Pitch diameter (mm) 719 1984 264 221 141
Tooth width (mm) 224 152 224 224 224
Location 40∘ 0∘ 270∘ 90∘ 180∘

Normal modulus 5
Pressure angle 20∘

Helix angle 12∘

Table 2: Five shafts unbalance and location.

Input Middle Output 1 Output 2 Output 3
Mass (kg) 1098.69 4299.15 383.29 359.03 143.26
Unbalance
(gmm) 4395 64487 958 359 359 72 72

Location
node 2 38 88 89 133 144 174

Table 3: Bearing parameters of five shafts.

Input Middle Output 1 Output 2 Output 3
Bearing
diameter
(mm)

180 250 100 110 80

Bearing
width (mm) 176 150 90 98 72

Bearing
radial
clearance
(mm)

0.06 0.05 0.09 0.116 0.096

Pad number 4 2 5 5 5
Rated speed
(rpm) 4087 1481 11131 13297 20841

When running at the rated speeds, integrally geared
compressor needs to adjust the load according to the practical
requirements. Since the interaction of the geared rotor-
bearing system, the workload is associated with the bearing
dynamic coefficients, axial force and torque on the shaft, and
gear meshing stiffness. In the integrally geared compressor,
the input shaft and the middle shaft bearing the workload
are generated by all the output shafts and usually run below
the first critical speed. Therefore, resonance is difficult to
produce with the workload adjustment when the input shaft
and middle shaft are running at the rated speed. On the
contrary, output shafts have rated speeds higher than the
critical speed. When running at the rated speeds, they may
produce resonance with the workload adjustment, and the
critical load phenomenon occurs. This vibration problem
is investigated by linear unbalance response analysis of the
geared rotor-bearing system with varying workloads.

In order to construct the geared rotor-bearing system
model, we utilize the meshing stiffness of the gear pair to
connect the five single rotor-bearing systems. The motion
of the gear pair is determined by the gear mesh stiffness
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Figure 7: Five-shaft geared rotor-bearing system of integrally geared compressors.

(see Section 2.3). Using the proposed model to calculate
the linear unbalance response of the geared rotor-bearing
system, the resonance speed of the three output shafts under
the interaction of the gears can be obtained. The vibration
problem of geared rotor-bearing system is discussed and
analyzed in detail based on the three-dimensional map of
linear unbalance response with varying workloads.

In this section, we discussed the relationship between
the workload and the bearing dynamic coefficients, axial
force and torque, and gear meshing stiffness, obtained,
respectively, linear unbalance response under the effect of
bearing dynamic coefficients, axial force and torque, and gear
meshing stiffness by using the dynamic modeling method in
Section 2, and analyzed the influence of different factors on
the critical speed in the process of workload variation. Then,
by analyzing the unbalance response under the influence of
all factors, the critical load of the geared rotor-bearing system
is verified.

3.1. Unbalance Response Analysis of the Geared Rotor-Bearing
System considering VaryingWorkload. According to the force
analysis of typical helical gears (Figure 8), we can obtain

𝐹𝑡 = 2𝑇
𝑑 ,

𝐹𝑟 = 𝐹𝑡 tan𝛼
cos𝛽 ,

𝐹𝑎 = 𝐹𝑡 tan𝛽,

(15)
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Figure 8: Force analysis of helical gears.

where 𝐹𝑡 is the circumferential force; 𝐹𝑟 is the radial force; 𝐹𝑎
is the axial force; 𝑇 is the torque; 𝑑 is the pitch diameter; 𝛼 is
the pressure angle; 𝛽 is the helix angle.

When running at the rated speed, the change of the
workload has directly led to torque variant based on the
formula which is

𝑇 = 9550𝑃
𝑛 , (16)
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Figure 9: Effect of increasing workload on the tilting pad bearings of three output shafts, (a) stiffness coefficients; (b) damping coefficients.

where 𝑇 is the torque; 𝑃 is the workload; 𝑛 is the rated speed.
The circumferential force 𝐹𝑡 is related to the gear meshing
stiffness detailed in ISO-6636-1:2006 [21] and the radial force
𝐹𝑟 acting directly on the shaft, which will affect the bearing
dynamic coefficients determined primarily bearing endured
force. In a word, we can conclude that the bearing dynamic
coefficients, axial force and torque, and gearmeshing stiffness
change with the workload variation.

3.1.1. Effect of Bearing Dynamic Coefficients. In this paper,
the unbalance response is linearly analyzed to determine
the resonance speed. The existing program Dyrobes-BePerf
has been developed to analyze the dynamic performance
of tilting pad hydrodynamic journal bearings based on the
FE Method. The linear bearing stiffness coefficients and
damping coefficients can be calculated by this program.
Figure 9 shows the effect of increasing workload on the
bearings of the output shafts. As the workload increases,
the stiffness coefficients and damping coefficients of each
shaft bearing in 𝑥-direction and 𝑦-direction are increasing.
To demonstrate the effect of bearing dynamic coefficients,
unbalance responses of three output shafts only considering
the increasing stiffness coefficients and damping coefficients
are presented in Figure 10. The critical speed of three output
shafts is markedly increased with the increase of the dynamic
coefficients of the bearings. The low order critical speed is
mainly affected from the results of the calculation.

3.1.2. Effect of the Axial Force and Torque. Figure 11 shows
the effect of increasing workload on the three output shafts.
The output shafts will not be subjected to axial force and

torque without the workload based on the above formula of
gear endured force.The dynamic characteristics of the output
shafts are affectedwhen theworkload increases the axial force
and torque of the output shafts. Figure 12 shows the unbalance
responses of three output shafts considering the axial force
and torque of different workloads. The critical speeds of the
output shafts are slightly reduced as workload increases.

3.1.3. Effect of the Gear Meshing Stiffness. In ISO-6636-1:2006
[21], the gear meshing stiffness is mainly affected by the
specific workload during the operation of the gear coupling
system and the calculation formula of gear meshing stiffness
is given. Based on the formula, the gear meshing stiffness
of three output shafts under different workload is calculated.
The results are shown in Figure 13. The unbalance responses
of three output shafts are plotted (Figure 14) to investigate
the effect of gear meshing stiffness on output shafts. As
the gear meshing stiffness increases, the lower-order critical
speed increases slightly and the higher-order critical speed
increases obviously.

The dynamic performance of the three output shafts
can be influenced by the bearing dynamic coefficients, the
axial force and torque, and the gear meshing stiffness. The
critical speeds of the output shafts significantly change with
the bearing dynamic coefficients and gear meshing stiffness
varies. These changes are slightly affected by axial force and
torque variation.

3.2. Critical LoadAnalysis of the Geared Rotor-Bearing System.
Figure 15 shows the unbalance response of three output shafts
considering all the influencing factors under the varying
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Figure 10: Unbalance response of three output shafts only considering dynamic coefficients under varying workload, (a) output shaft 1; (b)
output shaft 2; (c) output shaft 3.
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Figure 11: Effect of increasing workload on the three output shafts, (a) axial torque; (b) axial force.

workload.The increase of the workload results in the increase
of the critical speed of output shafts. The results illustrate
that the rated speed below the first critical speed will be
far away from the critical speed with the critical speed

increased. Therefore, the critical load unlikely occurs when
the rated speed of each shaft is below the first critical speed.
Conversely, output shafts are generally running above the
critical speed in the integrally geared compressor, and the
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Figure 12: Unbalance response of three output shafts only considering axial torque and axial force under varying workload, (a) output shaft
1; (b) output shaft 2; (c) output shaft 3.
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Figure 14: Unbalance response of three output shafts only considering gear meshing stiffness under varying workload, (a) output shaft 1, (b)
output shaft 2, and (c) output shaft 3.
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Figure 15: Unbalance response of three output shafts considering all the influence factors under the varying workload, (a) output shaft 1; (b)
output shaft 2; (c) output shaft 3.

critical speed can be adjusted to the rated speed of the output
shaft by increasing the workload. Therefore, the resonance
may occur under the influence of the workload when the
output shafts are running at the rated speeds. Figure 16
illustrates the response amplitude and phase of the output
shafts under varying workload. A slight resonance peak with

a slight phase change is observed in Figure 16(a). When
the workload is close to 75%, the resonance peak and its
phase are obviously changed in Figure 16(b). Figure 16(c)
displays that two obvious resonance peaks and their phases
change significantly when the loads are close to 3% and 25%,
respectively. These outcomes demonstrate that critical load
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Figure 16: Response and phase under different workloads when three output shafts are running at the rated speed, (a) output shaft 1 running
at 11131 r/min; (b) output shaft 2 running at 13297 r/min; (c) output shaft 3 running at 20841 r/min.

phenomenon occurs in O2 and O3 when they are at the rated
speed.

Our results reveal that the dynamic characteristics of the
geared rotor-bearing system change as workload varies. Crit-
ical load phenomenon likely occurs as workload is adjusted
in the integrally geared compressor described in this paper.

4. Conclusions

This study investigates the dynamic behaviors of the geared
rotor-bearing system in the integrally geared compressor
influenced by varying workloads. This study also examines
and discusses the effects of the bearing dynamic coefficients,
axial force and torque, and gear meshing stiffness on the
geared rotor-bearing system under varying workloads. The
critical load phenomenon of the geared rotor-bearing system
is also analyzed in detail. Results are summarized as follows:

(1) The results demonstrate that the bearing dynamic
coefficients, axial force and torque, and gear meshing

stiffness are improved as workload increases. The
bearing dynamic coefficients and gear meshing stiff-
ness significantly affect the dynamic response of the
system. By contrast, the influence of axial force and
torque is not significant.

(2) Even though the rotors of the system do not have crit-
ical speed close to the rated speed under no workload
conditions, the geared rotor-bearing system produces
resonance with the adjusted workload, which is the
critical load phenomenon. Similar to critical speed,
critical load impedes the safe operation of the geared
rotor-bearing system.

(3) The proposed method can be generally applied to the
analysis of the critical load which should be consid-
ered in the designs of integrally geared compressors.
Through the analysis of the critical load, we can adjust
the rated speed to avoid the critical load failure, so
as to improve the operational safety of the integrally
geared compressors.
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Appendix

A. Finite Rotor Element Matrices

𝑀𝑒𝑇 = 𝜇𝑙𝑒
420

⋅

[[[[[[[[[[[[[[[[[
[

156 sym
0 156
0 −22𝑙𝑒 4𝑙2𝑒
22𝑙 0 0 4𝑙2𝑒
54 0 0 13𝑙𝑒 156
0 54 −13𝑙𝑒 0 0 156
0 13𝑙𝑒 −3𝑙2𝑒 0 0 22𝑙𝑒 4𝑙2𝑒

−13𝑙𝑒 0 0 −3𝑙2𝑒 −22𝑙𝑒 0 0 4𝑙2𝑒

]]]]]]]]]]]]]]]]]
]

,

𝑀𝑒𝑅 = 𝜇𝑒𝑟𝑒2
120𝑙𝑒

⋅

[[[[[[[[[[[[[[[[[
[

36 sym
0 36
0 −3𝑙𝑒 4𝑙2𝑒
3𝑙𝑒 0 0 4𝑙2𝑒
−36 0 0 −3𝑙𝑒 36
0 −36𝑙𝑒 3𝑙2𝑒 0 0 36
0 −3𝑙𝑒 𝑙2𝑒 0 0 3𝑙𝑒 4𝑙2𝑒
3𝑙𝑒 0 0 −𝑙2𝑒 −3𝑙𝑒 0 0 4𝑙2𝑒

]]]]]]]]]]]]]]]]]
]

,

𝐺𝑒 = 2𝜇𝑒𝑟2𝑒
120𝑙𝑒

⋅

[[[[[[[[[[[[[[[[[[[
[

0 shew sym

36 0
−3𝑙𝑒 0 0
0 −3𝑙𝑒 4𝑙2𝑒 0
0 36 −3𝑙𝑒 0 0
−36 0 0 −3𝑙𝑒 36 0
−3𝑙𝑒 0 0 𝑙2𝑒 3𝑙𝑒 0 0
0 −3𝑙𝑒 −𝑙2𝑒 0 0 3𝑙𝑒 4𝑙2𝑒 0

]]]]]]]]]]]]]]]]]]]
]

,

𝐾𝑒𝐵 = 𝐸𝑒𝐼𝑒
𝑙3𝑒

[[[[[[[[[[[[[[[[[[
[

12 sym

0 12
0 −6𝑙𝑒 4𝑙2𝑒
6𝑙𝑒 0 0 4𝑙2𝑒
−12 0 0 −6𝑙𝑒 12
0 −12 6𝑙𝑒 0 0 12
0 −6𝑙𝑒 2𝑙2𝑒 0 0 6𝑙𝑒 4𝑙2𝑒
6𝑙𝑒 0 0 2𝑙2𝑒 −6𝑙𝑒 0 0 4𝑙2𝑒

]]]]]]]]]]]]]]]]]]
]

.

(A.1)

B. Gear Meshing Stiffness Matrix

𝐾𝑔 = 𝑘𝑔cos2 𝛽

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

sin2 𝛼 sin𝛼 cos𝛼 0 0 −sin2 𝛼 − sin𝛼 cos𝛼 0 0 𝑟1 sin𝛼 𝑟2 sin𝛼
sin𝛼 cos𝛼 cos2 𝛼 0 0 − sin𝛼 cos𝛼 −cos2 𝛼 0 0 𝑟1 cos𝛼 𝑟2 cos𝛼

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−sin2 𝛼 − sin𝛼 cos𝛼 0 0 sin2 𝛼 sin𝛼 cos𝛼 0 0 −𝑟1 sin𝛼 −𝑟2 sin𝛼
− sin𝛼 cos𝛼 −cos2 𝛼 0 0 sin𝛼 cos𝛼 cos2 𝛼 0 0 −𝑟1 cos𝛼 −𝑟2 cos𝛼

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

𝑟1 sin𝛼 𝑟2 sin𝛼 0 0 −𝑟1 sin𝛼 −𝑟2 sin𝛼 0 0 𝑟21 𝑟1𝑟2
𝑟1 cos𝛼 𝑟2 cos𝛼 0 0 −𝑟1 cos𝛼 −𝑟2 cos𝛼 0 0 𝑟1𝑟2 𝑟22

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

. (B.1)
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