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ABSTRACT
Software systems are increasingly making decisions autonomously
by incorporating AI and machine learning capabilities. These sys-
tems are known as self-adaptive and autonomous systems (SAS).
Some of these decisions can have a life-changing impact on the peo-
ple involved and therefore, they need to be appropriately tracked
and justified: the system should not be taken as a black box. It
is required to be able to have knowledge about past events and
records of history of the decision making. However, tracking every-
thing that was going on in the system at the time a decision was
mademay be unfeasible, due to resource constraints and complexity.
In this paper, we propose an approach that combines the abstrac-
tion and reasoning support offered by models used at runtime with
provenance graphs that capture the key decisions made by a system
through its execution. Provenance graphs relate the entities, actors
and activities that take place in the system over time, allowing for
tracing the reasons why the system reached its current state. We
introduce activity scopes, which highlight the high-level activities
taking place for each decision, and reduce the cost of instrumenting
a system to automatically produce provenance graphs of these de-
cisions. We demonstrate a proof of concept implementation of our
proposal across two case studies, and present a roadmap towards a
reusable provenance layer based on the experiments.

CCS CONCEPTS
• Software and its engineering→Abstraction, modeling and
modularity; •Computingmethodologies→Model development
and analysis; • Applied computing→ Evidence collection, storage
and analysis.

KEYWORDS
Provenance, PROV-DM, autonomous decision-making, self-expla-
nation, runtime models.
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1 INTRODUCTION
Autonomous decision making is on the rise with Artificial Intelli-
gence (AI) and machine learning (ML) enabling software systems
to perform an increasing number of real world tasks. A report by
Crawford et al. raises a vast number of issues with the social impacts
of AI [7]. For example, the report raises important questions about
algorithmic accountability and impact assessments, outlining the
rise of legislation, which seek to make AI vendors and consumers
assess the impact of their applications on people’s lives.

Self-adaptive autonomous systems (SAS) exhibit autonomous
decision making. SAS are built to change their behaviour accord-
ing to fluctuations in the environment under uncertainty, and as
such they can exhibit emergent behaviours with unintended conse-
quences [31]. Even if the system is successfully achieving its goal,
the user may still have some reservations based on its potentially er-
ratic behaviour. Enabling a system so it can track and keep a history
of its actions would be one way to expose reasons for behaviour.

Self-explainable systems contribute solutions to the challenges
in providing assurances for self-adaptive systems [2]. Further, expla-
nations and findings for bad decisions are important for informing
the corrections that may be required, such as reversing incorrect
decisions or fixing a defect in a system. Beyond explaining incor-
rect decisions, confirming a system decision is correct for the right
reasons should be considered as well.

This paper proposes an architecture to collect data from a system
at runtime that can be used to seek explanations for its actions. The
architecture can be added to a system to enable the production of
data which will assist in explaining runtime behaviours. A proof of
concept implementation is presented and demonstrated in two case
studies: a toy example based on the Fibonacci sequence, and a traffic
light controller for a traffic simulator. Both systems under study
are based on runtime models that abstract the internal state of the
system and guide their decisions. By monitoring the interactions
with the system models, data is produced and stored to create a
history of the systems’ actions that can be explored.

The paper is presented in the following sections. The underlying
ideas about model versioning, provenance and runtime models are
provided in Section 2. Section 3 describes the various components
involved in the architecture and their relations. Section 4 presents
a proof of concept implementation on top of existing technologies.
Two case studies using this implementation are shown in Section 5.
Finally, Section 6 closes the paper with a discussion of what has
been achieved so far and outlines future lines of research.

2 BACKGROUND
2.1 Tracking how models change over time
The need for tracking changes onmodels is seen in different domain
areas. In the area of model-driven software development, creating
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large systems requires teams of developers working together, in
the same way as code-centric development [6]. These teams need
to be able to concurrently work on different parts of the model
and integrate those parts back into a unified model. Therefore, a
versioning system that can record and integrate these concurrent
revisions is required.

One approach for model versioning is to use traditional Version
Control Systems (VCS) such as Git [28]. The models are persisted
to files, and these files are tracked by the VCS over their various re-
visions. However, a traditional VCS generally compares and merges
versions using line-based tools, which are better suited for general-
purpose languages than models. Dedicated model repositories such
as Eclipse Connected Data Objects (CDO) allow for storing models
directly into databases [8], solving some of the scalability issues
with monolithic file-based models. They can also integrate with
model-specific comparison tools like EMF Compare [9].

In either case, these approaches are typically limited to recalling
past versions, and they do not provide facilities for searching ver-
sions of interest. As they generally store snapshots of the models,
recovering the sequence of changes that were made requires expen-
sive model comparison processes. Rather than having model-wide
revisions, it may be more useful to keep a history of every model
element separately across time. This is an approach implemented
by temporal graph databases such as Greycat [18]. Each node (model
element) in the graph has its own history, and it is inexpensive to
travel back and forth over it. This simplifies writing queries that
span time, but it still does not track the reasons for the changes.

A filmstrip model aims at describing a sequence of system state
transitions [16]. Examples of filmstrips for models are presented by
Hilken and Gogolla [20]. A filmstrip is a sequence of model snap-
shots, connected by a description of the operation that produced
the change. Hilken and Gogolla showed how OCL could be applied
to the filmstrip model to query its evolution over time. However,
the proposal did not tackle potential scalability issues due to the
high cost of keeping full snapshots for each change process.

We argue that the scalable approaches to track model changes
lack causal information that can be used to inform explanations
for a change. The filmstrip approach is close to what is required
but lacks a clear vision for how the approach could scale to long-
running systems (e.g. by leveraging Greycat/CDO). A combined
approach that can scale as well as keep casual information would
be ideal for these explanations.

2.2 Tracking why models change using
provenance

Existing model versioning approaches track how models changed,
but they do not explicitly represent why they changed, which is
important for explanations. Such a representation would need to
consider who made the change due to which concern, and what
information was consulted during the change. This is a problem
studied within the field of data provenance. In their systematic
review [24], Pérez defines provenance to be “all the information
and relationships that contributed to the existence of a piece of data”.
Provenance was first related to works of art, but the concepts have
been applied to other use cases such as scientific experiments [19].

Figure 1: W3C PROV

The Open Provenance Model (OPM) is an ontology that has
been created to record provenance information [22], in a way that
promotes sharing and reuse. OPM is the base for the W3C PROV
provenance ontology. PROV provides several notations, one being
the PROV Data Model (PROV-DM) [17]. The model provides three
classes of objects and seven relationships for representing prove-
nance graphs (Figure 1). An Agent denotes a user or system that
has some form of responsibility. An Activity is an act performed
by an agent which may act on entities. An Entity represents a
physical or abstract thing manipulated by the system.

The references connecting these objects describe their relation-
ships. An activity has “used” an entity, which may produce an entity
which “wasGeneratedBy” an activity. When two activities share an
entity that “wasGeneratedBy” one and “used” by the other, one ac-
tivity “wasInformedBy” by the other. An agent “wasAssociatedWith”
an activity which it was responsible for. This responsibility can be
passed to another agent who “actedOnBehalfOf” when performing
an activity. Entities created in these activities can be connected
with the responsible agent as the creation “wasAttributedTo” them.
Finally, entity versions can be related with “wasDerivedFrom”.

Data can be collected from complex systems and stored using
provenance. An example of such a framework is presented for track-
ing interactions between an application and operating systems [14].
Activities within the applications are not exposed as the monitoring
only seeks to capture interactions with system-calls and resources
of an operating system. The results of this provenance based ap-
proach to diagnostics helps locate points for instrumentation.

There are some specific applications which have used prove-
nance to explain behaviours. Kohwalter et al. applied provenance
graphs to capturing game telemetry, to therefore improve the un-
derstanding of player behaviours [21]. By augmenting the Unity
game engine to produce W3C PROV-N, and alternative notation to
PROV-DM [30]. The author concluded the provenance knowledge
aided in the detection of gameplay issues. An informed reason for
the issues helped developers to improve the gameplay.

In closing, the literature shows that while standardised formalisa-
tions for provenance do exist, these do not seem to have caught on
in the modelling community. By integrating Activity-Agent-Entity
provenance graphs (such as those in PROV-DM)with existingmodel
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versioning approaches could allow for a reusable and extensible
way to represent the reasons for changes in models. However, it
raises questions about who would produce such data in the case
of manual, design-time modelling. Automated changes done to a
model by a running system could be instrumented to create these
graphs; however: the next section will discuss this possibility and
its applications.

2.3 Provenance at runtime
Model-driven engineering (MDE) puts models at the centre of the
design and development of the system [26], raising the level of
abstraction at which they happen. Runtime models use this power
of abstraction during the execution of the system [5]. This allows
systems to be self-aware about their modelled concerns, such as
architectural aspects [12, 23] and requirements [4]. Runtime models
can be implemented using EMF and CDO as Seybold et al. have
demonstrated [27], or using goal models as in [4, 25].

Many self-aware systems operate as feedback loops, and MAPE-
K is a common architecture for those [1, 3, 15]. The MAPE-K loop
is divided into the four phases of Monitoring, Analysis, Planning,
and Execution, operating on top of shared Knowledge, which is
often a runtime model.

Runtime models can also be used to support self-explanation.
Different from our previous work [11], in this paper we use model
versioning and provenance to support understanding of the decision
making process. Runtime models present an opportunity to capture
the evolution of a system using model versioning. However, there
is a need for more than periodic or episodic capturing of a model to
provide explanations. To have a system explain the why behind its
changes, provenance tells us what information should be collected.
When a system changes its runtime model, it can track the Activity-
Agent-Entity triple that caused the change.

3 PROPOSAL FOR REUSABLE AUTOMATED
PROVENANCE GRAPHS

We propose an approach to implementing the automated generation
of provenance graphs using runtime models and an established
standard PROV-DM, which can underpin explanations of decision-
making. The following requirements were identified:

• The approach must provide a way to instrument the system
with data loggers to collect significant changes to its state
as part of high-level activities. Changes can be considered
significant if they impact the system runtime model (kept in
amodel store) that abstracts the key parts of the system state,
and the system codebase can be annotated to relate those
changes to high-level activities.

• The instrumentation that is added to the system should have
minimal impact on performance and no impact on behaviour.

• The monitor will collect a large volume of data; therefore,
a more scalable approach is required. Filtering unnecessary
details and pruning old data is also needed.

The requirements have informed the architecture proposed. The
architecture is shown in Figure 2, and consists of:

• Activity scopes allow the identification of the current ac-
tivity being performed by the system. They essentially wrap

Figure 2: Architecture for a reusable provenance layer

around a block of code in the original system, associating
all model accesses with a high-level activity named by the
system developer (e.g. “monitor road activity” or “update
traffic lights”). Activity scopes can be nested, as activities
can be broken down into subactivities.

• Instrumented objects are used between a system and its
runtime model. They produce Object telemetry as a system
interacts with its runtime model. The Object telemetry data
details the model parts and values with the interaction type
that occurred (read/write).

• The observer collects the data from the instrumented ob-
jects, and combines it with the currently running activity,
creating a sequence of activity-aware model accesses. It is
responsible for maintaining the stack of nested activities.

• The curator takes the activity-aware accesses of the ob-
server, and updates the history store based on them. The
history store will normally be a large model repository, lever-
aging a scalable model persistence solution. It is structured as
a sequence of chronopoints, which collect data about the be-
haviour of the system between two points in time. A chrono-
point starts from a snapshot of the system’s runtime model,
and it has a provenance graph of all the accesses performed
since then and until the end of the chronopoint.
The provenance graphs follow theW3CPROV entity-activity-
agent structure, as shown in Section 2.2 and Figure 1. The
curator adds inferred relationships of various types, creating
additional causal connections between activities and entities.

This architecture allows for the state of the system at a certain
point in time to be recreated by starting from the snapshot and
replaying the provenance graph. At the same time, it is possible
to discard old history when it becomes irrelevant for the study of
the system since the various chronopoints are independent of each
other. It is also possible to apply storage management techniques,
such as being able to discard snapshots or set retention periods.

Likewise, the separation of the history store from the storage of
the runtime model allows for more flexibility. For instance, some
runtime models could remain entirely in memory as the system
runs, while the history store would use a database-backed solution
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for longer-term storage. This separation also makes it possible to
implement the runtime model and the history store in different
modelling technologies.

4 PROOF OF CONCEPT IMPLEMENTATION
In order to demonstrate the high-level approach outlined in Figure 2,
an initial proof-of-concept implementation was developed using the
Java programming language. The EclipseModelling Frameworkwas
chosen as the base technology layer [29], due to its wide availability
and the familiarity of the authors with it. The main components
were implemented as follows:

• Activity scopes essentially need to associate blocks of code
in the system with the high-level activities performed by
each agent. Since activities need to be pushed and popped
from a stack in the observer, reliably detecting when we
enter and leave the block (even in the presence of errors)
is a must. For these reasons, Java try-with-resource blocks
were used. These blocks allow for automatically allocating a
resource upon entry (i.e. pushing our entry onto the activity
stack), and freeing it upon exit (popping the entry).

• For the instrumented objects, the implementation takes
advantage of the fact that all model instances in EMF extend
from a common EObject class, and that all accesses can be
made to go through the eGet and eSet methods. By over-
riding these methods in a new LoggingEObject class, and
reconfiguring the EMF code generator to use it as the base
class for all our model instances, it is possible to capture all
model accesses with minimal modifications to the system.

• We want to ensure that there is exactly one instance of the
observer in the system to which all instrumented objects
report, which keeps track of the currently running activity
through a stack. A Singleton provides an easy solution for
creating a single observer.

• If the model is accessed as part of an activity, the observer
will let the curator know about it. The curator is yet another
singleton, which takes the activity-aware model access and
uses it to expand the provenance graph of the currently active
chronopoint. The curator is also responsible for starting new
chronopoints, creating their initial snapshots of the runtime
model. The specific approach depends on the case study: a
copy of the runtime model may be kept in the history store,
or the runtime model may be versioned, and then only a link
to the appropriate version will have to be kept.
The provenance graphs are EMF models conforming to the
metamodel in Figure 3. The curator creates links between
the execution of an activity and the model entities it reads
and writes. Reads are mapped to “activity used entity” re-
lationships. Writes are mapped to “entity wasGeneratedBy
activity” relationships, where the activity has generated a
new version of that model entity. In addition to these pri-
mary links, a number of inferred links are also created: i)
“activityA wasInformedBy activityB” indicates that the first
activity used an entity that the second activity generated,
and ii) “entityA wasDerivedFrom entityB” indicates that the
left entity is a newer version of the right entity.

• The chronopoints, snapshots, and provenance graphs are
kept in the history store. The history store needs to use
a scalable model persistence solution, as it may potentially
grow quite large. In this proof of concept implementation,
Eclipse Connected Data Objects (CDO) model repositories
were used [8]. CDO has several useful features, such as its
support for lazy loading, which allows keeping in memory
only the part of the model we are currently traversing, so
that models larger than available memory can be managed.

5 CASE STUDIES
In order to evaluate the proposal, the proof of concept implementa-
tion was applied to two different case studies. The first case study
is a toy example (based on Fibonacci numbers) which demonstrates
the approach and allows us to examine an entire provenance graph.
The second case study is based on a simplification of an agent-based
application that controls the traffic lights in a simulation of a 4-
way junction, which presents a more complex runtime model and
internal logic than the Fibonacci case study.

In both cases, the system was implemented first, and then the
provenance layer from Section 4 was added. Each system has its
own EMF-based runtime models, and their structures have been
kept as they were. The general steps for each system were: i) the
base class of all model entities is changed to the instrumented
base class, ii) the system instantiates the observer and curator on
initialisation, iii) the system calls the observer at certain times to
create chronopoints, and iv) the code is instrumented with activity
scopes, delimiting the various system-specific high-level activities.

5.1 Fibonacci: exploring the provenance graph
The objective of the first case study is to produce meaningful prove-
nance graphs that a human can understand. To do this, we took
a program that calculated the Fibonacci sequence and augmented
it with a runtime model to act as a source of behavioural data. Fi-
bonacci provides a simple sequence of activities that uses a small
number of variables and actions that can be clearly defined. We
hypothesised the provenance graphs produced would be human-
readable and easily interpreted when visualised.

Implementation. The runtime model is kept entirely in memory,
and the history store is kept in CDO. Snapshots are omitted in
this simple case study, as the focus is on the provenance graphs.
We only keep a sequence of chronopoints with their provenance
graphs. Referring back to Figure 2, the models@run.time-based
system would be the calculator, and the runtime model would
consist of the various variables involved in the calculation.

The observer is now created on startup, which creates the cu-
rator as well, and the main fib() routine was changed as in List-
ing 1. Two lines in red (3 and 26) ask the observer to set up a new
chronopoint. The lines in blue correspond to the activity scopes,
implemented as try-with-resource blocks. An activity scope is im-
plemented through the “acquisition” of an ActivityScope with
strings for the name of the activity and the actor, which is released
automatically upon leaving the block. In this case, there is only one
agent: the main thread of execution or “Thread1”.



Automated Provenance Graphs for models@run.time MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

Figure 3: Provenance graph metamodel

Listing 1: Modified Fibonacci code
1 public static void fib() {
2 Stringy Console; Inty A, B, C;
3 myObserver.newChronopoint();
4 try(var sc0 = new ActivityScope("init","Thread1")){
5 Console = GPLDataFactory.createStringy();
6 A = GPLDataFactory.createInty();
7 B = GPLDataFactory.createInty();
8 C = GPLDataFactory.createInty();
9 try(var sc1 = new ActivityScope("init-names","Thread1")){
10 A.setName("A"); B.setName("B"); C.setName("C");
11 Console.setName("Console");
12 }
13 try(var sc1 = new ActivityScope("init-values","Thread1")){
14 A.setValue(0); B.setValue(1); C.setValue(0);
15 Console.setValue(null);
16 }}
17 try(var sc0 = new ActivityScope("Loop condition","Thread1")){
18 do {
19 try(var sc1 = new ActivityScope("A + B","Thread1"))
20 { C.setValue(A.getValue()+B.getValue()); }
21 try(var sc1 = new ActivityScope("B to A","Thread1"))
22 { A.setValue(B.getValue()); }
23 try(var sc1 = new ActivityScope("C to B","Thread1"))
24 { B.setValue(C.getValue()); }
25 // ... continued ...
26 myObserver.newChronopoint();
27 } while (A.getValue() < 255);
28 }}

Findings. After being fitted with the monitoring components, the
system execution is unaffected. The Fibonacci algorithm outputs
the sequence to the console as expected. Using CDO Explorer in the
Eclipse IDE, it is only possible to examine individual provenance

graph nodes via forms. To better illustrate the structure of the graph
in practice, an automated model-to-text transformation was created
to render a part of the provenance graph through Graphviz [10].
Entity and activity nodes have a sequence number prefixed to their
labels based on creation order, and “then” relationships have been
created to guide Graphviz on how to order the nodes. Colours are
also applied to separate entities, agents and activities.

Figure 4 shows the activity and entity interactions for one pass of
the loop in Listing 1. Agents are not shown, as this system has only
one agent. The visualisation shows all the nodes and relationships
in the provenance graph. The activity labels are visible in the blue
rectangle nodes. Interaction with the runtime model creates entity
nodes as yellow ovals labelled with the object, attribute and value
accessed. While traversing the activity nodes on the graph shown
in Figure 4, the following statements can be deduced.

[0] A loop condition test used the value of A.
[1] intyA and intyB are used in an "add" activity

to generate a value stored in intyC.
[2] intyB is used to generate a value stored in intyA.
[3] intyC is used to generate a value stored in intyB.

This activity was was informed by activity [1].
[4] The value and name in intyC is used to

generate StringyConsole as an update.
This activity was informed by activity [1].

[5] The value in StringyConsole is displayed.
This activity was informed by activity [4].

With a more careful selection of activity labels, these statements
could be produced through a model transformation. In larger sys-
tems this would only be advisable if sections of provenance could
be isolated: for example, a query based approach could be used to
produce smaller graphs for creating a narrative.

As mentioned in Section 4, the curator not only adds the “used”
and “wasGeneratedBy” primary provenance relationships, but also
infers the “wasInformedBy” and “wasDerivedFrom” relationships.
In an initial version of the case study, the inferred provenance
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Figure 4: Provenance graph from the Fibonacci sequence

Figure 5: Activities only

relationship “wasDerivedFrom” was initially defined as “an entity
contributed to another entity”, and it was computed by connecting
the entity in “activity used entityA” to the entity in “entityB was-
GeneratedBy activity”. This produced many relationships, with a
very dense graph that was difficult to understand when visualised
with Graphviz. It was then that “wasDerivedFrom” was changed so
it linked each entity to its previous version. The dense graph being
difficult to understand could be a visualisation tool problem and
not an issue with how the relationship is being applied.

Alternative transformations with different visualisations of the
provenance graph were evaluated as well. For instance, it is possible
to leave out the inferred edges (“wasInformedBy” and “wasDerived-
From” ) and slightly simplify the graph. Leaving out one of the node
types can produce more significant simplifications: Figure 5 ex-
cludes the entity nodes, and Figure 6 excludes the activity nodes.
These alternative visualisations tell us that an interactive visualisa-
tion tool that can selectively hide or show parts of a provenance
graph on demand could be useful.

Figure 6: Entities only

5.2 SUMO - Traffic controller
The previous case study was a simple example, designed so that
the entire provenance graph could be examined at once. In the next
case study, we examine the work involved in adapting an existing
larger system, and demonstrate how the provenance graphs can
provide further insight into the behaviour of the system.

System description. The system under study is a traffic controller
within a simulation implemented in SUMO (Simulation of Urban
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Figure 7: SUMO simulating a 4-way traffic junction

Mobility [13]). SUMO is a simulator for road networks and traffic
flows. The simulation models a 4-way intersection with traffic flows
controlled by traffic lights (shown in Figure 7). Four flows of traffic
are specified with some uncertainty in the driver behaviours, e.g.
turning and braking. In the simulation, the traffic lights run a pre-
programmed time sequence of light phases, and the environment
does not directly influence this sequence. Our system under study
is an external controller that manipulates this lighting sequence.

Our external self-adaptive controller monitors a series of lane
area detectors on the lanes approaching the junction. The self-
adaptive behaviour is a perception of how many stationary cars
constitute a traffic jam. This level rises and falls over time, based on
the number of lane area detectors meeting a threshold of stationary
cars. Should several lane area detectors qualify as jammed, the
controller may attempt to change the phase timer on the traffic
lights. If this is successful, the current lighting phase ends and the
traffic flow changes in an attempt to clear the jam condition. To
be clear, this example controller is not intended to solve traffic
management at junctions. However, the example strategy can be
investigated and possibly improved using the monitoring system.

The traffic controller operates on a runtime model inspired by
the MAPE-K, conforming to the metamodel shown in Figure 8.
First, the Monitor phase synchronises the system with the SUMO
simulation. The MonitorControls specify what needs to be read
from SUMO, and the results are placed into the MonitorResults,
TrafficLight and LaneAreaDetector objects that represent the
monitoring results, and the traffic lights and LADs in the simulation.

The Analysis phase checks the internal models evaluating them
against the AnalysisControls, which include the thresholds for
considering if a lane area detector is jammed. Based on that com-
parison, it updates the AnalysisResults with its interpretations.

The Plan stage applies some strategies and then updates the
PlanToExecute. The plan may decide to change the threshold for
jamming, or that the current light phase should end.

Finally, the Execute stage tries to run those plans, which may fail
because of hard limits that prevent unwanted rapid back-and-forth
“thrashing” between states, and records the ExecutionResults.

Changes in infrastructure. In this case study, snapshots are im-
plemented through CDO model versioning, where the model goes
through a sequence of revisions. These revisions are introduced
in a transactional manner: committing the transaction results in a
new model revision being created.

The traffic manager model for the controller is placed in a CDO
repository which is connected into the monitoring system. The
observer was modified so that the newChronopoint()method inte-
grated with the versioned CDO store for the runtime model. When
the observer triggers a commit in CDO, it reports the timestamp
and location of the snapshot to the curator. This information is then
kept in a chronopoint as a surrogate of the snapshot.

Applying activity scopes. Unlike the Fibonacci example explained
earlier, the traffic controller is implemented as a MAPE-K loop,
calling a series of functions for various tasks. Each iteration of the
loop becomes a chronopoint, contain a provenance graph of all the
activities performed in a single step of the simulation.

The approach to implementing the activity scopes started with
some broad activity scope allocations. Each phase of the MAPE
loop was enclosed in a single scope, which resulted in a graph
containing a few activity objects that are densely connected with
too many entities. It was evident that further subdivisions of the
code into activities was needed, as otherwise, the graph is difficult
to understand lacking activity detail.
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Figure 8: MAPE over Traffic Controller Model

A second phenomenon was spotted on this initial markup, where
an inferred relationship “wasInformedBy” had been created on the
Build Model activity that looped back to itself. This meant the
activity had generated an entity and then used it for itself. During
the initialisation of the controller, this is likely to happen as models
for traffic lights, and lane area detectors are created then populated.
We can, therefore, conclude that any activity that is self-informing
may be divided into further sub-activities in some cases.

Activities based on loops can be represented differently based on
the placement of the activity scope. A scope encapsulating a loop
provides a single activity node, which may have several entities.
Conversely, placing the scope inside of a loop presents a more
linear representation of multiple activities, each with fewer entities.
These loop representations need further investigation to discover
meaningful differences in the approaches.

Graph complexity. The graphs for this case study are noticeably
more complex than those in the previous study. The provenance
graph in each of the 15 chronopoints of the Fibonacci case study
only had 6 activity nodes and 7 entity nodes. However, in the SUMO
case, each tick of the simulation (which represents around 1 second
of real-world time) results in a chronopoint with around 18 activity
nodes and 30 entity nodes. Unlike the Fibonacci calculation, the
programs behaviour changes causing more or fewer node. In this
case study, a typical simulation run of SUMO is around 500 ticks.

There is always the option to trade off taking some snapshots
and create longer provenance graphs. An example use cases for
this might be that a system may idle for long periods, adding little
to a provenance graph over this time. In this case study, we found
that taking snapshots every 10 ticks of the simulation produced 179
activity nodes and 100 entity nodes. Unsurprisingly, the number of
activities increased proportionally. However, the entities did not
increase as rapidly due to entity reuse. The increase in entity-to-
activity references could complicate visualisation.

Figure 9: Entity-only provenance for
Jam Threshold being lowered

Checking expected behaviour. Exploring the data from SUMO is
challenging with the limited tools available at this time. However, as
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Figure 10: As Figure 9, but Jam Threshold
now at minimum level

the provenance graphs are exported from CDO to Graphviz files, it
is possible to search through the 500 full graph text representations.
With some prior knowledge of the system, it is possible to search for
the presence of nodes in a graph to confirm expected behaviours. In
the first few graphs of the set, it is possible to find the relaxing of the
jam threshold, which is expected behaviour for an empty junction.
From the entity-only graph, this is seen as a “wasDerivedFrom”
connection between an earlier and later entity for the jam threshold
(Figure 9). Figure 10 only shows a single entity representing the jam
threshold as the value is unchanged, having reached the minimum
value (1). However, [28]PlanToExecute (Figure 10) is showing a
further attempt to reduce the jam threshold. In this instance, the
condition is guarded against so as not to cause a problem.

Finding incorrect behaviour. Our ability to browse graphs is lim-
ited, thus exploring graphs to find faults is difficult. Therefore a
reverse approach to a fault investigation is performed. We looked
for symptoms our approach might show for a known fault as these
are the clues someone with a tool might find. A runaway fault was
created by removing the reset for the LADsJammed counter. Mean-
ing that the counter is always exceeding the threshold to trigger a
traffic light phase end, and it never recovers from this.

In this trivial example, the snapshot details might be considered
sufficient, but using the provenance graph an exact moment be-
tween snapshots can be accessed. Performing a search against the
graphs for the entity representing the LADsJammed counter, it is
possible to find the moment the counter passed the threshold of 4
(Figure 11). Using a Graphviz viewer, the full provenance graph was
examined to find the entity node for the threshold. The lane area
detector analysis activity can be found, and the threshold and jam
length entities can be seen showing the values used. The preceding

lane area detector analysis activity can also be found, which did not
increment LADsJammed, evident from the lack of a “wasDerivedFrom”
on the entity. This activity can then be traced to planning activities
for an end phase and threshold change. The execution of the plan is
traced, with an attempt to end the phase and increase the threshold,
but it is unsuccessful due to protections against thrashing.

The thrashing behaviour with attempting to end the lighting
phase is also present in the graphs. Due to space constraints, Fig-
ure 11 omitted a relationship that showed this: a “wasInformedBy”
link between a monitoring activity and the executing activity. Using
a text search this relationship can be found in multiple graph files.
Searching 500 graph files for a working and runaway system re-
vealed a significant difference: a working system had 96 occurrences
of “wasInformedBy”, compared to 479 in the runaway system.

6 CONCLUSION
This paper presents the work to date on an approach to automating
the production of provenance for runtime models. Our contribution
is an initial architecture based on runtime models and provenance
to support explanations for runtime behaviours. The results of
applying this architecture in two case studies support the ideas
behind this approach. Model versioning and provenance can record
runtime behaviours that contribute to an explanation.

A working proof of concept has been created that can be used
against runtime models built in EMF with CDO versioning. The
resulting provenance graphs for the case studies have shown they
can represent runtime behaviours. A toy Fibonacci calculator can
produce a provenance graph that represents the expected design-
time behaviour. Graphs produced by the traffic controller could be
searched for indicators of behaviour, such as ending a lighting phase
too frequently. The provenance graphs provide causal information
for the state of a runtime model at a point in time.

There are more questions to be answered beyond this proof of
concept. Future works include investigating methods to analyse
the provenance graphs. While these graphs may scale in terms of
storage and structure, there are issues with trying to visualise large
graphs without dedicated tools. Visualisation is only one approach
to processing these graphs and other analysis techniques need to
be explored. The text search in the SUMO case study suggests that
querying will scale further.

Other research questions relate to the application of the ap-
proach against other types of systems. The approach to explaining
behaviours with provenance is specifically demonstrated here for
runtime self-adaptive system. However, the approach might also be
used against more complex distributed or multi-threaded systems
where tracing causation can be difficult.
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