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Chapter 3  
Cyber-Physical-Social Semantic Link Network  
 
 
 
 
 
 
Is there any cause-effect link between thinking, experiencing and knowledge?  
This problem has challenged philosophers and scientists for centuries.  Under-
standing and representing reality is a key step toward finding the link.  Semantics 
modelling is an approach to understanding and representing reality. 
     Computer scientists have studied semantics modelling for about half a century 
to create better representation systems for developing various application systems 
through unifying understandings.  Traditional methods are mainly based on unary 
methodology, single abstraction, static representation and single space, which are 
limited in ability to reflect multi-dimensional, complex, evolutional, physical and 
social nature of reality.   

 Reality evolves with co-evolution of cyberspace, physical space and social 
space and interactions between spaces. Understanding and modelling reality in 
cyber-physical-social space, and unveiling relevant rules and principles become a 
new challenge.   

 This research creates a Cyber-Physical-Social Semantic Link Network model 
(CPSoSLN) consisting of a base network reflecting generality and basic structure 
of reality; a superstructure reflecting particularity and regularity in various spac-
es; persistent mappings between the base network and the superstructure and be-
tween the spaces that construct the superstructure; and, operations that evolve the 
base network, superstructure and the spaces with emerging patterns, categories, 
social linking rules, relational reasoning rules, principles, properties and dimen-
sions.  The model evolves with incorporating new rules, properties, principles, 
and methods and finally reaches a general form.  It links reality to knowledge 
with an open and evolving cyber-physical-social relational system that helps un-
derstand reality, discover relations and rules, interpret and summarize discover-
ies, and predict and influence the evolution of reality. 



3.1 Modelling the Evolving Reality 

Recognizing the nature of reality involves such behaviors as:  (1) observation of 
reality directly or through equipment to identify characteristics of things in 
reality; (2) discovery of relations between things and rules on relations; (3) 
interpretation of discoveries by using existing relations and rules; (4) 
summarization of discoveries to form systematic knowledge about reality; and, 
(5) creation of various spaces including physical spaces, social spaces and 
cyberspaces, which are emerged, linked, split and merged along coevolution 
(Zhuge 2011). 

Sharing knowledge through society, people establish beliefs on knowledge 
and use knowledge to interpret what are observed and experienced but most 
people neglect the big picture of reality.  Recognition of reality is a constant 
process of exploring the nature of reality, during which knowledge can be 
challenged, confirmed, improved, completed and falsified.   

Humans explore the physical space through interacting with the physical 
objects and with each other, reflecting reality, building and understanding 
semantic images, and finding rules on the semantic images (Zhuge 2010; 2011).  
A semantic image consists of concepts reflecting various things in reality, 
concepts generalized through understanding, and relations between concepts.  
The semantic images built by an individual can only reflect a small part of the 
physical space.  Therefore, the physical space people built in mind so far does not 
completely reflect reality. 

Science assumes that the natural physical space is independent of human 
cognition and its regularity can be recognized through observation, experiment 
and practice.  The mismatch between reality and the semantic images in the 
minds of scientists lead to the inconsistence between theories.  This is a cause 
that leads to the falsifiability of scientific theories (Popper 1959). 

 What people know about social space is the semantic images generated in 
minds from observation and various interactions.  Social space contains social 
objects (individuals), motivations, values, resources, relations, rules, policies, 
processes (productions) and principles.  The study of social space concerns such 
disciplines as philosophy, politics, economics and laws.  The semantic image of 
an individual only reflects a small part of social space.  Social space has mapping 
image in the physical space. 

 The semantic image of cyberspace consists of services based on various 
representations, links between representations, operations on representations and 
links, and computing that transforms one form of representation into another 
form of representation.  An individual usually have a semantic image of a small 
part of cyberspace.  Research and development of cyberspace including computer 
science and engineering, network science and engineering, data science and 
artificial intelligence drive the evolution of cyberspace.  



What is the link between experience and knowledge?  This problem has chal-
lenged philosophers and scientists for centuries. Chomsky named this problem a 
Plato’s problem: How can we know so much given so little evidence? 

Understanding reality is the first step to link experience to knowledge.   Soc-
rates inspired uneducated people to learn Pythagorean theorem by asking them 
related questions and using diagrams to help them understand the problem.   

Semantics modelling is an approach to understanding reality.  A framework 
of transforming various forms of data into knowledge was proposed (Zhuge 2015, 
2016).  This chapter focuses on exploring the method for semantics modelling.  

Gödel’s incompleteness theorem and Simon’s bounded rationality shape the 
boundary of recognizing reality from the perspectives of theory and cognition.  
How to extend the boundary is a challenge of semantics modelling.  A strategy is 
to build an evolving semantic link network of various models developed by dif-
ferent people with different methods of understanding reality.  Figure 3.1 depicts 
a way to link reality to knowledge through semantics modeling with the ground 
consisting of cyberspace, physical space and social space.  

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
Fig 3.1 Modelling reality in cyber-physical-social space. 
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3.2 Modelling Society 

 
3.2.1 Socio-Relational Systems 
 
Relation is the generalization of regular direct or indirect interactions between 
things, or the commonality between their features. Recognizing relations is the 
human nature of knowing the structure of reality, evolution process of reality, 
and limitation of sensing and thinking the whole and parts of reality at the same 
time.   Relation is a basic dimension of observing and studying reality. 
      Society consists of complex things like organization, which consists of indi-
viduals, rich semantic links between individuals, and social rules and principles 
that are different from rules and principles in cyberspace.  Society evolves with 
the development of humans and productive forces.  The evolution of human soci-
ety has experienced stone age, bronze age, ion age, steam age, electric age and 
information age, which has created different levels of productive force and corre-
sponding productive relations.   
      Viewing from relational dimension, a society can be modelled by a complex 
relational system consisting of a base relational network and a superstructure 
that determines the semantics, motivations, strategies, policies, rules and princi-
ples of operating and evolving the base network, which influence the evolution of 
the superstructure.    
      The base relational network evolves with operations such as adding (i.e., gen-
erating) nodes, removing (i.e., dying out) nodes, adding links and removing links, 
consequently renders and evolves patterns of different scales.  One category of 
relations influences the other to a certain extent.  A relational system also evolves 
with operations on its superstructure that defines and motivates and conducts op-
erations (including reasoning) on the base network, and it also interprets and 
evaluates operations and reasoning.   

Societies at different development stages form different patterns of the base 
networks and different superstructures. 

In primitive society, people created stone tools and hunt cooperatively.  Re-
sources and products are equally distributed within clans, which organize people 
according to kinship.  Clans evolve through two stages: matrilineal society and 
patriarchal society.  Society consists of clans distributed in geographically sepa-
rated places. The socio-relational system within clan consists of a small coopera-
tive base network and the superstructure based on kinship relation (it is usually 
not completely separated from the base network).   

In a capital society, more people work with more efficient tools developed 
through innovation, reforming productive forces and productive relations of this 
historic development stage.  The productive forces and the relations of produc-
tion form a pattern of production at a particular development stage.  Marx de-
fined the relation of production as the sum total of social relationships that peo-



ple must involve so as to survive, produce and reproduce their means of life 
(Marx 1867). 

Alongside curiosity that drives the development of science and technology, 
competition plays a key role in adopting technical innovations in production.  In 
western economic society, rational self-interest and competition can make eco-
nomic prosperity (Smith 1776).   In western society, families usually keep a 
small scale as children will live independently when they are married.   This lays 
the basis for generating free competition society.  

Symbiosis is another basic social phenomenon for improving social produc-
tion.   Different development stages of society develop different forms of symbi-
osis.  In agrarian society, production relies on human labor, so families need 
more family members to take care of more crops, which can save cost for hiring 
people.  Children live together with their parents even after they married.  In in-
dustrial society, production relies on machines, so people are mainly organized 
by machinery production.  Families no longer play the major role in organizing 
productions.  People with different expertise meet different needs of production.   
Therefore, families tend to be small. 

The above discussion from evolutionism shows that a socio-relational sys-
tem operates with rich types of nodes including autonomous nodes like various 
organizations that can actively select input flows and the way to process flows 
according to motivation, prediction of interest (or profit), technique, knowledge, 
and rules of competition and policy, which are defined in a space that co-evolves 
with the base network of the socio-relational system.  This requests an autono-
mous model for modeling society. 
 
3.2.2 Competition and Symbiosis 
 
One of the fundamental scientific problems is how living beings are created and 
developed.  An explanation from the evolutionism is that long-term change (in-
cluding climate change) in the physical space provides the conditions for the na-
ture to select the fittest species from survival competition, i.e., the natural selec-
tion in Darwin’s theory on the origin of species (Darwin 1859).   
     Competition is a relation formed from the motivation of occupying limited re-
sources in general.  In human society, competition is a relation formed from 
common motivations (Maslow 1943), such as occupying limited material re-
sources and obtaining social merits.   Competition is a basic force to drive the 
development of species.  It forces species to adjust and enhance themselves to 
gain competitive advantages.  Evolution was also regarded as a change from an 
incoherent homogeneity to a coherent heterogeneity, accompanying the dissipa-
tion of motion and integration of matter (Spencer 1896). 

Symbiosis is also a basic relation that structures the pattern of survival along 
the evolution of species.  Symbiosis increases the fitness (or competitive ad-
vantage) of individuals or species through various reciprocal interactions (includ-
ing those in form of material flow, energy flow, data flow, knowledge flow and 



information flow) with other species along evolution.  Interactions provide the 
condition for establishing symbiotic links and evolving patterns in society, which 
drives the evolution of species.   

Building and maintaining symbiosis is also a force that drives the evolution 
of society. 

Competition carries out with external strategies (e.g., differentiate markets for 
products, introduce new techniques into the existing products, and develop new 
products) and internal strategies (e.g., improve efficiency and reduce cost for op-
erating enterprises).  Porter’s Five Forces model reflects the external factors of 
competitive intensity of industrial organizations (Porter 1979), but it neglects the 
internal factors (e.g., optimization of production process) and the effect of sym-
biosis. 

Symbiosis carries out through complementing functions between things (in-
dividuals, organizations, or communities) to enhance the benefits of both parties 
and the capacity of competition.  Many instances show that competition and 
symbiosis carry out through direct interaction, indirect interaction or influence.   

Symbiosis is the major mechanism that constructs the primitive society.  Mo-
suo is a matrilineal minority living in Lugu Lake area in Yunnan Province in 
China.  Children live together with mother in their lifetime.   Grandmother has 
the power to distribute material resources and deal with important family affairs.  
To keep sustainable development, a family tends to be big (usually around 30 
people) so that family members can carry out diverse productions that are coop-
erative to support self-sufficient materials and social life.  Families within the 
same region are organized into a community according to religion, regulation and 
power of making decision on community affairs.  Families and communities con-
struct a socio-relational system of different scales consisting of a base symbiotic 
network and a superstructure of management. 

 
 

3.2.3 Productive Force and Productivity 
 

Productive force is the combination of human labor (based on individual bodies, 
mental behaviors and organizational behaviors) with the means of labor (includ-
ing tools, machinery, land and infrastructure) (Marx 1867). 

The development of productive force (e.g., the invention and adoption of 
mechanization, water power and steam power in production) drives the evolution 
of productive relation (machines replace more and more human labor), and thus 
drives the evolution of the structure of the relational system.  The change of pro-
duction relations influences the change of flows (including material flow, human 
flow, money flow and knowledge flow) locally and globally (especially with the 
building of more efficient transportation network like express railway network), 
therefore evolves the relational system in the physical space and the relational 
system in mental space, which in turn improves productive force through inven-



tions (e.g., mass production and computer) and eventually influences the change 
of production relations. 

The development of productive force greatly enriches material wealth, hu-
man demands have gradually developed from material consumption toward in-
formation and knowledge services as well as healthy and sustainable develop-
ment, which requests material flow cycle through productions.  The development 
of knowledge and services in turn drives the development of productive force and 
thus pushes forward the evolution of productive relation. 

Productivity is a measure of the efficiency of production in a space of multiple 
dimensions, including:  

1. Power dimension, which measures the productivity of a node in the network 
of productions from the power of changing status (e.g., steam power, electric 
power, mechanical power and manpower). 

2. Management dimension, which measures the productivity of a node from the 
effectiveness of managing production organization (e.g., mass production 
promotes productivity through optimizing production management). 

3. Skill dimension, which measures the efficiency of a node from using and de-
veloping skills (the higher the better). 

4. Intelligence dimension, which measures the productivity of a node from the 
development of intelligence (the higher the better).  

Any point in the space has a projection at every dimension. 
The productivity of a socio-relational system is determined by the productivi-

ty of its nodes and semantic links between nodes as well as flows through the 
links. The productivity of a node corresponds to a point in the productivity space. 
 
 
3.2.4 Flows 
 
One individual or organization influences the other through material flow, money 
flow, data flow, information flow, knowledge flow and human flow, which coor-
dinate each other to organize and evolve society.  The influence of flows in social 
network starts from local and then becomes global in the long run, some influ-
ences become prominent through amplification of the nodes while others become 
subtle through the damping effect of nodes along propagation.    
      In a closed system, materials can change form but the total mass of the sys-
tem remains constant (i.e., the law of conservation of mass).  Efficient manage-
ment of material flow is a way to realize sustainable development of society (Shi 
and Li 2019).   The law of conservation of mass indicates the approach to detect-
ing waste emission through analyzing material flow network.  Material flow is 
the original force of forming competition and symbiosis in society with limited 
resources.  The value of material resources increases through production for 
meeting social requirements.  Different types of material resources need different 
production processes, which usually follow different rules and involve different 



networks of competition and symbiosis.  From the view of resources and meeting 
social demands, service flow has the same characteristics as material flow.  

Money flow usually works with material (or service) flow to organize pro-
ductions in society according to economic principles.  Figure 3.2 shows the evo-
lution of money flow networks of various sectors from 1967 to 2017 in the UK 
(data are obtained from: 
www.ons.gov.uk/economy/nationalaccounts/supplyandusetables), where nodes 
represent sectors and nodes of a larger size represent higher value and lines rep-
resent money flow between nodes and a thicker line reflects a higher value.  The 
change of values reflects the change of the absolute importance of nodes and 
links within the network under the uniform measure.  As the figure shows, real 
estate, science and technology, finance and insurance, information and healthcare 
sectors grow quickly while retail, textile, warehousing and farm shrink through 
the development process.  The change of connecting a node to other nodes re-
flects the change of the dependence between the node and the other nodes.  Mon-
ey flow can also work independently to increase its value with knowledge and 
strategies and amplify competition and symbiosis through more efficient use of 
money.  
 

 
Fig. 3.2 Evolution of money flow networks in the UK from 1967 to 2017. 
 
Data flow and information flow reflect the dynamicity of the observed system 

that humans are limited in ability to sense directly through organs.  Data flow and 
information flow also provide the mechanisms for optimizing the observed sys-
tem through modeling and prediction.  Knowledge flow passes through human 
minds through verification based on reasoning, applications in supporting intelli-
gent behaviors, evaluation and linking to existing knowledge.  Material flow, da-
ta flow, information flow and knowledge flow operate with specific principles 
and form different levels of competition and symbiosis in society.  They are also 
resources that incur competition and innovation. 
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United Kingdom Network Structure 2017 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The graphs as seen in Figure 7 and Figure 8 above have been generated using a powerful 
open source tool known as Gephi. Gephi’s job is to process information in the form of input-
output data. Gephi allows several different algorithms to be executed in order to get the 
desired output for a particular purpose.  
 
When using Gephi to represent I-O data in a Microsoft Excel format, it requires the 
following parameters: 

1. Nodes Table 
2. Edges Table 

 
A nodes table is required to represent a subject, in this case the subjects are the different 
industries. Gephi also requires further information to connect the industries together. An 
edges table represents all the links between industries. 

Figure 8 – Network Structure for 2017 
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Figure 6 shows a range of different industries from the years 1967 to 2017 which make up 
the economy for the United Kingdom. From this table it can be seen which industries have 
been split into finer detailed industries and which have remained the same. For example, 
industries such as Construction, Machinery and Paper Products have no evident differences. 
This may be because they are formed mainly from raw materials therefore its services 
cannot be disaggregated into further industries. The Finance and Insurance industry can be 
seen split into four sub-industries as the years have progressed. These industries are as 
follows: “Federal Reserve banks, credit intermediation, and related activities”, “Securities, 
commodity contracts, and investments”, “Funds, trusts, and other financial vehicles”.  
 
Network Graph Generation 
Howard Rheingold is a writer and teacher well known for his specialities on the cultural, 
social and political implications of modern communication. He expresses his views as “I’ve 
become convinced that understanding how networks work is an essential 21st century 
literacy” (Rheingold, 2013). The data provided by the Office for National Statistics can be 
displayed as a directed network whereby economic agents, which in this case are the 
different industries, are represented by the nodes. The links between the economic agents 
are the financial flows (Rovenskaya, 2014). Figure 7 and Figure 8 show the United 
Kingdom’s economy represented through network graphs for years 1967 and 2017.  
 

United Kingdom Network Structure 1967 
 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Industry Differences for United Kingdom Economy 

 

Figure 7 – Network Structure for 1967  
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Human flows form symbiosis between organizations and evolve the structure 
of communities in social space.  For example, universities input human flows 
(students) from high schools and then output human flows (graduates) to various 
organizations (including enterprises and public organizations), which further out-
put human flows with specific knowledge to different organizations.  Rules (e.g., 
non-compete agreement) are needed to maintain the order of flow.   Knowledge 
in minds and organizations evolve as the effect of the flows.    
 
3.2.5 The Role of Motivation 
 
The difference of social statuses of human individuals determines different levels 
of motivations, which introduce different levels of competition and symbiosis.   
To reflect dimensionality of motivation, motivations can be specified in a multi-
dimensional motivation space where different dimensions specify different hier-
archies of motivations. 

A real social network operates in a complex space that can be viewed from 
multiple dimensions (Zhuge 2008; Zhuge 2012).  Symbiosis and competition in-
volve in the development of society of different scales and along different dimen-
sions.  Different dimensions may have different influences on the evolution of 
social network.   Therefore, a social network can be specialized by mapping it 
onto different dimensions for particular analysis in different applications. On the 
global scale, countries belong to an international relational system and compete 
on impacts and interests while benefiting each other through material flow, mon-
ey flow, information flow and knowledge flow according to economic rules and 
politic strategies. On the middle scale, competition and symbiosis carry out on a 
social network of organizations (e.g., social network of enterprises), which in-
volve in different types of flow with different motivations and different strate-
gies.  On the small scale, individuals interact for competition and symbiosis with-
in social network of individuals who process different levels of flows with 
different motivations and strategies. 
 
3.2.6 Locality and Global Influence 
 
In the Newton mechanical space, one object influences the other only through di-
rect interaction (e.g., force and gravity), which depends on the distance between 
objects.  This determines the locality of interactions, which widely exists in vari-
ous spaces consisting of objects and direct interactions between objects.  The lo-
cality was also studied in language representation, understanding and processing 
(Zhuge 2016).  The locality in the biological world demonstrates a phenomenon 
of least effort (Zipf 1949).  Viewing from a different dimension, the locality may 
not hold, e.g., in microscopic spaces like the quantum space (quantum entangle-
ment is irrelevant to distance).   
      A socio-relational system takes some features of the Newton mechanical 
space.  One node influences another node only through a direct link or a chain 



that can derive out a direct link between two nodes or carry flows through.  As an 
effect of locality, flows usually pass through nodes within a community to effi-
ciently share flows.   Viewing from a different dimension, the influence of opera-
tion can be global in the long run, e.g., changing the rank of a node could influ-
ence the rank of all nodes.  Data, information and knowledge flow through nodes 
can be localized in cyberspace while the nodes are globally distributed in physi-
cal space.  Enterprises’ experiences of adopting work-from-home model during 
pandemic COVID-19 show advantages in promoting productivity and saving en-
ergy. 
      The above phenomena indicate the necessity of adopting a multi-dimensional 
methodology to integrate and interpret different theories in a space of methodol-
ogies (Zhuge 2012; Zhuge 2016). 
 
 
3.2.7 Value of Relational Systems 
 
In a real social network, a node needs to assess the value of linking itself to an-
other node.  The value of linking a node to another node is determined by the fol-
lowing aspects:  

1. The value of satisfying motivation at a certain level and to a certain extent: 1) 
basic physiological needs, 2) safety and health, 3) love and friendship, 4) 
recognition or achievement, and 5) self-actualization or achievement of full 
potential (Maslow, 1943).  The value is proportional to the level and the de-
gree. 

2. The value of network, which is in proportional to the square of the number of 
nodes (Metcalfe's law).   Linking operation prefers to join a network with a 
higher value so that the new node can gain a higher value by contributing to 
and benefiting from the network. 

3. The value of effective time.  A linking operation can establish a more effective 
symbiosis between nodes if it can coordinate the stages of lifecycles of the 
nodes so that cooperation can be more stable and effective. 

4. The value of flows, including material flow, data flow, information flow and 
knowledge flow. 

 It is an autonomous node if it can have insight of predicting the change of the 
above aspects, e.g., the change of motivation and the change of flows at different 
stages of lifecycle. 

 In a hyperlink network, linking a node (webpage) n to another node n’ con-
tributes the rise of the rank of n’ but n does not get any rank reward from n’ be-
cause n’ may not be aware of this link and it does not introduce its readers to n.  
In a citation network, a paper p citing another paper p’ contributes to the rise of 
the impact of p’ but p does not get any reward of network effect from p’ but p 
gets knowledge from p’.   Social media platforms like Twitter provide operations 
of different intensities for users such as “visit”, “impression”, “view”, “like”, 



“mention” and “follow”. Therefore, persons are linked for passing information 
through different types of operations reflecting different intensities of interest.  

 Different from the general social networks (Zhuge and Zhang 2010), a social 
network in a capital society follows economic principles.  Any node (individual 
or organization) in society contributes to others with a certain productivity.  The 
node with processing more flows (including material flow, data flow, information 
flow and knowledge flow) contributes (or receive) more resources to (or from) 
more nodes, therefore it works with a higher productivity. 

 On the other hand, linking an individual (a node) n to another n’ implies that 
n also inputs/outputs flows of various resources (material, data, information and 
knowledge) from/to n’.  In a society with limited resources, individuals compete 
for resources, the individuals with limited resources will gain some potential 
power of obtaining reward from contributing limited resources to others because 
an individual can freely select another individual for cooperation in a self-
organized social network.   

The following proposition can be drawn from the above discussions. 

The emerging importance on flows. For a community with limited resources, 
an individual (or organization) becomes more important with processing more 
flows, including material flow, data flow, information flow and knowledge flow. 

3.3    Social Semantic Link Network Model 

From rationalism point of view, nothing happens without a reason as Leibniz 
pointed out.  From empiricism point of view, knowledge consists of relations of 
ideas and matters of facts as Hume pointed out.  Understanding the relations be-
tween things in society is the basis for knowing reasons behind things.   
 
 
3.3.1 Basic Semantic Link Network Model 
 
A basic question needs to be answered first is why network model is considered 
to model social semantics?  The following are main reasons:  

1. Human organs are limited in ability to sense, understand and think the whole 
complex system.  An approach to understanding a bigger picture is to focus 
on its parts (components) while finding the links between parts.  Discovering 
implicit links is important for understanding the bigger picture.  

2. Linking is a basic social motivation and behavior, which organizes and 
evolves communities.   

3. Network is an abstract model of most systems formed through interactions 
among its parts.    



4. Meaningfully linking parts of a complex system is a way to observe the social 
semantics of the system. 

The above consideration coincides with the worldview of rationalism (e.g., 
Spinoza) and Simon’s idea about the structure of the near decomposable systems.  

Modeling social semantics is based on the following basic assumptions:  

Assumption 3.1. There exists a common language for the society to understand 
what are observed and represent what are understood.    

      The above assumption is the basis for representing, understanding and using 
models. 

Assumption 3.2. A lightweight language consisting of a set of basic language 
units (i.e., words or phrases) and a simple grammar for composing language 
units to identify nodes (i.e., components of a system or reality) and relations be-
tween nodes can be selected from the language (assumed in assumption 3.1).   

      Based on the above assumption, a network of things identified by the light-
weight language is understandable within the society.  

Assumption 3.3. There is a fundamental existence ¾ the ability of judgment, 
which forms concepts through experience or reason.  Some concepts are abstrac-
tions of perceptual things and others are abstract concepts.  

Concepts form a concept hierarchy (or concept network), where nodes are 
concepts and links are abstraction relation. A concept x is called an abstraction of 
a set of concepts Y if the attributes of x is inherited by the concepts in Y.   The 
concepts that have no more abstract concepts are called categories.   Concepts 
are identified by basic language units.   

Assumption 3.4. Interactions between components of system can be understood 
according to concepts. 

      Based on the above assumptions, we have the following definition. 

Definition (Semantic Link Network).  Semantic Link Network (in short SLN) is a 
model for representing social semantics with a four tuple or a mapping repre-
sented as follows: 

<N, L, Á,  f>, or in form of <f: {N, L} ® Á>, where: 

1. N is an open set of nodes (called semantic nodes), each node represents a 
concept or a semantic link network of concepts. 

2. L is an open set of links (called semantic links) between nodes.  The semantics 
of a link is specified by its attributes and possible interactions between nodes.  
A semantic link is identified by a language unit to represent reference, defini-
tion (e.g., subtype or is-a), structure (e.g., is-part-of, similar, etc.), reasoning 
(e.g., cause-effect, implication, equal, etc.), competition and symbiosis.  



3. Á =<Ã , Â> is a semantic space consisting of a network of concepts Ã 
shared in society, an open set of rules Â consisting of rules for reasoning on 
L and social linking rules for guiding the connection of nodes.  Each rule 
takes the form a×bÞg representing that the connection of link a and link b 
implies link g marked by the lightweight language.  A society can have multi-
ple sets of basic concepts representing differences of communities. 

4. f is a mapping from {N, L} into Á such that any node in N has a correspond-
ing concept in Ã and any link in L has a corresponding concept or structure 
in Ã and can have a corresponding rule in Â, and applying Â to L generates 
new links Â (L) Ê L, and operation L=Â(L) updates L.  The function f re-
flects the beliefs of the autonomous nodes formed through interactions that 
evolve the base network and the superstructure.   

       The basic SLN is an algebra structure that reflects the semantics of social 
system, especially the evolving systems self-organized through interactions 
among components.  It is also a framework system for developing socio-
relational systems by defining the base network and the semantic space according 
to application requirements.  A socio-relational system can carry out relational 
reasoning and provide intelligent information services such as question answer-
ing and summarization based on semantic links and linking rules.   For example, 
a question-answering system can answer questions about what and why with the 
help of definition relation and cause-effect relation.   Therefore, Semantic Link 
Network can be an autonomous semantic data model (Zhuge 2012). 
      Intelligence emerges with interactions among multiple relational systems, in-
cluding SLNs in minds, SLNs of local reality and SLN of global reality where 
humans and machines behave and influence their evolution.  Interactions form 
flows through links including data flow, information flow and knowledge flow 
(introduced in chapter 5). 

Establishing and maintaining competition and symbiosis push forward the 
evolution of social network with specific rules in addition to the operations on 
general social network, for example, a new node tends to link to the nodes that 
can enhance its competitive power. 
      For a social network with competition link and symbiotic link, a new node 
and the existing communities need to consider competition situation and strate-
gies to enhance their competitive advantages.  It has to consider joining which 
community can best enhance its competitive advantages and which node should 
be linked to establish symbiotic link.  A community needs to consider accepting 
which node can best enhance its advantages in competing with other communi-
ties.  Therefore, social linking rules that influence the formation and evolution of 
social network should be incorporated into social network modelling.    
 
 
3.3.2 Social Semantics 
 



ce 

Semantics concerns mapping between representations in different languages. Dif-
ferent communities may have different worldviews and different beliefs, which 
lead to different dimensions of representation and mapping.   
     Traditional study of semantics concerns language, programming languages, 
formal logics and semiotics.  Social semantics was distinguished from traditional 
study of semantics with emphasis on interaction (interactive semantics) and evo-
lution (Zhuge 2010).   
     An evolving SLN represents social semantics.  Human individuals can be 
nodes of the network or the operators of the network or a part of the network. For 
a large-scale network, individuals are limited in ability to have a global view.  
Therefore, different mappings are possible, different semantic links can be de-
rived from the same network and contradict semantic links can even reasonably 
co-exist.   
     The category network in Wikipedia reflects a kind of social semantics extract-
ed from the framed natural language representation where the contents are de-
fined by people in communities with different beliefs.  Therefore, we cannot 
simply say that contradict links are wrong or one of the two contradict links is 
wrong.  This is one of the features of the SLN distinguished from the logic-based 
systems.    

Adding a semantic link that contradicts to an existing semantic link may incur 
a reasoning that can derive out a new link probably useful for the person who 
adds the link according to a different worldview.  As shown in Figure 3.3, adding 
a cause-effect link C¾ce®A (in red arrow) to the existing semantic link network 
incurs a derivation: C¾ce®A, A¾ce®B Þ C¾ce®B (in red dotted arrow), 
which cannot be derived from the existing network.  Another person can add 
B¾ce®F (in blue arrow) to the network, leading to F¾ce®A to be derived (in 
blue dotted arrow) from the changed SLN.    

 
 
 
 

 
 
 
 
 
 
 
 

 
 

Fig. 3.3 People can operate the same SLN by adding various semantic links with 
different beliefs.   
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      More semantic links may be further derived from the derived links, which in-
fluence the evolution of the whole network.  The derived links are probably use-
ful from the view of the persons who add the links.  It is significant to the system 
for providing personalized knowledge services for users. 

A large-scale SLN should contain different beliefs of users and reflect tem-
poral relations (Zhuge 2016).   To reflect diverse constraints, semantic links can 
take the following forms:  

1. Common semantic links, which are agreed by all people in the community 
sharing the SLN, and can join other semantic links for reasoning, represented 
as X¾a®Y, where a denotes a relation. 

2. Uncertain semantic link, which reflects a relation that probably holds.  It can 
be represented as X¾<a, cd: value>®Y, where a denotes the relation, and 
cd represents the certainty degree.  For example, as X¾<similar, cd: 
0.6>®Y represents that X is similar to Y with certainty degree 0.6. 

3. Belief semantic link, which reflects a relation subjective to a user or a com-
munity.  It can be represented as X¾<a, belief-of: user >®Y, where a de-
notes the relation, and belief represents the belief of the user (or a communi-
ty) who adds the semantic link to the SLN.  For example, X¾<ce, belief-of: 
Hai>®Y represents the cause-effect link between X and Y with belief of Hai. 

4. Temporal semantic link, which is effect or believed during a period of time.  
On one hand, relation may change with time because some relations hold dur-
ing a period of time, e.g., supervisor relation between a professor and a re-
search student holds only during the studying period of the student (reflecting 
the constraints on both parties). This type of semantic link will be discussed 
further in section 3.7. 

5. Evidence-based semantic link, which can be represented as X¾<a, evidence: 
e>®Y, where a denotes the relation and e represents the evidence of a.  Dif-
ferent people can provide different evidences for a semantic link.  For exam-
ple, some people can provide evidence for supporting that the emission of 
more CO2 is the cause of global warming but some people can provide evi-
dences for supporting that global warming is the cause of emitting more CO2. 

 
      Multiple reasoning processes on a large-scale SLN can carry out with diverse 
beliefs of people who operate the network as operators or influence the network 
as nodes.    
 
 
3.3.3 Semantics of Semantic Link Network 
 



Semantics of SLN is specified by the structure of its base network and the seman-
tic space above the structure.   The basic semantic space includes a network of 
categories representing concepts, relations between concepts, linking rules and 
relational reasoning rules.   

The basic semantics of a node is indicated by:  

1. its concept and category;  
2. the concepts and categories of the links it has;  
3. the concepts and categories of its neighbor nodes; and,  
4. the links between the above concepts.   

The basic semantics of a link is indicated by:  

1. its concept and category;  
2. the concepts and categories of two nodes that the link connects;  
3. the concepts and categories of the neighbor links;  
4. the links between the above concepts; and,  
5. relevant linking rules on the links that can derive new links.   

A significance of introducing category is that it can uniquely determine the 
semantics of a node or a link because there may have multiple ways of abstrac-
tion.  With different categories, different concepts are linked from experiencing 
the same reality.  For example, an observation of a street demonstration can be 
linked to different concepts such as “democracy”, “riot” and “fun”, which belong 
to different categories.  A language representation can be linked to different con-
cepts, for example, a word “apple” can be linked to different concepts with cate-
gory “machine” and category “food” respectively.  So, a category can uniquely 
determine the semantics of a word.  In applications, a concept at a higher level 
concept hierarchy can also determine the semantics of a concept, for example, 
concept “computer” and concept “fruit” can determine the semantics of the word 
“apple”.    

In addition to concept hierarchy, the structure of the base network especially 
the neighbor node and link also render the semantics of a node or a link.  For ex-
ample, different neighbor words such as “eat” and “phone” of the word “apple” 
rendered different concepts. 

An active concept can be represented in the following SLN-based form: 
where the structure represents its internal structure in form of an instance of 
SLN, the attributes reflect its external attributes, the links reflect the relations it 
connects to other concepts (links between concepts form a concept network), the 
services is a set of functions with parameters, the rules is a set of rules for linking 
and providing services, and the experience consists of definitions with citation, 
instances of using the category and pattern of using the concept in instances. 

ConceptID { 
    Structure: internal structure; 
    Attributes: {attribute1: value1, …, attributek: valuek}  



    Links: semantic links to other concepts; 
    Services: [service1(parameters), …, servicen(parameters)]; 
    Rules: a set of liking rules; 
    Experience: [definition(cite), instances, pattern]}.   

A pattern can be a simple SLN.  For example, the pattern of a text can take the 
following form: <[(w1, f1), …, (wn, fn)], L>, where w1, …, and wn are words ap-
peared in texts, f1, …, and fn are frequencies of the words appeared within the text, 
and L are a set of semantic links between words.  The semantics of the basic 
components is defined by the Interactive Semantic Base ISB proposed in (Zhuge 
2010). 

For example, the concept of “university” can be represented as follows: 

University { 
    Structure: <{College of Science, College of Engineering,  
                         College of Business, College of Social Science},  
                        <is-part-of}>; 
    Attributes: [type: public;  
                       location: UK;  
                       number of teachers: 2000;  
                       number of students: 10000; 
                       time of establishment: 1960] 
    Links: [category: organization,  
                student-from: high-school,  
                graduate-orientation: (enterprise, university)]; 
    Service: [Bachelor-program, Master-program, PhD-program, Research]; 
    Rules: Regulations; 
    Experience: [definition: A university is an institution of higher education    

and research which awards academic degrees in vari-
ous academic disciplines (link: Wikipedia page),  

                            instances: (Oxford, Cambridge, Stanford),  
                            pattern: [(university, 0.7), (college, 0.2), (school, 0.1)]}.    
 
The above SLN-based representation has the advantages of ontology, frame 

and semantic net.  Further, the semantic space enriches the semantics of the base 
network of the SLN.  Its complex structure enables it to reflect more semantics of 
things than string-based representations or vector-based representations.  

As depicted in Figure 3.4, the semantics of node A is indicated by: 

1. Its concept and category in the concept hierarchy.  
2. Semantics of its neighbor nodes B, C and E.  
3. Semantic links x, a and g.   

The semantics of link x is indicated by:  

1. Its concept and category.  



2. Semantics of node A, semantics of node B and its neighbor semantic links g, 
d, t, a and b. 

3. Reasoning rules on the neighbor semantic links, e.g., a×bÞx.    
 
 

 
 

 
 
 
 
 
 
 

 
 

 
 
 

 
 
 

Fig. 3.4 The basic semantic space of Semantic Link Network. 
 
 

If there are more than one semantic link between nodes, a semantic link may 
exist between two semantic links, for example, link y is girl-friend and link x is 
friend, yÞx holds.   Generally, the following property holds: 

Property of relation implication.  If the concept of link x is more general than 
(i.e., a super-concept of) y on an abstraction chain of concepts, yÞx holds. 

 
      Different from traditional social network, a node with richer types of links 
takes the priority to emerge than the node with single type of links (Zhuge 2011).  
Combining the diversity of semantic links and the ranks of structure leads to the 
following proposition: 

Diversity of emerging semantic links. The rank of a node emerges in propor-
tion to the diversity of its semantic links and link structure (i.e., the number of its 
link and the rank of its neighbors).    
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(2) Semantics of two nodes that hold the link.  
(3) Semantics of the neighbor links.  
(4) Rules on semantic links that can carry out reasoning on semantic links. 

        As shown in Figure 3.2, the semantics of node A is determined by its category 
in the category hierarchy, the semantics of nodes B, C and E as well as the links x, 
a and g.  The semantics of link x is determined by its category, the semantics of 
node A, the semantics of node B, the neighbor links g, d, t, a and b, as well as the 
reasoning rules on the neighbor links, e.g., a×bÞx.   

A node having richer types of links takes the priority to emerge than the node 
having single type of links (Zhuge 2011).   The rank of a node emerges in proportion 
to the diversity of its semantic links and the link structure (the number of its link and 
the rank of its neighbors).   The semantic space makes the Semantic Link Network 
different from traditional social network. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.2 The semantic space of Semantic Link Network. 

 
 

3.2.4 Properties and Rules of Liking 
 
Incorporating more properties and rules of linking into the Semantic Link Network 
will enhance its ability to model complex social systems.   A social Semantic Link 
Network can be represented as follows: 
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SLN opens to operations on the base network and superstructure, e.g., incorporat-
ing more types of semantic links and richer semantic space.  The modelling abil-
ity of an SLN relies on the semantic richness of its base network and complete-
ness of its superstructure for domain applications.  More diverse semantic links 
an SLN contains, the richer semantics it has.  The completeness of the semantic 
space means that it contains enough semantic definitions including the concept 
hierarchy and rules on semantic links so that all semantic nodes and semantic 
links within the base network can have semantic images and implicit semantic 
links can be derived.  

Comparing with other semantic models like Semantic Net and Linked Data, 
the modelling ability of SLN is mainly empowered by the following two aspects: 

1. Diversity of semantic links; and, 
2. Its superstructure with such abilities as abstraction, linking rules and relation-

al reasoning abilities. 

Property of semantic modelling ability.  A Semantic Link Network with richer 
semantic links has a stronger semantic modelling ability.   

The following are two reasons of this property from empirical observations 
and previous experiments: 

1. From the expressiveness dimension, an SLN with two types of semantic link 
has a stronger modeling ability than an SLN with only one of the two types of 
semantic link.  Evidences can be found in modeling text:  
• An SLN with only one reference link reduces to a hyperlink network, a ci-

tation network or a probabilistic graph, which cannot represent richer rela-
tions (such as similar-to, cause-effect and subtype) between components 
of a complex system.  

• Combination of similar-to link and is-part-of link as well as combination 
of cause-effect link and similar-to link can better represent the content of 
text than just one type of semantic link according to the study of text 
summarization through representing text by SLN (Zhuge 2016).  

• More semantic links reflect richer semantics of the observed system and 
provide more conditions for deriving implicit links ¾ reflecting the nature 
of the system. 

2. From question-answering ability dimension, an SLN with richer semantic 
links can answer more questions.  An evidence is that an SLN-based text rep-
resentation without cause-effect link and definition (is-a) link is hard to rea-
sonably answer the question about why and what. 

       
For a base network, incorporating more linking properties and rules into the 

superstructure can enhance the ability to model a complex system because more 
implicit links can be derived from more reasoning rules. 

 



 
3.3.5 Property of Linking 
 
In a Cyber-Physical-Social Space, a node can be mapped onto different dimen-
sions (subspaces), a semantic link can be in one space or cross spaces, and there-
fore reasoning can carry out in one space or cross spaces.   

Material, money, data, information and knowledge flows through links are 
processed by nodes to support their activities.    

The following axiom can be derived from the basic assumption of science. 

Axiom.  There exists a cause that two nodes are linked, and the cause can be ob-
served, interpreted, or derived from existing superstructure. 

      The basic causes of a semantic link between two nodes are relations between 
the features of two nodes and the basic interactions between the two nodes. 

Property of Linking. A semantic link between two nodes has the following rea-
sons of existence: 1) the concepts of two nodes share a set of attributes; 2) there 
is a relation between their attributes; 3) there is a common or conflict goal be-
tween two nodes; and, 4) there is a common motivation between two nodes. 

The following observations support the above property: 

1. A citation link between two papers is indicated by: (1) their common features,  
e.g., the features of the citing paper match the features of the cited paper in-
cluding author name, title, journal/conference name, and publication time ap-
peared on the papers, (2) the similarity between the citing content, which is 
mainly reflected by the paragraph with the citation mark, and (3) the cited 
content, i.e., the main contribution of the cited work reflected by the problem 
and solution stated in the abstract and conclusion (Zhuge, 2016). 

2. Collaboration link between researchers is indicated by their common features 
in their publications (e.g. they were collaborators on some papers, they com-
monly cite or are cited by one paper or more papers, and they work for the 
same institution), links between their attributes (e.g. one is the colleague or 
the supervisor of the other), and common motivation of research and common 
goal of publication. 

3. Correlation between the performance of two stocks in stock market indicates: 
(1) some common attributes, e.g., companies of the same sector often perform 
similarly; (2) the cause-effect link between the attributes of the two stocks; 
(3) a material flow from one company to the other, which indicates that one 
company is the supplier of the other; (4) they have the same product or pro-
vide the same service for customers; and, (5) they share the same group of 
customers. 

This property is the basis for discovering explicit and implicit semantic links 
and carrying out reasoning on semantic links for supporting prediction of poten-
tial links based on existing commonalities. 



A semantic link can also indicate the relevancy between the structures of two 
nodes belonging to different spaces.  For example, a semantic link between an 
individual (denoted as A) in social space (denoted as S) and a text (denoted as B) 
in cyberspace (denoted as C), A in S –authorOf– B in C, indicates that: (1) the in-
dividual’s mind contains a structure similar to the structure of the text, (2) there 
is an information flow between two nodes, and (3) there is a cause-effect link be-
tween the change of the structure in A’s mind and the formation process of the 
text.   

The following is a representation of reasoning on semantic links across spac-
es.   

 A in X –a– B in X, B in X –b– C in Y Þ A in X –g– C in Y, 

where X and Y represent two spaces, a, b and g are semantic links and there ex-
ists an operation such that a·b=g.   

The following is an instance of reasoning on semantic links with explicit 
spaces:  
Researcher X in S –authorOf– paper Y in C, paper Y in C –cite– paper Z in C Þ  

Researcher X in S –readerOf– paper Z in C, 

where the rule readerOf = authorOf · cite indicates the relevancy between au-
thor’s mind, reader’s mind and their papers.   
      A semantic link Researcher X’ in S –authorOf– paper Y in C implies a se-
mantic link Researcher X’ in S –co-author– Researcher X in S. 
      Explicitly representing the spaces where nodes belong to can help distinguish 
nodes in different spaces and apply rules on nodes and links in different spaces.  
The space can be omitted when the current application concerns only one space. 
 
 
3.3.6 Social Linking Rules 
 
In addition to the general reasoning rules on the basic set of semantic links, the 
semantic space of SLN needs to incorporate linking rules specific to the observed 
system to reflect its particularity (Zhuge 2004; Zhuge 2009; Zhuge 2010; Zhuge 
20012).  Knowing social linking rules and the effect of linking can enhance the 
ability to modeling the social nature of the observed system (Zhuge 2011).   

Social linking rules are empirical rules obtained from observing limited expe-
rience with insight.  They show the following patterns, where arrow –x®  repre-
sents a semantic linking operation with a certain or uncertain relation x and Þ 
represents the possible result of the operation: 

1. n –a® n’Þ n –x® n’/p, which means that linking node n to node n’ with a 
semantic link a leads to adding a semantic link x between them with proba-
bility p. 



2. n –a® n’Þ n –x® n’’/p, which means that linking node n to node n’ with a 
semantic link a leads to adding a semantic link x between node n and another 
node n’’ with probability p. 

3. n –a® n’Þ n’ –x® n’’/p’, which means that linking node n to node n’ with a 
semantic link a leads to adding a link x between node n’ and another node n’’ 
with probability p’. 

4. n –a® n’Þ n –x® n’’/p, n’ –y® n’’/p’, which means that linking node n to 
node n’ with a certain link a leads to adding a semantic link x between node n 
and another node n’’, and adding a semantic link y between node n’ and an-
other node n’’ with a probability p’. 

5. n –a® n’, n’ –b® n’’ Þ n–x®n’’/p, which means that linking node n to 
node n’ with a semantic link a, and linking n’ to n’’ with semantic link b 
leads to adding a link x between node n and another node n’’ with probability 
p, and a and b imply x, i.e., a×b Þ x. 

Ordinary semantic links reflect a certain or uncertain existence of relations 
between things, and reasoning rules on semantic links reflect certain or uncertain 
relational reasoning (implication) on two neighbor semantic links.  In contrast, a 
social linking rule concerns the motivation of linking and influence of linking: 
leading to adding another semantic link.  It is important for governor, enterprise 
manager or individual to have this insight before making a decision.  For exam-
ple, it can help a company to know the effect of establishing a symbiotic relation 
with another company before making a decision.    

These social linking rules can include successful and unsuccessful instances 
of application to provide interpretations for the current application:  

Linking Rule: <rule>; 
With Successful Instances: <instances>; and, 
Unsuccessful Instances: <instances>. 

These rules can be incorporated into existing information systems (e.g. per-
sonal assistant systems, enterprise information systems and decision support sys-
tems) to provide intelligent assistant to decisions. 

As symbiosis and competition are basic forces to evolve society, the follow-
ing part of this section investigates some principles about symbiosis and competi-
tion for setting empirical social linking rules.  

Principle for Social Linking Rule 1. If one node is linked to another node as a 
symbiotic partner, they tend to make a common friend for symbiosis (i.e. the 
probability of making a common friend is high).   

The following is the pattern of this rule: n –symbiosis® n’Þ n –symbiosis® 
n’’/p, n’ –symbiosis® n’’/p’, where p and p’Î(0.6, 1). 

In a society, individuals or organizations have a higher probability to join the 
same events (e.g. conference and research project) or community (e.g. academic 
community or business community) where they can know common friends.  



The essential reason is that a symbiotic link is established on some flows in-
cluding data flow, information flow, knowledge flow and material flow.  If node 
A links to node B for symbiosis, they should have common interest and benefit 
from each other through at least one flow.  If B has a friend C, the flow from A to 
B can easily reach C (guided by the friend link between B and C) and the flow 
from C to B can easily reach A (guided by the symbiotic link between A and B) 
than other nodes that have no symbiotic link to B, therefore it is easier for A to 
make friend with C for symbiosis.   This can be represented as the following pat-
tern where p is the probability of the link: 
1. n –symbiosis® n’, n’ –friend– n’’ Þ n–friend®n’’/p. 
2. n –friend®n’, n’ –symbiosis– n’’ Þ n–friend®n’’/p. 

This principle also indicates the importance of flows through symbiotic links. 
If a semantic link does not carry any flow, it will become less important than oth-
er links that guide flow within a community.   For example, a kinship link be-
tween two persons becomes less important if there is no flow (material, data, in-
formation and knowledge flows) between them although kinship itself is 
important in reflecting the evolution pattern of species from biological dimen-
sion.   
      There can be more types of semantic links between two nodes.  Different se-
mantic links play different roles in guiding flows, for example, the supervisor-of 
link mainly guides knowledge flow and the supplier link mainly guides material 
flow.  Incorporating the correlation between types of semantic link and types of 
flow into SLN can better reflect the observed system.   The correlation can be es-
tablished through mapping between the semantic image of the link and the se-
mantic image of the flow.  For example, the semantic image of a supervisor link 
concerns knowledge levels: PhD supervisor, master supervisor, and undergradu-
ate supervisor.  The semantic image of knowledge flow concerns knowledge 
fields, which can be defined by a multi-dimensional classification space. 

A semantic link incorporating flow can be represented as follows: 
n–(a, flow)®n’, where (a, flow) represents a relation a and the correspond-

ing flow from node n to node n’, where flow=<name, type: representation>, 
typeÎ{material, data, information, knowledge}, and representation refers to ma-
terial representation, data representation, information representation and 
knowledge representation that are understandable in the semantic space.   

Relational reasoning on semantic link and flow can be represented as:  
     n–(a, flow)®n’, n’ –(a, flow)–n’’Þn––(a, flow)®n’’/p. 
     n–(a, flow)®n’, n’ –(b, flow)–n’’Þn––(g, flow)®n’’/p, where g=a×b is de-
termined according to relational reasoning rule (Zhuge 2012). 

      The following implications can be drawn from this principle: 

1. It provides an evidence (driving force) for evolving an SLN. 



2. It provides a reason for ranking semantic links for the management of an 
SLN. 

3. It suggests a strategy for maintaining semantic links: transmitting flows 
through semantic links to build symbiosis.  

4. It provides a way to detect possible behaviors. 

The following are more observations of this linking rule:  

1. When recruiting a new faculty member, a candidate who has cooperated with 
or has potential to cooperate with the existing faculty members (i.e., there is a 
friend or a potential friend link that guides information flow and knowledge 
flow) usually gets higher probability to be recruited because they tend to con-
sider whether the new faculty member can enhance the strength of the exist-
ing team or not.   

2. A researcher is likely to introduce his collaborators (e.g. research students) to 
participate in conferences and workshops of the research community and 
therefore the collaborators can get chance to know and cooperate with more 
researchers within the community.    

Principle for Social Linking Rule 2. If there is a competition link between two 
nodes, one tends to join a symbiotic community without the other.   

This is because one node tends to exclude the other from communicating with 
the members of its community (to avoid sharing knowledge with the competitor), 
and the community without one tends to accept the other to gain competitive ad-
vantage.  For example, this is hold in business when competition between two 
companies is for getting more customers within the same region.  In research 
community, a researcher A tends to join a research group (or university depart-
ment) without another researcher B who aims at solving the same problem, oth-
erwise the research group has a high probability to be damaged because of com-
petition between A and B on obtaining the priority of publication and research 
resources. 

Experiment.  Publications (3542 papers) in Artificial Intelligence journal from 
1970 to 2018 show that 66% collaborators have apparent difference in citation 
(³4, the number of authors with less than 4 citations is about 85% of total au-
thors).  Publications (4613 papers) in Future Generation Computer Systems from 
1995 to 2019 show that about 71.2% collaborators also have apparent difference 
in citation.  The data also show that about half cooperation links take place be-
tween different institutions.  An explanation is that cooperation is built with ten-
dency of avoiding existing competition. 

The principle for social linking rule 2 can be represented as the following pat-
tern, where n’’ is a member of a community C, and p is the probability of this 
rule. 

n –competition® n’ Þ n–symbiosis®n’’, n’’ÎC and n’ÏC with p. 
 



Based on this social linking rule, the following social linking rule can be 
drawn. 

Principle for Social Linking Rule 3. If two nodes compete for the same set of 
resources, they tend to select different symbiotic partners.   

This is because if B and C compete for the same set of resources and A links 
to both B and C for symbiosis, B and C will tend to prevent A from linking to 
their communities, and they will be prudent in sending flows to A.  For scientific 
research, researchers avoid cooperating with the two research groups that com-
pete for solving the same problem as only one of them can publish the solution 
and only the published one can be confirmed by scientific community (cited by 
peers). 

This principle can be represented as the following pattern: 
n –compete® n’ Þ n’’–symbiosis® either n or n’ / p. 

If A is linked to both B and C for competition, the competition situation 
changes: node A becomes the third competitor, therefore competition strategies 
of each party need to consider three parties.  An organization should avoid inter-
nal tense competition.  If A is linked to both B and C for symbiosis, A has to meet 
the needs of both B and C. 

Principle for Social Linking Rule 4. If node A and node B compete for a set of 
resources R, and B and C compete for another set of resources R’, then node A 
tends to link to node C for symbiosis.   

  This is because node B competes with both node A and node C for common 
resources R and R’ (e.g., customers, materials, data and knowledge), and there is 
no conflict between A and C, so establishing symbiosis between A and C is easier 
and enables both A and C to gain competitive power with regard to B.  This is in 
line with the old proverb: The enemy of enemy is friend.   

This principle can be represented as the following pattern: 

n –<compete for R>® n’, n’ –<compete for R’>® n’’Þ  
n–symbiosis®n’’ / p, where R and R’ denote resources. 

Principle for Social Linking Rule 5. If node A competes with node B on a set of 
resources R, and node B competes with node C on R, then there is a competition 
link between node A and node C on R.   

This transitivity of competition is due to the conflict on getting common re-
sources R.  This rule can be extended to multiple nodes competing on the same 
limited set of resources.  This principle can be represented as the following pat-
tern: 

n –<compete for R>® n’, n’ –<compete for R>® n’’Þ  
n–<compete for R>®n’’ / p. 



The social linking rule 1 can be extended to the following rule. 

Principle for Social Linking Rule 6.  New symbiotic links tend to be added 
within a symbiotic community for strengthening competitive advantages.   

This is because the existing symbiotic community provides a local symbiotic 
environment (more links and flows) for nodes to find more potential symbiotic 
links easily and efficiently.   Higher connectivity leads to more intensive locality.  
For a community of sharing resources, a higher connectivity provides a higher 
probability for sharing resources more efficiently.  
     Continually adding new links to a network evolves its structure.  The pattern 
of the structure is significantly influenced by the preference of linking.  Commu-
nities emerge when links between nodes within community are denser than the 
links between nodes of different communities.  Discovering communities within 
graph-based social networks and semantic communities within semantic link 
network were studied (Newman 2004; Zhuge 2009). 
     A community tends to be prudent in accepting a member from another com-
munity with a lower weight unless the existing nodes of the community can gain 
weight from the new comer and its community.  The weight here can be under-
stood as a rank like the page rank on hyperlink network.  An extended definition 
will be introduced later.  The following principle describes the tendency of a 
community in deciding whether a node should be accepted or not.  

Principle for Social Linking Rule 7. A new node tends to be accepted by a 
community if 1) its weight is higher than the edge nodes of the community; and, 2) 
it can establish symbiosis with the existing members through introducing flows 
that one (or more) existing member(s) requires (require) with ease and low cost. 

 Accepting a new member can bring some advantages to a community (e.g., 
bring new cooperation and resources) but it may face a risk: new members may 
introduce friends (i.e. neighbours with different ranks and resources from the ex-
isting community) more easily into the community without obeying the rules (or 
making use of the existing rules), therefore changing the structure of the existing 
communities.  More and more diverse nodes can be easily accepted by a newly 
formed community as less resistance comes from the existing members.  A ma-
ture community tends to be more prudent in accepting new members as the dis-
tribution of weights and knowledge structure has reached a stable state, and 
members have to spend more time to know the knowledge structure of the new 
member.   The following principle is inspired from this observation.  

Principle for Social Linking Rule 8. A community with stable symbiotic relation 
tends to be prudent when accepting a new member.   

    The following are some more observations about this principle: 

1. Universities with a long history tend to be more prudent than new universities 
in recruiting faculty members (some universities such as Oxford and Cam-
bridge even do not recruit faculty members every year) and students (some 



universities such as Oxford and Cambridge recruit almost fix number of stu-
dent each year).  

2. Members of a mature community often show less interest in establishing co-
operation with the new comer without any real cooperation for realizing mo-
tivation or socioeconomic benefits due to such aspects as: 1) common 
knowledge, which significantly influences the efficiency and efficacy of co-
operation; 2) similar view of value; and, 3) stable social status.  

3. When recruiting a new faculty member, the existing faculty members are 
prudent in making decisions because they will consider whether the new fac-
ulty member can enhance their strength or not, including ranks and resources 
(e.g. bring more funding and research students).  

4. A mature enterprise often shows prudent in transforming the existing busi-
ness, especially when the existing business is running well, i.e., in a comfort 
zone.   The following chapters on applications will analyse the evolution of 
information system. 

5. A mature research group is prudent in recruiting a new researcher because ex-
isting members have built complement knowledge structure (e.g. some re-
searchers have insights to propose original ideas, some are specializing in 
building models, and some are specializing in experiments) and have been 
working on a long-term research direction.  They usually need to spend time 
to train a new member.  This is why enterprises tend to recruit graduates who 
have placement experience in enterprises. 

Society linking rules concerns fundamental socioeconomic factors including 
motivation, humanity and value, which determine other factors.  Some rules can 
be inducted from data on behaviors.  For example, rules on citation behaviors can 
be got from discovering the frequently occurred patterns on citation network.  In-
corporating social linking rules into the Semantic Link Network enhances its ca-
pacity for analysis and prediction.   

The social linking rules also provide a relational dimension for studying real 
social networks.  In a social network with competition link, more links connected 
to a node may not be a positive contribution to its rank as involving in more 
competitive links puts a heavier cap on the productivity of a node, i.e. the damp-
ing effect on the growth of network (Zhuge 2005).  However, an appropriate 
number of competition links can stimulate nodes to improve the intrinsic produc-
tivity of the nodes through optimizing their internal organization to raise the effi-
ciency of production, improving technology, and creating new products. 

 Ancient Chinese thinker and militarist Sun Tzu created a set of basic rules for 
gaining competitive advantage in competition situation (Sun Tzu on the Art of 
War, 475BC—221BC).  His fundamental idea is that the world is objective, 
things in the world are changing, and strategies should be made to actively create 
conditions for transforming negative factors toward positive factors. The deter-
ministic factors of gaining competitive advantage involve politics, economic sta-
tus, foreign affair, competitive strength (military), and natural condition rather 



than belief.  His “Thirty-Six Stratagems” includes a set of strategies for gaining 
competitive advantage in making military decision, for example: 

1. “Attacking the enemy by passing through a common neighbor”, which sug-
gests that borrowing the resources of ally to attack common enemy.  This is 
similar to “killing someone with a borrowed knife”, which suggests that mak-
ing use of all possible strengths including enemy’s own strength to against the 
enemy.  This is in line with the discussed social linking rule 4. 

2. “Decamping being the best, running away as the best choice”, which suggests 
that retreating and regrouping your strength when your current course of ac-
tion will lead to defeat obviously.  As long as you are not defeated, you still 
have a chance.  

3. “Giving the enemy something to induce him to lose more valuable things”, 
which suggests that baiting someone by making him believe he gains some-
thing or just make him react to it and obtain something valuable from him in 
return. 

4. “Befriending the distant enemy while attacking a nearby enemy”, which indi-
cates that nations that border each other often become enemies (because of 
easy envision, undetermined border, psychological pressure from economic 
and military unbalance, etc.) while nations separated by distance and obsta-
cles make better allies.   This is also in line with the discussed principle for 
social linking rule 4. 

The above strategies emphasize competition while neglecting symbiosis, 
which plays a harmonious role in developing society. 

Traditional studies of physics and computer science are mainly for solving 
scientific problems and computable problems respectively based on logic reason-
ing on facts, but social rules are discovered through non-logic reasoning such as 
inductive reasoning and analogical reasoning on experience (small data), which 
results in interpretations that may not be derived from logic reasoning.   Humans 
usually solve social problems by applying social rules according to their judge-
ments on current situation with bounded rationality.   In some fields such as mili-
tary applications and social system design, data are too small to support statistics-
based decision and verification.  A cyber-physical-socio-relational system oper-
ates with the integration of social rules discovered through relational reasoning 
on bounded realty reflected by small data (facts, relations and situation), statis-
tics-based rules and light logic rules.  Traditional logics-based systems, 
knowledge engineering and statistics-based approaches focus on one aspect re-
spectively. 

Linking and reaction of linking evolve an SLN.  Incorporating the principles 
of social linking rules into an SLN enables its operators (or nodes) to know the 
reactions of a linking operation so as to make foreseeable decision. 



3.4    General Model and Effect of Symbiosis and Competition  

Forming appropriate competition and symbiosis is a fundamental force to drive 
the evolution of society.   Symbiosis and competition enable individuals (or or-
ganizations) to interact with each other through various flows and co-evolve ac-
cording to different strategies, constraints and rules in various spaces.  Symbiosis 
is built with mutual benefit strategies while competition is built with selfish strat-
egies. Symbiotic network provides a mutual benefit context for individuals and 
communities, and competition forces them to adopt more efficient strategies. 

Introducing symbiosis and competition into the Semantic Link Network as 
two special types of semantic link leads to specific emerging effect (Zhuge 
2011):  

The node with richer types of link takes a higher priority to emerge in the 
competition of gaining rank and keeps a stable state in competition and 
symbiosis during the evolution of social network.   

Richer type of link provides more ways to make use of resources.  This effect 
provides more semantics for studying social network, e.g., different ranking ap-
proaches can be created.  It has been verified in text processing applications like 
text summarization (Zhuge, 2016).   

The World Wide Web emerges webpages with the change of the number of 
hyperlinks and the ranks of neighbors as hyperlink does not pass through any 
negative impact.  However, a social network with competition link and symbiotic 
link emerge nodes with positive influence of symbiosis and possible negative in-
fluence of competition.   

Competition leads to the division of resources and people therefore divides 
material flow, money flow, information flow, and knowledge flow within the net-
work into balanced branches, which enable different communities of society to 
develop harmoniously.    

Competition can also form a certain positive influence on the evolution of or-
ganization, e.g., in forcing enterprises to optimize the structure of organization, 
upgrade technology, and transform products to enhance competitive advantages.  
Therefore, calculating the impact of symbiotic link and competition link needs to 
consider not only the external links but also the internal characteristics of nodes.  
Modelling the functions of complex organizations is necessary for interpreting 
why a node links to another node.   

Motivation space, strategy and policy space as well as value space signifi-
cantly influence the behaviors of autonomous nodes, especially for human indi-
viduals or organizations.  Considering these spaces, Cyber-Physical-Social SLN 
(in short CPSoSLN) model can be represented as the following complex form 
based on the representation of SLN: 

 <f: {N, L} ® {Á=<Ã, Â>, M, V, S, P}, O >, where 



1. M is a motivation space that specifies the motivation from multiple dimen-
sions and the rules that guide decisions toward the fulfilment of motivation.  
Any node in N representing a human individual or organization has a map-
ping image in M, which motivates behaviors including decisions of linking 
and processing flows.  

2. V is a value space that reflects the values of nodes calculated according to the 
motivation of differentiating the priority of linking and processing flows. The 
value of an SLN is greater than the sum of the values of its nodes. 

3. S is a space of strategies and policies, represented as an SLN:  <Strategy, L, 
Policy>, where Strategy is a set of high-level plans (each plan can be repre-
sented as an SLN of decisions), L is a set of semantic links between strate-
gies, and Policy is a set of rules for guiding decisions on linking or processing 
flows such that different strategies made under the same policy can be com-
pared in the value space.  

4. P represents the space of evaluating productivities of nodes defined according 
to the principles such that nodes can be distinguished according to the effi-
ciency of producing products or providing services for meeting the needs de-
fined in the motivation space.  

5. f is a function that maps {N, L} into Á, M, V, S and P such that any node in N 
and any link in L has a mapping image in these spaces respectively.  

The SLN can model self-organized cyber-physical-social systems as its nodes 
can be anything (including cyber objects, physical objects, human individuals 
and organizations) and semantic links can be various relations including is-part-
of relation, similar relation, subtype relation, instance relation, cause-effect rela-
tion, implication relation, reference relation and sequential relation (Zhuge 2012).  
Competition and symbiosis are two special types of semantic links that drive the 
evolution of CPSoSLN. 

Motivation has been studied by many psychologists, among which Maslow 
argued that people are motivated by unsatisfied needs of hierarchical structure 
from the most basic to the most complex: 1) physiology, including hunger, thirst, 
sleep, etc.; 2) safety, including security, shelter and health; 3) social, including 
love, friendship, self-esteem, recognition and achievement and 4) self-
actualization (Maslow 1943), which can be regarded as four dimensions of the 
motivation space.   

Chinese ancient philosopher Xi Zhu (1130－1200) early regulated social mo-
tivation from eight levels: 1) study things; 2) reach toward the greatest 
knowledge and understanding; 3) sincerity; 4) righteous; 5) cultivate one’s mo-
rality; 6) keep a family in order; 7) manage state affairs and 8) order the land un-
der heaven.   

Autonomous nodes will decide linking behaviors according to motivation, 
strategy and policy, reflecting values and productivities of nodes.  For modeling 
particular application systems, some of these spaces can be omitted and some 
spaces can be considered.  Value and productivity will be discussed in chapter 6 
in detail. 
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Symbiosis and competition are two dimensions of the motivation space as 
shown in Figure 3.5.  The motivation space, the policy space, the semantic space 
and the network structure jointly determine the behaviors of nodes.   

 
 
 

 

 

 

  

 

 

  

 

Fig. 3.5 The social networking space evolves with a superstructure consisting of semantic space, 
motivation space, value space and productivity space as well as strategy and policy space, 
which can be centralized or decentralized. 

 
 

The social networking space can answer how the nodes are linked so that a 
node knows the external situation when making decisions according to internal 
knowledge.  The semantic space interprets what are the nodes, links, linking rules 
and relational reasoning rules on links, and how implicit links could be derived 
from the existing links, in a light-weight language.  The motivation space inter-
prets why a node links to another node.  In practice, the motivation of a node can 
be measured by mapping its cyber image (e.g., profile) into a point in the motiva-
tion space and comparing it with the mapping image of other nodes within its 
community. 
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3.5 Probabilistic Semantic Link Network 

An SLN can be uncertain due to the following causes:  

1. Changing weights of nodes, which influences their probability of attracting 
new links. 

2. Uncertainty on node.  Nodes (e.g., representing event and emotion) in some 
applications are uncertain.  This requests SLN to reflect and process uncer-
tainty of the existence of nodes. 

3. Uncertainty of belief on semantic link.  Semantic links can be set with uncer-
tainty either by the operators (users) of the socio-relational system or by the 
autonomous nodes of the system. 

4. Uncertainty of reasoning on uncertain semantic link.  Implicit semantic links 
could be predicted with uncertainty through reasoning on uncertain semantic 
links or derived by statistical or analogical reasoning.   

5. Uncertainty of generalization. There are different ways to generalize various 
semantic relations between two nodes, i.e., there may exist multiple corre-
sponding super concepts or categories in the semantic space.  Therefore, a 
general semantic link can belong to different concepts or categories with dif-
ferent probabilities.   

6. Uncertainty of operations.   The operations on nodes and links are uncertain 
for large-scale semantic link network (e.g., adding what kind of node to the 
network or adding what kind of link between two nodes is uncertain).   

     Therefore, the evolution of a large-scale network is uncertain due to the above 
causes.  As the consequence, the probabilities of nodes and links change.  If 
nodes can be explicitly represented (e.g. in form of a vector or a multi-
dimensional space), the probabilities of semantic links can be calculated.  

      A semantic community emerges a common semantics through evolution.  The 
following is an empirical property.  

Property of Uncertain Semantic Linking.  A semantic link chain between two 
nodes renders a direct semantic link between them with a probability.  The more 
semantic chains exist between them the higher the probability.   

This property can be informally proved as follows. 

Proof.  Assume that the given SLN has a set of semantic link chains between 
node A and node B and a set of linking rules that can derive new semantic links 
from the existing semantic links but no direct semantic link between node A and 
node B as shown in Figure 3.6. 

1. Adding more semantic chains between A and B increases the ranks of A and B 
(in terms of the degree of connection), therefore A has a higher probability to 
link to B and B also has a higher probability to link to A according to the pref-
erence principle of self-organized network. 

2. Adding more semantic chains between A and B increases the richness of se-
mantic links to A and B, which increases the two nodes’ probability of partic-



ipating in reasoning with other semantic links within the semantic community 
of A and B.  This results in a high probability of deriving a direct semantic 
link between A and B. 

3. Adding more semantic chains increases the probability of deriving out new 
links between some semantic links of these semantic chains, e.g. deriving 
new links between nodes E, D and C from some semantic links of the seman-
tic chains according to the linking rules of the SLN.   These new links in-
crease the probability of deriving a direct link between A and B. 

4. Adding more semantic chains between A and B increases the probability of 
introducing more flows (material flow, data flow, information flow or 
knowledge flow) through the chain. A flow between A and B indicates a se-
mantic link between A and B because material, data, information and 
knowledge cannot flow between completely isolated nodes.   More flows be-
tween A and B increase the probability of emerging a semantic link between A 
and B. 
 

      

 

 

 

 

 

Fig. 3.6 Derive an implicit semantic link with a probability from semantic chains. 

 

     A Semantic Link Network carrying flow has some specific properties. 

Property of Flow and Semantic Link.  In a probabilistic SLN, a valuable flow 
tends to pass through a semantic link with a higher probability than through an 
unknown link. 

This is because any node sends a valuable flow with a motivation and expects 
an effect (especially obtaining rewards in a certain form, e.g. material, data, in-
formation and knowledge as well as socioeconomic benefits from the receiver or 
the network) otherwise the social system cannot sustainably operate according to 
socioeconomic principles. 

The following lemma can be drawn from the Principle of Social Linking Rule 
3 in a probability space. 

Lemma 3.1.  If there is a semantic link x between node A and node B, and the 
two nodes share some attributes and share the same set of limited resources, x 
implies a competition link between the two nodes with a certain probability. 
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The initial framework of Probabilistic Semantic Link Network P-SLN was 
proposed to represent uncertain semantic link, uncertain reasoning rules, uncer-
tain classification of nodes (resources) and attribute-to-resource rules (Zhuge 
2012).   The idea was applied to some information service applications (Zhuge 
2006, 2007). 

Related work on Probabilistic Semantic Link Network concerns Bayes net-
work and Markov network (Pearl 1985).  As an abstract model, Bayes network 
represents cause-effect relation between variants and cause-effect reasoning.  
Markov Network represents a general dependence relation on a set of random 
variants with Markov property, i.e. memoryless property of stochastic process 
(the conditional probability distribution of future states of the process depends 
only on the present state).  It is able to represent dependence loop but typically 
limited in ability to represent cause-effect relation and reasoning.  Markov logic 
network was proposed by combing first-order logic and Markov Network in a 
single representation (Richardson and Domingos 2006).  The Bayes network and 
Markov Network are limited in ability to model the probabilistic systems with 
diverse semantic links and reasoning on semantic links. 
 
 
3.6 Autonomous Semantic Link Network 
 
A distinguished characteristic of an autonomous SLN is that it contains autono-
mous nodes, which can act with motivations, including: 1) actively processing 
data, information, knowledge and materials; 2) establishing semantic links with 
appropriate nodes for symbiosis or competition; and, 3) transmitting data, infor-
mation, knowledge and materials.  The ability of modelling autonomous nodes 
enhances the ability of SLN in modelling autonomous socio-relational systems. 
Autonomous nodes can transmit various flows through semantic links in sequen-
tial (as depicted in the left-hand side of Figure 3.7) or in parallel (as depicted in 
the right-hand side of Figure 3.7). 
 
 

 

 
 
 
 
 
 
Fig. 3.7 An autonomous node can actively link to other nodes for cooperation 
through transforming input flows into output flows. 
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Autonomous nodes can actively influence SLN through linking to other 
nodes, which evolve communities with basic operations on the network structure, 
including operations on nodes, links and flows.   

Both nodes and links change weights through evolution. Different from the 
calculation of page rank, the weight of a node depends on the following factors:  

1. the number of its semantic links;  
2. the richness of the semantic links; 
3. the weights of its neighbour nodes;  
4. the weights of the semantic links and 
5. the weights of the flows it processes.   

      The weight of a semantic link depends on the weights of the two connected 
nodes and the weight of passing flows. 

An autonomous SLN takes the general framework of SLN with some features 
brought by autonomous nodes: An autonomous node connects other nodes with 
semantic links and transforms input flow into output flow with motivation and its 
mapping image, where the input and the output can be data, information, 
knowledge and materials, t is a function that transforms the input into the output, 
mÎM, vÎV, sÎS and pÎP defined in the SLN model.   

f(n)=<rank, output=t(input), m, v, s, p>. 

The semantic image of a semantic link can be represented as f(l)=<link(n, n’), 
rank>, where link corresponds to a concept in the concept hierarchy Ã and regu-
lated by the rules in the semantic space Â defined in the SLN. 

An autonomous SLN has the following distinguished characteristics: 

1. It models autonomous relational systems.  A node can actively find and coop-
erate with appropriate nodes to evolve the structure and function of the net-
work, i.e. nodes with different functions can be connected to render a complex 
function.  

2. An autonomous SLN evolves with emerging semantic communities, which 
renders the semantics of the network and complex function through semantic 
linking and transforming various flows. 

3. An SLN not only interprets the relation between nodes but also provides a 
context for interpreting why a node links to another node. 

4. Operations of nodes such as join or leave will not only influence the seman-
tics of the network but also the operation of the whole network. 

5. Human individuals, cyber objects and physical objects as nodes can play dif-
ferent roles to form and evolve a human-machine-nature symbiotic network. 

As shown in Figure 3.8, a semantic link connects various nodes in different 
spaces to form a human-machine-nature symbiotic network. A semantic link not 
only connects nodes but also narrows the space of transferring flows (Zhuge and 
Li 2007), which in turn empower the nodes to fulfil social values.  
 
 



 
 
 

 
 
 

 
 
 

 
 

Fig. 3.8 Semantic link and flows through autonomous nodes coordinate nodes in 
different spaces to form a human-machine-nature symbiotic network. 

 
      
     The following property can be drawn from the assumption that nodes process 
flows with a certain motivation. 

Property of Flow.  If there is a flow between two nodes of a Semantic Link Net-
work, there exists a semantic link between the two nodes or there exists a concept 
in the semantic space that indicates a semantic relation between the two nodes. 

     Operations on Semantic Link Network emerge communities that render se-
mantics (Zhuge 2009).  A community with richer semantic links reflects more 
diverse motivation for processing flows.   The following phenomena can be ob-
served:  

1. Knowledge mainly flows and develops within communities with priority. Dif-
ferent communities operate different knowledge systems.  

2. Information flows specific to communities, and different communities (like 
online chat groups) pass through information they are interested in.  

3. Various flows (data flow, information flow, knowledge flow and material 
flow) are dense within community (e.g. city), and a bigger community has 
more and denser flows as the operation and sustainable development of com-
munity requires more and more diverse resources including data, information, 
knowledge and materials. 

Therefore, we have the following property:  

Property of Semantic Community.  A flow operates within a semantic commu-
nity with a higher probability.   

     To a certain extent, competition and symbiosis are for attracting flows and 
managing flows through links rather than just attracting links as did in general 
graph-based social networks.  Autonomous nodes can play different roles in so-
cio-relational systems.  Figure 3.9 shows some basic patterns with two types of 
flow:  one can be material flow (black arrows) and the other can be money flow 
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(yellow arrows).  A complex socio-relational system consists of basic patterns, 
which will be discussed in the application part of this book. 

 
 

 
 

 
 

 
 

 

 
 

Fig. 3.9 Roles of autonomous nodes in the basic patterns of socio-relational sys-
tem. 

 
For a closed system, mass does not disappear according to the principle of 

mass conservation, but the system’s entropy never decreases.  A sustainable so-
cial system should be open and keep a certain difference between nodes so that 
flows can efficiently operate within society.   

When a social system develops towards an advanced stage, material consump-
tion will reach a stable state, but the system will continually increase data, infor-
mation and knowledge to fulfil motivation, otherwise the social system is unable 
to sustainably develop with the limitation of materials.  Therefore, we have the 
following principle.  

Principle of Flow Differentiation.  Total amount of materials processed by a 
sustainable social system will reach a constant while total data, information and 
knowledge as well as services based on them will increase constantly.  

    The following lemma can be drawn from the above principle. 

Lemma 3.2.  Within a sustainable social system, (1) for any node that processes 
materials, the total amount of its input material flows equals to the total amount 
of output material flows pluses the possible storage of the materials within the 
node and (2) the total amount of input material flow of the whole system equals 
to its total amount of output material flow pluses the possible storage of the ma-
terials within the system.    

The input flows come from the environment.  For enterprises, the output flow 
mainly consists of two parts: products used by the system and wastes that return 
to the environment.  This lemma assumes that a sustainable social system gener-

(c) 

(a’) (b’) (c’) (d’) 

(a) (b) (d) 



ates no waste materials.  The storage of materials can be transformed into other 
forms of material or energy for the operations of some nodes such as human in-
dividuals and power plants.   

According to the property of flowing, we have the following lemma. 

Lemma 3.3.  If there is a semantic link between node A and node B, a semantic 
link between node B and node C, and a flow f passing through A, B and C indi-
cates a semantic link between A and C.   

The semantic link between A and C is determined by the relation between flow 
f and the type of semantic link.  The weakest semantic link is just the relation of 
supplying flow f. 

The following property can be drawn in a probabilistic space according to the 
definition of symbiosis.  

Property of symbiosis.  If a semantic link between two nodes introduces a flow 
(including material flow, data flow, information flow and knowledge flow) be-
tween the two nodes, the semantic link implies a symbiotic link between the nodes 
with a certain probability. 

    Traditional semantics modelling approaches including the semantic net, the 
semantic data models and the linked data focus on static relations between static 
concepts.  With the ability of processing data, information, knowledge and mate-
rial flows, an autonomous SLN can better model Cyber-Physical-Social Systems. 
 
 
 
3.7 Spatial-Temporal Semantic Link Network 
 
Things have mapping images linked one another and evolve in mental space, 
some images reflect cyber objects in cyberspace, some reflect productive force, 
productive relations and values in social space, and some reflect physical objects 
in the physical space.   The images evolve with various interactions within or be-
tween spaces. 
     Abstraction of things such as concepts, categories, relations and rules are sta-
ble before they are updated with a transformational evolution of objects.  A spe-
cific relation between two things depends on the statuses of their features during 
a certain phase, and it changes with the change of status, e.g. different stages of 
the lifecycle of an enterprise.  

Specific things like events evolve with time, place and involved people, so re-
lations between events can change prominently with the change of time, place 
and people.  Human individuals change their personal characteristics and social 
features in lifetime so relations on humans also change.  Compared to physical 
entities, artificial systems like information systems need to be updated with the 
development of business and techniques (including the development of chips ac-
cording to Moore’s Law), and therefore relations between systems and humans 
also change.  



Things in different spaces evolve with different rules, for example, Newton 
laws of motion in the physical space and the Moore’s law and Metcalfe’s Law in 
cyberspace. 

Time and space are two dimensions for specifying, distinguishing and man-
aging changing things.  They play an important role in modelling workflow pro-
cesses (Zhuge 2001) and spatial information retrieval (Zhuge 2004). They are al-
so important for applications in prominently changing environments, e.g. the 
evolution of social events, battle field and traffic of city.   

Spatial-temporal SLN is a specialization of SLN by adding spatial dimension 
and time dimension to the model so as to make the model suitable for modelling 
the evolving reality where nodes move in the physical space and evolve with dif-
ferent life spans, some are long like universities while some are short like events, 
and semantics of a semantic links between nodes changes with the change of the 
states of nodes.  

The abstract relations such as cause-effect, farther and son are persistent 
while the relations between specific nodes can be temporal. For example, seman-
tics of the supervisor-of relation between a supervisor and a student changes (in 
terms of the responsibility of supervision) after the student graduates, therefore 
an effect time should be set on the relation between two nodes.   

The base structure of the temporal SLN changes with the change of the effect 
nodes and links, so a historical repository is needed to record historical infor-
mation so as to provide information services related to history.  For example, his-
torical semantic link network of news (with classification of fake news, distorted 
news, incomplete news and authorized news) plays an important role in detecting 
fake news.  

A spatial-temporal SLN specializes SLN from two parts: representation and 
reasoning.  Representation concerns the following two components:  

1. The base network is specialized by representing nodes with an effect duration 
represented as n(space, time=[t, t’]), where space defines the location of node 
n.  It can take a range (longitude=[x, x’], latitude=[y, y’]) for a surface object.  
Some nodes like papers that have no or unknown end time and location is un-
concerned can be represented as n(*, time=[timebegin, *]). If only spatial dimen-
sion or time dimension is concerned, a node can be represented as n(location) 
or n(time: [t, t’]) respectively.  The effect space and temporal duration of a 
specific semantic link depends on the effect space and temporal duration of 
the two nodes it links, represented as a(space, time). 

2. The superstructure is specialized by adding spatial range and temporal dura-
tion.  The semantic space consisting of a network of concepts with effect spa-
tial range and temporal duration as well as rules with effect space and tem-
poral duration, e.g., rules are represented as a×bÞg (space, time).  Other 
spaces also include elements with effect space and temporal duration.  

3. A historical repository that records historically prominent statuses of nodes, 
links, categories and rules, which are useful in predicting and interpreting 
things based on reasoning and summarizing history. 



The spatial-temporal semantic link X(S, T)¾a®Y(S, T) represents that node 
X and node Y take effect at S during T, and the semantic link a is an abstract rela-
tion that takes effect at S during T.  X(S, T)¾a®Y(S, T) = X(S)¾a®Y(S) Ù  
X(T)¾a®Y(T).  

As a special case, the temporal semantic link X[t1,t2]¾a[t3,t4]®Y[t5, t6] repre-
sents that node X(t) and node Y(t) work or take place during time intervals tÎ[t1, 
t2] and tÎ[t5, t6] respectively, and semantic link a takes effect during [t3, t4] when 
max(t1,t5) £t3£t4£ min(t2,t6).  When t4<t (the current time), the semantic link rep-
resents a past relation, and a new relation could be established between X and Y 
during their effect time periods.  More specifically, when the link happens at a 
particular time, a temporal semantic link can be represented as X(t)¾a(t)®Y(t). 

There can be different semantic links within different time intervals, some of 
which can be overlapped while some can be in sequential: X[t1, t2]¾(a[t3, t4], 
b[t7, t8])®Y[t1, t2], where t1£t4£t8£t2.  A sequential link and a co-occurrence link 
can be easily established between two events in an event space with time dimen-
sion.  

A spatial-temporal SLN supports spatial-temporal services, for example, it 
can answer the following question about time: “Who is Dr Shi’s closest friend 
from 1990 to 2000?” (Similar questions can be asked about the best business 
partnership between companies) and “Where did Dr Shi work from 1990 to 
2000?”. It is difficult for an information system to answer this question without 
spatial-temporal information on people because friend relation changes at differ-
ent stages of life and work place may also change.  Different from spatial or tem-
poral databases, the spatial-temporal SLN provides the possibility for deriving 
implicit spatial-temporal link from the current spatial-temporal semantic links 
and linking rules specified in the superstructure. 

A distinguished characteristic of a temporal SLN is that a phase-out node 
does not process any flow, and a phase-out semantic link does not motivate any 
flow. A transitive semantic link will no longer be transitive once it phases out.  
For example, a disappeared symptom should not be the cause of an illness, and a 
living node is unable to build a new friendship link with a phase-out node.  So, 
reasoning rules of an SLN need to be checked to ensure whether they are applied 
to a particular time interval of applications.   

Temporal reasoning mainly takes the following forms: 

1. Reasoning on semantic links with a common effect time on semantic nodes, 
concerning relational reasoning, inductive reasoning and analogical reason-
ing, where reasoning depends on not only reasoning rules on relations but al-
so relations among time intervals (Zhuge 2012).  Relational reasoning takes 
the following form: X[T1]¾a®Y[T2], Y[T2]¾b®Z[T3] Þ X[T1]¾g®Z[T3], 
where g depends on not only a and b based on relational semantics but also 
relations among T1, T2 and T3 based on interval semantics.  The relations can 
be one after another or overlap.  The following is a cause-effect reasoning on 
temporal semantic links: X[t1, t2]¾ce®Y[t3, t4], Y[t3, t4]¾ce®Z[t5, t6] Þ X[t1, 



t2]¾ce®Z[t5, t6], where t2£t3£t4£t5.  It can be used for cause-effect reasoning 
on events. 

2. Predict a future link based on existing links and past links (e.g., using previ-
ous cooperation links to predict a future cooperation link).  The following are 
some patterns for link predictions: 
(1) Induction: X(t1)¾a(t1)®Y(t1), …, X(tk)¾a(tk)®Y(tk) Þ 

X(tk+1)¾a(tk+1)®Y(tk+1). 
(2) Transitivity: {X(ti)¾a(ti)®Y(ti), Y(ti)¾a(ti)®Z(ti) | iÎ[1, k]} Þ 

X(tk+1)¾a(tk+1)®Z(tk+1). 
(3) Consistency on time: X(tk)¾a(tk)®Y(tk) Þ X(tk+1)¾a(tk+1)®Y(tk+1), where tk+1 

is the immediate next time after time tk.   It assumes that a relation be-
tween things is consistent and stable during a period of time.  But, a re-
lation especially social relation often changes after a longer period of 
time, therefore it becomes a historical relation. 

Historical relations interpret the evolution of relations and support reasoning 
on new relations.   For example, a supervise relation between a professor and a 
research student becomes a past relation after the student graduates.  The super-
vise relation becomes a peer relation if the student becomes a researcher. A prob-
able cooperation relation can be derived if they continue to work on the same re-
search direction or related research directions.   

The patterns on rule consistency on time can be derived from the consistency 
on time. 

(1) “X(tk)¾a(tk)®Y(tk), Y(tk)¾a(tk)®Z(tk) Þ X(tk)¾a(tk)®Z(tk)” Þ 
“X(tk+1)¾a(tk+1)®Y(tk+1), Y(tk+1)¾a(tk+1)®Z(tk+1) Þ X(tk+1)¾a(tk+1)®Z(tk+1)”. 

(2) “X(tk)¾a(tk)®Y(tk), Y(tk)¾a(tk)®Z(tk) Þ X(tk)¾a(tk)®Z(tk)” Þ 
“X(tk)¾a(tk)®Y(tk), Y(tk+1)¾a(tk+1)®Z(tk+1) Þ X(tk+1)¾a(tk+1)®Z(tk+1)”. 

Figure 3.10 depicts a spatial-temporal SLN in a space with a time dimension 
and a spatial dimension. A spatial SLN, SLN(S), is the projection of a spatial-
temporal SLN (S, T) onto the spatial dimension to get spatial relations and rea-
soning rules.  A set of spatial relations and reasoning rules were proposed for 
semantic image retrieval (Zhuge 2012).   A temporal SLN, SLN(T), is the projec-
tion of a spatial-temporal SLN(S, T) onto the time dimension to get the temporal 
relations and temporal reasoning rules.   A set of relations between intervals such 
as before, meet, overlap, start, during, end and equal was used for temporal rea-
soning (Vilain and Kautz 1986). 

 
 
 
 
 
 

 



 
 

 

 

 

 

 

 

 
Fig. 3.10 Spatial-temporal SLN(S, T) in a space of spatial dimension and time 

dimension. 
 
 

Space and time provide additional conditions for relational reasoning. Some 
relational reasoning rules do not hold in logic but hold in a spatial-temporal 
space.  For example, the following relational reasoning rule A ¾co-occur¾ B, B 
¾co-occur¾ C Þ A ¾co-occur¾ C does not hold in logic because A ¾co-
occur¾ B, B ¾co-occur¾ C may not take place in the same spatial-temporal 
space, an instance is that person A and person B co-occur in an event and person 
B and person C co-occur in another event.   But, a relational reasoning rule holds 
when the co-occur relations hold in the same spatial-temporal space, full repre-
sentation of the reasoning rule takes the following pattern: A in S ¾co-occur¾ B 
in S, B in S¾co-occur¾ C in S Þ A in S ¾co-occur¾ C in S, where S is a spa-
tial-temporal space.   If all relations and rules of an application are in the same 
space, the space representation can be omitted.  For relations in different spaces, 
some reasoning rules still hold, for example, the following reasoning rules hold: 

Spatial-Temporal Reasoning Rule 1: A in S1 ¾co-occur¾ B in S1, B in S2¾co-
occur¾ C in S2, S1ÍS2 Þ A in S1 ¾co-occur¾ C in S2, where S1ÍS2 means that S1 
is a subspace of S2.   
     This is because S1ÍS2 Þ B in S1 implies B in S2.   It is about co-occurrence 
links so time is omitted.  Similarly, we have the following rule.   
Spatial-Temporal Reasoning Rule 2: A in S1 ¾co-occur¾ B in S1, B in S2¾co-
occur¾ C in S2, S1ÍS, S2ÍS Þ A in S ¾co-occur¾ C in S.   

The significance of rule 2 depends on the scale of S.  For some applications, 
the smaller the better.  Whether spatial-temporal reasoning is useful or not in real 
applications is relevant to space and time such as security, law and military. 
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Conditions can be added to specific semantic links and semantic linking rules 
to reflect the condition of applying semantic links and semantic linking rules.  
This is a reason for having contradict links with different conditions. In uncertain 
applications, a temporal semantic link needs to include a certainty degree cd rep-
resented as X([S1, T1], cd1)¾(a[S2, T2], cd2)®Y([S3, T3], cd3) to reflect the uncertain-
ty of nodes and links.  Integrating spatial-temporal SLN and probabilistic SLN 
enables SLN to model reality with spatial, temporal and probabilistic characteris-
tics.   

From the symbiosis point of view, a friend relation is determined by symbi-
otic link between people (or between organizations).  The more flows a semantic 
link carries the closer the friendship.  A close friendship may not be close any-
more if material flow, data flow, information flow and knowledge flow between 
friends stop.  Therefore, it is necessary to incorporate time duration into the rep-
resentation of flows: flow(type(S, T)), where S represents the space of the flow 
from the source to the destination and T represents the time duration of running 
the flow. 
 
 

3.8 Cyber-Physical-Social Semantic Link Network 
 
There are two views of observing the SLN in Cyber-Physical-Social Space. 

 

3.8.1 A Multi-Space View 

The multi-space view concerns relations between things in the same space (such 
as similar, cause-effect, sub-type and is-part-of) and relations between things in 
different spaces (such as co-occurrence, mapping and influence).   

Figure 3.11 depicts the multi-space view of SLN on enjoying music in Cyber-
Physical Society.  The black lines denote the semantic links between things in the 
same space.  The blue lines denote the semantic links between things in different 
spaces.  The arrows denote mapping from things in cyberspace, physical space 
and social space into their semantic images in mental space.   A music work (e.g. 
music1) is linked to some other music works (e.g. music2 and music3) and the texts 
that introduce its background in cyberspace.  It is often used to render some natu-
ral phenomena (e.g. sounds of wind, thunderstorm, train and airplane) in physical 
space and events (e.g. various ceremonies, military march and sports) in social 
space as a musical work is created with a certain motivation. 

When an experienced people hearing a music work, the semantic images of 
similar music pieces in cyberspace, the semantic images of natural phenomena in 
the physical space that are often commonly recalled, and the semantic images of 
events in social space that often use the similar music works can co-emerge to 
render a complex feeling. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11. A multi-space view of Cyber-Physical-Social SLN on enjoying music. 

 

3.8.2 A Two-Level View 

A Cyber-Physical-Social System can be modelled by a CPSoSLN consisting of a 
base structure and a superstructure as depicted in Figure 3.12.  The base network 
consists of a set of nodes N that can input, process, and then output various flows, 
and a set of semantic links L between nodes.  Some nodes are passive like vari-
ous physical objects, some are machines that provide various services based on 
data, information, knowledge and materials, and some are humans (including in-
dividuals and organizations).  The superstructure consists of a semantic space Á 
that consists of a concept hierarchyÃ, a set of rules Â, a set of theories T, a mo-
tivation space M, a value space V, a strategy and policy space S, and a productivi-
ty space P.  A function f maps the base structure into the superstructure to get the 
semantics of nodes and links and gets theory for processing flows and evaluating 
the quality and value of nodes and links.  A set of operations O for operating and 
maintaining the base structure and the superstructure such as linking nodes, rea-
soning, and processing flows according to the rules.  All components of the mod-
el open to accept new elements.  A CPSoSLN takes the following form: 

<f: {N, L} ® {Á=<Ã,Â, T>, M, V, S, P}, O>.  
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Fig. 3.12 The base network and superstructure of Cyber-Physical-Social SLN. 

 

 In addition to previous definitions, the semantic space Á includes a set of the-
ories T for modeling complex nodes in Cyber-Physical-Social Space and the rela-
tions between link and flow, and between link and superstructure.  Simple nodes 
can be defined byÃ and Â as in SLN while complex nodes need to be modelled 
by a theory in T.   Theories in T can be incomplete or incompatible. 

The semantic link in L integrated with flow z takes the following form: n¾(a, 
z)®n’¾(a’, z’)®n’’, where node n’ inputs flow z from node n through seman-
tic link a and then outputs flow z’ to node n’’ through semantic link a’ after pro-
cessing according to a theory in T, z and z’ can be material flow, data flow, in-
formation flow and knowledge flow when the theory is for processing materials, 
data, information and knowledge, respectively. 

The theory on CPSoSLN concerns the relationship between the base network 
and the superstructure, which influence each other.  The evolution of the base 
network provides the environment for those autonomous nodes to form an initial 
superstructure including semantic space and motivation space.  The initial super-
structure then develops with interactions and influences the development of the 
base structure.  The motivation space in the superstructure determines the behav-
iours of adding a node and linking it (or itself) to another node according to the 
reasoning rules in the semantic space and social linking rules, which support the 
formation of the strategy and policy space.  It is the basis for generating demands 
on data flow, information flow, knowledge flow and material flow between 
nodes. 
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For natural systems, there are different views on the original driving force, in-
cluding evolutionism, idealism and theism.  For societies, there are also different 
views on the original driving forces, including enlightenment and evolution. For 
artificial systems (e.g., World Wide Web), motivation is the original driving 
force to create the initial structure of the base structure (e.g., hyperlink network 
and browser), which evolves and influences the development of the superstruc-
ture consisting of various standards, ontologies, policies and applications on the 
Web.  

Establishing symbiosis between autonomous nodes can increase the density of 
links and flows within a community as well as the quantity and diversity of flows, 
which can further increase the productivity of the autonomous nodes.  The in-
creased productivity leaves more time for the autonomous nodes (humans) to 
think, study and interact with each other, which evolve the superstructure. 

3.9 Mass and Weight in Value Space 

Linking nodes and processing flows are two basic behaviours for meeting the 
motivations of social beings.  A socio-relational system evolves with the co-
evolution of the base network and the superstructure. Autonomous nodes include 
human individuals, organizations and machines. Passive nodes include objects in 
physical space and artefacts in social space such as houses and industrial prod-
ucts.   
     Previous research on network analysis mainly concerns structure such as con-
nectivity, centrality identification and community discovery (Newman 2004; 
Barabási and Albert 1999; Zhuge 2009; Zhuge and Zhang 2010; Zhuge 2012).   
     CPSoSLN concerns not only the semantics of links and nodes but also the 
flows that empower the productivity of individuals and organizations in an evolv-
ing socio-relational system.  The value space in the superstructure evaluates the 
socio-economic values of nodes and links so that operations on links and flows 
can fulfil motivation. 

Within a self-organized network, nodes compete for gaining rank.  One strat-
egy for a node to gain rank is to link it to high-rank nodes just as the preferential 
attachment property that drives the evolution of the World Wide Web.  Nodes 
within a community of a higher mass take higher competitive advantage than the 
individuals within a community of a lower mass.  The above phenomena coin-
cide a social common sense: Your friends define you.  

It is a social characteristic of humans to compete for meeting socioeconomic 
motivations at various levels (Maslow 1943).  The value of an individual in a so-
ciety concerns multiple dimensions, including social dimension and economic 
dimension.  The rank of being linked in the base network reflects the difference 
of a node at one dimension. 

For a society with limited resources, owning resources forms a resource di-
mension to a node.  Therefore, the mass of a node can be defined to measure the 
value of its existence, which depends on the rank and the resources it owns as 



follows, where Rank(ni) denotes the rank of node ni in structure and R(ni) denotes 
the resources (in various spaces) occupied by node ni and v is a function for eval-
uating the value of the node according to two dimensions: the rank of the node 
and the resources that the node owns such that the mass of a node is proportional 
to the value of its rank and the value of the resources it owns, 
Massn(ni)=v(Rank(ni)) if R(ni)=0, and Massn(ni)=v(R(ni)) if Rank(ni)=0: 

Massn(ni) = v(Rank(ni), R(ni)). 

When we use a number within [0, 1] to represent the value of resources and 
the rank of a node, a way to calculate the mass of a node is as follows: Massn(ni)= 
a ´ Rank(ni) + b ´ R(ni), where a, bÎ[0, 1], representing the emphasis on rank 
and resource respectively. 

When resources are regarded as nodes of the network, one node owning a set 
of resources can be regarded as an ownership link between the node and the re-
sources, therefore the resources contribute their ranks of connection to the rank 
of the node. 
     Some communities obtain more resources than others, for example, prosper-
ous research areas like big data and artificial intelligence are attracting more re-
sources (including researchers, funding and students) alongside the growth of the 
network of scientific papers.  Consequently, new thoughts in these areas can be 
more widely propagated in society.   Therefore, individuals in prosperous areas 
take the advantage of obtaining resources on the whole scientific networks within 
the life spans of the research areas. 

An autonomous node processes flows with certain resources. The weight of 
an autonomous node is proportional to its capacity of processing flow (mass) and 
the actual flow it processes, measured as follows, where FlowSet={material flow, 
data flow, information flow, knowledge flow, human flow}, and 
v(node(flow))-v(flow) represents the difference between the value of the flow 
processed by the node and the value of the flow inputting into the node respec-
tively.  
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Autonomous nodes such as enterprises and schools influence their neighbours 

through links and more significantly through flows.  A node with heavier weight 
has a greater influence on its neighbours.  To gain weight, an autonomous node 
can actively select a more appropriate node as neighbour (for symbiosis).  For the 
passive nodes that do not process any flow, the weight of a node is only deter-
mined by its mass, that is Weight(nodei) = Mass(nodei). 

The weight of a network is determined by the weights of its nodes, the num-
ber of links (denoted as |L|) and the number of nodes (denoted as |N|) as follows. 
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The weight of nodes and the weight of network provide the means for measur-

ing change within an evolving CPSoSLN.    

3.10 Relativity of Importance 

In a free competition society, the importance and advantage of individuals or or-
ganization are measured by a uniform matrix, therefore it is rational to assume 
that the importance based on advantage are absolute (Smith 1776).  

Traditional approaches to ranking a social network assign absolute values to 
all nodes of the network like the approaches to ranking Web pages within hyper-
link network (i.e., Page Rank).  Absolute ranking provides a dimension for ob-
servers to know the states through the evolution of social network.  However, the 
absolute approaches are unable to reflect the locality and relativity of importance, 
rendered by the structure of society.   
 
3.10.1 Locality of Importance 
 
A real social network evolves communities owing different resources.  In many 
cases, ranking nodes within community is more significant than ranking nodes 
globally.  Globally unimportant nodes can be important nodes within the com-
munities they belong to.  The following are some instances: (1) The head of a vil-
lage usually has a higher impact on the people of the village than other persons 
with higher ranks in the country; (2) The leader of the student union of a univer-
sity can usually influence the students of the university than staffs of the univer-
sity; (3) For a researcher, knowing top-k highly cited papers on the research topic 
he/she is investigating is more significant than knowing the top-cited papers in 
the field or the whole science.  (4) The key words of a sentence (or a paragraph) 
are more important to rendering its meaning than the top-ranked words within the 
whole text.  Similarly, the key sentences of a section are more important to ren-
dering its meaning than the top-ranked sentences within the whole text.  The lo-
cal importance renders a pattern for representation and understanding (Zhuge 
2016). 

On the other hand, the ranking approach to measuring the global importance 
can be easily abused if it becomes a social criterion.  A node can increase its rank 
by adopting some strategies for increasing the number of links and the links to 
high-rank nodes if linking is cheap enough.   For example, the impact factor of a 
journal can be easily increased if its editors or reviewers request authors to cite 
its previously published papers.   The key is that listing a paper in the reference 
section of a paper is free and easy.  In fact, the impact factor based on citation 
number has been abused in some practices of assessing journals and researchers. 

As an empirical social law, the Goodhart’s law suggests that any observed 
statistical regularity will tend to collapse once pressure is placed on it for control 



purposes (Goodhard 1984).  In other words, a measure ceases to be a good meas-
ure when it becomes a target.  Similarly, Campbell suggested that the more a 
quantitative social indicator is used for social decision-making, the more subject 
it will be to corruption pressures and the more apt it will be to distort and corrupt 
the social processes it is intended to monitor (Campbell 1979).  

Measuring local importance is a way to avoid abusing an absolute measure 
to a certain extent because the ranks are localized within communities with dif-
ferent characteristics and rules.  The smaller a community the less opportunity to 
abuse a local importance because members are more easily to know the seman-
tics of nodes and links, for example, interactions within a small research group 
and a team of software development rely on the contents of work, inspiration and 
contributions to realize group/team goal.  A simple way to calculate the local im-
portance of nodes is to discover the communities within a social network and 
then rank the nodes within each community. 

Semantic link can help remove irrelevant links.  Taking citation for example, 
the impact factor of a journal can be more appropriate if calculation can differen-
tiate various semantics involved in citation, including: 1) self-citation, some self-
citations are necessary as closely related works can help trace the thought of re-
search while some are unnecessary; 2) citation from authors/journals of different 
ranks, the higher and more diverse the better; 3) citation from different countries, 
the more and more diverse the better; 4) citation from different research areas, 
the more and more diverse the better; 5) citation from journals of different 
themes, the more and more diverse the better; and, 6) content of citation, the 
more contribution to the citing work the better.  

Discovering semantic communities is different from discovering communi-
ties on general graph because implicit semantic links could be derived from the 
existing semantic links according to relational reasoning rules and different se-
mantic links may take different priorities.  The diversity of semantic links helps 
emerge the ranks of semantics-rich communities and individuals (i.e. nodes) in 
real social network (Zhuge 2009, 2011). 

The following are some observations on the locality of importance. 

1. Images and words are often organized into an integrated representation (as in 
advertisement and poster) so that people can understand it at a glimpse (due 
to the locality of human sensory organ).  Different components of a represen-
tation play different roles in rendering the semantics of the representation, but 
they are less important in the environment of using many representations. 

2. The meaning of subtitles of a movie are localized to scenes.  The interval be-
tween subtitles can be used to cut clips according to scenes. The sequential 
one-time-play characteristic of movie determines that the memories of movie 
watchers will be shifted quickly from one scene to the next one.  People will 
recall a scene when they read the corresponding subtitle.  Therefore, the im-
portance of words within subtitle is local to scenes.  

3. Words render semantics of the sentences, paragraphs, sections and papers that 
contain them.  The words within a sentence are more important to the sen-
tence that contains them than to other sentences. 



4. Different relations (e.g. sequential relation) between words form different 
representations.  The order of words is restricted by grammar for rendering 
semantics.  Changing the orders of words influences the semantics of repre-
sentation.  The following are examples: (1) “the policeman arrests the thief” 
and “the thief arrests the policeman” render different semantics; (2) “Mark 
met Mary” and “Mary met Mark” render the same semantics; (3) different or-
ders of clauses can render different semantics, e.g. “X because of Y” and “Y 
because of X”, and “X is part of Y” and “Y is part of X”; and, (4) different 
orders of sentences can render different semantics if the concept of one sen-
tence is the basis of understanding the concept of the next sentence. 

5. A sentence contributes to the semantics of the paragraph that contains it to-
gether with other sentences with a certain relation within the paragraph alt-
hough it also contributes to the semantics of other paragraphs.  The sentence 
is more important to the paragraph than the sentences that belong to other 
paragraphs.  

6. Explicit semantic links like cause-effect usually connect sequential semantic 
units (e.g., neighbour clauses or sentences) to render a complete semantics.  
Implicit long semantic links may exist but they connect contents in nearby lo-
cations in mind for better rendering semantics of the whole representation, e.g. 
authors often arrange similar sentences at the beginning and the end of text to 
emphasize the main idea. 

The following properties can be drawn from the above observations: 

Property (on the structure of representation) A set of semantic components orga-
nized by different semantic links renders different semantics that significantly in-
fluence understanding. 

This property indicates that using different orders of words can significantly 
influence the results of retrieving contents from text. These observations show 
that the bag-of-words model disregarding word order is suitable for distinguish-
ing a text from other texts but it is limited in ability to retrieve a language unit 
(e.g. sentence) that renders a certain semantics.  

Property (on direct contribution) A representation mainly contributes to the for-
mation (semantics or importance) of the minimum unit that contains it. 

The semantics of a sentence is rendered by its words and the relations be-
tween words restricted by grammar. The semantics of a paragraph is rendered by 
its sentences and the semantic links between the sentences.  Some semantic links 
like cause-effect link request order between sentences while some semantic links 
like similar-to link do not request order (i.e. the change of order does not signifi-
cantly influence semantics).  The semantics of a larger component like section is 
rendered by the semantics of its paragraphs and the semantic links between the 
paragraphs. Therefore, words need stronger constraints than sentences to render 
semantics, and sentences need stronger constraints than paragraphs to render se-
mantics.  This indicates the following proposition. 



Property A basic representation needs more constraints than a complex repre-
sentation to render semantics. 

      This is because a complex representation renders its semantics through its in-
ternal structure, components and external structure while a basic representation 
like word has no internal structure that renders semantics. The above observa-
tions indicate that the approach to measuring the global importance of a node is 
proportional to the importance of a thing within its minimum organization and 
the importance of the organization. 

A measure of importance is reasonable only when it can uniformly measure 
the components of different scales, which jointly contribute to emerging the 
structure of a complex system (Zhuge 2016).    

 
 
3.10.2 Relativity of Ranking 
 
For an individual in a self-organized society, it is more significant to know which 
one is more important than others when making a decision on linking itself to 
others.  Linking to an appropriate node that can bring more valuable flows or 
chances to fulfil motivation is more significant than linking to a top-linked node 
that has to share time and resources through many links.   So, it is necessary to 
study the relativity of ranking nodes. 

Relative rank. Within a network, if there is a direct link between node A and 
node B, the relative rank of node B to node A denoted as Rank(B to A) is deter-
mined by the absolute ranks of the two nodes, distribution of the ranks through 
links, and the influence of common friends through the link chain as following:  

Rank(B to A) = (1+Com(A, B)) ´ (Rank(B)/L(B))/L(A), where 

1. Rank(B) denotes the absolute rank of node B, which is determined by the 
ranks of its neighbours, and the number and diversity of its links.  It can be 
calculated with reference to the Page Rank of the hyperlink network. 

2. L(B) denotes the number of links that B owns. 
3. L(A) denotes the number of links that A owns. 
4. Com(A, B)  represents the influence from common friends defined as: 2´ 

(1/Length(Path1(A, B)) + … +1/Length(Pathn(A, B))), where n is an integer 
and Length(Pathi(A, B)) denotes the number of links on the ith path from node 
B to node A (i=1, 2, …, n).  If there is no common friend, C(A, B)=0.   

If links have ranks, 1/L(B) and 1/L(A) will be replaced by the rank of the link 
from B’s view and the rank of the link from A’s view. 

According to the above definition, the following lemma can be drawn: 

Lemma 3.4. If there is a direct link between A and B and a direct link between B 
and C but there is no direct link between A and C, then the relative importance of 



C to A, Rank(C to A) < Rank(B to A), and Rank(C to A) = Rank(C to B) ´ Rank(B 
to A) / Rank(B). 

Proof. The given condition indicates that the influence from common friends 
C(C, B)=0 and C(B, A)=0.  According to the definition of relative rank, we have 
the following derivation:  
    Rank(C to A) = (Rank(C)/L(C))/L(A) 
                          = ((Rank(C)/L(C))/L(B)) ´ (Rank(B)/L(B)/ L(A))/Rank(B) 
                          = Rank(C to B) ´ Rank(B to A)/Rank(B). 

The following lemma can be further drawn from the above lemma: 

Lemma 3.5. If there is a direct link between A and B, a direct link between B and 
C, and a direct link between C and D, but there is no direct link between A and D, 
between A and C, and between B and D, then Rank(D to A) < Rank(C to A) < 
Rank(B to A).   

Taking Fig. 3.13 for example, node C is the top-linked node in the network, 
but node B is more important to node A than node C because A and B have more 
direct common friends than A and C do, and B has less links than C to share the 
capacity to contribute the rank of A.  

 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 3.13 Relative importance of nodes. 

 
If the common friends of node A and node B make friends (i.e. building a di-

rect symbiotic link between common friends as the dotted link in the figure), 
node B will become more important to node A because one more symbiotic chain 
is increased, and therefore the rank of node B and the rank of node A will be in-
creased.  This can be represented as the following social rule of linking. 

Social rule of linking through common friend.  The probability of emerging a 
link between two nodes that have a common friend is higher than that between 
those having no common friend.  The probability increases with making more 
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common friends between the two nodes and adding links between their commonly 
linked nodes (i.e. common friends).  

Proof. This rule can be informally proved from the following aspects:  

1. It is reasonable to assume that a node prefers to link to a node that is im-
portant to it with a higher probability. Two nodes (denoted as A and B) having 
a common friend have a higher relative importance to each other than those 
having no common friend according to the definition of relative importance 
of nodes. 

2. Making more common friends between A and B increases the probability of 
emerging a link between A and B because C(A, B) and C(B, A)  in the defini-
tion of relative rank becomes higher, which consequently increases the rela-
tive rank of one to the other. 

3. Adding a new link between two common friends of two nodes (denoted as A 
and B in Fig. 3.13) increases the ranks of the common friends, which contrib-
utes to the increase of the ranks of both A and B.  The increasing ranks of A 
and B increases the probability of attracting new links to enhance the link be-
tween A and B according to the assumption of preferential attachment as-
sumption, i.e. the Matthew effect, which interprets the distribution of ranks 
during the evolution process of self-organized systems such as the World 
Wide Web and citation network. 

The discussed link refers to a kind of friend (or cooperation) relation, which 
can be generalized as a symbiotic relation that brings mutual benefit defined in 
society. Traditional research on the growth of the World Wide Web concerns one 
type of link ¾ hyperlink, which can be regarded as a symbiotic link that brings 
mutual benefit on introducing the flow of clicking webpages.  A community for 
sharing resources (e.g. materials and knowledge) evolves mainly with incorporat-
ing symbiotic link.   A symbiotic community tends to exclude a competitive link 
according to the principles of social linking rules introduced in section 3.3.6. 

Further, a friend link is likely to emerge between two nodes that have been 
linked directly or indirectly, i.e. the following rule of emerging link. 

Social rule of emerging link.  The probability of emerging a new link between a 
pair of nodes that have been linked directly or indirectly is higher than any pair 
of nodes that have not been linked directly or indirectly.  

Proof. This social rule can be proved from the following two cases. Case 1: Two 
nodes are isolated or belong to two communities if they have not been linked di-
rectly or indirectly.  A new link has a higher probability to emerge within a 
community because of sharing resources (usually in form of various flows) and it 
has a higher probability to be requested between two nodes within the same 
community (e.g. the probability of emerging a new citation link within the same 
research area is higher than that between areas).  Case 2: Two nodes that have 
been linked directly or indirectly have higher ranks than other nodes that have 
not been linked directly or indirectly (e.g. they are isolated). The nodes with 



higher ranks have a higher probability to attract new links according to the pref-
erential attachment assumption of the growth of self-organized social network. 

Lemma 3.6. The probability of emerging a new link between two nodes that have 
been linked directly or indirectly with more links is higher than that of those with 
less links. 

Proof. More links between the two nodes increase their ranks, which in turn in-
creases the probability of attracting a new link according to the preferential at-
tachment assumption of the growth of self-organized social network. 

    Then, the following lemma can be drawn. 

Lemma 3.7.  In a growing self-organized network, the probability of emerging a 
new link between two nodes with a common friend (node) is higher than those 
without a common friend. 

Experiment. The coauthor network of scientific papers is a growing self-
organized network. A coauthor network on 1812 papers with 2895 authors pub-
lished in the Artificial Intelligence journal was constructed.  Observing its evolu-
tion from 1991 to 2011 and from 2012 to 2018 reaches the following results that 
support the above rules: 

1. There are 3912 pair of authors who satisfy A ¾coauthor¾B, 
B¾coauthor¾C and there is no cooperation link between A and C during the 
period [1996, 2011], that is, B is the common friend of A and C. There are 19 
coauthor links A¾coauthor¾C during [2012, 2018], the probability is about 
0.49%.   

2. There are 2134 pair of authors who satisfy A ¾coauthor¾B, 
B¾coauthor¾C and A¾coauthor¾C during [1996, 2011].  There are 71 
coauthor links A¾coauthor¾C established during [2012, 2018]. The proba-
bility is about 3.3%, which is 6.7 times higher than case 1. This shows that 
new links tend to be established between nodes with existing links, and direct 
link plays much more important role than indirect link in attracting new link. 

3. There are 1544 pair of authors who satisfy A ¾coauthor¾B, 
B¾coauthor¾C, C¾coauthor¾D, and A¾coauthor¾D during [1996, 
2011]. There are 48 coauthor links A¾coauthor¾D established during 
[2012, 2018], the probability is about 3.1%, which is similar to case 2 and 
much higher than case 1.  This further confirms the result of case 2, and that 
a shorter link chain plays more important role than a long link chain in at-
tracting new link. 

4. There are 2044868 pairs of authors who have no coauthor link and there is no 
indirect coauthor link between them during [1996, 2011]. There are 83 co-
author links established during [2012, 2018], the probability is 0.004%.  Case 
1 is about 128 times higher than case 4, which shows that common friends of 
two nodes can help attract direct link. 
 
The above observation also shows the following propositions: 



Probabilistic rule for reasoning on semantic links. The probability of reason-
ing “A ¾coauthor¾B, B¾coauthor¾C, C¾coauthor¾D Þ 
A¾coauthor¾D” is lower than the probability of reasoning 
“A ¾coauthor¾B, B¾coauthor¾C Þ A¾coauthor¾C”. 

Proposition of cooperation.  Cooperation mainly carries out within a connected 
semantic link network. 

A connected semantic link network is called the third normal form of SLN 
(Zhuge 2012).   

Interactions in cyberspace, physical space and social space are the basis of es-
tablishing semantic links, which form semantic communities.   They carry mate-
rial flow, data flow, information flow and knowledge flow with motivations from 
high level to low level at the motivation hierarchy: motivation for knowledge > 
motivation for information > motivation for data > motivation for materials.  Dif-
ferent from material flow, data flow and information flow, knowledge flow has a 
community characteristic: knowledge is mainly shared and developed within a 
community.  Coauthor links on publications and citation links between publica-
tions form and evolve scientific knowledge flows within scientific communities. 
Teacher-student relation also carries knowledge flows about learning subjects.  
Different motivations and knowledge flows evolve different communities.  The 
following proposition reflects the relation between knowledge and semantic link: 

Proposition of knowledge flow through semantic link.  Knowledge tends to 
flow within a semantic community. 

Within a community, one semantic link can play more important role than the 
other.   For example, kinship relation plays a more important role than marriage 
relation in family (especially in some eastern countries).   Figure 3.14 shows a 
basic community: a family of three persons.  When node C is young, C is more 
important to node A than node B, and C is also more important to B than A be-
cause C has a kinship link to both A and B and economically depends on them 
but there is only one marriage link (no kinship link) between A and B.  When C 
has a new family as shown in the dotted links, it becomes less important to A and 
B because it does not economically depend on A and B anymore and distributes 
its importance to the new family.   

Within the base network of SLN, calculating the relative importance Rank(B 
to A)= (1+C(A, B)) ´ (Rank(B)/L(B))/L(A) needs to consider the characteristics of 
semantic links: Calculating C(A, B), Rank(B), L(B) and L(A) according to the 
number of semantic links, the strengths of different semantic links, the richness 
of semantic links between nodes, and the potential links that can be derived from 
the existing links.   
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

Fig. 3.14 Relative importance within Semantic Link Network. 
 
 

With regard to Figure 3.14, node A and node B play a more important role in a 
basic community (family) in term of richness of links (Zhuge, 2011), which is 
reasonable in terms of economic role, daily life responsibility and role in society. 

 
 

 3.10.3 Relative Weight 
 
The importance of a node within a social network also depends on the ability and 
added value of processing flows in addition to its ranks on links.  For example, 
the value of a manufacturer mainly depends on the way to processing material 
flow and the value of a university mainly depends on student flow (carrying so-
cioeconomic values) and knowledge flow it involves (contribution to the devel-
opment of knowledge).   

If there are flows from node B to node A of social network, the relative im-
portance of B to A depends on the weight of B and the value gained by A through 
processing flows from B to A (denoted as B®A) as follows: 
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3.10.4 Energy of Change 
 

The evolution of a society accompanies the evolution of communities with grow-
ing, static or shrinking number of nodes and links.  A current small community 
(e.g. a promising research community) can grow faster than a big community 
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driven by motivation (e.g. peer esteem).  A fast growing community can also at-
tract new links in addition to the weights of nodes and density of connections.  
The growing rate can be reflected as: (number of new nodes + number of new 
links) / (total number of nodes + total number of links).  A fast growing commu-
nity gives individuals a better expectation than a static community and a shrink-
ing community because growing can attract more interests of individuals.  In a 
self-organized society, a rational investment concerns more long-term benefit ra-
ther than the existing benefit, just as investing stock market.  The following 
proposition can be drawn from the above discussion: 

Proposition of community growth. For two communities A and B of the same 
weight in a self-organized society, if A grows at a faster rate than B, A has a 
higher probability than B in attracting new nodes and links. 

There are some social interests (including fulfilling a certain level of motiva-
tion) behind the phenomenon of growth.  A fast growing community can attract 
more resources brought by new nodes, which support activities of nodes to drive 
the evolution of the community.  However, the growth rate will become flat with 
the expansion of the size of the community due to some constraints such as the 
limitation of total resources (e.g. population), the resources (materials) in society 
and competition with other communities, especially the emerging fast growing 
communities. The constraints can be regarded as a damping effect (Zhuge 2005).  
For the same reason, a shrinking community has a lower probability than a grow-
ing community in attracting new nodes and links. 

A prominently evolving network shows characteristics different from a static 
network. A node gains a kind of momentum when changing its weight.  The mo-
mentum is a function in proportional to its weight and the rate of changing 
weight.   

In a prominently evolving community, the rank of a node during a time inter-
val is a function in proportional to the following factors:  

1. Current number of neighbor nodes. 
2. Current ranks of neighbor nodes.  
3. Richness of semantic links that connect it to its neighbors. 
4. Rate of changing the number of the neighbor nodes. 
5. Rate of changing the ranks of the neighbor nodes.   

In cyberspace, an individual can be well-known within a short period of time 
if its neighbors grow quickly.  The concept of social energy was defined as the 
number of individuals who have changed their communities and the total number 
of individuals in a society (Zhuge 2011).  An intuitive interpretation is that a so-
ciety with a higher socio energy has a higher probability to transform it from one 
state into another state. 

The following proposition describes the energy of an evolving community.  

Energy of evolving community. The energy of an evolving community is a func-
tion EC(Weight, rate) in proportional to its Weight and the rate of change such 
that EC(Weight, rate) ³ EC(Weight’, rate’) if Weight ³ Weight’ and rate ³ rate’. 



      A community with a higher energy can attract new nodes and links with a 
higher probability than a community with a lower energy.  Therefore, the com-
munity with a higher energy gains competitive advantages and influences interac-
tions between communities through co-evolution.  

 
 
 
3.11 Evolving Social-Relational System through Establishing 
Symbiosis among Understanding, Learning, Modeling and 
Construction 

 
 
SLN is an open model that reflects the observed cyber-physical-social system 
based on existing knowledge including theories, models, rules and experience as 
well as insightful thinking, which is generated through learning, understanding 
and thinking.  It evolves with the evolution of the relations between understand-
ing, learning, modelling and construction. 
 
 
3.11.1 General Architecture 
 
The general architecture for developing a socio-relational system based on the 
SLN model is depicted in Figure 3.15.  
     SLN instances are constructed for supporting various socio-relational systems 
through establishing symbiosis among various behaviours of learning knowledge, 
contributing knowledge, understanding reality, observing and modelling the ob-
served system, checking consistency between the model and existing knowledge, 
and interpreting the instances based on the model and existing knowledge.  As 
the consequence, the observed system evolves the cyber-physical-social reality. 

The SLN model evolves with incorporating more types of links and enriching 
the semantic space, the motivation space, the value space, and the strategy and 
policy space along with the deepening of understanding reality. 

There are two approaches to constructing the instances of the SLN for appli-
cations: human construction and automatic construction. Human construction re-
lies on the understanding of domain SLN and the experience of constructing SLN. 
Automatic construction of SLN is based on two approaches: machine learning 
from data and discovering patterns in various data through generalization with 
insight, for example, the discovery of cause-effect relation in scientific paper 
(Cao, et al. 2018).    

Deep learning provides a tool for discovering explicit and simple links on da-
ta through training.  It creates a paradigm for solving problems based on data and 
training process.  However, it has the following limitations: (1) It mainly focuses 
on minimizing the difference between the result and the target while neglecting 
the complexity so a deep learning model usually contains a big number of pa-
rameters, which requests a powerful computer to operate.  (2) It lacks the abilities 



of interpreting and controlling problem-solving process.  That is, deep learning 
with data can find some explicit and simple links in data but it is limited in ability 
to interpret various semantic links.  A system that requires high reliability faces 
risk if it is based on a black box algorithm.  (3) It is limited in ability to find im-
plicit links and social linking rules, which need knowledge, insight and reasoning 
to discover.  (4) It is unable to create the semantic space, the motivation space, 
the value space and the policy and policy space for semantic linking without par-
ticipation of humans as the work needs knowledge, methods and insight beyond 
data.   (5) Deep learning does not follow traditional scientific paradigms, which 
can help train and promote insight in problem domain, inspire thinking to take a 
further step toward the understanding of reality, learn knowledge and develop 
theories to share with others for solving problems in other fields. 

 
 
 
 

 
 

 
 
 
 
 
 

 
 
  
 
 
 
 
 
 

 
 

Fig. 3.15 General architecture for creating and evolving a socio-relational system 
through modelling and automatic construction based on pattern discovery and 

learning. 
 
  
     It is significant to integrate the pattern-based approach and the deep-learning-
based approach for discovering semantic links.   A result of deep learning can 
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provide indicators of possible semantic links for social relational systems (or 
humans) to complete the patterns obtained through reasoning. 

Compared with traditional data-based information systems including tradi-
tional database systems, information retrieval systems (including search engines), 
or data-based QA systems, an advantage of the SLN-based social-relational sys-
tem is that it can answer users’ questions about what, where, when, why and how 
and interpret answers according to SLN.  CPSoSLN can further answer questions 
and interpret answers according to laws and principles in cyberspace, physical 
space and social space. 
 
 
3.11.2 Application: Summarization based on Semantic Link Network 
 
Summarization is to generate a short version from a source, usually in form of 
text.  Solutions include extractive approaches that compose a summary by rank-
ing and selecting sentences within texts and the abstractive approaches that com-
pose a summary by generating and composing new sentences.  A multi-
dimensional classification space was used to summarize various summarization 
methods (Zhuge 2016).   In general, traditional summarization approaches are 
closed algorithms that transform a source into a summary. 
     Summarization research needs to be based on some basic assumptions, which 
are neglected in previous research.   

Assumptions of summarization:  

1. The community of practice where the source is created and shared satisfies 
with its quality.  This assumption excludes extra jobs such as checking gram-
mar errors and representation weakness. 

2. The author(s) of the source representation and the reader(s) of the summary 
are at the same cognitive level.  This assumption ensures the consistency be-
tween the cognitive level of the author and that of the reader. 

3. The source consists of relatively independent components, which are also 
representations in the same language as the source.   This assumption en-
sures the consistency between the source and summary. 

4. The meaning of a representation is rendered by its components and relations 
between them.   This assumption provides a reason for generating a summary 
by composing components of representation. 

5. The components of a representation have differences in rendering its meaning.  
This assumption provides a reason for the summarization approaches based 
on ranking components and composing components with high ranks. 

6. The source has a core meaning rendered by a set of representations and the 
semantic links between them.   This assumption provides the feasibility of 
summarizing the source.  If a source has multiple core meanings (e.g., in mul-
ti-document summarization), there should have semantic links between them, 
which render a concept at a higher abstraction level.  

7. Authors spend more time to use more representations to render the core 
meaning.  This assumption provides a reason for summarizing the source by 



ranking and selecting more important representations from author’s point of 
view, and then composing them through semantic links. 

 
The above assumption provides the basis for studying summarization meth-

ods.  The following property can be derived from the above assumption. 

Property of core representation.  The highlighted representation (including ti-
tles, keywords, bold front, caption of figures and capital letters), frequently oc-
curred representations and representations highly connected by semantic links 
indicate the core meaning.  

The basic representations are words, which have different parts of speech.  
Nouns, verbs and adjectives play a more important role in rendering meaning 
than other parts of speech because they directly reflect realty: nouns represent ob-
jects in cyberspace, physical space and social space, verbs represent actions, and 
adjectives represent features and extents.    

The experience of reading indicates that nouns, verbs and adjectives attract 
more attentions of readers than other parts of speech.    
Experiment. To further know the weights of different parts of speech, a small-
scale experiment (ten people read ten one-page essays with an eye tracker) was 
carried out by tracing the movement of eyes on words.  The following is the ex-
periment result:  

1. Total nouns, verbs and adjectives / total words = 64.4%; this reflects a char-
acteristic of representation. 

2. Total notice words / total words = 78.9%; this reflects that the commonality 
between readers and authors is high ¾ readers concern most words presented 
by authors to understand the presentation. 

3. Nouns, verbs and adjectives of total notice words / total notice words =72.2%; 
and nouns, verbs and adjectives above average notice time / noticed words = 
78.2%.  This reflects a characteristic of parts of speech from readers ¾ most 
of the noticed words are nouns, verbs and adjectives.  

4. Total nouns above average notice time / notice nouns = 38.5%; total verbs 
above average noticed time / notice verbs = 19.2%, and total adjectives above 
average notice time / noticed adjectives = 20.5%. This reflects that nouns at-
tract more notice than verbs and adjectives. 

It is rational to assume that the notice time represents reader’s interest. There-
fore, nouns and verbs represent the core meaning of text and adjectives empha-
size the meaning. Although nouns and noun phrases have been used as key words, 
the above experiment provides an evidence for extracting key words from texts.  
The following characteristic can be reached from the above discussion. 

Characteristic of Part of Speech.  Nouns, adjectives and verbs of a sentence 
represent its core meaning. 

As a text consists of sentences, the core meaning of a text is rendered by 
nouns, adjectives and verbs.  This characteristic can be further verified by detect-
ing most attended words through tracking eye movements. 



A semantic link network of words can be extracted from text to render the 
core semantics of text by mapping sentences into semantic links (nouns are as 
nodes, adjectives represent the specialization between concepts indicated by 
nouns and verbs are as links).  A text summarization approach can be developed 
by ranking words and links on the network, selecting sentences based on the 
ranks of the contained words, and composing sentences into summary with keep-
ing coherence between sentences (by increasing the rank of the words that have 
semantic links to the selected sentences).   

Further, the semantic link network of different granularities of representations 
(including phrases, sentences and paragraphs) can be extracted from text to rep-
resent the semantics of text through discovering the semantic links between these 
representations on the basis of finding the patterns of representing various rela-
tions between representations, e.g., “x is a y”, “x is a kind of y” and “x is a part of 
y”. 

One phenomenon is that authors tend to use most important words in the be-
ginning of a text to draw readers’ attention and to remind readers of the whole 
story in the end.  Scientific papers begin with abstract and introduction, which 
state the background, problem, the significance of the problem, the research 
method, result and related work, and they end with conclusion that emphasises 
the result and innovation points.   News normally begins with summarization of 
the event including time, place, people and facts within the first paragraph (or 
within the first sentence in short news).  Search engines usually display the first 
sentences of webpages as introductions.  This is in line with the heuristic peak–
end rule in psychology (Fredrickson and Kahneman 1993): people judge an expe-
rience largely based on the most intense point (i.e. the peak) and at the end point.  
This rule has been verified in many empirical applications although the cause is 
unclear.   For computing applications, how to define the peak point is the key as 
different individuals with different knowledge structures have different interests. 

The observation of representing and understanding text indicates the follow-
ing rule.  

Beginning-Peak-End Rule.  The core of a representation is mainly rendered by 
the representation components in the beginning, the peak part where components 
are highlighted, and the end. 

The cost (time used for understanding a representation) dimension and inten-
sity (in term of connection to other representations) dimension were used to clas-
sify representations (e.g., sentences and paragraphs) (Zhuge 2016).  Herein, the 
part-of-speech rule, the beginning-peak-end rule and the intensity (the connec-
tivity of words) dimension provide a three-dimensional space for selecting key 
words from the words of a set of texts as shown in Figure 3.16.    

A phenomenon observed from the experiment is that readers tend to spent 
more time on reading the beginning but they pay more attention to the ending 
when writing summaries immediately after reading.  An interpretation is that 
readers need time to build the semantic images about the content in short-term 
memories through retrieving relevant semantic images in the long-term memory 
when reading the beginning, and then they can spend less time to extend the se-



mantic images in short-term memories.   They write according to the semantic 
images in short-term memory after finishing reading when the ending is more 
impressive than the beginning in short-term memory.   

Research on summarizing scientific papers has verified that the composition 
of representation components (especially sentences) through semantic links (such 
as is-part-of, similar-to and cause-effect) plays an important role in representing 
and understanding texts (Zhuge 2016; Sun and Zhuge 2018; Cao, et al. 2018).  
The semantic link networks of representations (i.e., representation components) 
of different levels provide a near decomposable structure for emerging semantics 
at a higher level from the semantic link network of representation components at 
a lower level.  For text applications, the semantic link network of words emerges 
the semantics of sentences, and the semantic link network of sentences emerges 
the semantics of paragraphs. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.16 Dimensions for identifying core words. 
 
 
Summarization can be generalized as a function S that transforms a document 

D composed by a set of language representations (or called semantic nodes) N, a 
set of semantic links L and a relational reasoning rule set R into a document d 
composed by a smaller set of representations N’, a smaller set of semantic links L’ 
and a smaller set of relational reasoning rules R’, represented as follows: 

S: D(N, L, R) ® d(N’, L’, R’), such that:  

1. S(N)=N’ according to a ranking algorithm on N based on L and R, and for any 
n’ÎN’: (1) there exists an nÎN, S(n)=n’ or n and n’ correspond to a common 
concept within the concept hierarchy (e.g., S(n) is the synonym of n), and (2) 

Part-of-speech 

Location Beginning Peak End 

Noun 

Verb 

Adjective 

Words 

Intensity 



|N’|<|N|, i.e., the number of language representations in N’ is less than that in 
N.  

2. S(L)=L’, L’ÌL, and any two representations in N’ are linked by a semantic 
link l in L’. 

3. S(R)=R’, R’ÌR, and all links derived from R’ are in L’. 
4. Representations of N’ correspond to top-|N’| ranked representations in N. 

      S(N) selects the important representations connected by S(L) based on S(R) to 
render the semantics of the summary. 
      A summarization system carries out with the evolution of the following key 
elements:  

1. Requirement, including the scale of summary for a general summarization or 
a question for a question-based summarization. 

2. Semantic links selected for composing a summary.  Different applications (or 
users) focus on different semantic links, e.g., cause-effect relation plays an 
important role in scientific documents and query applications. 

3. Rules, which are applied to deriving implicit or missing semantic links from 
the selected semantic links.   

4. Mapping method, which determines the mapping from D into d according to 
the characteristics of D (or types of D such as news, scientific papers, books, 
websites and movies) and the requirements of queries (e.g., texts, slides and 
posters). 

The key of a SLN-based summarization approach is to rank semantic links for 
selecting the most important semantic links required in summary and ranking ap-
propriate representation components (such as sentences) connected by the seman-
tic links as in traditional extractive summarization approaches.   

The criterion for selecting semantic links depends on the following aspects:  

1. Contribution of a semantic link to the content, measured by: 
a) the frequency of the semantic link occurred in the whole SLN of the 

source;  
b) the ranks of the neighbour semantic links; and,  
c) the ranks of the representations (nodes) connected by the semantic link. 

2. Connectivity of semantic link network.  A connected semantic link network of 
representations can better render a core concept than isolated representations 
do.  Connectivity is a factor that leads to a better coherence and readability 
of a representation.   

3. Density of semantic link network.  A connected semantic link network forms 
semantic communities (Zhuge 2009).  A larger semantic community with 
denser semantic links has a higher weight than a smaller semantic community 
with sparse semantic links.  This is based on the cost assumption that author 
spends more time on representing more important concepts. 

The theory of SLN provides the basis for making a summarization. A set of 
normal forms of SLN was proposed for regulating different patterns of semantic 
link network (Zhuge 2012).  Text summarization can be regarded as a task of 



finding the minimum subgraph that contains high-rank nodes and satisfies the 4th 
Normal Form SLN from the whole SLN on the source.  

The following is a general SLN-based summarization solution, which is suita-
ble for both single source and multiple sources:  

1. Discover semantic links within the given source. 
2. Construct semantic link network according to the semantic links. 
3. Derive implicit semantic links from reasoning rules on the semantic links. 
4. Discover semantic communities within the semantic link network. 
5. Select the semantic community to represent the source according to the rank 

of the community, which is proportional to: (a) the ranks of the nodes of the 
community; (b) the diversity of semantic links; (c) the density of semantic 
links; and, (d) total contributions of semantic links within the semantic com-
munity. 

6. Use the selected semantic community to compose the summary. 

The traditional summarization approaches (including multi-document summa-
rization approaches and single-document summarization approaches) focus on 
single theme (core) represented by representation components (especially sen-
tences) rather than relations. Therefore, traditional summarization approaches 
are limited in ability to generate a summary that covers multiple related themes, 
which is often requested by multi-document summarization.  

To enable a summarization approach to generating a summary that coherently 
covers multiple related themes, semantic links (e.g., citation link) between 
themes need to be processed by a summarization approach and important seman-
tic links should be selected and retained in the generated summary in addition to 
representation component such as words and sentences.   A summarization with 
cross-area semantic link is useful in summarizing cross-area research, e.g., re-
search cross “artificial intelligence”, “natural language processing” and “software 
engineering”. 

For summarizing scientific papers on multiple themes, citation links connect 
the semantic link network of one paper to the semantic link network of another 
paper, forming a semantic link network on all papers to be summarized.  

From a bigger picture, summarization is to establish symbiosis among learn-
ing various relations and rules in cyber-physical-social space, understanding rela-
tions (within or between documents) and rules in different spaces, modelling re-
ality represented in the sources, and constructing summaries for humans to read 
or for applications to further process.  Without understanding various relations 
and rules, it is hard for a summarization algorithm to generate a satisfied sum-
mary. 

The above discussion indicates a Rule-Based Summarization RBS. Its general 
architecture is depicted in Figure 3.17.   

The Open Link Set contains semantic links discovered from resources (e.g., 
texts), between resources (or citation links), and defined by humans. Different 
types of sources hold different types of semantic links, for example, cause-effect 
link plays a more important role in rendering the contents of scientific papers 
than the contents of news.  Citation links between scientific papers provide a con-



text for a paper to be summarized.  The citation of a paper constructs its exten-
sion.  Pattern-based approaches and machine-learning approaches can be used to 
discover semantic links.  Humans can also define new semantic links according 
to the characteristics of domain. 

The Open Rule Base contains rules and strategies defined through learning 
from experience and defined by humans (users of the system) who have experi-
ence of writing summaries.  Different from traditional rule base systems, it opens 
to incorporating new rules from humans and automatic discovery systems. 

User profile can be default (for a general summarization), a set or a semantic 
link network of representations (for query-based summarization), and a template 
of representations (for professional summarization).  Professional knowledge 
significantly influences the focus of core. For example, reading the same novel, 
architects concern the contents on buildings, doctors concern the contents on 
health, and politicians concern the contents on policies.  The relation between the 
professions of users and language components can guide a general summarizer 
to generate summaries that suit users. 

 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 

 
 

Fig. 3.17 General architecture for SLN-based summarization. 
 
 

The concept hierarchy of the Semantic Link Network determines the cognitive 
level of query and the cognitive level of representations. Receiving a query, the 
query-based summarization mechanism determines the concepts within the query, 
selects components according to the concepts and then maps representation com-
ponents into the summary at the cognitive level of the query.  As the SLN-based 
summarization method is based on the semantic links between representations, it 
is suitable for summarizing multimedia sources. 
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3.11.3 Recommending research collaborator 
Recommending an appropriate research collaborator is to select two researchers 
and establish a collaboration link between them according to existing data for in-
spiring thinking and promoting the productivity of their research.  Scientific, 
technical and social factors influence a successful research collaboration, e.g. (1) 
research area (some areas like bioengineering usually need more teamwork than 
others like mathematics), (2) organizations of researchers (companies usually 
need more teamwork than universities), (3) distance and communication between 
researchers (long-distance communication was greatly improved before and after 
the widely use of the Internet), (4) gender of researchers (male researchers are 
more in population and more active in collaboration than female researchers in 
some countries), (5) policy and (6) culture.   
     This case study is based on data (scientific papers) and analysis of various 
semantic links and rules on the data.   
     Scientific papers within a research area contain the following semantic links 
about semantic nodes including papers, researchers and organizations: 

1. Cite link between papers.  It indicates a relevancy between the contents of 
papers and knowledge flow between researchers through reading, thinking 
and writing (Zhuge 2006, 2016).  Constant publication of papers constructs an 
evolving citation network on papers.  The link is explicit and fix once the pa-
pers are published.  A cite link can be represented as a¾cite(x)®b, where a 
and b are papers and x denotes a representation (a sentence or several sen-
tences) of a that cites b, i.e., there exists a semantic link: x ¾is-part-of®a, 
and b semantically includes x, i.e., x is a summary of b or a part of b about x.  
Multiple papers can cite one paper on either the same content or different 
contents. 

2. Author-of link between author and paper.  A researcher can be the author of 
one paper or many papers, and a paper can have one author or multiple au-
thors (co-authors).  The link is explicit and fix once a paper is published. 

3. Work-for link between researchers and the organization they work for.  The 
link is explicit and fix when papers are published.  It can be generally repre-
sented as X ¾work-for® Y, where X denotes researchers and Y denotes an 
organization that X is affiliated. As a researcher can work for multiple organi-
zations at different stages, a work-for link is bound onto a paper in this appli-
cation.  So, the semantic link can be specialized as X ¾work-for(p)® Y, 
where p denotes a variable that specializes the semantic link for reflecting one 
paper or a set of papers of X. 

4. Similar-to link between papers on the same research theme and between re-
search interests of researchers. This link is implicit and has a degree of simi-
larity. 

5. Complement link between research interests, which is implicit and has a de-
gree of complement. 



6. Co-author link between authors on a paper, which is explicit and fix once the 
paper is published.  The link can be represented as X¾co-author(p)®Y, 
where X and Y represent researchers and p represents a paper of X and Y.  

Constant publication of papers evolves a semantic link network consisting of 
the above semantic links and semantic nodes following not only scientific rules 
but also social rules. The following reasoning rules enable one semantic link to 
be derived from other semantic links, where X, Y and Z represent researchers and 
a, b, c and p represent papers: 

Reasoning Rule 1: X ¾author-of®a, Y¾author-of®a Þ X¾co-author(a) 
®Y.  

Reasoning Rule 2: X ¾work-for(a)® Y, Z ¾work-for(a)® Y Þ X ¾co-
author(a)® Z. 

Reasoning Rule 3: a ¾cite(x)®b, c¾cite(x)®b Þ a¾similar-to®c.  The 
similarity dues to x. 

Reasoning Rule 4: a¾cite(x)®f, f¾cite(x)®c Þ a¾similar-to®c.  The 
similarity dues to x. 

Reasoning Rule 5: a¾cite(x)®b, b¾cite(x)®c Þ c¾flow(x)®a, i.e., a 
knowledge flow on x from c to a. 

Generally, any pair of researchers has a certain probability to cooperate. Con-
stant publication of papers emerges various patterns and characteristics of re-
search, including research theme and research interests.  Semantic links, rules, 
common (or complement interests) and experience of cooperation influence the 
probability of cooperation between researchers. 

Social rules influence the evolution and therefore influence the probability of 
collaboration, for example, two researchers have a higher probability to cooper-
ate if they have more common research interests because similarity between in-
terests provides common languages and common cognitive level for cooperation.  
For cross-area research, it also increases the probability of cooperation if re-
searchers have overlapped common interests. 

The keywords of all papers written by a researcher can reflect his/her research 
interest.  Therefore, a higher similarity between research interests of two re-
searchers indicates a higher probability of cooperation between them. 

The research interest of a researcher can be represented as a mapping from a 
set of Researchers into a set of Keywords, K: Researchers®Keywords, such that 
for any researcher X in Researchers, there is a corresponding set of Words, a sub-
set of Keywords, extracted from X’s papers, denoted as K(X(t))=Words(X(t)), 
where t represents the time period for keeping the research interest. A similar-to 
link can be established between researcher X and researcher Y when 
K(X(t))ÇK(Y(t))/K(X(t))ÈK(Y(t)) > 0 with a certain similarity degree. This rule 
can be represented as the following probabilistic rule for enforcing recommenda-



tion of collaboration on a theme or paper p defined by K(X(t))ÇK(Y(t)), where 
“Þ” denotes the recommendation of collaboration at time t+1 with a positive 
probability.  

Rule of Recommendation 1: K(X(t)) ¾similar-to®K(Y(t)) Þ 
X(t+1)¾cooperate(p)®Y(t+1), where p is a task for possible cooperation. 

     A complement link can be established between research interests when 
K(X(t))ÈK(Y(t))=K(Theme(t)), where K(Theme(t)) denotes the set of keywords of 
a research Theme.  The following rule represents that the complement of interests 
of two researchers can increase the probability of collaboration between them on 
a theme or a paper p defined by K(Theme(t)).   

Rule of Recommendation 2: K(X(t)) ¾complement®K(Y(t)) Þ X(t+1)¾co-
author(p)®Y(t+1). 

     Cooperation experience also increases the probability of future cooperation 
because two researchers who cooperate before should share common interests 
and a researcher who has cooperation experience is willing to cooperate and has 
the characteristic of cooperation.  The following rule reflects the positive influ-
ence of experience on cooperation. 

Rule of Recommendation 3: X(t) ¾co-author(p1)®Y(t), …, X(t) ¾co-
author(pn)®Y(t)  Þ X(t+1)¾co-author(p)®Y(t+1), where p, p1, …, and pn de-
note paper and p Ê p1È…Èpn, n is an integer and n>1. 

     Some cooperation links depend on social roles.  If a researcher X(t) is the su-
pervisor of another researcher Y(t) during a time period t, the probability of coop-
eration between them is high because their common interests are built through 
education process including meeting and discussion on the same research theme 
and cooperation is bound by the responsibilities of jobs.  The following rule is for 
the enforcement of recommending collaboration. 

Rule of Recommendation 4: X(t) ¾is-supervisor-of®Y(t) Þ X(t+1)¾co-
author(p)®Y(t+1), where p is determined according to K(X(t))ÈK(Y(t)). 

    If two researchers X(t) and Y(t) cite the same paper, they have a high probabil-
ity to cooperate because they should have close research interests.  The following 
rule for recommendation enforcement can be drawn from Rule 1. 

Rule of Recommendation 5: X(t)¾is-author-of®a(t), a(t)¾cite®c(t), 
Y(t)¾is-author-of®b(t), b(t) ¾cite®c(t)  Þ X(t+1)¾co-author(p)®Y(t+1), 
where paper p Ê K(X(t))ÈK(Y(t)). 

      Although the probability of collaboration within an organization is high (par-
tially due to members of a research team usually belong to the same organiza-
tion), it will be more significant to recommend collaborators from different or-
ganizations given the same condition because researchers in the same 



organization should already know each other so it is easy for them to collaborate 
in the future or they are collaborating with each other.  The following is a rule for 
recommending collaboration with positive enforcement: 

Rule of Recommendation 6: X(t) ¾work-for®O(t), Y(t) ¾work-for®O(t), 
Z(t) ¾work-for®Q(t), X(t)¾co-author(p1)®Y(t), X(t)¾co-author(p2)®Z(t) 
Þ  X(t+1)¾co-author(p)®Z(t+1), where O and Q are organizations, and the 
content of paper p is defined by K(X(t))ÈK(Z(t)). 

The evolution of the semantic link network on researchers, papers, and organ-
izations emerges some implicit links between semantic links, e.g., between cita-
tion link and co-author link.  Previously introduced experiment on citation and 
collaboration indicates the following rule for determining the probability of 
emerging a collaboration link. 

 

Probability of emerging a collaboration link. 

1. The probability of emerging a new collaboration link between a researcher 
with a high citation number and a researcher with a low citation number > 
the probability of emerging a new collaboration between two researchers 
with high citation numbers.    

2. The probability of emerging a new collaboration link between two research-
ers with low citations > the probability of emerging a collaboration link be-
tween two researchers with high citations. 

Experiment. Publication data of two journals (AI journal and FGCS journal) in-
dicate the following phenomena:  

1. The probability of collaborating with the same researcher(s) constantly is 
small for a highly cited researcher. 

2. About 50% of top-10 highly cited researchers collaborate with top-10 highly 
cited researchers. About another 50% of those researchers collaborate with 
low citation researchers. 

3. Collaboration between researchers with low citation is about 77% of all cita-
tions, and collaboration between researchers with high citation is less than 7%. 

4. More than 70% of the cooperation between high-citation researchers and low-
citation researchers come from the same organization.  

This rule can be interpreted from the following aspects:  

1. Researchers with low citation are usually young researchers who have not 
formed a long-term personal research direction, so they are flexible in collab-
orating with more researchers on different research themes.  

2. Many young researchers are students who often collaborate with their super-
visors in the same organization. 



3. Researchers with high citation are usually senior researchers who have 
formed a personal long-term research direction, so they are more difficult to 
find a collaborator with the same interest or complementary interest. 

4. A researcher with high citation usually have multiple research students or re-
search assistants for collaborative research. 

5. Researchers with high citation usually own research funding, which supports 
them to attend conferences and visit universities and companies where they 
have higher probability to meet young researchers for collaborative research 
given the population of young researchers. 

6. The number of researchers with a low citation number is much more than the 
number of researchers with a high citation number, therefore the probability 
of emerging a new collaboration between a researcher with a high citation 
number and a researcher with a low citation number is much higher than the 
probability of emerging a new collaboration between two researchers with a 
high citation number. 

The evolution of semantic link network with the above determined rules and 
the probabilistic rules emerges a probabilistic pattern of potential collaboration.  
The pattern is the basis of recommending future links as it should not change fre-
quently with short-term operations once formed.   

The above set of Rules transforms the pattern of semantic link network on two 
researchers into a co-author link with a probability represented as follows: 

Rules(link1(X(t), Y(t)), …, linkn(X(t), Y(t))) Þ X(t+1)¾co-author(p)®Y(t+1), 
where link1(t), …, and linkn(t) are semantic links on person X(t) and person Y(t), 
which determine the rules for recommendation. 
      A more general problem is recommending one semantic link or several se-
mantic links between things to realize a certain goal about the semantic link net-
work.  Solutions request the understanding of the evolution of a real semantic 
link network (e.g., epidemic network) and the recommendation of a set of seman-
tic links between important nodes for predictive operations, for example: finding 
the key infection link for curbing an epidemic with the minimum cost, and pro-
moting effective interactions for research collaboration on a scientific research 
network.   

Recommending a semantic link needs to consider semantic nodes (with fea-
tures, states and functions), semantic links (with type, probability and time) and 
flows (of material, data, information and knowledge) influencing the state of 
node.  The evolution of an SLN emerges patterns, which provide the context for 
predicting a new link between existing nodes and between a new node and the 
existing nodes.  

Chapter 10 will discuss an application of SLN to manage epidemic networks. 
 

3.12 General Model for Cyber-Physical-Social Semantic Link 
Network 



 
3.12.1 General Model 

The general model for CPSoSLN is a complex system consisting of a persistent 
mapping from a base network into a superstructure to persistently obtain its se-
mantic images through evolution and a set of operations to evolve the base net-
work and the superstructure:  

(K: <N, L, F> ® W, O), where 

1. <N, L, F> is the base network consisting of (1) an open set of nodes N, each 
of which can be anything, passively or actively linked to other nodes; (2) an 
open set of links L, each of which is a relation between nodes indicated by a 
simple structure with a light-weight grammar, representing the pattern of rela-
tion; and, (3) an open set of flows F, each of which carries material, data, in-
formation and knowledge processed by autonomous nodes and flows from 
one node to another node. 

2. W is an open superstructure consisting of semantic space, cyberspace, physi-
cal space, social space, probabilistic space and time, each of which consists of 
relations, linking rules, relational reasoning rules and theory. A space can be 
defined by a basic SLN or other spaces (for example, the social space consists 
of such subspaces as motivation space, value space, productive space as well 
as strategy and policy space).  The superstructure of a basic SLN consists of a 
semantic space with a concept hierarchy, linking rules and reasoning rules.   

3. K is a set of persistent mappings, consisting of:  
(1) a persistent mapping from the base network into the superstructure to get 

the semantic images of nodes, links and flows as well as relevant rules 
and principles specific to different spaces;  

(2) persistent mappings between spaces, including   
• persistent mappings from cyberspace, physical space, social space, 

probabilistic space and time space (or dimension) into semantic 
space for persistently obtaining the semantic images of things (in-
cluding nodes, links, rules and theories) in those spaces;  

• persistent mappings from physical space and social space into cyber-
space for persistently obtaining the cyber images of things in physi-
cal space and social space; 

• persistent mappings from cyberspace into physical space, social 
space, probabilistic space and time space for persistently obtaining 
social and physical images of cyber things;  

• persistent mapping from social space into physical space for getting 
social images of things in the physical space;  

• persistent mapping from physical space into social space for persis-
tently getting the physical image of things in social space; and,  

• persistent mappings from cyberspace, physical space and social 
space into probabilistic space for persistently obtaining their proba-
bilistic images in probabilistic space. 



4. Operations O=<{O1, O2, …, On}, Method> is a set of operations on the base 
network, the superstructure and the mappings with a set of methods Method, 
including the maintenance operations (such as changing the structure, attrib-
utes, links, services, rules and experience) and methods (including classifying 
things such as nodes, links, rules, operations and methods as well as discover-
ing links between things and rules on semantic links).  The base network, su-
perstructure and mappings evolve with operations. 

CPSoSLN evolves with the following operations: 

1. Linking, reflecting self-organization process of organization. 
2. Relational reasoning, reflecting the intrinsic structure of organization.  
3. Classification, reflecting generalization and specialization.  
4. Mapping, reflecting analogy and association; a persistent mapping is a func-

tion of the base network, the superstructure and time. 
5. Maintenance, operations on the base network and the superstructure.  
6. Influencing, reflecting the change of the state of the base network and the 

state of the superstructure due to operations.  

Classification and categorization drive the evolution of CPSoSLN with 
emerging concepts and categories.  Classifying and categorizing a set of nodes 
concern classification of its attributes, experience of appearance and services, and 
link them to the existing categories.  Classifying and categorizing the links of a 
node through comparing common or different attributes between nodes is a way 
to understanding the situation of the node.  Classifying and categorizing all links 
within the base network emerge the pattern of links to reflect the situation of 
nodes.   

An application scenario of classifying and categorizing links is enterprise sit-
uation analysis. An enterprise can build a view of an enterprise symbiotic net-
work, a social-relational network, by finding and analysing various links and 
flows between relevant enterprises through the following steps: 

1. Finding explicit and implicit relations (semantic links) to other enterprises 
and between enterprises. 

2. Classifying and categorizing the links such as supplier, customer, competitor 
and co-operator by mapping the links into the concept hierarchy in the seman-
tic space.   

3. Identifying the flows through the links. 
4. Ranking the general links according to the richness of the links and flows 

through the links. 
5. Identifying linking rules according to the links and flows. 
6. Recommending a ranking list of the links and flows with values and possible 

influences (measured according to linking rules, reasoning rules and flows) to 
the managers of the enterprise to consider before making an enterprise strate-
gy. 

     Knowing the symbiotic network and the influence of a strategy can help deci-
sion makers to make foreseeable decision on business strategies. 



CPSoSLN renders the complexity of the evolution process of the observed sys-
tem with diverse operations, semantic links, linking rules and reasoning rules.  It 
divides a complex system into two subsystems ¾ a base network and a super-
structure, which evolve with a simpler complexity and more specific rules and 
principles.    

In contrast, the traditional semantics modelling methods including the Seman-
tic Net, semantic data models, knowledge representation methods and probabilis-
tic graph are single-level network, which limits the ability of modelling complex 
systems because of lacking social linking rules and relational reasoning rules. 

Figure 3.18 (a) depicts a multi-dimensional view of mapping (denoted as m) 
the model into different dimensions, resulting in different images: 

1. Semantic images of nodes, links and flows with concept hierarch (or network), 
linking rules and relational reasoning rules at the semantic dimension. 

2. Social images of nodes, links and flows with social linking rules, motivations, 
values, productivities, policies and strategies at the social dimension. 

3. Physical images of nodes, links and flows as well as rules, principles and the-
ories at the physical dimension. 

4. Cyber images of nodes and links with linking rules as well as theories and 
techniques of computing and communication at the cyber dimension, con-
cerning representation, storage and efficient operations of the network. To 
support globally distributed massive operations (including storage, manage-
ment, reasoning and interpretation) on a large-scale SLN is a challenge to 
cyber-infrastructure. 

5. Probabilistic images of nodes, links, flows and rules in the probabilistic space 
reflecting the uncertainty of representation and understanding.  

Figure 3.18 (b) depicts a cyber-physical-social view where black arrows de-
note mappings (j) between spaces (the yellow arrows denote the corresponding 
reverse mappings).  With the mappings, a physical object can have a cyber image, 
a social image, a semantic image and a probabilistic image, and a social object 
like human individual, organization or event can have a cyber image, a semantic 
image, a physical image and a probabilistic image.  The images in various spaces 
support cyber-physical-social services, e.g., answering a question with cyber im-
age, physical image, social image, semantic image and probabilistic image with 
interpretation from different spaces. 

The reverse of a mapping in the same space exists and follows the same prin-
ciple, such as light and reflection of light as well as force and reaction force in 
the physical space.  However, a reverse of a mapping in different spaces may not 
exist.  For example, some abstraction concepts such as good and true in the men-
tal space have no corresponding sources in the physical space.   

With the expansion of various images in cyberspace (e.g., big data), physical 
space and social space, computing in cyberspace is developing toward a compu-
ting in cyber-physical-social space.  Recognizing reality reflected by various im-
ages in cyber-physical-social space, understanding the patterns and their evolu-
tion hidden in the images, and uncovering the implicit links between the 



evolutions of patterns become more and more important tasks, which are also the 
basis of discovering fundamental problems. 

 

 

 

 

 

 

 

 

  
 
 
 
 
 
 

 
 

 
 

 
 
 

 
 

 
 

 
 
 

                            
                           
      

 
                           

Fig. 3.18 Cyber-Physical-Social Semantic Link Network. 
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CPSoSLN can be regarded as a model for linking cyber-physical-social things 
and images, carrying out complex relational reasoning, discovering emerging 
patterns and predicting evolutions according to cyber-physical-social relations, 
rules and principles. 
 
3.12.2 Necessity, Assumption and Method 

In general, the necessity of this research lies in meeting the following require-
ments: 

1. The requirement of exploring the prominently evolving reality and the chal-
lenge of shifting scientific paradigm. The rapid development of technologies 
changes the ways of interactions between humans and between humans and 
the nature, therefore the structure of reality and fundamental scientific prob-
lems change.  Exploring the changing reality requires a new methodology, 
models, theories and tools. 

2. The requirement of developing Cyber-Physical Society with harmonious co-
ordination and co-evolution of humans, machines and the nature. The capa-
bilities of intelligent machines have surpassed humans in solving well-defined 
problems.  How to build symbiosis among humans, machines and the nature 
to ensure the sustainable development of Cyber-Physical Society is a chal-
lenge. 

3. The requirement of understanding complex reality from different dimensions 
and scales.   Research concerns individuals, interactions between individuals, 
influences of interactions, rules of interactions, rules of influence, patterns of 
interactions, transformation of patterns, condition of transformation, generali-
ty and particularity. 

     The study of CPSoSLN is based on the following assumptions: 

Assumption 3.5 Various models reflecting different understandings of reality 
are necessary but insufficient for modelling reality.  This is because knowledge 
and time of the inventors are limited and may hold different worldviews.   

    Based on assumption 3.5, this chapter studies and integrates models on differ-
ent dimensions to model reality. 

Assumption 3.6 Reality evolves through interactions among evolving spaces 
with different rules and principles, which cannot be completely represented and 
transformed from one space into another space.   

    Based on assumption 3.6, this chapter explores the modelling of reality from 
evolutionism. 

Assumption 3.7. Symbiosis among human, machine and the nature can be estab-
lished, and it evolves sustainably based on the development of science and tech-
nology.  

     Based on assumption 3.7, this chapter studies reality through constructing 
symbiosis between individuals, between spaces, and between various processes. 



It is feasible with the development various sensors, robots and human-machine 
interfaces.   
      Gödel’s incompleteness theorem shapes the boundaries of formal systems 
(Gödel 1951).  Simon’s bounded rationality shapes the general limitations of rec-
ognizing reality in terms of cognition, time and information (Simon 1957).  
The physical symbol system hypothesis: “A physical symbol system has 
the necessary and sufficient means for general intelligent action” (Newell 
and Simon 1976), which sets the basis for symbolism of developing Artificial In-
telligence.   These ideas can be traced to the rationalism of philosophy. 

CPSoSLN tries to extend the boundary of semantics modelling by creating an 
open two-level architecture:  

1. A base network with the following characteristics:  
• generality, it reflects the complex structure of reality, which is modelled by 

complex network or abstract algebra system;  
• evolution, it evolves structure and emerges communities with operations on 

nodes, links and flows;  
• self-organization, a node can determine which node it should link to accord-

ing to the rules defined in the superstructure;  
• openness, it accepts new nodes and links at any time; and, 
• interactive, nodes can actively interact with each other or be passively 

linked. 
2. A superstructure with the following characteristics:  

• particularity, it has different spaces that contain specific rules, principles 
and strategies;  

• multiple spaces, it includes semantic space, cyberspace, physical space and 
social space, and any space can have sub-spaces with specific rules, princi-
ples and strategies, for example, social space can have a subspace on strate-
gy and policy, which can further have a socialism subspace and a capitalism 
subspace, following different rules and policies in addition to the general 
rules and policies;   

• evolution, its spaces evolve with changing dimensions to reflect evolving 
reality and learning new categories and rules from the base structure and the 
external environment; and,  

• openness, its spaces can accept new elements and rules, on the other hand, 
semantics of basic elements is based on the common sense concepts as de-
fined in the Interactive Semantic Base that support understanding of interac-
tions (Zhuge 2011). 

3. Persistent mappings, it includes the persistent mapping between the base 
network and the superstructure that holds the images of nodes and links with-
in the evolving base network and the rules of operations in the evolving spac-
es at any time, and the persistent mappings between the evolving spaces to 
hold the images of things in different spaces at any time.  The persistent map-
pings enable CPSoSLN to render Cyber-Physical-Social Intelligence. 



Separating the base network from the superstructure brings the following ad-
vantages: 

1. It can coordinate between generality and particularity and between different 
spaces. 

2. It can reflect evolutions at different levels with different rules and principles, 
emerging different patterns. 

3. It can identify relations (or influence) between different components of reality. 
4. CPSoSLN can be observed and operated separately by different operators. 

Incorporating various spaces into the superstructure brings the following ad-
vantages:  

1. Keeping persistent mappings between spaces can keep reflecting the evolu-
tion of various spaces such as physical space and social space, which are 
characterized by different linking rules, reasoning rules and principles, re-
flecting different aspects of reality.  In contrast, traditional approaches map 
different spaces into symbol space and then focus on operating symbols sepa-
rately from the evolution of different spaces through modelling process.  The 
problem is that the modelling process is unable to reflect the change of reality 
(sometimes change can be prominent, e.g., change of business).   

2. It keeps gaining combined power along co-evolution. People carry out model-
ling with bounded rationality.  An individual researcher or a team of re-
searchers is limited in ability to learn all knowledge of various spaces.  Lim-
ited knowledge determines limited ability to recognize reality.  The persistent 
mappings of the proposed model create an environment where physicians 
keep contributing models and theories about physical space, socialists keep 
contributing models and theories about social space, computer scientists keep 
contributing models and theories about cyberspace, and IT professionals keep 
contributing to evolve the infrastructure of cyberspace.  

3. Support advanced services through mappings between spaces, such as ques-
tion answering, summarization and recommendation based on inter-space 
mapping, linking, complex reasoning and interpretation.  Any prominent 
change in one space will be mapped into the other spaces in real time, influ-
encing the evolution of the superstructure and the base network. 

Figure 3.19 depicts the general problem and the research method of 
CPSoSLN, which provides a cyber-physical-social relational system for linking 
reality to knowledge.  The red rectangular encloses the main work of this chapter.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Fig. 3.19 General problem, method and methodology. 

 
 
 

3.13 A Brief History of Graphical Semantics Modeling 
 
 
There is a long history of using graph to represent reality at a high abstraction 
level, for example, Euler’s research on the Königsberg Bridge problem in 1736.  
Graph theory studies the structure of abstract graph consisting of nodes and edges.  
The meaning of a graph is described in natural language separated from graph for 
understanding reality.  
 
3.13.1 Semantic Net 
 
Half century ago (1956-1970), a logic-based labeled graph, Semantic Net (i.e., 
Semantic Network, https://en.wikipedia.org/wiki/Semantic_network) was used 
by a group of scientists and engineers for processing natural language and devel-
oping application systems in the UK, Europe and American (Richens, 1956; 
Quillian 1967; Quillian 1967; Minsky 1968).  It takes such forms as definitional 
networks, assertion networks, implicational networks, executable networks, 
learning networks and hybrid networks in various applications (Sowa 1987). 

Semantic Net was used as a knowledge representation approach for imple-
menting some knowledge-based systems at the age of knowledge engineering 
(section 3.13.3 will discuss this further) including expert systems like the Pro-
spector – a computer-based consultation system for mineral exploration (Hart and 
Duda 1977).  Compared with other knowledge representation approaches like 
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production rule, Semantic Net was not so widely applied to the implementation 
of knowledge-based systems due to the following limitations to a certain extent:  

1. Closed system. It is hard to communicate between systems developed by dif-
ferent people who may use different symbols to indicate the same semantics 
or use the same symbol to indicate different semantics. This is a historical 
limitation due to the early development stage of computing technology.  The 
initiative of Open Knowledge Base Connectivity (OKBC) addressed this is-
sue (http://www.ai.sri.com/~okbc/, 1995).  OKBC aimed at a uniform model 
in form of application programming interface for accessing knowledge bases 
stored in knowledge representation systems based on common conceptualiza-
tion of classes, individuals, slots, facets and inheritance.  

2. Static and weak semantics.  It simply uses words to indicate semantics of 
nodes and edges while neglecting the nature of semantics as discussed in this 
book, especially the social characteristics of semantics (Zhuge 2010), includ-
ing diversity, dynamicity, evolution, interactivity and particularity of different 
semantic relations.   

3. Logic-based.  Some Semantic Nets are based on the first-order logic, which 
supports logic reasoning but it is limited in ability to reflect the semantics that 
is not mainly relied on logic. 

4. Subgraph-matching-based reasoning.  It is limited in ability to carry out rea-
soning on diverse relations and has a high computing complexity. 

5. Labour-intensive construction.  The construction of the Semantic Net relies 
on humans.  Research neglects automated construction due to the early devel-
opment stage of computing technology. The cost spent on constructing a 
high-quality large-scale Semantic Net is very high, especially on ensuring the 
consistency between the parts contributed by different developers. 

Semantic Net has the similar limitation as other knowledge representation 
approaches in developing knowledge-based systems. For example, they have the 
bottleneck of knowledge acquisition.  This is mainly because there is a big gap 
between knowledge in mind and the “knowledge” represented in the systems.  It 
is hard to create a universal model that can represent all human knowledge. 

A relevant event during this period is that Newell and Simon developed the 
General Problem Solver system in 1959 for solving any formally represented 
problem based on their physical symbol system hypothesis and theoretical work 
on logic machines. They received 1975 Turing Award for their “basic contribu-
tions to artificial intelligence, the psychology of human cognition, and list pro-
cessing”.  

Generality is a pursue of scientific research. However, establishing a univer-
sal theory for solving all problems is impossible according to Gödel’s incom-
pleteness theorem. 

 



3.13.2 Data Models 

The network data model adopted graphical data structure as database schema and 
programmers as navigators (Bachman 1969; Bachman 1973). Bachman created 
the Integrated Data Store (IDS) based on the model (i.e., the navigational data-
base model).  He received the Turing Award in 1973 “for his outstanding contri-
bution to database technology”.  Relational data model organizes data according 
to relations (e.g., functional dependency) on attributes of data and normalizes re-
lations (normal forms) for correct operations in a structured query language 
(Codd 1970).  Codd received the Turing Award in 1981 “for his fundamental and 
continuing contributions to the theory and practice of database management sys-
tems”. 
     Semantic data models including the Entity-Relation (ER) model was proposed 
for modelling domain business as the basis for designing data model so that data-
base can provide appropriate functions for domain applications (Abrial 1974; 
Chen 1975).  
      Following the network model and the hyperlink network of the World Wide 
Web, graph databases drew researchers’ attention for efficient opera-
tions on graph structures of data (Angles and Gutierrez 2008).   

The network data model, the ER-model-like semantic data models, and the 
graph database can be generalized as a Semantic Net at a certain abstraction 
level, however different models concerns different particularities of reality. 

Social network analysis more concerns the structural characteristics of a large 
network and applications based on the characteristics (Kossinets and Watts 2006; 
Liben-Nowell and Kleinberg 2007).  From a multi-dimensional view on various 
resources, research on the Resource Space Model (RSM) adopts a multi-
dimensional classification space to manage various data based on a set of normal 
forms on the space (Zhuge 2008; Zhuge and Xing 2012). 
 
 
3.13.3 Knowledge Representation and Reasoning 
 
As the achievement of exploring reality, humans generate knowledge for sharing, 
understanding and interpreting reality through necessary reasoning.  Studying the 
theory of knowledge is the core of philosophy.  

Feigenbaum classified knowledge into two categories: (1) facts of the domain, 
i.e., the shared knowledge written in textbooks and journals; and, (2) heuristic 
knowledge, consisting of the rules of expertise, the rules of good practice, 
the judgmental rules, the rules of plausible reasoning, which are transmitted 
through practice and rarely written down.    

He pointed out the following characteristics of domain problem-solving: (1) 
relying on domain knowledge in addition to common knowledge (including 
mathematics, philosophy and methodologies); (2) heuristic approaches, which are 
widely used to solve problems, especially those that are hard to be precisely de-



fined in mathematics; (3) inductive reasoning and abstraction reasoning, in addi-
tion to deductive reasoning and (4) the ability to process uncertainty and incom-
pleteness, including facts and knowledge. Humans use heuristic knowledge to 
solve problems, learn knowledge, and then update knowledge during problem-
solving process. 

He proposed the term Knowledge Engineering in 1977 to model human ex-
pertise in solving domain problems, which is usually based on heuristic rules, in-
ductive reasoning, abstraction ability as well as the ability to process uncertainty 
and incompleteness.  It focuses on three scientific problems: knowledge repre-
sentation, knowledge utilization and knowledge acquisition (Feigenbaum 1980).  
He received the Turing Award in 1994 together with Raj Reddy for “pioneering 
the design and construction of large-scale artificial intelligence systems, demon-
strating the practical importance and potential commercial impact of artificial in-
telligence technology”. 

The approach to modeling expertise tries to break the limit of logic-based ap-
proaches to modeling human intelligence but it encounters difficulties in the 
practice of building expert systems and in solving the scientific problems, espe-
cially knowledge acquisition and representation of expertise.  

As a kind of knowledge representation method, Probabilistic Graph Models 
were proposed.   One branch of research is Bayesian network, a Directed Acyclic 
Graph (DAG), is good at reflecting cause-effect relation (Pearl 1985; 1986).  Ju-
dea Pearl received 2011 Turing Award for “fundamental contributions to artifi-
cial intelligence through the development of a calculus for probabilistic and 
causal reasoning”. Another research branch is Markov random field (or Markov 
network), an undirected graphical model where random variables have Markov 
property described by an undirected graph (Dobruschin 1968).  It is good at re-
flecting symmetrical relationships such as similarities and affinities. Efforts have 
been made to enrich semantics, e.g., combining probabilistic graph models and 
first-order logic (Richardson & Domingos, 2006).  In general, they are limited in 
ability to represent rich relations in reality.  

In addition to technical challenges, the methodology of knowledge engineer-
ing has the following two shortcomings:  

1. Its research object was set as knowledge rather than problem and reality.  
Traditional computing is to define problem and solve problem through de-
signing algorithm.  It is a challenge to process the problems that are hard to 
be precisely defined.  The knowledge engineering methodology neglects the 
complicated psychological, cognitive and social processes of generating and 
sharing knowledge, which make the modeling of expertise difficult.   Estab-
lishing symbiosis between humans and machines is an approach to making 
use of both advantages of machines and humans. 

2. It neglects the nature of knowledge, which involves social, diverse, evolving, 
semantic and multi-dimensional characteristics.  Traditional knowledge ac-
quisition and representation approaches are limited in ability to reflect the 
characteristics.  



Some researchers retarget their research object to data and try to discover 
knowledge in database (Piateski and Frawley 1991). 

Neural network is also a knowledge representation method (connectionism). 
Deep learning obtains significant progress in obtaining expertise from data 
(LeCun 2015).   The pioneers of deep learning Yoshua Bengio, Geoffrey Hinton 
and Yann LeCun received the 2018 Turing Award “for conceptual and engineer-
ing breakthroughs that have made deep neural networks a critical component of 
computing”.  As a black box approach, deep learning is limited in ability to gen-
erate explicit knowledge representation, carry out reasoning and interpret reality. 
Most Artificial Neural Networks can be generalized as a Probabilistic Graph 
Model.   
      The problem of how humans bridge the gap between experience and 
knowledge has puzzled scientists and philosophers for centuries.  A related prob-
lem is how humans can know so much given limited experience.  It was named 
Plato’s problem by Noam Chomsky.   It is difficult to solve the problem if we on-
ly investigate individual behaviours.  A multi-dimensional space view of 
knowledge was proposed to model knowledge as a space, which evolves with 
such dimensions as cyberspace, physical space, social space and mental space 
(Zhuge 2012).  

This chapter provides a semantic link view of knowledge: points (or subspace) 
in a knowledge space are connected by various semantic links in the complex 
space with such dimensions as cyberspace, physical space, social space and men-
tal space.  A point integrates mapping images in physical space, mental space, 
social space and cyberspace.  The knowledge spaces of individuals belonging to 
the same community can be integrated into the knowledge space of the communi-
ty.  Mapping between knowledge spaces is established through the semantic links 
and mappings between spaces.  Knowledge spaces grow through establishing and 
maintaining links and mappings. 

An individual’s experience is limited but a community of practice helps indi-
viduals obtain indirect experience and grow knowledge through linking and 
mappings.  The development of interconnection environment (including the In-
ternet and wireless communication network) provides the condition for sharing 
information and experience world widely.  Experience can grow quickly through 
direct mapping from cyberspace, physical space and social space.  A knowledge 
space evolves when it gains knowledge points through semantic links.  A sys-
tematic knowledge space forms when all of its points are linked and linked to 
other spaces with consistency. 
 
 
3.13.4 Hyperlink, Linked Data and Knowledge Graph 
 
The hyperlink network of the World Wide Web is a self-organized network con-
sisting of webpages and hyperlinks without any rule for restricting linking opera-
tions (Berners-Lee and Fischetti 1999).  The hyperlink network, Web browser, 
and search engine provide a paradigm for sharing information globally on the 
Web.  Web 2.0 provides an interactive platform for people to communicate with 



each other, reflecting social behaviors. Tim Berners-Lee received the 2016 Tu-
ring Award for “inventing the World Wide Web, the first web browser and the 
fundamental protocols and algorithms allowing the Web to scale”. 
     The Web evolves prominently through self-organization.  Any person can cre-
ate any webpage and link it to any other webpage, but people tend to link their 
webpages to the authority webpages that have many links.  Therefore, some 
webpages attract more links than others through the evolution of the hyperlink 
network.  If webpages are ranked by their links and the ranks of neighbors (Page 
1999) and new webpages are constantly linked to the network, the ranks of 
webpages within the hyperlink network monotonously increase.  Another effect 
of linking one webpage A to another webpage B is that A contributes reading 
flow to B and increases the rank of B, which in turn influences the neighbors of 
B.  
     Tim Berners-Lee proposed an open system initiative ¾ the Linked Data in 
2006 for publishing structured data so that data can be interlinked and become 
more useful in supporting semantic queries 
(www.w3.org/DesignIssues/LinkedData.html).  Linked Data is a technical pro-
posal for solving the problem of linking data of multiple sources on the Web alt-
hough it can be generalized as a Semantic Net.  Research and applications in-
volve in technological problems. 

It is worth mentioning that an initiative on open system connectivity Open 
Database Connectivity (ODBC) were made in 1990s. It is a standard application 
programming interface, independent of database systems and operating systems, 
for accessing database management systems. 

W3C proposed a framework for defining triple structure (RDF) in 2004 (up-
dated in 2014, https://www.w3.org/RDF) to support structured and semi-
structured data to be mixed, exposed and shared across Web applications. It is a 
directed and labelled graph like the Semantic Net in general.  However, it does 
not define the semantics of nodes and links nor the rules and reasoning on the 
links.  A logic-based Web Ontology Language (OWL) was developed as a Se-
mantic Web language for representing rich and complex knowledge about things 
and relations between things (https://www.w3.org/OWL/, 2004, updated in 2009 
and 2012).  RDF, OWL and SPARQL (RDF query language) are parts of the 
W3C’s Semantic Web technology stack.   The initiative is to create standards and 
tools for building open databases on the World Wide Web. 

Linked data initiative attacks the closed world problem of previous semantic 
models and enables globally distributed data to interact with each other.  Howev-
er, it relies on human construction and its main aim is not semantics modelling. 

Google proposed knowledge graph in 2012 for structuring multimedia data 
from search results and other sources to better reflect relations among entities.  
The initiative has drawn R&D attentions, especially from search enterprises.  Es-
sentially, it adopts the idea of the Semantic Net, Linked Data and SLN for im-
proving search result and user experience. However, there is a big gap between a 
graph of multi-media data and a graph of knowledge (Zhuge, 2004,  2012).  
 
 



 
3.13.5 Semantic Link Network 
 
Research on Semantic Link Network (SLN) can be traced to the discovery of the 
rules of inheritance for efficient retrieval of models in model repository (Zhuge 
1998) and the implementation of Active Document Framework through building 
semantic links between documents respectively (Zhuge 2003).  A systematic the-
ory and method was developed for representing the basic semantic structure of 
complex systems in 2004 (Zhuge 2004) and complemented in 2010 and 2012 
(Zhuge 2010, 2012). 

SLN was integrated with the Resource Space Model based on the multi-
dimensional classification space to effectively organize and operate various re-
sources (Zhuge 2008).  The expression ability of the Resource Space Model was 
studied by comparing with relational data model and OWL (Zhuge and Xing 
2012).  Its theory and method have been applied to various application areas to 
improve existing research such as in decentralized semantic networking (Zhuge 
et al 2004; Zhuge 2006, 2007; Zhuge and Li 2007), e-learning (Zhuge 2009), and 
text summarization (Zhuge 2016; Cao et al. 2018; Sun and Zhuge 2018).  SLN 
can also enhance question-answering systems with such functions as selecting 
semantically relevant answer, expanding question and answer, and matching an-
swer and question through various semantic links (Zhuge 2007).  

A research challenge is to automatically build the SLN for various applica-
tions.  Efforts have been made to discover semantic links, e.g., within texts based 
on explicit patterns (Zhuge et al 2004; Zhuge 2012; Cao et al 2018).  Structure 
information, statistic rules and linguistic rules inspire unsupervised approach to 
discovering implicit patterns from texts. Deep learning provides a supervised ap-
proach to automatically discovering semantic links on data through training with 
examples.   However, it is still a challenge to automatically build the superstruc-
ture of SLN including motivation, social linking rules, relational reasoning rules, 
strategies, policies and theories. 
 
 
3.13.6 Mapping Models into Multi-Dimensional Space 

 
Different models can be mapped into a space with graph dimension, time dimen-
sion, semantics dimension and probability dimension for identifying their charac-
teristics on these dimensions as shown in Figure 3.20.  Each dimension can be 
divided into different sub-dimensions, e.g., semantic dimension can be divided 
into two sub-dimensions: formal semantics dimension and social semantics di-
mension.   

Graph theory has projections at the graph dimension.  Semantic Net, ER mod-
el, Linked Data and Knowledge Graph have projections at the graph dimension 
and the semantics dimension.  Probabilistic graph model has projections at the 
graph dimension and the probability dimension.  SLN has projections at the 
graph dimension, semantics dimension and probability dimension. 



All models have invention times at the time dimension.   The important mile-
stone of the development of semantics modelling is the invention of the World 
Wide Web, which not only provides a platform for implementing large-scale se-
mantics modelling for globally distributed diverse applications but also requests 
open system that benefits diverse communities.  This also provides the necessity 
for studying interactive semantics and social semantics (Zhuge 2010, 2011), 
which were not urgently requested for small, special-purpose and close systems 
before the invention of the Web. 

Models can also be mapped into a multi-dimensional methodology space, 
which consists of rationalism dimension, empiricism dimension, constructionism 
dimension and evolutionism dimension.  The probabilistic graph model more be-
longs to rationalism while Semantic Net, ER model, Linked Data and Knowledge 
Graph more belong to empiricism.  SLN has projections at rationalism dimension, 
empiricism dimension, constructionism dimension and evolutionism dimension. 

 
 
 
 

 
 
 

 

 
 

 
 
 
 
 
 
 
Fig. 3.20 A multi-dimensional space for summarizing various graphical semantic 
models. 
 
 

 
3.13.7 Cyber-Physical-Social Semantic Link Network 
 
With the co-evolution of cyberspace, physical space and social space, a cyber-
physical-social space emerges. Building human-machine-nature symbiosis be-
comes a new challenge.  SLN was extended to connect things in cyberspace, 
physical space and social space to support Cyber-Physical-Socio Intelligence 
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with the characteristics of abstraction, dimensionality, interactivity, evolutionary, 
diversity and sociality of linking things in different spaces, and reasoning for 
human-machine-nature symbiosis (Zhuge 2011, 2012).    

Some characteristics and principles of cyber-physical-socio-mental SLN 
(SLN 3.0) was proposed in (Zhuge 2012).  CPSoSLN extends SLN 3.0 to a com-
plex cyber-physical-social-relational system with a base network and a super-
structure that makes the sense of the base network and regulates its evolution 
with categorizing nodes, links and flows, and incorporating linking rules and re-
lational reasoning rules into the motivation space, value space and productivity 
space as well as policy and strategy space.   The study of CPSoSLN also helps 
deepen the understanding of the future interconnection environment (Zhuge 
2005). 

 
 
3.14 Summary 
 
Finding the reason or the cause of why a thing happens is a major concern of phi-
losophers and scientists.   
     Modelling is a paradigm of scientific exploration through observation, exper-
iment, generalization, thinking, formulation, prediction and evaluation with nec-
essary knowledge and representation based on a certain level of language.   Hu-
mans play the central role in creating various models through observing reality, 
linking reality to knowledge, and applying knowledge to understanding and 
modelling reality.  Models can be interpreted by existing knowledge, and the 
modelling processes are testable and interpretable.  Through creating and adapt-
ing models, humans (including developers and users of models) gain insight, 
learn and apply knowledge, form theories, obtain inspiration, evolve minds, and 
develop sciences and techniques.  The expressive abilities of different models 
depend on their abilities to reflect the observed system and the language used to 
express the model.   

Traditional methods for semantics modelling (including the semantic net, the 
semantic data models and the knowledge representation methods) are mainly 
based on unary methodology, single abstraction (or single language), and single 
space (especially cyberspace). Rationalism focuses on developing representation 
systems based on logics, graphics, probability or statistics. Empiricism focuses 
on creating various standard languages like linked data and platforms for sup-
porting applications.  However, they are limited in ability to reflect the nature of 
reality, especially the physical and social characteristics. 

Gödel’s incompleteness theorem, Simon’s bounded rationality, and Newell 
and Simon’s physical symbol system hypothesis shape the sphere of recognizing 
reality from the perspectives of theory, cognition and language.  The ideas are in 
line with rationalism. 

This research is to extend the sphere by creating an evolving two-level se-
mantic model CPSoSLN with a multi-dimensional methodology for organizing, 



analysing, and integrating methods from different dimensions for modelling re-
ality.  

CPSoSLN consists of the following components: (1) a base network that 
evolves patterns of links and flows with characteristics of generality, evolution, 
self-organization, openness and interactivity; (2) a superstructure that models 
categories, relations, rules, principles and strategies with characteristics of partic-
ularity, multiple spaces, evolution and openness; (3) persistent mappings between 
the base network and the superstructure, and between the spaces for supporting 
advanced services and  (4) operations that manage and evolve the base network, 
the superstructure and the mappings.  

The nature of reality is reflected through operations and mappings. Opera-
tions on the base network evolve the network with emerging patterns, following 
linking rules, relational reasoning rules, and properties specified in the motiva-
tion space, value space, strategy and policy space and productive space of the su-
perstructure. Semantics emerges and evolves through linking, multi-dimensional 
classification and categorization, and mappings according to determined or non-
determined rules, which is different from logic deduction systems.  Its modelling 
ability is enhanced through the evolution of its base network and superstructure 
with increasing categories, linking rules, relational reasoning rules, properties 
and principles reflecting the evolving reality. Reflecting both generality and par-
ticularity, coordinating different spaces through persistent mappings, and con-
cerning openness and evolution differentiate CPSoSLN from previous semantic 
models. 

Research adopts the multi-dimensional methodology to observe, understand, 
and formulate reality from methodologies of multiple dimensions (Zhuge 2012).  
From evolutionism, semantics evolves with the evolution of the base network and 
superstructure through categorization, semantic linking, relational reasoning and 
operations.  From rationalism, CPSoSLN integrates algebra system, graphics and 
probabilistic model with temporal characteristics.  From empiricism, CPSoSLN 
incorporates social linking rules, relational reasoning rules, principles, strategies 
and policies to support complex reasoning integrating relational reasoning, induc-
tive reasoning and analogical reasoning for advanced services (Zhuge 2012).  
From constructivism, CPSoSLN concerns both patterns discovered through expe-
rience and automatic discovery (e.g., automatic process for discovering semantic 
links and linking rules) in cyber-physical-social space.  

For a particular application, an instance of the model can be generated by es-
tablishing or discovering semantic links and incorporating domain categories and 
rules into the superstructure.  In different domains, semantic links have particu-
larities, and different combinations of semantic links can form different roles in 
rendering semantics, e.g., in representing and understanding documents (Zhuge 
2012; Sun and Zhuge 2018).   

The proposed social linking rules, properties, principles, lemmas and methods 
form a theory for linking reality to knowledge as an evolving cyber-physical-
social relational system, which emerges, enhances, integrates and evolves seman-
tic images, abstractions, specializations and discoveries of various links. Cyber-
physical-social space provides a cyber-physical-social life experience (with map-



ping images in cyberspace, physical space and social space) for the linking pro-
cess. 
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